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Abstract. The main challenge of electrocardiography is to retrieve the
best possible electrical information from body surface electrical poten-
tial maps. The most common methods reconstruct epicardial potentials.
Here we propose a method based on a parameter identification prob-
lem to reconstruct both activation and repolarization times. The shape
of an action potential (AP) is well known and can be described as a
parameterized function. From the parameterized APs we compute the
electrical potentials on the torso. The inverse problem is reduced to the
identification of all the parameters. The method was tested on in silico
and experimental data, for single ventricular pacing. We reconstructed
activation and repolarization times with good accuracy accurate (CC
between 0.71 and 0.9).

1 Introduction

The main challenge of electrocardiography is to retrieve the best possible elec-
trical information from body surface electrical potential maps (BSPM). The
most common approach relies on the inverse solution of the Laplace equation
in the torso. It reconstructs epicardial potential maps from the BSPM. This
technique requires a regularization strategy to deal with the ill-posedness of the
problem, and a discretization method to approximate the Laplace equation. A
Tikhonov regularization and the Method of Fundamental Solutions (MFS) are
commonly used, as proposed by Wang and Rudy [1]. Relevant activation maps
can be retrieved from this inverse solution, though it provides signals with a
lower amplitude. Nevertheless the reconstruction of accurate activation maps
and repolarization maps remains a very challenging problem.
Alternative formulations have been proposed Liu et al. [2] and by Van Oosterom
et al. [3], in order to reconstruct directly the activation times (ATs). The method
proposed by Liu et al. looks for the three-dimensional activation sequence in the
ventricular muscle. The method of Van Oosternom et al. considers both epi-
cardium and endocardium. These approaches still rely on a regularization tech-
nique and are not designed to obtain repolarization maps.



We introduce a new technique that aims at recovering both the activation and re-
polarization maps on the epicardium. We first focus on single ventricular pacing
cases. We propose an approach based on a parameter identification (PI) pro-
blem. As epicardial potentials are difficult to parameterize, we rather represent
the action potential (AP) as a function of 4 parameters; namely the amplitude,
activation time, plateau phase duration and repolarization slope. The final pa-
rameter identification problem consists of identifying these 4 space-dependent
parameters from the complete BSPM sequence. This method solves the whole
electrical sequence: depolarization and repolarization. Since it introduces a pri-
ori the shape of the AP, no regularization is needed. The nonlinear least squares
parameter identification problem is solved by a gradient method.
The method was tested on both in silico and ex vivo experimental data. We
found that activation maps from PI were at least as good as those from the
MFS. Accuracy of reconstructed repolarization maps and torso potentials were
also discussed.

2 Methods

2.1 Parameterization of the action potential

Following the work of Van Oosterom [4] we define the transmembrane potential
(TMP) as the function:

Vm(t, x) = AF(α, t− τ)F(−αR, t− (τ + τR)), (1)

where F(α, ζ) = 1

1 + exp−αζ
. α is the constant slope of the depolarization.

Its value (3.3 ms−1) is taken from the same study [4]. A is the amplitude, τ the
activation time, τR the plateau phase duration and αR the slope of the repo-
larization (see Figure 1). Each of these 4 parameters may be space-dependent.
Note that in our study the amplitude does not have physiological value. It is a
qualitative parameter made to fit the amplitude of the given BSPM.

Fig. 1. Parameterized action potential with τ = 20ms and τR = 220ms.



2.2 Mapping the TMP to the BSPM

Given the TMP Vm on each point xj of the epicardium, we compute the extra-
cellular potentials:

φe(xj , t) = Vm(t)− Vm(xj , t) j = 1, . . . , NH, (2)

where NH is the number of points on the heart surface. Vm(t) is the spatial mean
of Vm at each time. This formulation is derived from the monodomain model [5].

Finally, we approximate the solution of the Laplace equation far from the
heart surface by [6,7]:

φT(y, t) =

NH∑
j=1

1

4π‖xj − y‖
φe(xj , t), (3)

where y is any point on the body surface. These φT will be compared to the
BSPM.

2.3 The parameter identification problem

As a consequence we look for the parameter set P = (A, τ, τR, αR) that minimizes
the least squares error

J(P) = 1

2

k2∑
k=k1

NT∑
i=1

(φT(yi, tk)− φ?(yi, tk))2, (4)

where (yi)i=1...NT
are theNT electrode locations on the body surface, (tk)k=k1...k2

is the time sequence of interest, and (φ?(yi, tk)) are the measured BSPM.

However, in order to improve the convergence of the method we make the
following choices:

– the amplitude and the repolarization slope are set to a constant over the
whole epicardium

– τ and τR are space-dependent. (τj)j and (τR,j)j are taken at the same loca-
tion on the epicardium as (xj)j

– the parameter set is split into the depolarization subset P = (A, (τj)j) and
the repolarization subset P = ((τR)j , αR).

During the depolarization phase of a paced or normal beat we can assume
that t� τ+τR, so that Vm(t, x) ' AF(α, t−τ). Hence we solve for P = (A, (τj)j)
in (4) on a time interval [tk1 , tk2 ] that covers the total QRS interval, but contains
no T wave (see Figure 2). Still in order to improve the convergence, we split the
identification in two steps: we first identify the constant amplitude A, and then
the ATs (τj)j . We apply a standard MFS with a regularization method [1]. This



gives us electrical potentials on the heart surface. We then compute the ATs as
the time with the highest negative slope. When we identify the amplitude the
parameter set P is simply the singleton {A}, and ATs obtained from the MFS
are an input in our PI problem. Once we have this optimized amplitude A? it
becomes an input and the cost function J is minimized for P = ((τj)j).

During the repolarization phase, we solve for P = ((τR,j)j , αR) in (4) on a
time interval [tk1 , tk2 ] that covers the total extent of the T waves (see Figure 2).
We first identify the constant slope (e. g. P = (αR)). The input plateau phase
durations are coarsely determined from the given BSPM. Once we have the
optimum α?R we minimize J for P = ((τR,j)j). Optimum A?, (τ?j )j and α?R are
an input in this PI problem.

Fig. 2. Example of choice for k1 and k2 for experimental signals. Each curve represents
the signal of one of the torso electrodes.

These four nonlinear least squares problems are solved by the gradient des-
cent method. The explicit gradient of the cost function J with respect to the
unknown parameters P is calculated analytically. If we wait for the method to
converge overfitting occurs. It means that there are small changes in the cost
function but the quality of the activation map decreases. To avoid overfitting, we
couple the gradient descent method with an early stopping criterion based on the
shape of the learning curve. For each gradient descent method, an initial guess
is required. For the amplitude, we obtain this guess manually with a dichotomy
approach. For the ATs, we use the ATs computed from the MFS. The initial
guess for the slope is arbitrarily set to 1. The overall algorithm is summarized
below.



Algorithm 1.1
Depolarization phase

1: Standard MFS on interval [tk1 , tk2 ]
2: Compute ATs from MFS solution
3: Gradient descent to optimize the amplitude (MFS ATs as input)
4: Gradient descent to optimize the ATs (optimum A? as input)
5: Gradient descent to optimize the amplitude (optimum τ? as input)
Repolarization phase

1: Input: A? and τ?, from torso signal for τR
2: Gradient descent to optimize the constant slope αR

3: Gradient descent to optimize the (τR,j)j (optimum α?
R as input)

4: Gradient descent to optimize the slope (optimum τ?R as input)

3 Results

3.1 In silico data

In order to create in silico testing data, a simulation was run on an anato-
mically realistic 3D geometry of the torso, including heart, blood vessels, lungs
and skeletal muscle. Each organ had its own conductivity. Propagating action
potentials were generated using a monodomain reaction-diffusion model with
a Ten Tusscher membrane model [8]. An anisotropic human heart model at
0.2mm resolution was used for this purpose. An anisotropic Laplace equation
was solved in the torso volume with a finite difference method [9]. We had ac-
cess to the transmembrane potentials on the subepicardium and extra-cellular
potentials on the epicardium. ATs were calculated from the epicardial potentials
with the same method as the ATs from the MFS solution. Repolarization times
were computed from epicardial potentials as the time with the highest positive
slope during the repolarization phase.
On the same model anatomy, two different simulations were run: a left ventricu-
lar (LV) pacing, and a right ventricular (RV) one. For both cases, we identified
our parameters following the algorithm detailed in Algorithm 1.1.

We first looked at the ATs. For the LV pacing the method converged to
satisfactory ATs on the whole heart (Figure 3, left). Our method gave a better
range of ATs than the MFS. However for both methods the pacing site was not
well localized. For the RV pacing, late activations were better reconstructed than
the early ones. The correlation coefficient (CC) was the same for both methods
but the distribution of points in the scatter plots was different. Indeed for the
MFS we observed clustering of points along horizontal lines. This means that
there were discontinuities in the distribution of ATs. These discontinuities were
not consistent with the reference ATs (Figures 3, right and 4). On the map on
the right, discontinuities are clearly visible between the dark blue and light green
parts and between the dark green and orange parts.



Fig. 3. Scatter plot of the ATs for in silico data. For each point, the x coordinate is
the reference AT and the y coordinate is the corresponding reconstructed AT (PI in
red, MFS in blue).

Fig. 4. Activation maps of the RV pacing in silico case.

In Figure 5 we compare APD90 calculated from the reference APs and from
the reconstructed ones, for both LV and RV pacing. First of all, we had a larger
range of APD90 from the PI, especially for the RV pacing. Moreover, there was
a clear difference in the repartition of APD90 between the LV and the RV. This
difference was not correctly reconstructed with the PI approach.

We compare the repolarization times in Figure 6. For the PI, the CC were
0.9 and 0.71 for the LV and RV pacing, respectively. These values were close to
those for the MFS but we observed discontinuities in the distribution of points,
as for the ATs (see Figure 7). Note that the quality of the reconstruction from
the PI method was better for the repolarization times than for the APD90. This
can be explained by the fact that if we had an error in the parameter τ , it would
imply another error in the parameter τR to fit the repolarization phase correctly.



(a) LV pacing (b) RV pacing

Fig. 5. Comparison of APD90. The reference APD90 are obtained on the subepi-
cardium mesh and the reconstructed APD90 on the epicardium mesh. Anteroposterior
view.

Fig. 6. Scatter plot of the repolarization times for in silico data.

Fig. 7. Repolarization maps of the RV pacing in silico case.



Finally we compare signals on the torso. Reconstructed potentials were com-
puted from equations (1), (2) and (3) with the optimized parameters. In both
cases the amplitude was optimized to fit the given BSPM. Figure 8 shows given
and reconstructed potentials on two torso electrodes. For the LV pacing the am-
plitude of the signal was better fitted on the first electrode than on the second.
Both depolarization and repolarization phases were quite well identified. These
two electrodes were representative for the 252 torso electrodes. For the RV pa-
cing, on the same electrodes, the reconstruction was less accurate. Specifically,
the repolarization was inverted on the first electrode, while on the second the
depolarization was. This was due to the incorrect activation times on the right
ventricle. In this case, the chosen electrodes exhibit some of the worst recons-
tructed potentials.

(a) LV pacing (b) RV pacing

Fig. 8. Reconstructed potentials for in silico data. Electrode 1: close to the heart,
Electrode 2: right hip. Red line: reference BSPM; blue line: reconstructed BSPM.

3.2 Experimental data

Experimental data were obtained from a Langendorff-perfused pig heart with an
oxygenated electrolytic solution. Epicardial potentials were recorded with a fle-
xible electrode sock (108 electrodes) placed over the epicardium. The heart was
placed inside a human-shaped tank. BSPM were recorded from 128 electrodes,
simultaneously with epicardial potentials. LV and RV pacing were performed
with 1 Hz frequency. We removed signals from bad leads (e.g. not well con-
nected) and the baseline. Finally we made a signal averaging over the whole
recording to obtain a single beat.

We first looked at the ATs. As for the in silico data, it was difficult to localize
the pacing sites precisely. Nevertheless the reconstructed ATs were satisfactory
(Figure 9). We noticed a slight improvement of our method compared to MFS
for the LV pacing (CC: 0.85 vs 0.82). On the RV pacing (CC: 0.92 vs 0.89)
improvement was more obvious when we compared the distribution of points.



Fig. 9. Scatter plot of the ATs for experimental data

Scatter plots of the repolarization times are presented in Figure 10. For both
cases, the reconstructed repolarization phase was shorter than the real. The CC
were very close for the PI and the MFS but with the PI the distribution was
smoother.

Fig. 10. Scatter plot of the repolarization times for experimental data.

Reconstructed potentials are presented in Figure 11. With our method we
were able to identify both depolarization and repolarization phases. The am-
plitude of the signals was well reproduced thanks to the optimized amplitude
A?. We did not have any inversions of the T wave. The chosen electrodes were
representative for all the electrodes.



(a) LV pacing (b) RV pacing

Fig. 11. Reconstructed potentials for experimental data. Electrode 1: close to the heart,
Electrode 2: right hip. Red line: reference BSPM; blue line: reconstructed BSPM

4 Conclusion

We presented a parameter optimization method to solve the inverse problem of
electrocardiography. Our method relies on a parameterization of the AP. Our
main objective was to develop a method that gives precise information on the
repolarization phase, in addition to information on the depolarization phase.
Moreover, this approach gives access to all the properties of a local AP, like
APD90.
We had to make some choices to ensure a good convergence and avoid overfit-
ting: constant amplitude and slopes; split the identification process in two steps.
Compared to the MFS, our PI gave better activation maps: we obtained a better
range of ATs and did not have any artificial discontinuities in the distribution of
the ATs on both in silico and experimental data. The method fitted the repola-
rization phases quite accurately. However, having a good fit on the repolarization
time could hide an error in the plateau phase duration. Indeed an error in the
AT would lead to an error in the plateau phase duration to fit the repolarization
phase. Reconstructed torso potentials were close to the measured ones. Espe-
cially, optimized amplitude enabled to fit BSPM amplitudes. Moreover, both
depolarization and repolarization phases were well caught on all the torso.
To improve the quality of the results, we plan to add either the septum or the
endocardium into the geometry. Another development will be to consider piece-
wise constant amplitudes and repolarization slopes, instead of constant over the
whole epicardium.
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