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Abstract

In this work, we present results of our study of particle dynamics in
General Relativity in the whole range of a gravitational field strength.
The study is focused on the methodologies of problem formulations,
predictions of principally observable characteristics of orbits, and cri-
teria of comparison with Classical (Newtonian) Physics. Methods of
both numerical integration and analytic (elliptic functions) theory are
used in their comparison. Among new results are the exact solutions
of angular and time dependent problems. Complete classification of
different orbit types is deduced. The main reputed references related
to the work are given with comments.
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1 Historical Notes in Brief

The problem of the test particle motion in the gravitational field due
to a central force was originally posed by Einstein in 1915 [1] to finally
brush up General Relativity (GR) as the theory of gravitational field.
He was excited to find out that the equation of motion derived from his
field equations approximately explains the value of “Mercury’s anoma-
lous perihelion advance” at that time speculated by astronomers. The
Mercury test is crucial for GR theory verification. Einstein’s deriva-
tion of the effect was based on some assumptions and approximations,
among which, weak field conditions in the scheme of “a perturbation
of the classical equation” [2, 3].

The responding publications of different authors on the subject
have actually been repetitions of Einstein’s methodology of particle
dynamics, to the exclusion of work by Hagihara [4], (1931). He pub-
lished his monograph about the application of the theory of elliptic
functions for deriving exact analytic solution of Einstein’s problem, in
particular, concerning the Mercury’s perihelion anomaly. Obviously,
technical level of computations in early thirties was too low to real-
ize the method in practice so, the results were of qualitative interest.
Historically, efforts were focused on the long-standing problem of “the
Mercury’s anomalous motion” and similar problems under weak-field
conditions. The predicted GR effects must be seen as very small de-
viations from the classical theory.

Later on, Chandrasekhar [5] (1983) studied the problem analyt-
ically in terms of elliptic function solution in relationship with the
GR Black Hole (BH) concept. However, he modified original Ein-
stein’s equation in order to obtain a simplified numerical solution in
terms of classical geometrical parameter (“an effective eccentricity”)
in combination with effective physical parameters. Consequently, the
solution deviated from the exact one, the difference having not being
evaluated, that made difficult to reveal GR non-classical aspects of
space-time curvature. The GR Mercury problem was not studied.

Recently, Kraniotis and Whitehouse [6] (2003) used the theory
of elliptic functions to obtain the exact solution in order to reproduce
Einstein’s GR prediction of Mercury’s anomaly. Even before this pub-
lication, there was a wide belief among Physics community that the
above Einstein’s problem had been fully studied with no questions left.
In reality, in their work for the first time the exact angular solution
to the Mercury’s problem was realized, in contrast to previously pub-

3



lished approximate solutions. However, such issues as an extension of
the method to general conditions of arbitrary field strength, the time-
dependent problems, and the comparison of GR versus Newtonian
predictions were not studied.

Over time, the treatment of the problem has changed after finding
the Schwarzschild metric being an exact solution to Einstein’s field
equation (EFE). Nowadays, the original Einstein’s equation of particle
motion is considered valid in the whole range of field strength. If so,
it allows studying New Physics phenomena with greater GR effects,
for example, in hypothetical super-massive Black Holes.

In this work, we study methodologies of the problem formulation
in the whole range of field strength. At the same time, the atten-
tion is paid to practical realization of exact (numerical and analytic)
solutions and demonstrations of GR effects such as in the GR Mer-
cury’s orbit and Black Holes. An unambiguous formulation of initial
conditions is shown to be crucial. Our goal is to ensure that an ade-
quate physical interpretation of the results is rigorously substantiated
in the GR academic framework. Essential methodological and com-
putational novelties, and new results of calculations are claimed.

Among new results are the exact solutions of angular and time
dependent problems. The main reputed references related to the work
are given with comments. A detailed review of Mercury’s observations
and their treatments can be found in [7].

2 GR particle dynamics

2.1 Formulation of the physical problem

One of the goals of this work is a scientific justification of the GR ver-
ifiable predictions of particle motion in the Schwarzschild field. We
study the exact solutions to the traditional problem of Einstein’s an-
gular perihelion advance in terms of orbiting radius function r(θ) as
well as the time dependent problem r(t), which was not paid attention
in literature. Due to an extreme smallness of the GR effect, a rigorous
formulation of the problem is important to provide a high precision of
its solutions in parts of methodology, calculations, and comparisons
of the results with Newtonian Physics.

Given the GR equation and prior to attempt to solve it, one has to
unambiguously fix the initial conditions and choose a minimal number
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of independent physical parameters, which determine a unique solu-
tion in connection with observables. Otherwise, the solution could be
spoiled. In the next step, it should be decided how the solution could
be correctly compared with the corresponding solution in classical me-
chanics.

2.2 The GR equation of particle dynamics

The equation of GR particle dynamics in polar coordinates was origi-
nally presented by Einstein in [1] more than hundred years ago(

dx

dθ

)2

=
2A

B2
+

α

B2
x− x2 + αx3 , (1)

where x = 1/r is the inverted radius; A and B are the total energy and
the angular momentum, correspondingly; α = 2 rg = 2GM/c2 is the
Schwarzschild radius (rg is the gravitational radius). Here, the mass
of gravitational field source M is however greater than the mass of
the test particle, M � m. This is an unfortunate restriction because
otherwise the equation cannot be strictly derived from the EFE [8].
As a consequence, one cannot introduce the center of mass to account
for the finite mass of orbiting body or several interacting bodies, as in
the case of the planet Mercury.

In the contemporary presentation, unlike in [1], the equation ex-
plicitly includes the term of particle proper mass/energy. Classical
components of the total energy are summed up quadratically in a way
apparently showing their smallness in comparison with the proper
mass term. The cubic GR term makes the equation principally differ-
ent from the corresponding classical equation. Under the weak field
conditions, the term of potential energy is as small as rg/r0 � 1 given
in the dimensionless form, where r0 is the distance of the test particle
from the source, and the speed of light c = 1.

With the field strength, the GR effect can drastically rise. Say, for
(rg/r0) in the range 0.001–0.1, the test particle can reach the speed
close to the speed of light. Under certain extreme conditions, it could
be higher and interpreted in terms of superluminal motion.

2.3 Lagrangian solution

The way of the equation derivation may affect the interpretation of its
solution. Nowadays, there are several approaches to how to derive the
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equation in the contemporary presentation. Kraniotis and Whitehouse
[6] review on how it goes from the EFE with the use of Christoffel
symbols under conditions of spherical symmetry. Alternatively, it is
derived from the Schwarzschild metric [9, 10].

A more quick way is based on the Hamiltonian Action Principle S
with the Lagrangian L in analogy to classical mechanics [11]

δS = δ

∫ t2

t1

L(qi, q̇i, t) dt = 0 , (2)

where qi and q̇i are generalized coordinates and their time deriva-
tives q̇i = ∂qi/∂t characterizing the system, i = 1, 2, . . . , N . The
Lagrangian is chosen with the idea to find the extremal path between
the starting and ending points in the variational integral S.

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 . (3)

In General Relativity, the Lagrangian describing the test particle
motion is usually taken in the form L = dτ/dt [11]. It is obtained from
the Schwarzschild metric, where ds = cdτ is the world line element,
τ is the proper time, and t is the coordinate time. The metric in the
quadratic form with the signature [+, −, −, −] is given by

dτ2 = (1− 2 rg/r) dt2 − (1− 2 rg/r)
−1 dr2 − r2 dθ2 , (4)

where the speed of light and the particle mass taken c = 1, m = 1.
The Lagrangian is

|L| = dτ/dt

=
(
(1− 2 rg/r)− (1− 2 rg/r)

−1(dr/dt)2 − r2 (dθ/dt)2
)1/2

,
(5)

where q1 = r and q2 = θ.
Two constants of motion follow from the consideration of the ig-

norable temporal and angular variables. The conserved angular mo-
mentum is l0 = r (dθ/dτ). The conserved total energy comes out from
the Hamiltonian

H =
∑
i

q̇i
∂L

∂q̇i
− L , (6)

that leads to (in a dimensionless form)

εrad = (1− 2 rg/r) dt/dτ . (7)
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We put the subscript (rad) there because the expression does not
contain l20, hence, it must stand for the total energy in the particular
case of pure radial motion when l20 = 0. The corresponding equation
of the radial motion is discussed later.

Finally, the expressions for the conserved total energy ε0 for l20 6= 0
are found having the initial conditions fixed

ε20 = 1− 2 rg/r + β2r + l20/r
2 − 2 rg l

2
0/r

3 . (8)

There l20/r
2 = β2θ – the squared angular speed component. The term

β2r = (dr/dτ)2 is the squared radial speed component. The sum of
two squared components makes the total squared speed of the test
particle along an orbit, β2, a function of radius.

Similarly to Classics, there must be two major types of a stable
motion: bound motion for ε0 < 1 and unbound motion for ε0 > 1.

It should be noted that in literature, instead of Lagrangian, a
useful concept of the GR effective potential concept Veff is introduced
in relationship with the Schwarzschild metric. In the quadratic-like
form, it is

V 2
eff = 1− 2 rg/r + l20/r

2 − 2 l20 rg/r
3 (9)

related to the total energy ε0

V 2
eff (r) = ε20 − β2r (r) . (10)

It is used for approximate evaluations of GR Dynamics parameters
[12, 13, 14].

2.4 The proper coordinate system with the
proper time τ

As seen the Lagrangian solution, the GR equations of motion with
non-zero angular momentum were derived from the quadratic metric
form dτ2, which is defined in the proper space-time (4). For this rea-
son, the equations of motion are actually derived in terms of the proper
coordinate time τ . Derivatives of the coordinates are correspondingly
taken with respect to the time variable τ . This fact was acknowledged
by Einstein and later by other GR researchers. The problem is that
Astronomical observations are conducted in the so-called coordinate
space-time with the coordinate time t, correspondingly. Consequently,
the interpretation of the GR theoretical predictions is disputed, while

7



τ often is replaced with t for the comoving observer on the premises
of weak-field conditions [7] (what is admitted in this work).

2.5 Formulation of the initial conditions, and
physical treatment of the equations of motion

Let us set the initial conditions at the periapsis r = r0: let it be θ0 = 0,
the angular component of the velocity βθ = β0 6= 0, the radial speed
component βr(r0) = 0, recall that the speed of light here is c = 1. The
dimensionless parameter ρ0 = rg/r0 characterizes the potential field
strength. Next, we introduce a dimensionless variable, the inverted
radius, ξ = r0/r, ξ0 = 1.

Now we have a set of desired equations, in which parameters are
connected with the physical quantities determining the initial condi-
tions ρ0 = rg/r0, β

2
0 . They are also related to the conserved total

energy ε0 = ε(ξ) and other quantities, which are explicit functions of
ξ: V 2

eff , β2r , β2θ , β2 = β2r + β2θ . The conserved squared angular mo-

mentum is found in the form l20 = r20 β
2
0 = β2θ/ξ

2 (here βθ = r dr/dτ).
There are other useful equations

ε20 = 1− 2 ρ0 + β20 − 2 ρ0 β
2
0

= 1− 2 ρ0 ξ + β20 ξ
2 − 2 ρ0 β

2
0 ξ

3 + β2r (ξ) ,
(11)

and from this

β2r (ξ) = ε20 − 1 + 2 ρ0 ξ − β20 ξ2 + 2 ρ0 β
2
0 ξ

3

= β20 − 2 ρ0 − 2 ρ0 β
2
0 + 2 ρ0 ξ − β20 ξ2 + 2 ρ0 β

2
0 ξ

3 ,
(12)

β2θ (ξ) = (r0β0)
2 ξ2 , (13)

β2(ξ) = β2r (ξ) + β2θ (ξ) , (14)

V 2
eff (ξ) = ε20 − β2r (ξ) . (15)

From the equality dξ/dθ = βr(ξ)/β0 easily proved, the equation of
motion dξ/dθ = f(ξ) follows:(

dξ

dθ

)2

=

(
1− 2 ρ0

β20
− 2 ρ0

)
+

2 ρ0
β20

ξ − ξ2 + 2 ρ0 ξ
3 . (16)

A pair of two independent parameters determining a unique so-
lutions could be ρ0 and β20 specified at the periapsis (or apoapsis),
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or some their combination can be chosen, for example, ρ0 and σ0 =
ρ0/β

2
0 . Obviously, there are three roots in the equation of motion but

only any two of three are independent and determine the unique so-
lution as well. Once an appropriate set of independent parameters is
specified, the connection between any pair of them can be established.

3 The GR classification of orbits

3.1 Analytic connections between parameters
of the motion equation and roots

The advantageous form of our presentation of the GR equation of mo-
tion (16) is that it is dimensionless and scaled to the initial condition
ξ0 = 1, and as such, it is governed by minimal two independent phys-
ical parameters fixed in the initial conditions. In the integral form,
the exact unique solution to be computed is given by

θ(ξ) =

∫
dξ√(

1− 2 ρ0
β20
− 2 ρ0

)
+

2 ρ0
β20

ξ − ξ2 + 2 ρ0 ξ3

, (17)

where integration is performed from the initial point ξ = 1 (which is
one of the roots of the cubic polynomial presented under the radical)
along the positive side of the cubic curve. Among three roots of the
polynomial, any pair of them are physically independent It may have
one or three real roots ξ1, ξ2, ξ3.

In Einstein’s problem, physical constraints are imposed on the
equation, namely, conservations laws. Besides, in our approach, ad-
ditional constraints come from the choice of the ξ0 = ξ1 = 1 in the
initial conditions (variable rescaling). This allows us to easily deter-
mine other two roots without using Tartaglia and Cardano formulas
for the roots of a cubic and then make a unique physical classification
of solutions. Let

f(ξ) = 2 ρ0 ξ
3 − ξ2 +

2 ρ0
β20

ξ +

(
1− 2 ρ0

β20
− 2 ρ0

)
, (18)

then
f(ξ)

ξ − 1
= 2 ρ0 ξ

2 − (2 ρ0 − 1) ξ −
(

1− 2 ρ0
β20
− 2 ρ0

)
(19)
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is a quadratic polynomial in ξ with a simple expression for its roots:

ξ2,3 =
1− 2 ρ0 ±

√
1 + 4 ρ0 − 12 ρ20 − 16 ρ20/β

2
0

4 ρ0
. (20)

3.2 Types of GR orbits in terms of roots

The Lagrangian problem formulation implies that all GR trajectories
are periodic and time reversal, as in classical mechanic. However,
while in classical mechanics the angular period is always 2π, in GR
the angular period takes larger values dependent on initial conditions.
The GR perihelion advance effect is valid for any type of GR orbits
including unbounded ones.

From the expression (11) for the total energy in the settings of
the equation (16), it follows that a condition ε0 > 1 requires that
β20 > 2 ρ0/(1 − 2 ρ0). Up to ρ0 6 1/4, the trajectories corresponding
to ε0 > 1 are all unbounded: either parabolic or hyperbolic. However,
for ρ0 > 1/4 and 2 ρ0/(1− 2 ρ0) 6 β20 < ρ0/(1− 3 ρ0), the total energy
ε0 is greater or equals to 1, but the trajectory of a particle is of a spiral
fall type, i.e. the motion is bounded.

All possible variants of roots are shown in Figure 1. There are sev-
eral cases when types of orbits depend, firstly, on the roots being real
or complex, secondly, on specific values of ξ2 and ξ3. The integration
of the equation (17) is performed from the first root ξ1 = 1 over the
positive part of f(ξ) to the next root or up to the infinity, see example
in Section 4.2. There are special points ξ2 = ξ3, ξ2 = 0, ξ2 = 1, and
ξ3 = 1, for which one needs to find the explicit relationships between ρ0
and β20 corresponding to three curves on (ρ0, β

2
0) plane. These curves

divide the plane of integration into four regions with a specific trajec-
tory type. Six types of trajectories are possible: hyperbola, parabola,
circle, over-circular precessing ellipse, sub-circular precessing ellipse,
and spiral fall to the center, see Table 1 and Figure 2.

3.3 GR vs classical orbits

Einstein’s equation of motion (16) is reduced to the corresponding
classical one (in the contemporary form) if the cubic term is neglected.
As discussed further, the same must be true for the GR equation of
radial motion if the initial condition at r = r0, β

2
0 6= 0, βr0 = 0 in (16)

is replaced with β20 = 0, βr0 6= 0, recall, the time variable τ in GR
plays a role of the classical time t.
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As we know, the classical orbits r(θ) are described by only one
parameter σ = r0/β

2
0 so that

θ(ξ) =

∫
dξ

(1− 2σ) + 2σ ξ − ξ2
, (21)

using the same notations and initial conditions as in (16). The analytic
solution is given by

r(θ)/r0 = (σ + (1− σ) cos θ)−1 (22)

The σ presentation of classical theory is much more practically con-
venient than the conventional equations in terms of two geometrical
parameters, – the eccentricity and the semilatus rectum, which are
physically correlated, hence, not independent.

There are five types of classical orbits, solutions to the equation
(22), examples of which are plotted in Figure 3.

The regions of the classical orbits in β20 vs ρ0 plane 4 are shown
in Figure 4. While the first root is fixed, ξ1 = 1, the second root is
ξ2 = 2σ − 1 (recall, r = 1/ξ). therefore, unbounded motion appears
for ξ crossing zero value and going into negative side. The case, when
ξ2 = 0, that is when σ = 1/2, corresponds to a parabolic orbit. The
case, when ξ < 0, that is when σ < 1/2, corresponds to a hyperbolic
orbit. The other values of σ correspond to elliptic orbits. In particular,
for σ = 1 one has ξ2 = 1, which corresponds to a circular orbit. This
picture can be compared with the analogous GR one in Figure 2.

Notice that types of orbits, which are similar in GR and classical
mechanics, have different regions in (β20 − ρ0) diagrams, this is also
seen from a comparison of their parameters:

type of orbit classical mechanics general relativity

circular β20 = ρ0 β20 =
ρ0

(1− 3 ρ0)
, ρ0 6 1

4

parabolic β20 = 2 ρ0 β20 =
2 ρ0

(1− 2 ρ0)
, ρ0 <

1
2

It is also seen that in GR a new type exists, which we call a spiral
fall, see Figure 5. This type of orbits does not exists in classical me-
chanics. It is characterized a particle fall on the center under specific
conditions. In literature, it is associated with strong fields in the Black
Hole environments.
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4 Analytic and Numerical Solutions

4.1 Elliptic function method

The equation (17) can be recognized as an elliptic integral of the first
kind (see any textbook on elliptic functions and elliptic integrals, for
example, [15, 16]). It can be solved by means of the Weierstrass elliptic
function ℘ [15, §20.6].

The ℘-function satisfies the following differential equation

(℘′(z))2 = 4 (℘(z))3 − g2 ℘(z)− g3 , (23)

where parameters g2 and g3 are known as the elliptic invariants. Con-
versely, given the equation(

∂u

∂z

)2

= 4u3 − g2 u− g3 , (24)

One gets the general solution

u = ℘(±z + α) , (25)

where α is the constant of integration. The equation y2 = 4x3 −
g2 x− g3 is known as the Weierstrass normal form of an elliptic curve.
Therefore, the equation (16) can be solved in terms of the Weierstrass
elliptic function ℘. Moreover, the solution can be given in a convenient
form r(θ).

This approach is well known, the following are just a few related
articles that employed the Weierstrass elliptic function: Hagihara
suggested classification of the trajectories in a gravitational field of
Schwarzschild [4], Kraniotis and Whitehouse studied the perihelion
precession of the orbit of the planet Mercury around the Sun [6],
Lämmerzahl discussed the experimental basis of General Relativity
[17].

In order to determine the corresponding parameters for ℘-function
and the expression for the solution of (16), it is necessary to transform
our equation into Weierstrass normal form. There are several ways to
do this.

Consider the following linear substitution

ξ =
2

ρ0
x+

1

6 ρ0
. (26)
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The equation (16) becomes(
∂x

∂θ

)2

= 4x3 −
(

1

12
− ρ20
β20

)
x−

(
1

216
− 1 + 3β20

12β20
ρ20 +

1 + β20
2β20

ρ30

)
,

(27)
that is

g2 =
1

12
− ρ20
β20

,

g3 =
1

216
− 1 + 3β20

12β20
ρ20 +

1 + β20
2β20

ρ30 .

(28)

Therefore,

r(θ) =
6 ρ0 r0

12℘(θ + α; g2, g3) + 1
. (29)

From the theory of Complex Analysis, it follows that the function ℘
is a meromorphic function in the complex plane. It is doubly periodic
with two linearly independent periods 2ω1 and 2ω2. When the roots
of the cubic 4x3 − g2x − g3 are all real, one of the periods is purely
imaginary, and another is real. The real period corresponds to the
angular period of motion described by the equation (16).

The function ℘ is a complex-valued function, however along the line
α+ θ, where orbital angle θ varies, the imaginary part of it vanishes.
The value ℘(α) = (6 ρ0 − 1)/12 corresponds to the initial condition
(r = r0, θ = 0) and equals to one of the roots of the cubic polynomial
(27). This is the property of the function ℘ that values ℘(ω1), ℘(ω2)
and ℘(−ω1−ω2) are all three roots of the cubic. Therefore, the value
of α is either ω1, or ω2, or −ω1 − ω2.

Algorithms for computing the periods for the case of real coeffi-
cients may be found in literature, see, for example, [18, Algorithm
7.4.8] or [19, §3.7]. The use the real arithmetic–geometric mean allow
one to compute both values rapidly with a high degree of precision.
The theory of this method is described in [20]. It has been generalized
in [21] allowing for complex-valued coefficients.

In practice, the software packages produce the corresponding ℘-
function and compute the periods without requiring a user to trans-
form the equation into the Weierstrass form. Most major math-
ematical software systems support computation with elliptic func-
tions. We have chosen to use SAGE [22] because it is freely avail-
able, highly flexible and very efficient. Calculations can be performed
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with arbitrary precession, we used precision of 600 significant dig-
its here. Moreover, the computations can be performed on-line at
http://cloud.sagemath.com without requiring a user to install soft-
ware on a personal computer. SAGE also provides access to numerous
other open source scientific packages, in particular, we used PARI/GP
[23].

4.2 Numerical integration

Recall the integral form of the GR equation of motion (17). As in the
above analytical solution, there are several singular cases where the
integral does not converge. Depending on values of two parameters ρ0
and β0, the integration (17) is performed from ξ1 = 1 to either ξ2 or
ξ3.

Numerical integration procedure in PARI/GP can take into ac-
count the asymptotic behavior of integrating function at end points
and compute the result with chosen arbitrary precision. Our numer-
ical solution are in complete agreement with the solution produced
using Weierstrass ℘-function.

As an example, consider a case when the cubic has three roots,
e.g. ρ0 = 0.05, β0 = 0.04. Then, the cubic polynomial in the equation
(17) becomes

f(ξ) = 0.1 ξ3 − ξ2 + 2.5 ξ − 1.6 , (30)

with three roots ξ1 = 1, ξ2 ≈ 2.44 and ξ3 ≈ 6.56, see Figure 6. The
initial condition dictates the starting point r0 = 1/ξ = 1, θ0 = 0, the
integration (17) is performed from ξ = 1 to ξ = ξ2:

θ(ξ) =

∫ ξ2

1

dξ√
0.1 ξ3 − ξ2 + 2.5 ξ − 1.6

. (31)

The full integral from 1 to ξ2 corresponds to the periapsis position
rp = 1/ξ2 ≈ 0.41, θp =

∫ ξ2
1 1/

√
f(x) dξ ≈ 4.53, which is the closest

approach to the central mass. From this point, the test particle motion
continues in counter-clock direction. At the apoapsis point ra = r0 =
1, θa = 2 θp ≈ 9.07, the particle completes the first period, see Figure
7.

4.3 Time dependent exact solution

The time dependent problem in both Newtonian and GR mechanics
can be solved only by numerical integration. In GR, the equation of
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motion, for example, follows from 12, where βr(ξ) = dr/dτ . Therefore,

τ(ξ) = −
∫

dξ

β0 ξ2

√(
1− 2 ρ0

β20
− 2 ρ0

)
+

2 ρ0
β20

ξ − ξ2 + 2 ρ0 ξ3

. (32)

The expression under the radical is exactly the same as in (17), and
integration is performed along the same ξ interval. The expression
(32) corresponds to the elliptic integral of the third type. In contrast
to the case of the elliptic integral of the first type, there is no analyt-
ical expression similar to (29). Nevertheless, the theory of Complex
Analysis implies that the solution r(τ) exists, and it is periodic. For
practical purpose, we compute the integral (32) numerically.

5 Final results: Mercury’s orbit

5.1 Input data

For our calculations we used the most recent input data taken from
[24, 25, 26], namely:

• the speed of light c = 299792458 m/s;

• the Solar mass parameter (heliocentric gravitational constant)
µ = 1.32712440041 × 1020 m3/s2, that makes Schwarzschild ra-
dius rsch = 2953.2500770 m;

• Mercury’s perihelion distance rp = 4.600× 1010 m;

• Mercury’s aphelion distance ra = 6.982× 1010 m;

From these data, we have ρ0 = 3.21 × 10−8. The second parameter
β20 = 3.87 × 10−8 can be obtained from rp, ra and ρ0. The value β20
has been rounded to three significant figures for fixing identical initial
conditions in both classical and GR computations. This makes Mer-
cury’s velocity at perihelion vp = 5.898× 104 m/s, which agrees with
[26]. The aphelion value (up to three decimal figures) then becomes
ra = 6.9811764705882×1010 meters in classical theory, and 14237.080
meters shorter in GR.

5.2 The computation

The equation (16) is numerically specified (from here and below we
print up to eight significant digits while the calculations were per-
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formed with 600 digits):(
dξ

dθ

)2

= 6.42× 10−8 ξ3 − ξ2 + 1.6589147 ξ − 0.65891479 . (33)

The first two roots, the inverse values of rp and ra are rescaled: ξ1 = 1
corresponding to the perihelion, ξ2 = 0.65891486 corresponding to the
aphelion, and the third root is ξ3 = 1.5576322× 107. The correspond-
ing Weierstrass form (27) of the above equation is(

dx

dθ

)2

= 4x3 − 0.083333307x− 0.0046296274 (34)

with roots x1 = −0.083333317, x2 = −0.083333323, x3 = 0.16666664.
However, in SAGE and in PARI/GP we do not need to transform
the equation into Weierstrass form in order to compute the periods.
The software allows for arbitrary cubic polynomial with scaled major
coefficient, produces the corresponding ℘ elliptic function and com-
putes the semi-periods. For our input the half periods are ω1 =
3.141592904530036 and ω2 = 20.40947598338886 i. Direct numeri-
cal integration reproduces the same result for the orbital half period
ω1 up to 300 significant digits. Taking into account Mercury’s sidereal
orbit period 0.2408467 Earth years, we obtain the known value of the
Mercury’s perihelion advance ≈ 42.98 arcsec per century.

5.3 Comparison with classical mechanics

The question arises how to compare the Mercury’s output data, in-
cluding results of time dependent problem r(τ), with the analogous
classical data, when the GR effect is very small. The relative differ-
ence between the GR angular half period and the classical value of π
is 7.99×10−8. This number alone will actually ignore an analysis of
time-dependent solutions.

The comparison problem is that the predictions depend on formu-
lation of initial conditions in two theories and the criterion of compar-
ison. Ideally, Astronomers conduct observations of object’s motion in
time, during which the 3D-coordinate system must be fixed in space,
so that a varying distance from the Sun r(t) is measured in time with
the orbital angle varying in time as well θ(t). They want theoreticians
to give them a chart of the object’s trajectories r(θ(t)) predicted by
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both theories with a common set of initial data, including physical pa-
rameters variable for best fitting. In practice, the situation is severely
aggravated by interactions of planets no considered here.

We denote for simplicity the time variable t in both theories as-
suming the commonly accepted argument that the GR proper time τ
in the Mercury’s orbital motion can be replaced with the coordinate
time t due to weak-filed conditions. As noted above, we assume the
ideal picture of a single test particle orbiting about the Sun, mass of
which is concentrated in the origin of the coordinate system.

The following ideal initial conditions are fixed for both theories: at
t = 0, the test particle is positioned at θ = 0, at the minimal distance
(perihelion) from the Sun rp, with a maximal orbital speed of the
particle β0. We suggest the three events scheme of the comparison,
including time-dependent analysis, explained below.

Results of comparison in the ideal conditions are presented in Table
2, Table 3, Table 4. The three events are specified in terms of orbital
characteristics predicted by both theories at three distinct time mo-
ments. Namely,

- Event 1: t1 when θcl = π (classical half-period)

- Event 2: t2 when θgr = π (gr half-period is not reached yet)

- Event 3: t3 when θgr = π + ∆θ (gr half-period), ∆θ the GR
angular advance)

At each event, all orbital characteristics predicted by both theories
are compared in details. Particularly, it is seen that “the GR parti-
cle” compared to “the classical particle”, moves on average faster, its
aphelion is smaller, consequently, its angular period is advanced, while
the temporal period is smaller (about 1 seconds per period). Those
differences of the 10−7 − 10−8 order or less are very small and require
special technique for their exact computations.

From the above results, one can draw two important conclusions.
First, dynamics of GR observable effect cannot be physically un-

derstood just having the angular advance prediction ∆θ . Indeed, it
must be observable in a set of physical characteristics varying in time.
The requirement of precise timing of orbital revolution is crucial for
assessments of the GR effects with respect for corresponding classical
values. In our chart, it is assumed that the running of time is ob-
servable exactly, that is, ideal standard atomic clocks and other ideal
measuring tools are used in a rigidly fixed coordinate system.
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Second, the differences to be observed are practically very small,
as seen from the example of the GR Mercury’s temporal period being
only one seconds shorter than in classical theory. This makes the cri-
terion of verifiable GR predictions and treatments of observations a
challenging methodological problem. Clearly, the ideal initial condi-
tions we fixed, is a special part of the practical problem. In particular,
the precisions of the input data needs to be proved essentially better
than the GR effect. For example, rp and β0 should be known, at least,
at the 10−9 level. Notice, the reality of data precision requirements is
out of the scope of this work.

We think that the GR Mercury’ problem should be reconsidered
in view of our findings. The suggested methodology of the space-time
chart for comparison of different theories of gravitational dynamics can
be also applied in other Astronomical and Cosmological challenging
problems of matter motion.

6 Final results: Black Hole environ-

ment

6.1 Orbital motion

The equation (16) is used, since it is valid for all ranges of field
strength. Therefore, for the first time, we used it for obtaining the
exact solutions for strong field conditions. For simplicity, we assume,
as in literature, that the central gravitational attractor is a point-
like body. Recall, the time variable in the GR equations of motion
with non-zero angular momentum is the proper time τ , but it is often
replaced with the coordinate time t interpreted as a comoving time.

The GR particle orbital motion in strong gravitational fields, say,
ρ0 < 1/4, are associated with the Black Hole environment. The con-
cept of Black Hole used in Astrophysics suggests that a material object
of mass greater than several solar masses, undergoes the hypotheti-
cal process of gravitational collapse, thus, the assumption of a point
source in this case is not a mathematical abstraction but a physical
phenomenon. The equation (16) is actually valid for any central, not
necessary point-like, mass. The wonderful property of the equation is
that it the same in the whole range of field strength, say, in case of
planetary motion and motion of bodies in the Black Hole vicinity. The
types of possible trajectories, of course, depends on the conditions.
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As an example of orbital motion, consider the field strength ρ0 =
0.05, and β20 = 0.04. As seen from tables of orbit classification, it is
of sub-circle type with notably precessing orbit, see in Figure 7. The
angular half period there is about 4.53 radians, which is by 44% larger
than the corresponding classical value π, the time period is by 7%
smaller, the periapsis by 38% smaller, and the velocity at periapsis by
63% higher. The only possible type of Black Hole orbits for ρ0 > 1/4
is of spiral fall, as seen from tables of orbit classification. The example
of spiral fall orbit is shown in Figure 5.

The equation implies the conservation laws and periodic time-
reversal solutions. One can be surprised to find out that these prop-
erties are preserved in spiral fall orbits. As the parameter β20 → 0, the
orbital precession frequency and the particle speed rapidly increase
and the motion never approaches the radial fall.

6.2 Free radial fall

As previously noted, GR Dynamic equations of orbital motion are
reduced to classical ones when the GR cubic term of interference of
angular momentum with the potential energy is neglected. Because
the angular momentum in the particle free radial fall is zero by defi-
nition, the GR equation of the radial motion has to be automatically
coincide with the corresponding classical one.

In conventional GR Dynamics, however, the radial fall equation
differs from the classical one. The reason for that is that the GR
equation is derived with the use of GR expression of conserved total
energy εrad (7) [12], also [14, 27]. Below, we follow the conventional
derivation of equations starting from the initial conditions in the ex-
pression for εrad:

εrad = (1− 2 rg/r) dt/dτ = (1− 2 rg/ric) dtic/dτic . (35)

Assume the initial conditions are fixed at “far away”. To avoid the
infinite time of motion from infinity, let us introduce the “far-away”
distance rfa however great but finite, and let the initial inward speed
be (dr/dt)fa = (1− 1/γ2fa)

−1/2. Then, the inward speed of a particle
in the radial fall is found:

(dr/dt)fa(r) = (1− 2rg/r)
(
1− (1− 2rg/r)/γ

2
fa)
)1/2

. (36)

Here, γfa = E0/m0 ≥ 1 is considered the “far-away” total energy.
Respectively, the formula is interpreted in terms of the “far-away”
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observer whose wristwatch shows the coordinate time t. At the same
time, let us introduce the so-called “shell observer” placed at some
point rshell < rfa, which is not fixed in the initial conditions, whose
wristwatch must show the proper time τshell. Then, the radial speed
drshell/dτshell, viewed by the “shell” observer in accordance with (35),
must be given by

(dr/dτ)shell(r) =
(
1− (1− 2rg/r)/γ

2
fa)
)1/2

. (37)

The formula (36) has to be understood from the viewpoint of “far-
away” observer. It shows that the particle sent from infinity to the
center begins to accelerate, but at some point, it starts decelerating.
The motion looks “strange”, however. The matter is that the particle,
before approaching the Schwarzschild radius rsch = 2rg, at some point
dependent on γfa, starts decelerating: the higher initial kinetic energy,
the farther the deceleration point from the center. For γfa ≥

√
3/2,

the particle will never accelerate in a gravitational field. The gravi-
tational force exerted on the particle becomes repulsive in the entire
space.

Quite differently, the formula (37) shows that, from the viewpoint
of “shell” observer, the particle always accelerates. When crossing the
Schwarzschild sphere, it reaches the speed of light. In the internal
space, the particle is considered not observable (due to “light trap”),
likely, its motion becomes superluminal till it “crashes” at the center.
This picture is widely known in association with the particle radial
fall onto Black Hall.

Let us compare the above GR predictions with classical theory.
The formula (37), as well as the GR equations of orbital motion, de-
scribe a particle motion in terms of time variable τ . In both cases,
the descriptions look similarly to that in classical theory, in which the
time variable is, of course t. It would be naturally expected that the
time variable in the above GR cases might be also the coordinate time
t. Contrarily, in (36), having no classical analogy, it might be τ . Why
it did not happened, is seen from the form of the Schwarzschild metric
dτ2, from which the GR Dynamics equations are derived. The metric
is originally defined in the proper space-time yielding the proper time
as a dynamic variable, and so the GR equations of motion. As for
“the strange” GR decelerating motion with the variable t, it does not
look physically possible.

The readers could put a number of questions concerning a strict
theoretical justification of the above GR radial equations. Having
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no clear understanding of their derivations, we would join them in
addressing the questions, in particular, the τ vs t issue, to the authors
of referred works and other experts in the field.

6.3 Schwarzschild radius and particle velocity

In classical mechanics, the test particle having a small angular mo-
mentum always follows an elliptical orbit of the sub-circular type. Its
periapsis can be however close to the center, while the particle crosses
the Schwarzschild sphere at the speed of light and can move further
faster than the speed of light. Classical superluminal motion takes
place in the radial fall as well.

As we learned, there is a similarity of classical and GR theories
in description of elliptic and radial motions (GR equations with the
proper time variable are meant). In both theories, the particle can
cross the Schwarzschild sphere and can move faster than light. How-
ever, interpretations of superluminal motion are different. Classical
description of motion in the strong field is considered invalid since the
theory is not relativistic. Quite opposite, it is valid in GR, however,
according to the general opinion and in agreement with the SR theory,
the observable superluminal motion does not exists in physical real-
ity. “The far-away observer” does not detect the superluminal motion
by his wristwatch, while “the comoving observer” does not “feel” the
event of crossing the Schwarzschild sphere [14].

There is another difference. In GR, there is a class of the spiral
fall motion, what cannot be in the classical theory, see Table 1. In the
sub-circle motion, it behaves differently, namely, a periapsis distance
corresponds to the maximal value of ξ2 > 1, i.e. for ρ0 < 1/6 and
16 ρ0/(1 + 4 ρ0 − 12 ρ20) 6 β20 < ρ0/(1 − 3 ρ0), see Table 1, Figure 2.
It cannot reach a position ξ2 > 1/(2 ρ0). It is seen, the particle can
cross the Schwarzschild sphere only in the type of spiral fall motion,
in some close inner and outer regions as well. The particle speed can
be easily calculated.

From the conservation laws, we obtain the expression for the total
speed of the particle along the trajectory:

β2(ξ) = β20 − 2 ρ0 − 2 ρ0 β
2
0 + 2 ρ0 ξ + 2 ρ0 β

2
0 ξ

3 . (38)
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From this, the total speed at Schwarzschild radius is

v2(rsch) = 1− 2 ρ0 + β20

(
1− 2 ρ0 +

1

4 ρ20

)
= (1− 2 ρ0)

(
1 + β20

)
+

β20
4 ρ20

.

(39)

Depending on the initial velocity, the full speed at Schwarzschild ra-
dius can be smaller than, equals to or greater than the speed of light.
Figure 8 shows the condition on ρ0 and β20 in order to achieve the
speed of light at Schwarzschild radius.

There is some ambiguity in GR vs classical theory comparison
because the GR Dynamics operates with two types of time variable:
both τ and t in the pure radial motion, and only τ in the orbital
motion. The interpretation depends on the field strength. This issue
is discussed in [14] in view of Einstein’s methodology of space-time
curvature as a manifestation of gravity.

7 Conclusions

This work is intended to encourage researchers in Astronomy and As-
trophysics to study planetary and galaxy dynamics in view of our new
results concerning the use of classical and relativistic gravitational
theories and their interpretation of non classical effects in the whole
range of field strength. The questions are raised concerning unambigu-
ous physical formulations of exact versus approximate solutions to be
further discussed. The author will appreciate any critical comments
and questions related to the results.
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itation, 35(5):951–959, 2003. Über das Gravitationsfeld eines
Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte
der Königlich Preussischen Akademie der Wissenschaften zu
Berlin, Phys.-Math. Klasse 1916, 189–196.

[10] Peter Gabriel Bergmann. Introduction to the Theory of Relativity.
Kessinger Publishing, 2008.

[11] Vladimir Fock. The Theory of Space, Time and Gravitation.
Pergamon, 1959.

[12] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler.
Gravitation. W. H. Freeman and Co, San Francisco, 1973.

[13] Robert Wald. General Relativity. University of Chicago Press,
1984.

[14] Edwin F Taylor, John Archibald Wheeler, and Edmund William
Bertschinger. Exploring Black Holes: Introduction to General
Relativity. Addison-Wesley, 2010.

[15] Edmund Taylor Whittaker and George Neville Watson. A course
of modern analysis. Cambridge university press, 1927.

23



[16] Richard Courant and Adolf Hurwitz. Funktionentheorie. Verlag
von Julius Springer, Berlin, 1929.

[17] Claus Lämmerzahl. Testing Basic Laws of Gravitation–Are Our
Postulates on Dynamics and Gravitation Supported by Experi-
mental Evidence? In Mass and Motion in General Relativity,
pages 25–65. Springer, 2011.

[18] Henri Cohen. A course in computational algebraic number theory,
volume 138 of Graduate Texts in Mathematics. Springer, 1993.

[19] John Cremona. Algorithms for modular elliptic curves. Cam-
bridge University Press, 1997.
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Figure 1: All possible roots of a cubic r.h.s. of (16):
1) complex ξ2, ξ3 roots; 2) ξ3 6 ξ2 < 1; 3) ξ2 < 0, ξ3 > 1;
4) 0 < ξ2 < 1, ξ3 > 1; 5) 1 < ξ2 < ξ3; 6) ξ2 = 0, ξ3 > 1;
7) ξ2 = 1, ξ3 > 1; 8) 1 < ξ2 = ξ3; 9) ξ2 < 0, ξ3 = 1;
10) 0 < ξ2 < 1, ξ3 = 1; 11) ξ2 = 0, ξ3 = 1; 12) ξ2 = 1, ξ3 = 1.
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Table 1: Orbits classification: SF – spiral fall, H – hyperbola, P – parabola,
C – circle, OC – over-circle, SC – sub-circle.

condition on ξ2, ξ3 relation between β20 and ρ0 orbit type Fig. 1 ref.

ξ2, ξ3 not real or
ξ3 < 1

ρ0 <
1
6 , β20 <

16 ρ20
1+4 ρ0−12 ρ20

or
1
6 < ρ0 <

1
3 , β20 <

ρ0
1−3ρ0 or

ρ0 > 1
3

SF 1), 2)

ξ2 < 0, ξ3 > 1
ρ0 6 1

4 , β20 >
2ρ0

1−2ρ0 or
1
4 < ρ0 <

1
3 , β20 >

ρ0
1−3ρ0

H 3)

ξ2 < 1 < ξ3 ρ0 <
1
4 ,

ρ0
1−3 ρ0 < β20 <

2ρ0
1−2ρ0 OC 4)

1 < ξ2 < ξ3 ρ0 <
1
6 ,

16 ρ20
1+4 ρ0−12 ρ20

< β20 <
ρ0

1−3ρ0 SC 5)

ξ2 = 0, ξ3 > 1 ρ0 <
1
4 ,

2ρ0
1−2ρ0 P 6)

ξ2 = 1, ξ3 > 1 ρ0 <
1
6 , β20 = ρ0

1−3 ρ0 C 7)

1 < ξ2 = ξ3 ρ0 <
1
6 , β20 =

16 ρ20
1+4 ρ0−12 ρ20

SC, SF 8)

ξ2 < 0, ξ3 = 1 1
4 < ρ0 <

1
3 , β20 = ρ0

1−3 ρ0 H, C, SF 9)

0 < ξ2 < 1 = ξ3
1
6 < ρ0 <

1
4 , β20 = ρ0

1−3 ρ0 OC, C, SF 10)

ξ2 = 0, ξ3 = 1 ρ0 = 1
4 , β20 = 1 P, C, SF 11)

ξ2 = ξ3 = 1 ρ0 = 1
6 , β20 = 1

3 C, SF 12)
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0

Figure 2: GR orbit classification on (ρ0,β
2
0) plane: H – hyperbolic type; OC

– over-circular type; SC – sub-circular type; SF – spiral fall type; parabolic
type – line next to H; circular orbits – middle curve from 0 till ρ0 = 1/6
continuing to ρ0 = 1/4.
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Figure 3: All possible orbits in Classical Mechanics: 1 – sub-circle, 2 – circle,
3 – over-circle, 4 – parabola, 5 – hyperbola.
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Figure 4: Orbit classification in classical mechanics (dashed lines): the top
region corresponds to hyperbolic orbits, the top dashed line – parabolic or-
bits, in between the dashed lines – over-circular orbits, the bottom dashed
line – circular orbits, below – sub-circular orbits. In GR theory (dotted
curves) there is an additional (at the very bottom, below the dotted line)
region with spiral-fall type of orbits. When ρ0 and β2

0 are small, the orbit
classification in classical mechanics becomes similar to that in GR.
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Figure 5: Spiral fall trajectory for ρ0 = 0.05, β2
0 = 0.03. Shown only half

period.
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Figure 6: Typical case of polynomial f(ξ) with three roots (here ρ0 = 0.05,
β0 = 0.04, the dashed line). The integration is performed from ξ1 = 1 to ξ2
under the solid line.
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Figure 7: Orbit for ρ0 = 0.05 and β0 = 0.04. Starting point (1,0), following
solid line first periapsis at point (0.41,4.53), following dashed line first period
completed at point (1,9.07), continuing by dotted line for another period. All
points are given in polar coordinates.
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Input parameters:
dimensionless ρ0 = rg/c

2 3.21×10−8

dimensionless β20 3.87×10−8

dimensionless r0 1

Scaling quantities:
the speed of light c 299792458 m/s

µ0 = rgc
2 1.32712440041×1020 m3/s2

perihelion rp 4.6×1010 m
velocity at perihelion 58976 m/s

Output:
Computed characteristics classical theory GR - Classics relative

angular period (radians) 2π 5.019×10−7 7.988×10−8

time full period T (s) 7599967.916 s -1.111 s -1.461×10−7

aphelion ra (m) 69811764705.882 m -14237.080 m -2.039×10−7

velocity at aphelion (m/s) 38860.233 (m/s) 7.924×10−3 (m/s) 2.039×10−7

full period orbit length (m) 1.800×1011 m -6301.537 m -3.501×10−8

squared total energy ε2 0.9999999744999999995 -2.485×10−15 -2.485×10−15

Table 2: Comparison of GR vs classical mechanics results for Mercury. We
fixed perihelion and velocity at perihelion as well as the gravitational field
strength to be the same for GR and classical theory.
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Event 1: ~rgr at π position
time elapsed from t = 0 3799982.952 s

|~∆r| 41611.534 m

GR Classical theory GR - Classics relative
(distance to the Sun) r1 69811764705.880 m -14237.078 m -2.039×10−7

∆θ 3.141592094 rad 5.601×10−7 rad 1.783×10−7

(trajectory length) ∆s 179978534889.556 m 15280.087 m 8.490×10−8

Event 2: GR at aphelion
time elapsed from t = 0 3799983.402 s

|~∆r| 41611.541 m

Classical theory GR - Classics relative
(distance to the Sun) r2 69811764705.881 m -14237.079 m -2.039×10−7

∆θ 3.141592344 rad 5.601×10−7 rad 1.783×10−7

(trajectory length) ∆s 179978552408.130 m 15280.090 m 8.490×10−8

Event 3: Classics at aphelion (at π position)
time elapsed from t = 0 3799983.958 s

|~∆r| 41626.836 m

Classical theory GR - Classics relative
(distance to the Sun) r3 69811764705.882 m -14237.081 m -2.039×10−7

∆θ π rad 5.601×10−7 rad 1.783×10−7

(trajectory length) ∆s 179978573989.757 m 15280.095 m 8.490×10−8

Table 3: Three events comparison: Event 1. tcl1 when θcl = π (classical half-
period); Event 2. tgr2 when θgr = π (gr half-period is not reached yet); Event
3. tgr3 when θgr = π + ∆θ (gr half-period). The quantity |∆r| = |~rgr − ~rcl|
is the absolute difference of the radius vectors GR with respect to classical
theory at the indicated event. The same meaning have other quantities
∆q = qgr − qcl.
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Classical theory GR

Difference between “Event 2” and “Event 1” (time 0.451 s)

∆θ 2.509×10−7 rad 2.509×10−7 rad
∆r(t) 1.971×10−3 m 5.689×10−4 m

∆s 17518.574 m 17518.578 m

Difference between “Event 3” and “Event 1” (time 1.006 s)

∆θ 5.601×10−7 rad 5.601×10−7 rad
∆r(t) 2.834×10−3 m -2.945×10−4 m

39100.201 m 39100.209 m

Difference between “Event 3” and “Event 2” (time 0.555 s)

∆s 3.091×10−7 rad 3.091×10−7 rad
∆r(t) 8.634×10−4 m -8.634×10−4 m

∆s 21581.627 m 21581.631 m

Table 4: Absolute differences of main orbital characteristics in GR and clas-
sical theories at the events (2− 1), (3− 1), (3− 2).
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Figure 8: Conditions for achieving luminal speed at Schwarzschild radius.
For the values (ρ0, β

2
0) below the black line the full speed of a particle at

Schwarzschild radius is lower than the speed of light, between the black and
the green lines, the speed is greater than the speed of light.
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