
HAL Id: hal-01572046
https://hal.science/hal-01572046v1

Preprint submitted on 4 Aug 2017 (v1), last revised 18 Jan 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A non-commutative algorithm for multiplying 7 x 7
matrices using 250 multiplications

Alexandre Sedoglavic

To cite this version:
Alexandre Sedoglavic. A non-commutative algorithm for multiplying 7 x 7 matrices using 250 multi-
plications. 2017. �hal-01572046v1�

https://hal.science/hal-01572046v1
https://hal.archives-ouvertes.fr


A non-commutative algorithm for

multiplying 7× 7 matrices using 250

multiplications

Alexandre.Sedoglavic@univ-lille.fr

August 4, 2017

Abstract

We present a non-commutative algorithm for multiplying 7× 7 matri-

ces using 250 multiplications.

1 Introduction

We use the Strassen’s matrix multiplication algorithm [7] to divide the 7× 7
matrix multiplication problem into smaller sub-problems; the use of Smirnov’s
matrix multiplication algorithms [5, 6] allows to conquer a new upper bound on
the number of necessary non-commutative multiplications.

Hence, we present a scheme that evaluate the product P = N ·M :

N=







n11 · · · n17

...
...

n71 · · · n77






, M=







m11 · · · m17

...
...

m71 · · · m77






, P =







p11 · · · p17
...

...
p71 · · · p77






, (1)

using 250 multiplications. This algorithm improves slightly the previous known
upper bound 258 presented in [1] and likely obtained with the same kind of
technics presented in the next section.

2 Divide

For any 2× 2 matrices:

A = (aij)1≤i,j≤2
, B = (bij)1≤i,j≤2

and C = (cij)1≤i,j≤2
, (2)

V. Strassen shows in [7] that the matrix product C = A·B could be computed
by performing the following operations:

t1 = (a11 + a22)(b11 + b22), t2 = (a12 − a22)(b21 + b22),

t3 = (−a11 + a21)(b11 + b12), t4 = (a11 + a12)b22,

t5 = a11(b12 − b22), t6 = a22(−b11 + b21), t7 = (a21 + a22)b11,

(

c11 c12
c21 c22

)

=

(

t1 + t2 − t4 + t6 t6 + t7,

t4 + t5 t1 + t3 + t5 − t7

)

,

(3)

1



in the considered coefficients algebra.
To construct our algorithm, we are going to work with the algebra of 4× 4

matrices and thus, we have to adapt our inputs P,N,M to that end. So we
rewrite the matrices (1) in the following equivalent form:

X =























x11 x12 x13 0 x14 · · · x17

x21 x22 x23 0 x24 · · · x27

x31 x32 x33 0 x34 · · · x37

0 0 0 0 0 · · · 0
x41 x42 x34 0 x44 · · · x34

...
...

...
...

...
...

x71 x72 x77 0 x74 · · · x77























, X ∈ {P,M,N}, (4)

in which we have just added a line and a column of zeros. After that padding,
the product P = N ·M is unchanged.

Notations 2.1 — Hence, in the sequel P (resp. M,N) designates the 8× 8 ma-
trices defined in (4) and Pij (resp. Mij , Nij) designates 4× 4 matrices (e.g. P11

stands for the upper left submatrix of P , etc).

Remark 2.1 — The process of pealing (removing rows and columns) the result
of our computations might be better understood if we use the classical equiva-
lence between the bilinear application B : K8×8 ×K

8×8 7→ K
8×8 with indetermi-

nates N and M that defines the matrix multiplication B(N,M) = N ·M = P

and the trilinear form K
8×8 × K

8×8 × K
8×8 7→ K with indeterminates N,M

and P defined by Trace (N ·M · P ) (see [4, § 2.5.2] and [2] for a complete de-
scription of this equivalence).

Computationally, this equivalence induces that the following relation holds:

Trace (N ·M · P ) = Trace
(

(N11 +N22) · (M11 +M22) · (P11 + P22)
)

(5a)

+ Trace
(

(N12 −N22) · (M21 +M22) · P11

)

(5b)

+ Trace
(

(−N11 +N21) · (M11 +M12) · P22

)

(5c)

+ Trace
(

(N11 +N12) ·M22 · (−P11 + P21)
)

(5d)

+ Trace
(

N11 · (M12 −M22) · (P21 + P22)
)

(5e)

+ Trace
(

N22 · (−M11 +M21) · (P11 + P12)
)

(5f)

+ Trace
(

(N21 +N22) ·M11 · (P12 − P22)
)

(5g)

and as the bilinear application and the trilinear form are equivalent, one could
retrieve directly the algorithm from this last form. Our original problem is
now divided in 7 lower dimensional subproblems encoded by trilinear forms.
In the next section, we presents the algorithms used to compute the matrix
products (5a-5g).

3 Conquer

The first summand (5a) involves unstructured 4× 4 matrix multiplication that
could be computed using Strassen’s algorithm and could be done with 72 mul-
tiplications. Before studying the other summands, we emphasise the following
trivial remarks:

2



Remarks 3.1 — As we consider some 4× 4 matrices with zero last column
and/or row, recall that the product of two 4× 4 matrices (xij)1≤i,j≤4

and ma-

trix (yij)1≤i,j≤4
is equivalent to the product of the:

• 4× 3 matrix (xij)1≤i≤4,1≤j≤3
with the 3× 4 matrix (yij)1≤i≤3,1≤,j≤4

when

for 1 ≤ i ≤ 4 we have yi4 = 0 (zero last row);

• 3× 4 matrix (xij)1≤i≤3,1≤j≤4
with the 4× 3 matrix (yij)1≤i≤3,1≤,j≤4

when

for 1 ≤ j ≤ 4 we have y4j = 0 (zero last column).

Let us now review the matrices involved in the summands (5b-5g).

Remarks 3.2 — We notice that:

• the last row and column of X11 are only composed by zeros;

• X22 is a 4× 4 matrix;

• the last column of −X11 +X21 is only composed by zeros;

• the last line of X11 +X12 is only composed by zeros;

• X12 −X22 and X21 −X22 are 4× 4 matrices without zero row or column.

Hence, taking into account Remarks 3.1 and 3.2, the summand:

• (5b) involves the product of a 3× 4 by a 4× 3 by a 3× 3 matrix;

• (5c) involves the product of 4× 3 by 3× 4 by 4× 4 matrix;

• (5d) involves the product of 3× 4 by 4× 4 by 4× 3 matrix;

• (5e) involves the product of 3× 3 by 3× 4 by 4× 3 matrix;

• (5f) involves the product of 4× 4 by 4× 3 by 3× 4 matrix;

• (5g) involves the product of 4× 3 by 3× 3 by 3× 4 matrix.

Remark 3.3 — We rely our construction on the representation of matrix mul-
tiplication algorithm by trilinear forms and the underlying tensor representation
because, as quoted in [3, § 4.6.4 p. 507]:

“For example, a normal scheme for evaluating an m× n times n× s

matrix product implies the existence of a normal scheme to evaluate
an n× s times s×m matrix product using the same number of chain
multiplications.”

This is exactly what we are using in the sequel. To do so and in order to evaluate
the summands (5b-5g), we introduce the following notations:

Notation 3.1 — For any matrices U, V and W of size u× v, v × w and w × u,
we denote by 〈u, v, w〉 the known supremum on the multiplication necessary for
computing Trace (U · V ·W ) (that is the number of multiplication used by the
best known algorithm allowing to compute U · V (a.k.a. tensor rank)).

Using this notation, we see that:

3



• (5b) can be computed using 〈3, 4, 3〉 multiplications;

• (5c) can be computed using 〈4, 3, 4〉 multiplications;

• (5d) can be computed using 〈3, 4, 4〉 multiplications;

• (5e) can be computed using 〈3, 3, 4〉 multiplications;

• (5f) can be computed using 〈4, 4, 3〉 multiplications;

• (5g) can be computed using 〈4, 3, 3〉 multiplications.

The remark 3.3 is a direct consequence of the Trace property:

Trace (U · V ·W ) = Trace (W · U · V ) = Trace (V ·W · U). (6)

To be more precise, we recall the following well-known result:

Lemma 3.1 With the notations 3.1, the following relations hold:

〈u, v, w〉 = 〈w, u, v〉 = 〈v, w, u〉. (7)

This allows us to state that algorithm (5b-5g) requires:

〈4, 4, 4〉+ 3 〈3, 3, 4〉+ 3 〈3, 4, 4〉 (8)

multiplications. As A. V. Smirnov states that 〈3, 3, 4〉 = 29 and 〈3, 4, 4〉 = 38
in [5, Table 1, No 13 and 21], we conclude that our algorithm required 250
multiplications (72 + 3 · 29 + 3 · 38). Furthermore, Smirnov provides in [6] the
explicit description of these algorithms, allowing us to do the same with the
algorithm constructed in this note at url:

http://www.fil.univ-lille1.fr/ sedoglav/MUL7x7x7250.txt.

References

[1] Drevet, C.-É., Nazrul Islam, M., and Schost, É. Optimization
techniques for small matrix multiplication. Theoretical Computer Sci-
ence 412, 22 (May 2011), 2219–2236.

[2] Dumas, J.-G., and Pan, V. Y. Fast matrix multiplication and symbolic
computation. Tech. rep. 1612.05766, arXiv, Dec. 2016.

[3] Knuth, D. E. The Art of Computer Programming. Seminumerical Al-
gorithms, 3 ed., vol. 2 of Computer Science and Information Processing.
Addison Wesley, Reading, Mass., 1997.

[4] Landsberg, J. M. Tensors: geometry and applications, vol. 128 of Grad-
uate Studies in Mathematics. American Mathematical Society, 2010.

[5] Smirnov, A. V. The bilinear complexity and practical algorithms for
matrix multiplication. Computational Mathematics and Mathemacital
Physics 53, 2 (Dec. 2013), 1781–1795.

[6] Smirnov, A. V. Several bilinear algorithms for matrix multiplication.
Tech. rep., ResearchGate, doi: 10.13140/RG.2.2.30005.06886, Jan. 2017.

[7] Strassen, V. Gaussian elimination is not optimal. Numerische Mathe-
matik 13, 4 (Aug. 1969), 354–356.

4


