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Abstract

Computationally hard problems, like the Traveling
Salesperson Problem, can be solved remarkably well
by humans. Results obtained by computers are usu-
ally closer to the optimum, but require high computa-
tional effort and often differ from the human solutions.
This paper introduces Greedy Expert Search (GES) that
strives to show the same flexibility and efficiency of hu-
man solutions, while producing results of similarly high
quality. The Traveling Salesperson Problem serves as
an example problem to illustrate and evaluate the ap-
proach.

Motivation and Problem Statement
Most of us have had some fun with automotive navigation
systems. In one instance on a drive of several hours duration
the satnav constantly informed us that it was replanning the
route because of congestion. However, we couldn’t find any
change in the planned trajectory nor was there a traffic jam.
We conjectured that the route was replanned at a distance
of several hundred kilometers, which we would reach in the
course of some hours — and thus was of no interest at all.

This is a typical example of misunderstandings between
machines and users that are due to different handling of ev-
eryday problem solving tasks. Because most such problems
are NP complete, humans and machines face the same chal-
lenge of trading off solution quality with computational ef-
ficiency. The computational approach usually strives for op-
timality of the solution as long as the computations can be
performed in reasonable time. The problems are usually as-
sumed to be static, changes in the environment are simply
considered as a new problem to compute from scratch. In
contrast, human problem solving is extremely efficient and
well-adapted to changing situations, while the solutions are
most of the time still close to the theoretical optimum.

Newell and Simon [1972] have derived the general frame-
work of search algorithms from the observation of human
behavior. Even though pure decision-making as presented in
this paper is not a cognitive system in its own right, it is
undoubtedly an important ingredient of cognition. In addi-
tion, at the end of the paper, I describe some extensions to
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make the algorithm more flexible through learning, which is
another important ingredient of cognition.

I propose Greedy Expert Search (GES) as an algorithm to
solve problems in a more human-like way. An explanation
for the efficiency of human problem solving could be that
we don’t “compute” complete, global solutions for a prob-
lem, but proceed in a stepwise manner. Without a complete
solution in mind (but possibly some sketch of the further
strategy), the reaction to changes in the environment is a lot
more natural than with complete global solutions.

Based on this hypothesis GES strives to reduce computa-
tional complexity and allows for flexibility, while maintain-
ing a solution quality that is acceptable for everyday tasks.
By acceptable I mean that it is not too far from a theoretical
optimum and that it resembles human solutions. Achieving
the latter requirement is also important for human-machine
interaction.

To illustrate and evaluate the approach I use the Traveling
Salesperson Problem (TSP) as an example. A planar TSP
(the only type used in this paper) gives a set of points in 2D
space, which can be interpreted as cities on a map and the
task is to connect these points in the shortest possible way,
thus allowing a traveling salesperson to visit all the cities
with minimum costs. The TSP is a well-known problem for
computer scientists. As an NP complete problem it has re-
ceived attention in the context of search and optimization
algorithms. On the other hand, the TSP has also been exam-
ined by cognitive psychologists because it underlies a large
set of real-world problems like planning a vacation trip or a
shopping tour.

The work from psychology has been used as valuable in-
put for the present work in two respects: 1) it provides the-
ories about strategies and knowledge that seem to be used
by humans to solve TSPs, and 2) it provides data on human
solutions of TSPs, so that I can evaluate my approach with
respect to similarity to human solutions.

This paper makes the following contributions:

• it introduces Greedy Expert Search (GES) as a general
paradigm of an efficient search algorithm for everyday
problems;

• it evaluates the GES algorithm for the Traveling Sales-
person Problem, taking into account solution quality
and similarity to human solutions.



partial solution

remaining problem
8

76

5

4

32

1

Figure 1: Illustration of GES solving a TSP. Point 1 is the
start point, path 1-6-5 has already been decided on.

This work is explicitly not intended to develop a model of
human thinking, nor is its purpose to develop exceptionally
good solutions of TSPs (available algorithms are highly op-
timized and outperform humans on theoretical problem in-
stances by far). The purpose of this work is an algorithm for
a wide class of problems that occur in everyday situations
and to produce solutions that fulfill human expectations. Be-
cause of the ample literature in psychology on the TSP, this
is an appropriate test case, but it is not the only interesting
domain (bin packing would be another example of an NP
complete problem that occurs in everyday situations).

Approach
The motivation of Greedy Expert Search is to show similar
flexibility and efficiency as humans. For the Traveling Sales-
person Problem it has been measured that humans can solve
such problems in near-linear “computation” time [Graham,
Joshi, and Pizlo, 2000]. However, the TSP is an NP com-
plete problem and with growing problem size the number of
possible paths grows exponentially. The basic idea of GES
(and greedy algorithms in general) for reducing effort is to
treat each step of the path construction procedure as an in-
dependent problem. Thus each additional point only affects
running time polynomially.

Building solutions step by step is not only efficient, but
also leads naturally to high flexibility. For example, a stan-
dard AI planner generates plans from the beginning to the
end and if the world changes, a new plan has to be gener-
ated or the original plan has to be changed. The philosophy
of GES is not to generate a complete plan, but to decide the
next action on the spot.

So far GES looks like a purely reactive approach and in-
deed it is a greedy algorithm as its name indicates. How-
ever, it makes extensive use of different forms and sources
of knowledge to compensate for the drawbacks of the greedy
search. So for a planning agent, a hierarchical structure of
goals would be used as knowledge to guide the search. This
knowledge is integrated into GES in the form of so-called
experts. Direction experts filter the possible operators in
each step, while evaluation experts assess the suggested op-
erations to decide which one to execute next.

Figure 1 illustrates the General Expert Search algorithm

using a Traveling Salesperson Problem as an example. A
state for a TSP is composed of a partial solution that can-
not be changed anymore and the remaining problem. In Fig-
ure 1 the path up to point 5 is already decided. To deter-
mine the next step of the solution, a set of direction experts
is asked for good candidate points. Although all remaining
points could potentially be added to the path, the direction
experts in this example only consider points 4 and 7 wor-
thy for further consideration. Then the candidate points are
evaluated by different independent evaluation experts. One
expert could favor point 4 because of its closeness to point 5,
another might prefer point 7 as it follows the outer contour
of the problem. Depending on the confidence of each evalu-
ation expert and a combination function, one of the points is
chosen and added to the partial solution. The process is re-
peated until there are no unconnected points in the remaining
problem left.

Algorithm
I use the standard definition of search problems as described
by Newell and Simon [1972], in which a search problem is
defined by an initial state, a goal test and a set of operators
with a successor function, which returns the expected next
state when an operator is applied in a specific state. In ad-
dition a problem definition usually contains a cost function,
which is replaced in GES by a set of experts.

Figure 2 shows the GES algorithm. In each search step
GES determines promising operators, called horizon, by
consulting the direction experts. This serves mainly to re-
duce the computational complexity, but can also serve as a
filter to keep an agent from considering completely abstruse
operators. Using the successor function, the expected result-
ing next states are evaluated by the evaluation experts. The
operator that is rated most highly by the evaluation experts
is executed, which results in the next state.

Beside the problem, this algorithm has as input a set of di-
rection experts, a set of evaluation experts and combination
functions for the horizons (i.e. the combination of the single
results of the direction experts) and the state evaluation. The
combination functions will not be considered closely in this
paper. For the combination of horizons I use the union of the
single horizons, and the evaluation combination function is
a weighted sum of the results of the evaluation experts, each
returning a value indicating the quality of the proposed state
and a confidence (which corresponds to the weight).

Parametrization for the TSP
The Traveling Salesperson Problem is a well-known prob-
lem from the literature [Golden et al., 1980]. Given a set of
nodes the task is to find the shortest path that includes all
nodes at least once and returns to the initial node. In this
paper the start node of the tour is given.

A prerequisite for GES to be efficient is the use of effi-
cient experts. For the TSP I used simple experts, avoiding
global computations involving the whole problem as much
as possible. When global computations were unavoidable,
they were mostly performed as an offline step before the
search starts (this is done in the function initialize in the al-
gorithm in Figure 2).



function GES (problem, direction-experts, evaluation-experts,combine-horizon, combine-evaluations)

function GES-get-action(s)
if problem.goal-test(s)
then return null
else

ops← combine-horizon(map(λe: e.get-operators(s,problem.operators), e← direction-experts))
ops-eval← map(λo: cons (o, combine-evaluations(map(λe: e.evaluate(o,s), e← evaluation-experts))),

o← ops)
a← max(ops-eval :key second)
return a

foreach e in direction-experts e.initialize()
foreach e in evaluation-experts e.initialize()
s← problem.initial-state
loop

a← GES-get-action(s)
if a=null
then return
else s← execute(a)

combine-evaluationcombine-evaluation

combine-horizon

combine-evaluation oi

max

direction-experts

evaluation-experts

execute(a)

s

ops={o1, . . . , on}

a

Figure 2: General GES algorithm. Keywords are shown in typewriter text, functions are in italics and complex data structures
(e.g. objects) are typed in bold. The gray box illustrates the approach.

Each expert provides in addition to its result a confidence,
depending on the specific problem. In this work, the confi-
dence of each expert is provided manually. Ideally the confi-
dence should be computable from the problem structure and
could also be learned.

In the following I describe the direction and evaluation ex-
perts used for solving TSPs and their motivation from psy-
chological findings about human TSP solving.

Direction Experts The task of the direction experts is to
identify points that are worth considering in the next step
of the solution. They can follow a global or local strategy:
the NEIGHBORHOOD direction expert only has a local view,
whereas the CONVEX-HULL and PINWHEEL experts follow
a more global strategy.

The NEIGHBORHOOD direction expert is inspired by the
well-known nearest neighbor heuristic for solving TSPs: it
simply returns the n unvisited points that are closest to the
last point of the current solution.

The two other direction experts are inspired by the state-
ments of participants in various studies, for example by Ten-
brink and Wiener [2009], in which the participants described
their strategies as following a circle-like path. Based on this
impression of human solution strategies and on the finding
that an optimal tour follows points on the convex hull in or-
der (which is equivalent to the fact that an optimal tour has
no crossing paths) [Golden et al., 1980], algorithms using
the convex hull have been suggested. The CONVEX-HULL
expert used here first computes the convex hull offline and
during the search suggests points that are in the area between
the current point on the convex hull and the next one. In the
situation in Figure 1 the CONVEX-HULL would not suggest
point 4, because it is too far from the line between point 6
and 7 (the currently visited portion of the convex hull), nor
would it suggest point 8, for instance, as this would skip
point 7, which is the next one on the convex hull.

Also striving for a circular solution, the PINWHEEL direc-
tion expert follows an even simpler strategy: it computes the
center of mass of the given TSP points and then suggests
the points as they lie on a projected circle around this cen-
ter. In the situation of Figure 1 it might suggest points 7 and
8. With a combination of a pinwheel and nearest neighbor
strategy Best and Simon [2000] could explain human solu-
tion behavior to a large extent.

Evaluation Experts The task of the evaluation experts is
to provide a value between 0 and 1 as a measure of the good-
ness of a proposed operator. The experts evaluate different
aspects of a potential next state: 1) the quality of the partial
solution, 2) the complexity of the remaining problem and
3) overall solution that is taking shape.

Nearest Neighbor Evaluation Expert The evaluation ex-
pert POINT-DISTANCE returns a measure of how far the pos-
sible new point is away from the last point of the current
trajectory. Using only POINT-DISTANCE together with the
NEIGHBORHOOD direction expert results in the well-known
nearest-neighbor heuristic algorithm for TSPs.

Convex Hull Evaluation Experts Some evaluation ex-
perts are derived from algorithms using the convex hull as
a global guideline. These experts don’t mimic any of the al-
gorithms from the literature directly, because those usually
require some kind of global evaluation (for example for the
cheapest insertion heuristic, the closeness of a point to each
arc in the convex hull is calculated [Golden et al., 1980]).

The INDENTATION expert is based on the assumption that
humans prefer solutions with few indentations [MacGre-
gor and Ormerod, 1996]. I loosen this criterion to prefer
small indentations to large indentations. This is similar to
the largest angle insertion heuristic [Golden et al., 1980;
MacGregor, Ormerod, and Chronicle, 2000], but without



any global comparison to other hypothetical insertion op-
erations. In Figure 1 when considering the point after point
6, point 5 would receive a low rating, whereas point 7 would
be considered good.

A similar idea underlies the CHEAPEST-INSERTION ex-
pert. It is inspired by the cheapest insertion strategy [Golden
et al., 1980; MacGregor, Ormerod, and Chronicle, 2000] but
doesn’t perform any global comparison. It favors the inser-
tion of a point if the sum of the distances from the point to
be considered to the current convex hull points (e.g. in Fig-
ure 1 the distances 6-5 and 5-7) is only slightly larger than
the distance of the convex hull points (points 6 and 7 in the
example).

A third convex hull heuristic comes from the assump-
tion that problems with more points inside the convex hull
are more difficult to solve for humans [MacGregor and
Ormerod, 1996; Vickers et al., 2006]. The INNER-POINTS
expert favors remaining problems with few inner points,
leading to an early inclusion of inner points.

Other Evaluation Experts Following the assumption that
humans choose partial solutions in a way that facilitates an
easy completion of the remaining problem (also underlying
the INNER-POINTS expert) I use the spatial expansion of the
problem as a rough estimation of problem complexity, us-
ing the diagonal of the bounding box of the problem. This
is not an ideal measure since it is not invariant to rotations,
but it has the advantage of simplicity. The expert PROBLEM-
DIAMETER relates the reduction of the problem diameter to
the diameter of the current sub-problem, making a larger re-
duction preferable to a smaller one.

It has been observed in all studies that the solutions of
humans seldom contain intersecting lines. This is not sur-
prising as it has been shown that optimal solutions of TSPs
cannot contain intersections [Golden et al., 1980]. There is
an ongoing debate whether people avoid intersections de-
liberately or if the results are intersection-free because they
are usually near the optimal solution [Vickers et al., 2003]. I
have included an evaluation expert AVOID-INTERSECTIONS
that rates a point to be inserted with 0 if it adds an inter-
section and with 1 if it does not. In most instances that this
expert makes no difference, because intersections are usu-
ally caused by earlier decisions and at the moment when the
intersection is produced there are only few or no alternatives
left that would not lead to an intersection. This expert might
be more effective if a lookahead mechanism for evaluation
experts were added to GES.

A more indirect way of avoiding intersections is to avoid
lines that “split” the problem, i.e. to avoid situations in
which large parts of the remaining problem lie on both sides
of the partial solution. The expert AVOID-SPLITTING calcu-
lates the number of points of the remaining problem lying
on each side of the line that would potentially be added. In
Figure 1 connecting point 4 to the current solution would re-
sult in splitting the problem (point 7 would lie on one side
of the line from point 5 to 4, point 2 would be on the other
side).

The FOLLOW-LINES expert is a simple implementation of

Table 1: Used combinations of experts. The numbers in the
evaluation expert fields indicate the confidences.
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NN � 1
CH-1 � 0.3 1 1
CH-2 � � 1 1 1 1
PW-1 � � 1 0.2 1 1 1
PW-2 � � 1 0.2 1 1
PW-3 � � 1 0.2 0.5

the observation by Vickers et al. [2006] that the aesthetic
form of a trajectory is somehow equivalent to good TSP so-
lutions. I only consider straight lines as elements of aesthetic
forms for reasons of simplicity, although humans surely use
a more sophisticated pattern recognition. This expert would
prefer point 4 as the next candidate in Figure 1 as it almost
perfectly continues the line from point 6 to 5. In contrast,
point 7 would be ranked low by this expert as it introduces a
sharp bend.

Evaluation
The claims of GES are flexibility, efficiency and acceptable
solution quality. The first two points have been explained as
design principles in the last section. But the most efficient al-
gorithm is useless if the computed results are of low quality.
Therefore we will now have a look at the solutions produced
for TSPs.

Experimental Configurations
Table 1 shows the combinations of experts used for the eval-
uation. The configuration NN is a classical nearest neigh-
bor approach. The CH-1 and CH-2 variants make use of the
convex hull direction expert, for CH-1 all evaluation experts
use the convex hull, whereas CH-2 is a mixed variant. PW-1,
PW-2 and PW-3 use the pinwheel direction expert and eval-
uation experts that are independent of the convex hull.

The variation CH-2 was specifically designed as an ef-
ficient solution: all the experts work with constant runtime
in each online computation step. Overall the computation is
still quadratic because of the precomputation, but this com-
bination shows that the linear function for the solution times
of humans that Graham, Joshi, and Pizlo [2000] have ob-
served might be explainable with GES using appropriate ex-
perts.

The expert combinations and confidence values shown in
Table 1 have been determined informally on different data
sets. Depending on the data set, the best combinations of ex-
perts and confidences varies significantly. The choice shown
here are configurations that have worked well (on average)



Table 2: Comparison of GES solution quality to measurements of MacGregor and Ormerod [1996]. The problem identifiers are
composed of the number of points in the TSP and the number of inner points (i.e. points that are not on the convex hull). The
best result per problem is typeset in bold, the worst in italics.

GES participants
Problem NN CH-1 CH-2 PW-1 PW-2 PW-3 min mean max min mean max
10-1 1.27 2.47 2.47 1.27 37.92 1.27 1.27 7.78 37.92 0.00 0.80 9.69
10-2 0.00 16.77 16.77 21.89 23.94 3.88 0.00 13.88 23.94 0.00 3.51 23.12
10-3 2.92 6.12 3.89 10.22 10.45 4.55 2.92 6.36 10.45 0.00 2.76 15.76
10-4 0.00 20.38 4.88 4.88 14.88 7.75 0.00 8.79 20.38 0.00 3.77 11.71
10-5 8.98 16.37 14.14 12.25 0.00 8.98 0.00 10.12 16.37 0.00 3.05 14.40
10-6 11.52 17.36 7.29 17.07 13.44 18.26 7.29 14.16 18.26 0.00 3.84 16.08
20-4 5.02 7.16 7.24 8.42 8.42 5.02 5.02 6.88 8.42 0.52 2.91 15.94
20-6 9.29 4.63 9.90 7.74 19.60 20.01 4.63 11.86 20.01 0.00 6.03 20.26
20-8 4.07 3.59 9.23 9.23 9.23 18.55 3.59 8.98 18.55 1.70 5.11 14.46
20-10 24.74 11.64 22.56 13.39 19.57 7.76 7.76 16.61 24.74 1.45 3.29 6.61
20-12 2.30 8.97 23.42 14.65 37.26 9.23 2.30 15.97 37.26 0.62 4.56 20.36
20-14 16.61 19.84 21.35 33.03 31.03 19.31 16.61 23.53 33.03 1.84 9.61 25.18
20-16 17.34 24.71 20.59 26.08 18.92 10.32 10.32 19.66 26.08 1.00 8.48 23.70

over all data sets and were not specifically optimized for the
problems discussed in this paper.

Comparison of Tour Lengths
The standard approach for comparing TSP solutions is the
length of the trajectory, usually measured in percentage
above the optimal tour length (PAO). I use a data set of
MacGregor and Ormerod [1996] and compare the results ob-
tained with GES to those of the participants in their study.

A small difficulty in the comparison is that the partici-
pants of MacGregor and Ormerod [1996] could choose the
starting point of the trajectory, whereas in our case it was
predefined. The human results might have been a little worse
if the start point was given, but this should not have a strong
effect.

Table 2 provides the PAO of each parametrization of GES
as well as the minimum, maximum and average values of
these solutions. For a comparison the respective values of
humans from MacGregor and Ormerod [1996] are shown1.
The best solution obtained with GES usually lies between
the minimum and mean value of the participants, showing
that comparable results to humans can be achieved, although
not yet at the level of the best human solutions.

The values of each parametrization show that there are
large differences in the quality of the solution found by each
combination of experts. This explains why the mean value of
the generated solutions are much larger than the average of
the human solutions: some parametrizations are inappropri-
ate for some problems. With a reliable mechanism to set the
expert confidences for a given problem, this large fluctuation
could be reduced.

1The values given in MacGregor and Ormerod [1996] are con-
tradictory: the PAO of the minimum and mean values do not always
correspond to the absolute tour lengths (in particular for problems
20-4 and 20-6). I have used the PAO as calculated from the absolute
tour length taken from tables 1 and 4 of MacGregor and Ormerod
[1996].

A surprising finding is that the maximum values of GES
are not much higher, in some cases even lower, than the
worst human solutions. Since the expert combinations were
not filtered for each problem, I had expected some solutions
to be a lot worse than what humans would produce. The
numbers, however, show that the GES algorithm with ap-
propriate experts produces stable behavior, even if the expert
combinations are poorly chosen.

Visual Comparison
In their paper entitled “Some tours are more equal than oth-
ers” Tak, Plaisier, and van Rooij [2008] argue that the tour
length is often not a reliable measure for the likeness of a
computed solution to a human solution. Since one of the
goals of GES is to produce solutions that are understand-
able for humans, let’s have a closer look at the forms of the
solutions.

The last two lines of Table 2 show rather disappointing
results for GES. Although these two problems also seem
to be particularly demanding for humans, the best GES re-
sults are still far from the mean value of human solutions.
The best computational solution I found was with an often-
cited convex hull algorithm using a cheapest insertion strat-
egy (CHCI) [Golden et al., 1980], which is a simple, yet
efficient algorithm that disqualifies in its standard form as
a human model because of its global approach (in contrast
humans seem to construct solutions sequentially [MacGre-
gor, Ormerod, and Chronicle, 2000]) and because it often
outperforms humans. In the problem 20-14 it finds a solu-
tion with 13.61% above optimum and for 20-16 with 1.46%
above optimum.

Figure 3 visualizes the best solution found with GES and
the CHCI solution. Except for a small “loop” in each of the
GES solutions, the CHCI solutions don’t seem to be superior
at first glance, although when calculating the path lengths
a significant difference is visible. I would expect that the
solutions found with GES would be accepted by people as a
reasonable solution (except for the loops).



(a) CH-1 (79.5) (b) CHCI (75.1) (c) PW-3 (65.5) (d) CHCI (60.2)

Figure 3: 20-node problem with 14 (left) and 16 (right) interior points from [MacGregor and Ormerod, 1996]. The numbers is
parentheses are the tour lengths.

Next I compare the solutions found with GES to those
found in the study of Tak, Plaisier, and van Rooij [2008] for
one specific problem.2

But first of all, some words of caution are necessary. The
data sets of Tak, Plaisier, and van Rooij [2008] have a very
special design with lots of equidistant points. This leads in
many cases to the algorithmic results being more or less
random, depending on the order in which the points of the
problems are represented internally. Therefore the following
qualitative comparisons must be taken with a grain of salt.
It is well possible that a slight change in the implementation
could have large effects on the results. Also, the participants
could choose the starting point of the tour like in the experi-
ment of MacGregor and Ormerod [1996].

Figure 4 presents the problem CIRCLE and the most pop-
ular solution among the participants (Figure 4(a)). Surpris-
ingly, the solution shown in Figure 4(b) is not listed by Tak et
al. However, in a similar problem called SQUARE 11% of
the participants came up with a similar circle-like solution
and when asking a friend of mine to complete this problem,
he also produced this solution with the comment “I’ll just go
in rounds”.

The solution in Figure 4(b) was found by two configu-
rations of GES: CH-2 and PW-1. In general, PW-1 typi-
cally produces solutions with very clear lines. Often this al-
gorithm “forgets” to collect all relevant points in its outer
tour and then has to take a second inner tour to include
the remaining inner points. This general behavior might
be due to the strategy of following a circle-like tour to-
gether with the urge to follow straight lines, resulting in
clear lines but avoiding necessary deviations from these
lines. Although both the PINWHEEL direction expert and the
FOLLOW-LINES evaluation expert are also present in variant
PW-2, it generated a different solution (Figure 4(c)). This
might be due to the very tight decision at the start whether to
move right or downward. As PW-2 doesn’t use the AVOID-
SPLITTING expert, both points are regarded as equally well.

The solution in Figure 4(d) produced by variant CH-1 is
very long compared to the other solutions and no participant
in Tak et al.’s study came up with a solution like this. Still a
person might attribute some “strategy” to this tour: first go-

2For the comparison I used the publicly available data at
tsp.wtak.nl. The tour lengths presented here have been con-
verted with the factor 0.567 as indicated in [Tak, Plaisier, and van
Rooij, 2008].

ing in a circle and then collecting the remaining points in a
zigzag pattern. Zigzag patterns were indeed mentioned (al-
though rarely) as human strategies in the study of Tenbrink
and Wiener [2009]. This behavior also occurred with CH-1
in other problems, but interestingly not in the ones of Mac-
Gregor and Ormerod [1996], which have been specifically
designed as challenging regarding inner points of a problem.

Discussion and Future Work
First I will discuss how far GES fulfills its goals of flexibil-
ity, efficiency and solution quality, specifically in the context
of the Traveling Salesperson Problem. This is followed by a
brief discussion whether GES could also qualify as a model
for human problem-solving.

Flexibility and Efficiency
The flexibility to react to changes in the world is inherent in
GES: since only the solution up to the current state has been
computed, the next step is always chosen in the situation.
The question for GES is rather how to avoid purely reactive
behavior. In the TSP this question did not arise since the
world didn’t change. But the CONVEX HULL and PINWHEEL
direction experts point into the direction of how to include
global strategies into the local search process. In contrast to
hierarchical search methods [Mock, 2002; Holte et al., 1996]
I believe that the problem solving algorithm doesn’t have to
be hierarchical, but the knowledge used in the search should
have some hierarchical structure.

Another form of flexibility is the adaptation to different
problem instances or situations. The concept of experts in
GES is the basis for such adaptiveness, but to exploit it fully,
the confidences of the experts would have to be determined
automatically. The most flexible way to do this would be
machine learning. The main challenge for learning the con-
fidences is the representation of problem types. For the TSP
there are some possible features that might play a role to
classify problems, for example the number of points that
are not on the convex hull, the distance of such inner points
from the “border” of the problem, the ostensibility of clus-
ters or regions. But even for people it is difficult to classify
which problems are easy to solve [MacGregor, Ormerod,
and Chronicle, 2000; Vickers et al., 2003].

The computational efficiency for finding a solution was
also a basic design principle. By shifting from a global view
to local decisions, GES bears the potential of linear runtime



(a) 25% of participants (29.4) (b) CH-2, PW-1 (29.3) (c) PW-2 (32.5) (d) CH-1 (37.2)

Figure 4: Comparison of solutions using the data set CIRCLE from Tak, Plaisier, and van Rooij [2008].

for a complete problem, given that the experts return their
decision at each decision step in constant time. In the TSP
as presented in this paper none of the direction experts has
a constant runtime, because in theory all remaining points
could be candidates and even for finding the nearest next
point, all remaining points have to be regarded (this step can
be accelerated by a precomputation, but then the offline cost
is quadratic). Also evaluation experts that take into account
the overall form need linear computation time at each de-
cision point. For good TSP solutions some global knowl-
edge seems to be indispensable. These problems might be
removed with parallel computations.

Solution Quality
The experiments with the TSP have shown that GES can pro-
duce solutions that are in the range of human solutions. Still,
in some cases the results are not comprehensible from a hu-
man point of view (for example the completely unnecessary
loop in Figure 3(a)). This is due to the lack of appropriate
experts to judge the overall form of a figure. An interest-
ing approach would be a library of common shapes such as
circles, rectangles, zigzag lines, etc. to match those shapes
with the developing TSP solution and to use them as direc-
tion and evaluation experts. This idea moves very much into
the direction of image understanding and it must be checked
if there are efficient algorithms readily available for such a
pattern matching.

Another piece of knowledge that is missing in the experts
used here is hierarchical or regional knowledge about the
problem. Several studies in psychology [Wiener, Ehbauer,
and Mallot, 2009; Tenbrink and Seifert, 2011; Kong and
Schunn, 2007] have shown that people use information
about clusters or regions (like countries or points marked
in a certain color). Using such information would also be
beneficial with GES.

In its present form, GES makes the rather strong assump-
tion that a solution to a problem can be found in a reac-
tive way without the need for backtracking. This mecha-
nism seems to be sufficient for people in simple everyday
activities like tooth brushing or preparing coffee as stated
by Schwartz et al.: “Indeed, for the types of simple, rou-
tine tasks we study, it is appropriate to say that the action
plan is elaborated through action, rather than prior to action”
[Schwartz et al., 1991].

For more unusual tasks, it is obvious that humans do hy-
pothesize and reconsider possible solutions, as shown in the

experiments of Hayes-Roth and Hayes-Roth [1979]. For ex-
ample, in the TSP to avoid line crossings, it would be help-
ful to sketch future solutions and validate if they contain
crossings. Therefore, the next development of GES will con-
tain the possibility to create future solutions and either use
them as input for experts or as a backtracking mechanism.
To some extent this contradicts the basic scheme of GES
to achieve linear solution times by constructing the solution
stepwise. But if this mechanism is used economically, its
additional power should trade off the slightly higher compu-
tational effort.

A Model for Human Problem Solving
Even though GES is intended as an efficient algorithm that
shows humanlike flexibility and solution quality, it might
also serve as a basis for a psychological model to explain
human problem solving strategies.

In the case of the TSP GES directly accounts for the ob-
servation of Tenbrink and Wiener [2009] that there are sev-
eral mechanisms at work, which are used differently depend-
ing on the problem at hand. Table 2 shows how different
combinations of experts are beneficial for different prob-
lems. Also the findings of Graham, Joshi, and Pizlo [2000]
that people solve TSPs in near-linear runtime can be ex-
plained by GES.

Finally, and maybe most importantly, GES is not specif-
ically designed for TSPs, but — if instantiated with appro-
priate knowledge — could also account for human problem-
solving abilities in other domains and thus serve as a general
model.

Related Work
This work builds on work of different areas including search,
planning, behavior-based decision-making and cognitive ar-
chitectures. Space only permits to mention some specific
pieces of work that had a particular influence on the work
in this paper.

The latest headline project of IBM, the Watson program
that could beat expert human players in the game of Jeop-
ardy, uses a similar approach as GES with experts provid-
ing candidates for answers and evaluating such candidates
in parallel [Ferrucci et al., 2010]. Watson additionally uses
machine learning to determine the weights of experts. The
scope of the Watson project is a lot larger than the work pre-
sented here and the focus was more on outperforming hu-
mans than to imitate them.



For the specific domain of the Traveling Salesperson
Problem, several theories of how humans solve such prob-
lems have been proposed. One promising hypothesis is the
use of the convex hull as an outline for the solution and then
to add inner points following a global optimum. This theory
has been mostly dismissed by the observation that humans
seem not to create a global plan, but rather to follow a kind of
circle-like path [MacGregor, Ormerod, and Chronicle, 2000;
Vickers et al., 2003]. Some researchers have tried to com-
bine the convex hull with a step-wise connection of points
[MacGregor, Ormerod, and Chronicle, 2000] similarly to us-
ing the convex-hull direction expert in GES, while others ar-
gue that human performance can just as well be explained
without the convex hull theory following a more reactive
strategy [Vickers et al., 2003].

Several theories propose a hierarchical approach of first
determining a coarse route and then connecting the prob-
lem points along the coarse solution [Best and Simon, 2000;
Kong and Schunn, 2007; Graham, Joshi, and Pizlo, 2000].
This can be seen as a generalization of the convex hull ap-
proach with different global strategies. In GES such mecha-
nisms could be included by experts that identify point clus-
ters.

Tenbrink and Wiener [2009] summarize these efforts after
their own experiments very much to the point: “TSP-related
strategies have hitherto often been treated as real alterna-
tives that are mutually exclusive. Our results indicate that
they may be better represented as a repertory of strategies
and subprocesses that are available to humans when solving
TSP tasks. The relative weight of each particular suprocess
or strategy may differ substantially between individuals and
subtasks.”[Tenbrink and Wiener, 2009] This describes ex-
actly the idea behind the use of different experts in GES.

Conclusion
I have introduced GES as a search algorithm that empha-
sizes the use of different knowledge sources in problem solv-
ing. The Traveling Salesperson Problem, which has received
attention both from psychology and computer science, has
served as an example to demonstrate the benefits of GES:
flexibility, efficiency and acceptable quality of the search,
which includes similarity to human solutions.

The approach heavily relies on problem-relevant knowl-
edge and it has to be seen for other problems than the TSP
how that knowledge can be represented and acquired.
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