université davignon Et DES PAYS DEVAUCLUSE

Acoustic Pairing of Original and Dubbed Voices in the Context of Video Game Localization

Adrien Gresse, Mickael Rouvier, Richard Dufour, Vincent Labatut, Jean-Francois Bonastre \{adrien.gresse, mickael.rouvier, richard.dufour, vincent.labatut, jean-francois.bonastre\}@univ-avignon.fr LIA - University of Avignon (France)

Context \& Motivation:

- In a multilingual context, the process of replacing original speech content (i.e. English) by the target language (i.e.
French) is referred as dubbing.
- Voice casting aims at selecting an actor that mostly respects the original voice. It is performed by a human operator
which raises two difficulties: 1. operator's subjectivity; 2. huge amount of available voices.

Can we build a system that measures the similarity between a voice coming from a target language and the source one considering human perception and subjectivity?

Approach \&r Protocol:

An i-vector/PLDA based approach

- Voices segments represented by i-vectors (lowdimensional representation of acoustic parameters). - Similarity between paired voices estimated with PLDA scores (likelyhood ratio).

```
System A
```



```
    ival
```



```
System B
```


Fig. 2: Three i-vectors comparison approaches. In systems B and C, a projection matrix W trained from different languages is used for comparison.

Baseline i-vector based similarity:

Original and dubbed i-vectors extracted from the same total variability space (System A).

1. T-matrix trained on English corpus (EN-EN).
2. T-matrix trained on French corpus (FR-FR).

Dubbed adapted i-vector comparison

- Use language-dependent total variability space.
- Projection of i-vectors from target language to source language.
- Matrix denoted W trained on a set of pairs $\left\{\left(x_{i}, y_{i}\right)\right\}$ where x_{i} is an i-vector representing a voice segment in target language and y_{i} its counterpart in the source language.
- Train W by minimizing $\sum_{i=1}^{n}\left\|x_{i}-y_{i} W\right\|^{2}$

Three configurations for i-vectors extraction:

1. EN-EN
2. EN-FR
3. FR-FR
$E N$ and $F R$ refer to the language of the corpus used for T-matrix learning

Fig. 3: Example using configuration \#2

Evaluation metric

Evaluate the system capacity to detect pairs of segments from a same character:

- Computing the overall accuracy through ranked PLDA scores.
-Use a k-best approach.
Accuracy $=\frac{\text { number of valid tests }}{\text { total number of tests }}$

Forall character i among testing characters:

1. Score all pairs of segments where first segment belongs to character i.
2. Retrieve the k-best scored pairs.
3. Validate the test if the character of first segment is equal to the second in any of the k -best pairs.

Results \& Conclusion:

Results
System EN-EN EN-FR FR-FR
$\begin{array}{llll}\text { A } & 58.63 & 51.70 & 60.31\end{array}$

B	70.52	69.22	70.01
C	0.21	5.12	6.0

Table 1: Results of the different approaches $(\mathrm{k}=3$).

Fig. 4: Characters confusion matrix using System B with EN-EN configuration ($k=1$).

Fig. 5: Accuracy on EN-EN configuration with different values of k

- A reasonable accuracy on System A (only EN-EN and FR-FR relevant).
- Highest accuracy observed on System B using projection with EN-EN configuration.
- Matrix shows good confusions on most representative characters (bottom right corner).
- Language-dependent T-matrix (EN-FR) do not increases accuracy surprisingly.
- Exploration of i-vector based systems for voices comparison in multilingual context and reduction of language variability.
- Increased accuracy using projection matrix shows the voice mapping relevance.
- A first step toward a dedicated framework for automatic voice recommendation.

Perspectives

- Explore acoustic features representations for character verification.
- Use classes of characters instead of single character in order to reduce ambiguity between speakers.
- Investigate the impact of other variability dimensions (e.g. linguistic content).
- Use a training corpus acoustically similar to targeted data.

