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Towards a Qualitative Multicriteria Decision Theory

Didier Dubois*, Helene Fargier*, Patrice Perny*, Henri Prade*
* . IRIT, 118 route de Narbonne, 31062 Toulouse, France
* 1 LIP6, Paris 6 University, 4 Place Jussieu, 75252 Paris Cedex 05,France

Abstract

This paper proposes a principled approach to mul-
ticriteria decision making where the worth of deci-
sions along attributes is not supposed to be quanti-
fied, as in multiattribute utility theory. In the latter,
alternatives are ranked after merging utility func-
tions defined along each attribute. In constrast, our
approach presupposes an aggregation of local pref-
erence relations, which includes information about
the relative importance of coalitions of criteria. It
is shown that the requirement for ordinal represen-
tation and fusion of preference leads to a very spe-
cific family of decision rules, called concordance
rules that generalize well-known voting methods.

1 Introduction

It is now acknowledged that decision-making is a worth
studying topic in the framework of Atrtificial Intelligence.
Yet, it is again a topic where scientific traditions exist, and
have been around for a long time independently of Al. There
are at least three decision making problems that have been
studied rather independently in the past: individual decision
making under uncertainty (DMU), multi-agent decision mak-
ing (MADM) and multicriteria decision making (MCDM).

DMU research has culminated with the works of Savage
(26) and advocates a numerical approach to decision mak-
ing, whereby uncertainty is represented by a single probabil-
ity function, preference is encoded by utility functions and
acts are ranked according to expected utility. MADM is for a
large part based on the works of Arrow (1) who formulated it
in a qualitative framework, as a voting problem in which com-
plete preordering relations must be aggregated, thus leading
to an impossibility theorem.

However DMU and MADM are similar problems if the set
of states of the world is viewed as the set of voters in MADM.
It may be surprizing that formally similar problems lead to
different settings, one being quantitative and the other qual-
itative. It is all the more intriguing to compare the two ap-
proaches, as Al rather belongs to a non numerical modeling
tradition and has started to consider DMU from a qualitative
point of view [91[3][7]1[13]. The difficulties induced by Ar-
row’s impossibility theorem for a proper handling of ordering
relations in Al problems have been pointed out in [9]. The

axiomatic framework of Savage has been reconsidered in the
scope of qualitative decision theory [10][14] and it has been
shown that keeping the essential features of Savage’s frame-
work while sticking to an ordinal framework leads either to
an impossibility theorem or to decision rules that generalize
Condorcet’s pairwise relative majority rule. It has also been
established that the representation of uncertainty stemming
from ordinal DMU is precisely the one advocated by Kraus,
Lehman and Magidor (19) for non monotonic reasoning.

In this paper, we focus on the third problem MCDM, that
is also of the same structure MADM and DMU, the set of
criteria playing the the role of voters (resp. of states). In-
terestingly, there are here two distinct schools of thought in
this area, one deriving from the DMU tradition, the other one
from voting theory. The first school is exemplified by the
works of Keeney and Raiffa (17). This kind of approach
is essentially numerical and puts forwards a weigthed sum
for the aggregation of scaled utility functions. The second
school stems from the works of Roy (24): preferences along
each criteria (whether numerical or not) are represented by an
outranking relation. Additive concordance rules are used to
perform criteria aggregation: they are based on counting the
number of criteria which favor an alternative over another.

The emphasis given to ordinal models in this school is
more in agreement with qualitative Al methods. Never-
theless, there are very few foundational works in ordinal
MCDM, in comparison to multicriteria numerical utility the-
ory. Moreover, in spite of the interest of Al for qualitative
preference modelling especially in DMU (e.g. [4][8]) the
problem of deriving aggregation procedures compatible with
a qualitative approach has not yet be considered in Al, if we
except some works in information fusion [21] [20] [2]. The
aim of this paper is to fill this gap to some extent, by propos-
ing a generalized, purely ordinal concordance decision rule
in MCDM, rigorously justified in an axiomatic way via rep-
resentation theorems. This work parallels the one started in
[10] taking advantage of the similarities between MCDM and
DMU. In the next Section we present in more details the two
approaches to MCDM and discusses the strong assumptions
underlying the numerical aggregation scheme. Section 3 then
proposes a generalization of the usual additive concordance
rule. Section 4 finally proposes a rigorous axiomatisation of
such rules.



2 Preliminary definitions and demarks

A multicriteria decision problem can be characterised by a
set A of alternatives (possible actions, objects, candidates)
and a set N = {1,...,n} of attributes or criteria used to
describe the alternatives. Let X; denote the set of possible
values for componentj € N and X = X; x ... x X, be
the multiattribute space. Within X, each alternative z € A
is represented by the vector (x4, . .., z,) of attributes values.
A can be identified to its image in X and thus considered as a
subset of X. A will actually be identified with X itself since
we need a comparison model allowing to decide whether z is
at least as good as y (denoted = - y) or not, whatever (z,y)
in A2, i.e. a comparison model valid on the entire set X.

As afirst consequence, for any pair (z, y) of alternative and
for any subset of attributes A C N, we can soundly construct
a mixed alternative z Ay whose components are those of 2 on
the elements of A, and those of y on the other attributes:

oz if jEA
(zAy); = { y; if j¢&A.

Each attribute j usually defines a marginal utility w;(z;)
measuring the attractiveness of the attribute value z;. We
assume that u;(z;) € [0,1] but any linear scale could be con-
sidered as well. In some models, the scale is ordinal in nature
and the marginal utility only encodes a ranking of the x ;.

In order to construct the preference relation >~ on X2, one
uses a decision rule defining the preference z 7~ y as a func-
tion of vectors (z1,...,z,) and (y1,...,yn). As said previ-
ously, one can distinguish two approaches to derive -.

j=1...,n

2.1 TheAggregate then Compare Approach (AC)

This approach is exemplified by the works of Keeney and
Raiffa (17) and consists in summarizing each vector x by
a quantity u(z). This utility is obtained by aggregation of
marginal utilities u;(z;), very often a weighted sum. Denot-
ing ¢ the aggregation operator, the preference relation > is
defined by:

2y o(((u;(x;)jen)) ¥((u;(y;)jen)) >0

where (u;(z;);en) is the vector (uq (z1),. .., un(zy)) and ¢
is a comparison function.

A classical choice for ¢ is ¢(x,y) = x —y. 1 is very often
a weighted sum, but one can also choose another particular
instance of the Choquet integral [16] or, in a more qualita-
tive framework, a Sugeno integral [28]. All these general ag-
gregation techniques attach importance weights to groups of
criteria: p(A) represents the importance of the coalition A,
forany A C N. This importance measure must be a capac-
ity on NV, i.e. a mapping defined from 2% to [0, 1] such that
p® =0, u(N) =1and A C B = p(A) < u(B). An
important subclass of capacities is formed by additive capac-
ities (u(A) = 34 #({7})). Other examples are possibility
and necessity measures [12].

The Choquet integral is a powerful aggregation operator al-
lowing positive and negative synergies between criteria [16].
When used with an additive capacity, it boils down to the
weighted sum. The Sugeno integral is a qualitative counter-
part of the Choquet integral. When used with a possibility

(resp. a necessity) measure, it boils down to a weighted max
(resp. a weighted min) [13].

2.2 TheComparethen Aggregate Approach (CA)

This approach consists in comparing, for any pair (z,y) and
each attribute j, the attribute values z; and y; so as to de-
cide whether z is at least as good as y according to the jt*
component. This yields n preference indices ¢;(z, y). These
indices are then aggregated before performing the following
preference test:

T r>\: y¢>¢(¢1($7y)77¢n($ay)) Z 0

Example 1 (Additive concordance rule) Let us define ¢ as:
oi(z,y) = 1if ui(z;) > u;(y;), ¢(z,y) = 0 if
uj(z;) = u;(y;), ¢;(z,y) = —1 otherwise. Then choosing
V(o ..., ap) = E,n-zl wjo; leads to the relative majority
rule. When w; are all equal, we obtain a well known MADM
system where z >~ y iff a majority of voters/attributes is con-
cordant with this preference. In MCDM interpreting the w;
as the weights of criteria leads to a concordance rule used in
Electre methods [23; 25]

Numerous decision rules can actually be obtained as par-
ticular instances of this general model. One can find exam-
ples in [27; 22; 5; 29; 25]. The ordinal nature of the CA
approach is worthwhile noticing. It indeed amounts to con-
structing n preference relations (characterised by functions
¢;) which are aggregated to form the overall preference rela-
tion 7-. We come to this last point in the next section.

2.3 Onthecommensurability between local
preference scales and importance scales

Both AC and CA use n preference scales (L;, >), each be-
ing characterized by a set of levels L; = {u;(z;),z; € X;}
ordered by >. The two approaches also require an aggre-
gation operation . When ) explicitly uses an importance
measure g on N (this is the case Sugeno and Choquet in-
tegrals) the aggregation operator can be denoted ,,. In the
AC approach, v, is used to aggregate marginal utility indices
u;(z;) whereas in CA 1), is used to aggregate marginal pref-
erence indices ¢;(z, y) resulting from pairwise comparisons.
Anyway there is a specific scale L, for criteria importance
levels (the range of u, i.e. L, = {u(4),A C N}). Hence
there are two distinct commensurability problems: 1) can the
same totally ordered preference scale L., be attached to all
criteria? 2) is there a mapping relating levels of importance
in L, and levels of satisfaction in L.

In the AC approach an affirmative answer is given to both
questions. One indeed commonly assumes that the same
utility scale (L., >) is valid for each attribute. A possible
choice for this scale is L,, = [J;c L;-. This choice requires
the comparability of utility levels coming from different
scales L;: a strong assumption. On top of this single utility
scale, we also need the importance scale L,. The conjoint
use of scales L, and L, in the definition of preferences
implicitly makes the two scales commensurate. In order to
explain how this commensurateness between importance
and utility is achieved, let us assume a AC model where v,



satisfies the two following properties:
Idempotence Va € [0, 1], ¢¥u(a,...,a) =«

Coincidence VA C N, 9,(xa(1),..., xa(n)) = u(A4)
where x 4 is the characteristic function of A in NV defined by
xa(j) =1if j € Aand 0 otherwise.

Most aggregation functions satisfy these two properties *.
Following AC, we can define the preference order -, corre-
sponding to ¢, by:

T Zu Y & Yu(u;(z))jen) = Yulu;(y;)ien)-

Consider now four alternatives in X defined by:
o the ideal alternative z* such that u;(z}) = 1,Vj € N,
o the anti-ideal alternative z, such that u;(z.) = 0,Vj € N,
e an alternative a having a constant utility vector (. . ., a),
fora € L,.
e the alternative z* Az, for a given proper subset A in N
(A#Dand N\ A #0).

It can be shown that:

Proposition 1 If ¢, is idempotent and concident, then for
any proper subset A in IV , we have:

(2" Az.) Zu a & u(4) > a

This result reveals an implicit comparison between the
level p1(A) of the scale L, and the level a of the scale L,.
This shows that, in the CA approach, the intertwining of the
scales L,, and L, is instrumental in the comparison of alter-
natives. i.e. that L, and L, need to be commensurate.

Recall that the similarity of the DMU, MADM and MCDM
decision frameworks lies in the fact that the set of attributes
plays the same role as the set of states and the set of voters.
The AC approach, accepting the two commensurability as-
sumptions appears natural in DMU: the set of consequences
of acts is indeed often independent of the considered state,
and since there is a single decision-maker, there is a single
preference scale for the consequences. The second commen-
surability problem is a matter of comparing degrees of un-
certainty of events (the counterpart of degrees of importance)
and degrees of preference of consequences. Although clearly
distinct notions, uncertainty and preference are equated in
DMU provided that the decision maker is able to compare a
sure gain and a binary lottery (which characterizes an event).

In the MADM context, the CA approach is much more nat-
ural since such commensurability assumptions are difficult to
accept. Indeed local preference scales L ; are attached to dis-
tinct voters 7, hence are hard to reconcile. Moreover the im-
portance of individual voters or groups thereof is generally
determined by an external agent, not the voters themselves,
hence the commensurability between individual preference
scales and the importance scale is not warranted.

In MCDM, the presence of a single decision maker makes
the AC approach more natural than in the MADM setting,

1In DMU, idempotency holds when a constant act is equated to
its unique consequence (a sure gain), and coincidence means that the
confidence of event A is the utility of a binary act having extremely
good consequences if A occurs, and extremely bad ones if not.

but it raises an important operational question. Indeed, in or-
der to capture the preferences of decision-makers in the AC
model, it would be necessary to ask a huge number of ques-
tions aiming at defining exactly how elements of the various
utility and importance scales should be intertwined on a com-
mon scale. We will show in the next section that concordance
methods which are particular instances of the CA approach
do not face this problem. From this point of view the MCDM
problem appears closer to the MADM setting than to DMU,
and it is natural to try and tackle the MCDM problem making
as few commensurability assumptions as possible.

3 Generalized Concordance Rules

The additive concordance rules introduced in 2.2 can be cast
in a more general setting. First a preference relation 2-; is
supposed to exist on each attribute range X ;. It can be derived
from the marginal utility functions if any (then z; ~; y; &
uj(x;) > u;(y;)) or introduced as such from scratch by the
decision maker. Let ~; and ~; denote the strict preference
and the indifference relations derived from »- ;. The following
coalition of attributes derives from the marginal preferences:

Cy(z,y) =1{j € N,z; Z; y;}

C(=,y) is the set of criteria where z is as least as good as

y. Finally, assume an importance relation > exists on 2%,
whereby A > B means that the group of attributes A is as
least as important as the group B. It can be derived from the
importance function if any (then A =1 B < u(A) > p(B))
or introduced as such from scratch by the decision maker.
Such a relation is supposed to be reflexive, and monotonic:

Ar;B=AUCx;B and A= BUC = A B

This property is satisfied if > derives from a capacity as in-
troduced in Section 2.1. Importance relation derived from ad-
ditive capacities also obeys the following property of pread-
ditivity: VA,B,C C N

ANBUC)=0= (B Cs AUB - AUCQ)

However, it is well known that preadditivity of = does not
imply that it is representable by an additive capacity (see
[18]). Let us now define generalized concordance rules (GC
rules):

Definition 1 A generalized concordance rule defines a pref-
erence relation 2~ on X from the relations 2-; on X;, Vj =
1,...,n and the relation >~ on 2 as follows:

This definition is a MCDM counterpart to (and a generaliza-
tion of) the ”lifting rule” proposed by [10] for DMU. When
> r (resp. 7-;) derive from a capacity function g (resp. a util-
ity function u;), or equivalently they are weak orders (and
thus always representable by capacity and utility functions),
the previous rule becomes (GC,,):

e Zy e p({dui(e) 2 ui()}) = p{iui(y) = ui(z)})

The additive concordance rule is recovered when g is an ad-
ditive capacity. Remark that:



o Variants of the GC rule can be obtained using >; (resp. >r)
instead of >~; (*Z7) in Definition 1.

e Applied to z* Az, and a introduced in §2.3, it is clear that
z* Az, 7 a & A N\ Abecause Cx (2" Az,,a) = Aand
Cy(a,z* Az,) = N\ A. One can observe that the result only
depends on the inequality A >~; N \ A which pertains to two
levels of the same scale. More generally, the GC rule does
not require any commensurability assumption. Only compar-
isons within X; and comparisons between sets of attributes
are requested. Hence, when weak orders are considered (rule
GC,,), changing the intertwining of quantities of type p(A)
with quantities u;(2) does not affect the preference - in-
duced. Thus, assessing utility functions and the capacity u
should be easier with this model than with the AC approach.
e It is a priori natural to assume that - r and the - ; are com-
plete and transitive. However, the generalized concordance
rule makes sense even if these properties do not hold. The
transitivity of the 2-; may be questioned: for example, con-
sider an numerical attribute which is naturally ordered (e.g. a
price). It may happen that any “small variation” of a value
on this attribute does not modify the subjective value of the
alternative considered. One can indeed imagine that the deci-
sion maker remains indifferent between two values z; and y;
as long as the difference |z; — y;| does not exceed a certain
threshold. Such preferences are perfectly natural but fail to be
transitive. A similar rationale could be developed concerning
the transitivity of relation - .

e Generalized concordance rules fit the the CA approach of
Section 2.2 when - (resp. Z;) derive from a capacity func-
tion p (resp. a utility function u;), or equivalently when they
are weak orders (rule GC,). The general CA scheme is re-
covered when ¢; is defined as in 2.2 and ¢ is such that :

Yo € 0,1, () = p(o(@)) — po(—a))
where o () is a vector with componento; (o) = Lifa; > 0
and 0 otherwise. o () is the characteristic vector of C- (z, y)
and o(—a) of C-(z,y).

A natural question is whether it is worthwhile consider-
ing a non-additive importance function p to define GC rules.
The claim that additive capacities are not expressive enough
is based on counterexamples like the following:

Example 2 We evaluate and compare four candidates ap-
plying to a commercial-engineering position. Candidates
receive grades according to four points of view: techni-
cal skill (X; = {A, B,C, D, E}), commercial skill (X, =
{4,B,C,D,E}), age (X3 = {20,...,60}), salary (X4 =
{20,...,100}). Within X; (resp. X3), A is the best grade
and E is the worse. Numerical values in X3 and X4 are to be
minimised. The ratings of the 4 candidates {z,y, z, w} are:

candid./attrib. 1 2 3 4
T B B 31 60
Yy C A 31 60
z B B 49 50
w A C 26 80

Cr(z,y) ={1,3,4} Cx(y,z) ={2,3,4}
Weget: O (z,2) ={1,2,3} C-(z,z) = {1,2,4}
Cx(z,w) ={2,4}  Cf(w,z) ={1,3}

Now assume that the decision maker’s choice is z (a rea-

sonable choice since this candidate realizes a good trade-off
between the various objectives). An attempt to reconstruct
such preferences with the rule (GC,) and an additive y, leads
to the following inequalities:

p({1}) > p({2})
p({3}) > p({4})
p({1) +p({3h) < p({2}) +p({4})

These inequalities being contradictory, the additive rule is
unable to describe decision maker’s choice.

Another well known argument against additive concor-
dance rules is that they lead to Condorcet effects, i.e. that
even the strict part of global preference = (>) may fail to
be transitive. However, there are some non additive concor-
dance rules that alleviate these difficulties, e.g. the one ob-
tained when p is a necessity measure (see [10]). For instance
the reader could easily check that the previous example can
be adressed using a necessity measure for p.

4 A Characterization of the Generalised
Concordance Rule

In order to better understand the descriptive potential of gen-
eralized concordance rules, we now characterize preference
structures which are compatible with this rule (the proofs are
omitted for the sake of brevity). In this paper, both X and N
are supposed to be finite (consistently, each X ; admits finite
set of values). We also investigate the practical construction
of the adequate instance of the rule from a given preference
relation > on the entire multiattribute space X. This relation
represents the decision maker’s preferences. It is assumed
to be partially observable on a sufficiently rich part of X.
From this initial relation 2, one can define, for any attribute,
a marginal relation 2 ; restricted to the 5" attribute:

z; Zi ¥ & Vz € X, (z{j}z) % (y{i}2) o)

Then we introduce a first axiom, strongly enforcing the
qualitative nature of the model.

Axiom NIM (Neutrality-Independence-Monotony):.
Va,y,2,w € X, [Cx(z,y) C Cx(z,w) and Cy (y,7) 2
Cr(w2)l = (e Zy=2Zw)

The NIM axiom is a translation to the multiattribute case of
an axiom used in Social Choice Theory (see [27]). It can also
be seen as a reinforcement of the non-compensation condition
used in [15] and [6] adapted to the case of weak preference
relations. Under this condition, the preference of x over y
only depends on one-dimensional preferences z - ; y defined
by (1). NIM implies that an improvement of = in relations - ;
cannot downgrade the position of  in -.

We introduce a second axiom which gives to any attribute
the ability of discriminating at least two elements (z, y) of X.

AxioMm DI (Discrimination). Vj € N, dz,y €
X, (z{j}y) % y and not(y % (z{j}y))

Finally, we consider an axiom preserving a minimal
comparability between the alternatives. The relation -



is not necessarily transitive nor complete. However, the
incomparability is justified for a pair (z,y) only when at
least two attributes j and k are conflicting, i.e. =; >; y; and
yr =k Zr. Such a conflict does not exist when z and y differ
on a single attribute. This is the meaning of the following:

AX10M MC (Minimal Comparability). Vz,y, z, € X,
Vje NJ(z{j}z) Z (yl{ite) or (y{j}2) Z (2{j}2)

The five following properties derive from these three fun-
damental axioms:
o NI (Neutrality-Independence): Vz, y, z,w € X,

[C(2,9) = i (z,w) and Cy (y, 2) = Ci (w, 2)]

S (@nyszzw)

o RE (Reflexivity). - is reflexive on X
o UN (Unanimity): Vz,y € X, Cs(z,y) =N=>2z 7y
e IND (Independence): VA C° N, Vz,y,z,w € X,
(zd2) 7 (yAz) & (zAw) 7 (yAw)
e CO (Consistency): V A,B € N, V z,y,z,w € X
such that Vj € N,(z; >; wy; and z; >; wj),
(zAy) 7 (zBy) & (zAw) 7 (zBuw).

The unanimity condition ensures that - refines the Pareto
ordering of vectors. IND is the classical condition of pref-
erential independence in multiattribute utility theory and the
counterpart of the sure thing principle of DMU. CO means
that, when z is uniformly better than y the preference be-
tween (zAy) and (zBy) only depends on the choice of A
and B. This is a strong counterpart of the weaker P4 princi-
ple of Savage which projects the preference between acts into
a likelihood relation between events.

Proposition 2

i) NIM = NI i)
ii) MC = RE v)
iii) NIM + RE = UN

Item 4v) shows, among other things, that the comparison
of z{j}z and y{j} = is independent from z. It makes the con-
struction of relations >-; from > easier, using equation (1).
Indeed, thanks to NI & can be simply defined as follows:

"~
z; Ty e 2 EeX, (2{ite) T (w{i}e) 2
When DI and NIM (and thus CO) hold, it possible to ex-
tract from the decision maker preference - an importance

relation on 2V:
ArZrB & (Jz,ye X:VjeN, zj>;y; (3)
and (zAy) 7z (#By))

This definition is very natural. Indeed, when z is uniformly
better than y, preferring z Ay to xBy is clearly justified by
the fact that the coalition of attributes A is considered as
more important than the coalition B.

NIM = IND
NI= CO

We are now in a position to establish the main result.
First of all, let us observe that conditions NIM, DI and MC
are compatible. The additive concordance rule indeed satis-
fies these conditions. The following representation theorem
shows that any preference relation - verifying NIM, DI and
MC can be represented by a generalised concordance rule.

Theorem 1 If the decision maker’s preference - satisfies NT,
NIM and MC then there exists n complete preference rela-
tions 71, ..., 2y, defined on X3, ..., X, respectively, and a
monotonic and pre-additive relation h on 27V, such that:

Vz,y € X, 2y & Cx(z,y) Z1 C-(y,)

For any attribute j, 7-; reveals the decision maker’s pref-
erences concerning the consequences of X;. The relation
> can be constructed step by step, by observing the deci-
sion maker’s preferences over pairs of alternatives of type
(z{j}=),y{j}z) for an arbitrary z. This observation is even
simpler if relations 7-; are supposed to be transitive or quasi
transitive (>; transitive). Formula (3) also provides a con-
structive method to derive the importance relation - and
thus completes the construction of model. Notice that the
entire construction is based on pairwise comparisons. Such
comparisons do not require a prohibitive cognitive effort be-
cause they only concern alternatives having simple profiles.
Moreover, such comparisons do not require any explicit ques-
tioning but can be inferred by observing real choices per-
formed by the decision maker.

Notice that the use of a preadditive relation of importance
is not necessary in a GC rule, in the sense that Theorem 1 only
proves the existence of a preadditive >~y involved in a GC rule
representing »~. If we start from a more general monotonic
=M (p055|bly not preadditive) and construct >~ via the GC
rule we still get a preference satisfying NIM, NT and MC 2
which thus induces a preadditive > by (3).

The reason of this apparent paradox is the following. First
note that C- (z, y) UC- (y,z) = N. So only the pairs (4, B)
such that AU B = N are compared in the GC rule. It can be
proved that:

ArrB & Ary B whenever AUB=N (5

so =y and = coincide on the useful part of 2% x 2V and
the non preadditivivity of - 5, cannot be revealed by observ-
ing a decision maker which would use a GC rule. Example
2 is a typical case where a decision maker may use a non
preadditive relation >~ 5, induced by a necessity measure to
describe criteria importance. In this example, criteria im-
portance could also be represented by any preadditive rela-
tion -, such that A =, B and A Z, B coincide for
AU B = N. The impossibility to use an additive capacity in
this case stresses the gap existing between preadditivity and
additivity.

5 Conclusions

From lack of space, it is not possible to describe the precise
structure of the GC rules. It is enough to say that they gener-
ally exploit a hierarchy of oligarchies of attributes. Namely,
there is a group of attributes that unanimously decides on the

21t can be shown that any preference relation 2 constructed
from an importance relation - using a GC rule satisfies
NIM, NT and MC as soon as the 4 following properties hold:
Vj € N, x; iscomplete, Vj€ N,3(x,y) € X*>x; »; y;
~ isreflexive, monotonic, Vj € N, N >y N\ {j}



preference or incomparability between two alternatives. In
case of indifference, the decision is left to another less power-
ful oligarchy and so on. Future research should also dig into
the representation of importance relations induced by theo-
rem 1. Partial results exist in [11] for preferences relations -
whose strict part is transitive. Then >~ can be represented by
means of a family of weak orders on NV itself. Besides, it is
clear that GC rules are not the ultimate answer to qualitative
MCDM problems. One can easily imagine situations where
the preference of a decision-maker can not be expressed this
way ; for instance when the preference between x and y de-
pends on a third alternative z, as in MCDM counterparts of
stochastic dominance in DMU. Lastly, as suggested by exam-
ple 2, the approach presented here could benefit to multiagent
fusion problems, once adapted to a logical setting.
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