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Abstract

We present a non-commutative algorithm for multiplying 7× 7 matri-

ces using 250 multiplications.

1 Introduction

We use the Strassen’s matrix multiplication algorithm [7] to divide the 7× 7
matrix multiplication problem into smaller sub-problems; the use of Smirnov’s
matrix multiplication algorithms [5, 6] allows to conquer a new upper bound on
the number of necessary non-commutative multiplications.

Hence, we present a scheme that evaluate the product P = N ·M :

N=







n11 · · · n17

...
...

n71 · · · n77






, M=







m11 · · · m17

...
...

m71 · · · m77






, P =







p11 · · · p17
...

...
p71 · · · p77






, (1)

using 250 multiplications. This algorithm improves slightly the previous known
upper bound 258 presented in [1] and likely obtained with the same kind of
technics presented in the next section.

2 Divide

For any 2× 2 matrices:

A = (aij)1≤i,j≤2
, B = (bij)1≤i,j≤2

and C = (cij)1≤i,j≤2
, (2)

V. Strassen shows in [7] that the matrix product C = A·B could be computed
by performing the following operations:

t1 = (a11 + a22)(b11 + b22), t2 = (a12 − a22)(b21 + b22),

t3 = (−a11 + a21)(b11 + b12), t4 = (a11 + a12)b22,

t5 = a11(b12 − b22), t6 = a22(−b11 + b21), t7 = (a21 + a22)b11,

(

c11 c12
c21 c22

)

=

(

t1 + t2 − t4 + t6 t6 + t7,

t4 + t5 t1 + t3 + t5 − t7

)

,

(3)
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in the considered coefficients algebra.
To construct our algorithm, we are going to work with the algebra of 4× 4

matrices and thus, we have to adapt our inputs P,N,M to that end. So we
rewrite the matrices (1) in the following equivalent form:

X =























x11 x12 x13 0 x14 · · · x17

x21 x22 x23 0 x24 · · · x27

x31 x32 x33 0 x34 · · · x37

0 0 0 0 0 · · · 0
x41 x42 x34 0 x44 · · · x34

...
...

...
...

...
...

x71 x72 x77 0 x74 · · · x77























, X ∈ {P,M,N}, (4)

in which we have just added a line and a column of zeros. After that padding,
the product P = N ·M is unchanged.

Notations 2.1 — Hence, in the sequel P (resp. M,N) designates the 8× 8 ma-
trices defined in (4) and Pij (resp. Mij , Nij) designates 4× 4 matrices (e.g. P11

stands for the upper left submatrix of P , etc).

Remark 2.1 — The process of pealing (removing rows and columns) the result
of our computations might be better understood if we use the classical equiva-
lence between the bilinear application B : K8×8 ×K

8×8 7→ K
8×8 with indetermi-

nates N and M that defines the matrix multiplication B(N,M) = N ·M = P

and the trilinear form K
8×8 × K

8×8 × K
8×8 7→ K with indeterminates N,M

and P defined by Trace (N ·M · P ) (see [4, § 2.5.2] and [2] for a complete de-
scription of this equivalence).

Computationally, this equivalence induces that the following relation holds:

Trace (N ·M · P ) = Trace
(

(N11 +N22) · (M11 +M22) · (P11 + P22)
)

(5a)

+ Trace
(

(N12 −N22) · (M21 +M22) · P11

)

(5b)

+ Trace
(

(−N11 +N21) · (M11 +M12) · P22

)

(5c)

+ Trace
(

(N11 +N12) ·M22 · (−P11 + P21)
)

(5d)

+ Trace
(

N11 · (M12 −M22) · (P21 + P22)
)

(5e)

+ Trace
(

N22 · (−M11 +M21) · (P11 + P12)
)

(5f)

+ Trace
(

(N21 +N22) ·M11 · (P12 − P22)
)

(5g)

and as the bilinear application and the trilinear form are equivalent, one could
retrieve directly the algorithm from this last form. Our original problem is
now divided in 7 lower dimensional subproblems encoded by trilinear forms.
In the next section, we presents the algorithms used to compute the matrix
products (5a-5g).

3 Conquer

The first summand (5a) involves unstructured 4× 4 matrix multiplication that
could be computed using Strassen’s algorithm and could be done with 72 mul-
tiplications. Before studying the other summands, we emphasise the following
trivial remarks:
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Remarks 3.1 — As we consider some 4× 4 matrices with zero last column
and/or row, recall that the product of two 4× 4 matrices (xij)1≤i,j≤4

and ma-

trix (yij)1≤i,j≤4
is equivalent to the product of the:

• 4× 3 matrix (xij)1≤i≤4,1≤j≤3
with the 3× 4 matrix (yij)1≤i≤3,1≤,j≤4

when

for 1 ≤ i ≤ 4 we have yi4 = 0 (zero last row);

• 3× 4 matrix (xij)1≤i≤3,1≤j≤4
with the 4× 3 matrix (yij)1≤i≤3,1≤,j≤4

when

for 1 ≤ j ≤ 4 we have y4j = 0 (zero last column).

Let us now review the matrices involved in the summands (5b-5g).

Remarks 3.2 — We notice that:

• the last row and column of X11 are only composed by zeros;

• X22 is a 4× 4 matrix;

• the last column of −X11 +X21 is only composed by zeros;

• the last line of X11 +X12 is only composed by zeros;

• X12 −X22 and X21 −X22 are 4× 4 matrices without zero row or column.

Hence, taking into account Remarks 3.1 and 3.2, the summand:

• (5b) involves the product of a 3× 4 by a 4× 3 by a 3× 3 matrix;

• (5c) involves the product of 4× 3 by 3× 4 by 4× 4 matrix;

• (5d) involves the product of 3× 4 by 4× 4 by 4× 3 matrix;

• (5e) involves the product of 3× 3 by 3× 4 by 4× 3 matrix;

• (5f) involves the product of 4× 4 by 4× 3 by 3× 4 matrix;

• (5g) involves the product of 4× 3 by 3× 3 by 3× 4 matrix.

Remark 3.3 — We rely our construction on the representation of matrix mul-
tiplication algorithm by trilinear forms and the underlying tensor representation
because, as quoted in [3, § 4.6.4 p. 507]:

“For example, a normal scheme for evaluating an m× n times n× s

matrix product implies the existence of a normal scheme to evaluate
an n× s times s×m matrix product using the same number of chain
multiplications.”

This is exactly what we are using in the sequel. To do so and in order to evaluate
the summands (5b-5g), we introduce the following notations:

Notation 3.1 — For any matrices U, V and W of size u× v, v × w and w × u,
we denote by 〈u, v, w〉 the known supremum on the multiplication necessary for
computing Trace (U · V ·W ) (that is the number of multiplication used by the
best known algorithm allowing to compute U · V (a.k.a. tensor rank)).

Using this notation, we see that:
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• (5b) can be computed using 〈3, 4, 3〉 multiplications;

• (5c) can be computed using 〈4, 3, 4〉 multiplications;

• (5d) can be computed using 〈3, 4, 4〉 multiplications;

• (5e) can be computed using 〈3, 3, 4〉 multiplications;

• (5f) can be computed using 〈4, 4, 3〉 multiplications;

• (5g) can be computed using 〈4, 3, 3〉 multiplications.

The remark 3.3 is a direct consequence of the Trace property:

Trace (U · V ·W ) = Trace (W · U · V ) = Trace (V ·W · U). (6)

To be more precise, we recall the following well-known result:

Lemma 3.1 With the notations 3.1, the following relations hold:

〈u, v, w〉 = 〈w, u, v〉 = 〈v, w, u〉. (7)

This allows us to state that algorithm (5b-5g) requires:

〈4, 4, 4〉+ 3 〈3, 3, 4〉+ 3 〈3, 4, 4〉 (8)

multiplications. As A. V. Smirnov states that 〈3, 3, 4〉 = 29 and 〈3, 4, 4〉 = 38
in [5, Table 1, No 13 and 21], we conclude that our algorithm required 250
multiplications (72 + 3 · 29 + 3 · 38). Furthermore, Smirnov provides in [6] the
explicit description of these algorithms, allowing us to do the same with the
algorithm constructed in this note at url:

http://www.fil.univ-lille1.fr/ sedoglav/MUL7x7x7250.txt.
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