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Abstract

This work is devoted mainly to General Relativity particle dynamics in

the whole range of gravitational field strength in the GR academic frame-

work. There is an opinion among the Physical community that the problem

is fully studied and understood in all its mathematical and physical aspects,

however, it is not true. The exact full solutions of the GR equation of particle

motion in the whole range of fields have never been studied. It is shown that

approximate solutions are not sufficient for understanding the problems at the

deeper level and formulating the criterion of empirical testing of the Einstein’s

theory. As an example of the weak field problem, for the first time we study

Einstein’s Mercury perihelion advance in full details including exact solutions

in terms of angular and temporal dynamic variables. Similarly, exact solutions

were obtained for strong field problems. Both studies reveal some controver-

sial issues, actually, known in literature but not paid sufficient attention, or

remained physically unexplained, for example, a nonremovable singularity, the

superluminal motion, solutions in terms of two dynamic temporal variables t

and τ , and other issues. Consequently, we conduct an additional study of the

particle dynamics in the alternative, the Special Relativity framework, with

the conclusion that the GR controversial issues do not arise there. Overall,

novel methodological and technical ideas and the corresponding results related

to the whole range of field strength are claimed. The work is intended to stim-

ulate further constructive discussions among researchers in Fundamental and

Modern Physics, and Physics Frontiers, also, it has a pedagogical value.

Key words: GR dynamics; GR orbits classification; exact GR solution; spe-

cial relativity dynamics
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1 Introduction

1.1 Motivations and goals

The work is devoted mainly to General Relativity (GR) particle dynamics in

the whole range of gravitational field strength. The study is conducted in the

academic GR framework. This means that GR particle dynamics is defined by

solutions of Einstein’s equation of motion [1] without any additional assump-

tions and physical properties usually introduced in Astrophysical models of

orbital motions. The ideal model of the test particle motion in the spherical

symmetric geometry is used.

As an example of the weak field problem, Einstein’s Mercury perihelion

advance is studied. There is a wide opinion among the Physical commu-

nity that the problem is fully studied and understood in all its mathematical

and physical aspects. This opinion is supported by “mainstream” workers

and mass media, actually, causing a scientific stagnation. In reality, such an

opinion is not true. The exact full solutions of the GR equation of motion,

particularly, describing temporal dependent orbital radius r(θ) and r(τ) have

never been studied. Instead, the approximate field models and solutions were

used. However, the errors due to approximations and assumptions cannot be

assessed without the knowledge of exact solutions. Nowadays, when math-

ematical high precision and effective computational methods are available,

consistent formulations of relativistic dynamics problems and their full exact

reproducible solutions need to be studied and understood at a new deeper

level.

There are numerous works, in which Einstein’s General Relativity and,

particularly, his explanation of Mercury’s anomaly is criticized for allegedly

erroneous derivation of the GR effect. Most of those works come from non-

qualified authors having no sufficient research experience. However, there

are a significant number of GR experts who challenge Einstein’s work by

suggesting its “modifications” or “corrections”, such as Modified Newtonian

Dynamics (MOND), and others.

A recent disagreement example is the work by Engelhard [2]. In mass

media, it initiated a vivid exchange of opinions, as well as comments, discus-

sions, criticism, suggestions from all categories of specialists, including top

experts in the field. The author relates Einstein’s prediction of the Mercury

anomaly to the previously derived Gerber’s formula. Though, it is identical
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to Einstein’s one, it is based on very different assumptions proven wrong (no

matter if Einstein was aware or not of this work at that time). Yet, the au-

thor put Einstein’s prediction in connections with the GR radial fall formula

and suggested to use a physical solution for free fall obtained by taking into

account the dependence of mass on velocity in Newton’s gravitational law.

We consider this multi-aspect work not relevant to Einstein’s Dynamics and

destructing the readers’ attention from the basic principle of GR methodology.

In our work, we study exact angular and temporal solutions to Einstein’s

original GR Dynamics equation [1] in the whole range of field strength. As a

result, it is found that the GR prediction of perihelion angular advance for the

weak field, apart from the corresponding GR temporal shift with respect to the

classical picture, is not sufficient for understanding Gravitational Relativistic

Dynamics of at the deeper level, in particular, the problem of formulating the

criteria of empirical testing of Einstein’s theory.

While conducting the study, we also pay a close attention to the controver-

sial issues in GR problems of particle motion in both weak and strong fields,

and those regardless of field strength. They are actually known in literature,

but mostly ignored in GR expertise literature, or still remained unresolved

problems and controversies. To some of them we return in the text, for ex-

ample, the incompatibility of Special Relativity (SR) with physical gravity

phenomenon, the central and “removal” infinities, existence of two dynamic

time variables, τ and t, the particle spiral fall, the causality violation in su-

perluminal motion, and others.

In view of such issues, we additionally study Relativistic Particle Dynamics

in the alternative, SR based framework, on the same footing as in GR frame-

work. The conclusion is made that no controversies or inherent contradictions

arise there, and solutions are self-consistent.

Overall, we state that the work contains novel methodological and tech-

nical ideas and results concerning the GR Dynamics and relevant Physical

branches, which are outlined throughout the text. The novelties include

• the exact full solutions of GR dynamics equations in the whole range of

gravitational field strength,

• the formulation of comparison criteria needed for empirical tests of the-

oretical predictions,

• evaluations of precision requirements in computations and observations,
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• similar studies in the alternative SR framework, and related method-

ological and technical novelties.

The work must be interesting to numerous open-minded readers, first of

all, among Physical Community and workers in Fundamental and Modern

Physics, including Astronomy, Astrophysics, Cosmology, and relativistic grav-

ity.

1.2 Historical review of Einstein’s problem in brief

We consider the GR historical development essential for understanding of the

current status of relativistic particle dynamics, therefore, its brief historical

review is presented here.

Originally, Einstein’s derivation of the non-classical effect in Mercury’s or-

bit was based on some assumptions and approximations, among which, weak

field conditions in the scheme of “a perturbation of the classical equation”

[1]. Most of responding publications of different authors on the subject were

modifications of Einstein’s methodology of particle dynamics, see reviews in

[3, 4, 5]. A special attention deserves the work by Hagihara [6] (1931). He

published a monograph about the application of the theory of elliptic func-

tions for deriving exact analytic solution of Einstein’s problem, in particular,

concerning the Mercury’s perihelion anomaly. The predicted GR effects must

be seen as a very small deviation from the classical theory. Obviously, tech-

nical level of computations at that time was too low to realize the method in

practice, so the results were of qualitative interest.

Later on, Chandrasekhar [7] (1983) studied the problem analytically in

terms of elliptic function solution in relationship with the GR Black Hole (BH)

concept. However, he modified original Einstein’s equation in order to obtain

a simplified numerical solution in terms of classical geometrical parameter,

“an effective eccentricity”, in combination with effective physical parameters.

Consequently, the solution deviated from the exact one, the difference having

not being evaluated, that made difficult to reveal GR non-classical aspects of

space-time curvature. The GR Mercury problem was not studied.

Recently, Kraniotis and Whitehouse [8] (2003) used the theory of elliptic

functions to obtain the exact solution in order to reproduce Einstein’s GR

prediction of Mercury’s anomaly. Even before their publication, there was a

wide belief among Physics community that the above Einstein’s problem had

been fully studied. In reality, in the work the exact angular solution to the

7



Mercury’s problem was realized for the first time. However, conditions of arbi-

trary field strength, the time-dependent problems, and criteria of comparison

of GR versus Newtonian predictions were not studied there. More historical

references can be found in [3].

Over time, the treatment of the problem has changed after finding the

Schwarzschild metric being an exact solution to Einstein’s field equations.

Consequently, the original Einstein’s equation of particle motion nowadays is

considered valid in the whole range of field strength. It allow us to study weak

field GR effects and strong-field phenomena on the same footing, for example,

hypothetical super-massive Black Holes.

2 The GR particle dynamics

2.1 The GR equation of particle dynamics

The equation of GR particle dynamics in a spherical symmetric geometry

(usually, in polar coordinates) was originally presented by Einstein in [1] more

than hundred years ago(
dx

dθ

)2

=
2A

B2
+

α

B2
x− x2 + αx3 , (1)

where x = 1/r is the inverted radius; A and B are the total energy and the an-

gular momentum, correspondingly; α = 2 rg = 2GM/c2 is the Schwarzschild

radius, rg is called the gravitational radius. Here, the mass of gravitational

field source M is however greater than the mass of the orbiting body, M � m,

the latter body is considered the standard test particle.

In the contemporary presentation, the equation explicitly includes the

term of particle proper mass/energy (that is, the rest mass); the classical

components of the total energy are summed up quadratically. The cubic GR

term makes the equation principally different from the corresponding classical

equation. Under the weak field conditions, the term of potential energy in the

dimensionless form is as small as rg/r0 � 1, where r0 is the distance of the

test particle from the gravitational source, the speed of light is usually taken

c = 1.

With the field strength, the GR effects drastically rise, and the test particle

can reach the speed close to the speed of light. Under spiral fall conditions, it
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exceeds the speed of light what is interpreted in terms of superluminal motion.

It should be noted that there is some similarity between formal solutions

in the GR and Classical theories: in both, the test particle can reach the speed

of light at the Schwarzschild radius, however, the Classical theory, unlike GR,

is considered valid only in the restricted weak field range. Unlike in GR, the

spiral fall cannot happen in Classical theory.

2.2 The Lagrangian solution, and the formulation

of initial conditions

There are several approaches to how to derive the equation in the contempo-

rary presentation. Kraniotis and Whitehouse [8] present a review on how it

comes from Einstein field equations with the use of Christoffel symbols un-

der conditions of spherical symmetry. Alternatively, it is derived from the

Schwarzschild metric [9, 10].

A more quick way is based on the Hamiltonian Action Principle S with

the Lagrangian L in analogy to classical mechanics [11]

δS = δ

∫ t2

t1

L(qi, q̇i, t) dt = 0 , (2)

where qi and q̇i are generalized coordinates and their time derivatives q̇i =

∂qi/∂t characterizing the system, i = 1, 2, . . . , N . The Lagrangian is chosen

with the idea to find the extremal path between the starting and ending points

in the variational integral S:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 . (3)

In General Relativity, the Lagrangian describing the test particle motion

is usually taken in the form L = dτ/dt, see [11]. It is obtained from the

Schwarzschild metric, where ds = c dτ is the world line element, τ is the

proper time, and t is the coordinate time. The metric in the quadratic form

with the signature [+, −, −, −] is given by

dτ2 = (1− 2 rg/r) dt2 − (1− 2 rg/r)
−1 dr2 − r2 dθ2 , (4)

where the speed of light and the particle mass are taken c = 1, m = 1.
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The Lagrangian is

|L| = dτ/dt

=
(
(1− 2 rg/r)− (1− 2 rg/r)

−1(dr/dt)2 − r2 (dθ/dt)2
)1/2

,
(5)

where q1 = r and q2 = θ.

Two constants of motion follow from the consideration of the ignorable

temporal and angular variables. First, the conserved angular momentum is

l0 = r (dθ/dτ). Second, the conserved total energy comes out from the Hamil-

tonian

H =
∑
i

q̇i
∂L

∂q̇i
− L . (6)

When l0 = r (dθ/dτ) = 0, the conserved energy (in a dimensionless form) can

be found

εrad = (1− 2 rg/r) dt/dτ . (7)

The subscript (rad) there stands for the total energy in the particular case

of pure radial motion when l20 = 0. The corresponding equation of the radial

motion is discussed later.

It should be immediately noted that, for a motion with the angular mo-

mentum l0 6= 0, the equations of motion are necessarily derived in terms of

temporal dynamic variable τ , which determines the GR metric form (4) and

plays there a role of the abstract proper time. One can expect that the equa-

tions of motion are formulated in the observable coordinate system with the

coordinate time t. The latter is supposedly present in expressions of metric

and the following Lagrangian. We return to this problem later.

Let us set the initial conditions at an apsis r = r0: let it be θ0 = 0, the

angular component of the velocity βθ = β0 6= 0, the radial speed component

βr(r0) = 0, recall that the speed of light here is c = 1, and the test particle

mass m0 = 1. Then, a dimensionless parameter ρ0 = rg/r0 characterizes the

potential field strength. There is one more degree of freedom allowing to re-

duce dimensional parameters to dimensionless ones, namely, we can define the

initial radius r0 = 1 and return to its physically real value in the final results

to be compared with observations. Next, let us introduce a dimensionless

variable, the inverted radius, ξ = r0/r, ξ0 = 1.

There must be three roots ξi in the GR cubic equation of motion, one of

them can be fixed ξ0 = 1, therefore, two other roots can be given by simple
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algebraic expressions, that is, in terms of elementary functions. This is our

technical novelty, which is tremendously helpful in obtaining the exact solu-

tions of equations of motion. Actually, two and only two of any independent

parameters (not necessarily roots) will determine the unique solution for a

given initial conditions. Once an appropriate set of independent parameters

is specified, the connection between any pair of them can be established. A

pair of two independent parameters could be, for example, ρ0 and β20 specified

at the periapsis (or apoapsis), or some their independent combination like ρ0

and σ0 = ρ0/β
2
0 .

To sum up, we have a set of desired equations of motions in the dimension-

less form, in which dimensionless parameters are connected with the physical

quantities determining the initial conditions ρ0 = rg/r0, β
2
0 (in the dimen-

sionless form). They are also related to the conserved total energy ε0 = ε(ξ)

and other quantities (among them, the effective potential Veff (ξ)), which are

explicit functions of ξ: V 2
eff , β2r , β2θ , β2 = β2r +β2θ . The conserved squared an-

gular momentum is found in the form l20 = r20 β
2
0 = β2θ/ξ

2 (here βθ = r dr/dτ).

There are other interconnected equations

ε20 = 1− 2 ρ0 + β20 − 2 ρ0 β
2
0

= 1− 2 ρ0 ξ + β20 ξ
2 − 2 ρ0 β

2
0 ξ

3 + β2r (ξ) ,
(8)

and from this

β2r (ξ) = ε20 − 1 + 2 ρ0 ξ − β20 ξ2 + 2 ρ0 β
2
0 ξ

3

= β20 − 2 ρ0 − 2 ρ0 β
2
0 + 2 ρ0 ξ − β20 ξ2 + 2 ρ0 β

2
0 ξ

3 ,
(9)

β2θ (ξ) = (r0β0)
2 ξ2 , (10)

β2(ξ) = β2r (ξ) + β2θ (ξ) , (11)

V 2
eff (ξ) = ε20 − β2r (ξ) . (12)

From the equality dξ/dθ = βr(ξ)/β0 easily proved, the equation of motion

dξ/dθ = f(ξ) follows:(
dξ

dθ

)2

=

(
1− 2 ρ0

β20
− 2 ρ0

)
+

2 ρ0
β20

ξ − ξ2 + 2 ρ0 ξ
3 . (13)
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2.3 The GR τ versus t and other problems of the

two theories comparison

As noted above, the GR Dynamics equations of motion with non-zero angular

momentum are derived from the quadratic metric form dτ2 appearing to be

defined in the abstract proper space-time (4). However, the corresponding

GR equations respect conserved total energy and angular momentum, con-

sequently, the time variable τ serves the role of a dynamic variable in the

observable coordinate space-time. The 4-coordinates are functions of τ , cor-

respondingly, their derivatives are taken with respect to the time variable τ

too but not the coordinate time t, as should be.

This is the known controversial issue related to the interpretation of GR

theoretical framework. It was acknowledged by Einstein and later on by other

GR researchers. In practice, τ is often interpreted in terms of the comoving

observer in the coordinate space, otherwise, it is replaced by t on the premises

of weak-field conditions. Bearing this controversy in mind, one can think that

GR Dynamics equations are reduced to the classical ones by dropping the GR

cubic term in (13) and its corresponding parts in the initial conditions.

However, there are more problems of the two theories comparison, – one

of them is the use of the ideal model, in which a point particle of mass m

rotates about a central attractor of mass M in spherical symmetric geometry.

The particle is considered the test particle that is, its mass is required to

be however small m � M in the one-body problem. This is true in both

GR and Classical theories. We shall see, however, that GR Dynamics, unlike

Newtonian Dynamics, does not admit the N-body problem (even for N=2).

One has to conclude that GR equations cannot be consistently reduced to the

corresponding classical equations, as discussed further in more details.

2.4 The GR Newtonian limit

The classical Keplerian equation for r(θ) is the one-body problem solvable an-

alytically in terms of one-parameter elementary function. The unique solution

takes the dimensionless form [3]

θ(ξ) =

∫
dξ√

(1− 2σ) + 2σ ξ − ξ2
, (14)
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therefore

ξ(θ) = ξ0 (σ0 − (1− σ0) cos θ) . (15)

Recall, the dimensionless form comes with physical constants of test particle

mass m0 = 1 and the speed of light c = 1, and the space-time normalization

is taken by r0 = 1.

The quantity σ = rg/(r0β
2
0) absorbs the initial condition data r = r0,

βr = 0, βθ = β0, θ = θ0 = 0 and serves as the σ0 criteria of classification of

all possible orbits in Classical Mechanics, bounded and unbounded.

The initial angle is fixed θ0 = 0 that leaves 3 variable physical parameters

(rg, r0, β0) to characterize orbit families with absolute orbit sizes, time motion

and speeds (say, in meters, seconds, and masses kg. One can find connections

between geometrical and physical parameters. In the classical equation of mo-

tion and its unique solution in the dimensionless form, the only one, necessary

and sufficient, parameter σ is needed. The orbit type is determined by a value

of σ-parameter, see illustration in fig. 1.

The σ-classification of classical orbits

0 < σ < 0.5 hyperbola

σ = 0.5 parabola

0.5 < σ < 1 overcircle ellipse

σ = 1 circle

1 < σ <∞ subcircle ellipse

The above (physical) classification of a family of orbits is advantageously

different from the conventional (geometrical) one. A family of orbits with a

variable eccentricity e and a fixed semi-latus rectum p are not suitable for

our analysis. The parameter σ imposes a physically consistent constraint on

a classical family of orbits. As a result, a remarkable σ-gauge symmetry of

particle dynamics in a spherical symmetric gravitational field takes place: any

change of initial data (rg, r0, β0, or equivalently rg, r0, l
2
0) preserving σ0 does

not change the character of the particle motion.

Notice, in geometrical 2-parameter representation, there is no such cate-

gories as sub and over circle orbits. Besides, the classical dynamics becomes

invalid as the field strength rises. The GR phenomenon such as a spiral fall

of the test particle onto the center does not appear there. This makes the

comparison of the two theories complicated.
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The σ0 parameter also relates to the Virial Theorem in terms of an av-

eraging potential and kinetic energies over time periods. This theorem can

be principally generalized in relativistic theories dealing with unclosed orbits.

Our strong recommendation to Astronomers is to use the σ0 classification of

orbits instead of traditional two physically correlated geometrical parameters.

There is, in our view, the fundamentally wrong statement often made in

GR textbooks with respect to the reduction of GR Dynamics to Newtonian

gravitation under the assumptions of low speed and weak field (discussed in

[12]). It states that Newton’s universal law in a general case of arbitrarily

distributed matter over the space follows from Einstein’s field equations (in

some analogy to Electrostatics). The Poisson equation is meant

∆φ = 4πGµ . (16)

where µ is the mass distribution. The key concepts in this claim is the poten-

tial φ(~R), and the related potential energy U . Here R =
√

(X2
1 +X2

2 +X2
3 ),

– the magnitude of the radius vector pointed from the coordinate origin in

3-space. Consider the particular case of mass distribution, – a ball of mass m

and the potential about it

φ = −Gm
R

(17)

and, consequently, the force F = −m′∂φ/∂R acting in this field on another

ball of mass m′

F = −Gmm
′

R2
. (18)

This is the well known Newton’s law of attraction, but its derivation from

the GR theory is flawed for the following reason. The classical concept and

definition of potential assume that another ball of mass m′ is the test particle

not disturbing the field that is, its mass is however small m′ � m.

There is a fundamental cause for the GR theory being not reducible to

the corresponding classical theory. It is rooted in properties of Einstein’s field

equations (EFE). One can draw this conclusion from the detailed physical

analysis of the solutions discussed in GR textbooks. Firstly, the τ vs t con-

flict in both GR Dynamics and Statics originates in the EFE. Secondly, the

equations admit only two types of solutions necessarily defined in the whole

infinite 3-space. We are interested in the type of vacuum solutions (zero Ricci

tensor). Solutions of the second type (the medium filled with continuously

distributed mass, non-zero Ricci tensor) are used in cosmological theories and
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it is not relevant to our problem.

The intermediate case, when finite massive matter is present in the form

of gravitationally interacting pieces, is theoretically admitted in the Classi-

cal theory. The corresponding solution of the Poisson equation (16) can be

formulated as the N-body problem. However, this case is impossible in Ein-

stein’s theory of gravitational field [13]. Newtons attraction law (18) is a

2-body problem but there could not be any GR analogy or “GR reduction”

to it. The GR Mercury problem is necessarily one-body problem that is, the

planet is considered the point test particle with the mass however small in

comparison with the Solar mass. The correction for the mass finiteness is not

legitimate there.

Surprisingly, the GR cubic term in GR Dynamics results in a huge com-

plexity of non-classical solutions and difficulties of the two theories compari-

son. In the concluding part of the work, the comparison criteria in relationship

with empirical tests of theoretical predictions are formulated.

3 Classification of the GR orbits

3.1 Analytic connections between parameters of the

motion equation and cubic roots

The advantageous form of our presentation of the GR equation of motion (13)

is that it is dimensionless and scaled to the initial condition ξ0 = 1, and as

such, it is governed by only two independent physical parameters fixed in the

initial conditions. In the integral form, the exact unique solution is given by

θ(ξ) =

∫
dξ√(

1− 2 ρ0
β20
− 2 ρ0

)
+

2 ρ0
β20

ξ − ξ2 + 2 ρ0 ξ3

, (19)

where integration is performed within the range between the first root ξ1 =

ξ0 = 1 and the second root ξ2 if it is real or to infinity. It could be one or

three real roots ξ1, ξ2, ξ3. Among three roots of the polynomial, any pair of

them are physically independent.

In Einstein’s problem, physical constraints are imposed on the equation,

first of all, the conservations laws. Additional constraints come from the

variable rescaling. The dimensionless form of equations with the first root
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ξ1 = ξ0 = 1 allows us to easily determine other two roots without using

Tartaglia and Cardano formulas for the roots of a cubic and then make a

unique physical classification of solutions.

Let

f(ξ) = 2 ρ0 ξ
3 − ξ2 +

2 ρ0
β20

ξ +

(
1− 2 ρ0

β20
− 2 ρ0

)
, (20)

then
f(ξ)

ξ − 1
= 2 ρ0 ξ

2 − (2 ρ0 − 1) ξ −
(

1− 2 ρ0
β20
− 2 ρ0

)
(21)

is a quadratic polynomial in ξ with a simple expression for its roots:

ξ2,3 =
1− 2 ρ0 ±

√
1 + 4 ρ0 − 12 ρ20 − 16 ρ20/β

2
0

4 ρ0
. (22)

3.2 Types of GR orbits in terms of roots

The Lagrangian problem formulation implies that all GR trajectories are pe-

riodic and time reversal, as in classical mechanic. However, while in classical

mechanics the angular period is always 2π, in GR the angular period takes

larger values dependent on initial conditions. The GR perihelion advance

effect is valid for any type of GR orbits including unbounded ones.

From the expression (8) for the total energy in the settings of the equation

(13), it follows that a condition ε0 > 1 requires that β20 > 2 ρ0/(1 − 2 ρ0).

For this condition ε0 > 1, up to ρ0 6 1/4, the trajectories are all unbounded:

either parabolic or hyperbolic. However, for ρ0 > 1/4 and 2 ρ0/(1 − 2 ρ0) 6

β20 < ρ0/(1 − 3 ρ0), the total energy ε0 is greater or equals to 1, but the

trajectory of a particle is of a spiral fall type, i.e. the motion is bounded.

All possible variants of roots are shown in fig. 2. There are several cases

when types of orbits depend, firstly, on the roots being real or complex, sec-

ondly, on specific values of ξ2 and ξ3. The integration of the equation (19) is

performed from the first root ξ1 = 1 over the positive part of f(ξ) to the next

root or up to the infinity, see example in section 4.2. There are special cases

ξ2 = ξ3, ξ2 = 0, ξ2 = 1, and ξ3 = 1, for which one needs to find the explicit re-

lationships between ρ0 and β20 corresponding to three curves on (ρ0, β
2
0) plane.

These curves divide the plane into four regions with a specific trajectory type.

Six types of trajectories are possible: hyperbola, parabola, circle, over-circular

precessing ellipse, sub-circular precessing ellipse, and spiral fall to the center,

see table 1 and fig. 3.
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The regions of the classical orbits in β20 vs ρ0 plane are shown in fig. 4.

While the first root is fixed, ξ1 = 1, the second root is ξ2 = 2σ − 1 (recall,

r = 1/ξ). therefore, unbounded motion appears for ξ crossing zero value

and going into negative side. The case, when ξ2 = 0, that is when σ = 1/2,

corresponds to a parabolic orbit. The case, when ξ2 < 0, that is when σ < 1/2,

corresponds to a hyperbolic orbit. The other values of σ correspond to elliptic

orbits. In particular, for σ = 1 one has ξ2 = 1, which corresponds to a circular

orbit. This picture can be compared with the analogous GR one, see fig. 3.

Notice that types of orbits, which are similar in GR and classical me-

chanics, have different regions in (ρ0, β
2
0) diagrams, this is also seen from a

comparison of their parameters:

type of orbit classical mechanics general relativity

circular β20 = ρ0 β20 =
ρ0

(1− 3 ρ0)
, ρ0 6 1

4

parabolic β20 = 2 ρ0 β20 =
2 ρ0

(1− 2 ρ0)
, ρ0 <

1
2

It is also seen that in GR a new type of orbits exists, which we call a

spiral fall trajectory, it is discussed later. This type of orbits does not exists

in classical mechanics. It is characterized a particle fall on the center under

specific conditions. In literature, it is associated with strong fields in the Black

Hole environments.

4 Analytic and Numerical Solutions

4.1 Elliptic function method

The equation (19) can be recognized as an elliptic integral of the first kind (see

any textbook on elliptic functions and elliptic integrals, for example, [14, 15]).

It can be solved by means of the Weierstrass elliptic function ℘ [14, §20.6].

The ℘-function satisfies the following differential equation

(℘′(z))2 = 4 (℘(z))3 − g2 ℘(z)− g3 , (23)

where parameters g2 and g3 are known as the elliptic invariants. Conversely,

given the equation (
∂u

∂z

)2

= 4u3 − g2 u− g3 , (24)
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One gets the general solution

u = ℘(±z + α) , (25)

where α is the constant of integration. The equation y2 = 4x3 − g2 x − g3
is known as the Weierstrass normal form of an elliptic curve. Therefore, the

equation (13) can be solved in terms of the Weierstrass elliptic function ℘.

Moreover, the solution can be given in a convenient form r(θ).

This approach is known, the following are just a few related articles that

employed the Weierstrass elliptic function: Hagihara suggested classification

of the trajectories in a gravitational field of Schwarzschild [6], Kraniotis and

Whitehouse studied the perihelion precession of the orbit of the planet Mer-

cury around the Sun [8], Lämmerzahl discussed the experimental basis of

General Relativity [16].

In order to determine the corresponding parameters for ℘-function and the

expression for the solution of (13), it is necessary to transform our equation

into Weierstrass normal form. There are several ways to do this.

Consider the following linear substitution

ξ =
2

ρ0
x+

1

6 ρ0
. (26)

The equation (13) becomes(
∂x

∂θ

)2

= 4x3 −
(

1

12
− ρ20
β20

)
x−

(
1

216
− 1 + 3β20

12β20
ρ20 +

1 + β20
2β20

ρ30

)
, (27)

that is

g2 =
1

12
− ρ20
β20

,

g3 =
1

216
− 1 + 3β20

12β20
ρ20 +

1 + β20
2β20

ρ30 .

(28)

Therefore,

r(θ) =
6 ρ0 r0

12℘(θ + α; g2, g3) + 1
. (29)

From the theory of Complex Analysis, it follows that the function ℘ is

a meromorphic function in the complex plane. It is doubly periodic with

two linearly independent periods 2ω1 and 2ω2. When the roots of the cubic

4x3−g2x−g3 are all real, one of the periods is purely imaginary, and another

18



is real. The real period corresponds to the angular period of motion described

by the equation (13).

The function ℘ is a complex-valued function, however along the line α+θ,

where orbital angle θ varies, the imaginary part of it vanishes. The value

℘(α) = (6 ρ0 − 1)/12 corresponds to the initial condition (r = r0, θ = 0) and

equals to one of the roots of the cubic polynomial (27). This is the property

of the function ℘ that values ℘(ω1), ℘(ω2) and ℘(−ω1−ω2) are all three roots

of the cubic. Therefore, the value of α is either ω1, or ω2, or −ω1 − ω2.

Algorithms for computing the periods for the case of real coefficients may

be found in literature, see, for example, [17, Algorithm 7.4.8] or [18, §3.7].

The use of the real arithmetic–geometric mean allow one to compute both

values rapidly with a high degree of precision. The theory of this method is

described in [19]. It has been generalized in [20] allowing for complex-valued

coefficients.

In practice, the software packages produce the corresponding ℘-function

and compute the periods without requiring a user to transform the equation

into the Weierstrass form. Most major mathematical software systems sup-

port computation with elliptic functions. We have chosen to use SAGE [21]

because it is freely available, highly flexible and very efficient. Calculations

can be performed with arbitrary precession, we used precision of 600 signif-

icant digits here. Moreover, the computations in SAGE can be performed

on-line at http://cocalc.com without requiring a user to install software

on a personal computer. SAGE also provides access to numerous other open

source scientific packages, in particular, we used PARI/GP [22].

4.2 Numerical integration

Recall the integral form of the GR equation of motion (19). As in the above

analytical solution, there are several singular cases where the integral does not

converge. Depending on values of two parameters ρ0 and β0, the integration

(19) is performed from ξ1 = 1 to either ξ2 or ξ3.

Numerical integration procedure in PARI/GP takes into account the asymp-

totic behavior of integrating function at end points and compute the result

with chosen arbitrary precision. Our direct integration numerical solution is in

complete agreement with the solution produced using Weierstrass ℘-function.

As an example, consider a case when the cubic has three real roots, e.g.

ρ0 = 0.05, β0 = 0.04. Then, the cubic polynomial in the equation (19)
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becomes

f(ξ) = 0.1 ξ3 − ξ2 + 2.5 ξ − 1.6 , (30)

with roots ξ1 = 1, ξ2 ≈ 2.44 and ξ3 ≈ 6.56, see fig. 6. The initial condition

dictates the starting point r0 = 1/ξ = 1, θ0 = 0, the integration (19) is

performed from ξ = 1 to ξ = ξ2:

θ(ξ) =

∫ ξ2

1

dξ√
0.1 ξ3 − ξ2 + 2.5 ξ − 1.6

. (31)

The full integral from 1 to ξ2 corresponds to the periapsis position rp =

1/ξ2 ≈ 0.41, θp =
∫ ξ2
1 1/

√
f(x) dξ ≈ 4.53, which is the closest approach to the

central mass. From this point, the test particle motion continues in counter-

clock direction. At the apoapsis point ra = r0 = 1, θa = 2 θp ≈ 9.07, the

particle completes the first period, see fig. 7.

4.3 Time dependent exact solution

The time dependent problem in both Newtonian and GR mechanics can be

solved only by numerical integration. In GR, the time dependent equation of

motion, for example, follows from (9), where βr(ξ) = dr/dτ . Therefore,

τ(ξ) = −
∫

dξ

β0 ξ2

√(
1− 2 ρ0

β20
− 2 ρ0

)
+

2 ρ0
β20

ξ − ξ2 + 2 ρ0 ξ3

. (32)

The integrand is exactly the same as in (19), and integration is performed

along the same ξ interval. The expression (32) corresponds to the elliptic

integral of the third type. In contrast to the case of the elliptic integral of

the first type, there is no analytical expression similar to (29). Nevertheless,

the theory of Complex Analysis implies that the solution r(τ) exists, and it

is periodic. For practical purpose, we compute the integral (32) numerically.

5 GR Mercury’s problem

5.1 The law ∆θ = 3σgr ρ0 in the weak field

Knowledge of exact solutions of Einstein’s problem allows us to quantitatively

define weak field conditions and assess errors in approximate predictions. Let
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us consider first the approximate value of the GR perihelion advance ∆θ under

the weak field conditions ρ0 � 1 and compare it with the exact numerical

results.

We suggest the following formula, precision of which increases when the

field strength decreases so that in the limit ρ0 → 0 its computational error

becomes however small.

∆θ = 3σgr ρ0 , (33)

Here, ∆θ = θgr/θcl − 1 is a relative angular shift rad/rad averaged over half

a period, θcl = π, σgr = σ0/(1− 3 ρ0), actually σgr = σ0 = ρ0/β
2
0 for ρ0 � 1.

For Mercury (σ0 ≈ 0.829457), the calculated effect is exact to the precision,

at least, 6 significant figures or 14 decimal places.

The law (33) is illustrated in fig. 8. The plotted data are positive angular

deviations from π in %. There are two plots: the line for ρ0 = 0.001 (a

weak field), and the curve for ρ0 = 0.05 (a mildly strong field). The line

demonstrates the law (33) in the whole range of bounded motion. At ρ0 =

0.001, the angular relative shift is 0.300% at σgr = 1.

For ρ0 > 0.050, the GR effect is not linear with σgr anymore because

of the field strength growing with σgr. For convenience of comparison, the

normalization coefficient is selected k = 1 for ρ0 = 0.01, so that k = 10 for

ρ0 = 0.001, and k = 1/5 for ρ0 = 0.05. For ρ0 = 0.05 the law is not good in

the region of the sub-circle motion σgr > 1 and partly in the over-circle region

σgr > 0.7.

Einstein claimed in [1] that his equation can explain the perihelion pre-

cession of the planet Mercury. Kraniotis and Whitehouse discussed in [8]

this GR effect in greater details and showed the range of free parameters for

which astronomer’s observations are consistent with the GR theory predic-

tion. In particularly they looked for “the best fit of input data” having the

Solar mass and the conserved total energy fixed, and the conserved angu-

lar momentum varied. However, those parameters are physically correlated

and contain more than two independent ones while Einstein’s equation has

the unique one solution characterized by the two and only two independent

sufficient parameters, as shown in our analysis. Also, it is shown there that

the equation in Mercury’s case is highly sensitive to numerical precisions and

rounding errors, especially with the usage of Tartaglia and Cardano formulas

in [8]. To ensure stable numerical computations, we use the exact algebraic

(dimensionless) solutions for roots in elementary functions.
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5.2 The necessity of exact solutions of GR particle

dynamics in space and time for GR observational

tests

The test of GR prediction of Mercury’s perihelion angular advance is the only

one of classical GR tests, involving a material body. The relative difference

between the GR angular period and the classical one of 2π was evaluated

long ago and reevaluated many times later in the perturbation approach.

This evaluation was made using an ideal model of undisturbed orbit in the

weak field approximation resulting extremely small value, namely, 8.0× 10−8

rad/rad, or 2π × 8.0× 10−8 rad/revolution, which is hard to observe.

There is a historically neglected problem, though. It is related to the fact

that the angular phase shift does not fully characterize the GR effect without

the corresponding effect in the time period T . It is unfortunate that the time

dependent problem r(t), has never been studied before. The Mercury’s orbit

is the same one in angular and time scales, and both angular and temporal

effects must be subjected to the empirical tests on the same footing.

Astronomers working in observations and their treatments, want theoreti-

cians to provide them with numerical information serving as a chart of the

object’s trajectories in space and time, r(θ) with θ(t). The required informa-

tion also includes values of the integral observables, which are predicted by

GR and Classical theories. It must be given in the output databases, while

a common set of initial data being evaluated from the current Astronomical

observations constitutes the input database. Both will serve as the guidance

for conducting new differential and integral observations made to the precision

sufficient for empirical testing of theoretical predictions in the GR compared

to the Classical Theory.

In particular, one needs to calculate values of angular and time periods

and the corresponding differences in terms of angular and temporal shifts with

respect to classical values. This should be a special program of “the empirical

verification/falsification of Einstein’s theory”, in which the predicted data

were compared with empirical high-precision tests. Putting such a statement,

we challenge the widely spread, in our opinion, wrong belief that Einstein’s

prediction of the perihelion advance is thoroughly confirmed in numerous

observations with no questions left.

In reality, the problem is even more complicated because the observations
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are conducted under severe perturbation conditions due to N-body interac-

tions of planets so that perturbation effects to be accounted for in treatments

of observations are much greater than the relativistic effects. In such cir-

cumstances, the measurements of angular and temporal shifts require high

precision techniques of observations of orbits in space and time, which were

not available decades ago, and are probably not sufficient yet to meet the

requirements. The N-body problem is out of the scope of this work. Here, we

focus our attention on an exactly calculated orbit described in terms of both

angular and time variables in the ideal conditions.

5.3 Einstein’s perturbative approach and the GR

approximate models

As an example of time variable involvement, consider the Mercury problem

and the well known value there of angular GR advance ∆θcen accumulated for

Earth’s 100 years (about 415 orbital evolution). Assuming the equivalence of

GR and classical time periods, it would be ∆θcen = 43 arcsec. This number

for the first time was obtained by Einstein in his perturbation method. He

used the approximate estimate of the perihelion advance ∆θ from his original

equation (1). The value of ∆θcen was claimed to be verified in contemporary

theoretical works with the use of Einstein’s methodology, see [23, 11, 24].

More specific, Einstein [1] started with the approximate estimate of the

perihelion advance ∆θ from his original equation (1) with α = 2 rg, and

geometrical parameters a - the semi-major axis, p - the semilatus rectum, e -

eccentricity

∆θ = 2π
3α

2 p
(34)

and connected it with the classical time period Tcl

Tcl =

(
8π2 a3

c2 α

)1/2

(35)

It follows

∆θ =
24π3 a2

T 2
cl c

2 (1− e2)
. (36)

This connection between ∆θ and Tcl is a formal, because they are calculated

in different theories independently, their full physical comparison is not con-

ducted. Without the exact GR solution of the time dependent problem along
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with the similar angular calculations, a physical intuition does not tell us if

Tgr can be somehow greater or less than or equal to the corresponding classical

value Tcl. To avoid an ambiguity in interpretations of the observational tests

aimed to verify the theoretical predictions, one needs the full exact solution

of the GR problem.

Besides Einstein’s perturbation methodology, there are different approxi-

mate ways, in which evaluations of the angular shift is made with an involve-

ment of the time variable. One way is to modify the classical orbit r(θ) to the

form yielding the desired perihelion advance ∆θ under the assumptions of a

nearly circular uniform motion of the test particle in a weak field. To describe

the orbital precession analytically in elementary functions, the parameter ν is

introduced in a modified classical solution taken in the traditional geometric

form of two parameters.

ξ(θ) ≈ (1/p)(1 + e cos νθ), r(θ) ≈ p

(1 + e cos νθ)
(37)

where ξ = r0/r, r0 = 1, and the angular precession is uniform. The quantity

ν characterizes a cyclic frequency related to the angular frequency ω = 2π per

revolution, meaning the classical time period of one revolution Tcl for ν = 1.

The quantity ν ≈ (1−3rg/p) < 1 is a new (third) parameter. A small cor-

rection 3rg/p to the angular cyclic frequency should be interpreted as a factor

of slowing down of the rotational motion in comparison with the analogous

classical motion ν = 1. Having ν < 1, one has to think that, starting from

the initial condition r = r0 at θ = 0, the radius would retake its initial value

upon a completion of the GR period if the planet had to rotate through the

additional angle 2π(3rg/p) (the perihelion advance), in accordance with (37).

For ν > 1, it will be a retardation.

The above formula for GR angular advance is supposed to be a solution

of the classical equation of motion modified by a change of variable θ → νθ.

The formula is thought to be an approximate GR solution, if the cubic term

in the following corresponding GR equation is neglected:(
1

ν2

)(
dx

dθ

)2

= −(1− e2)
p2

+
2x

p
− x2 + 2rgx

3 . (38)

In our view, this is not acceptable because the GR effect is due to the GR cubic

term, hence, it cannot be neglected. In those approximations, the conservation

laws are broken, and a determination of the time period of rotation becomes
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ambiguous, hence, the above model is inherently contradictory.

In literature, they discussed another way, in which a similar model is

suggested but, paradoxically, under the assumption that the angular motion

speed is greater (but not less) than the speed of a radial periodic motion. A

frequency is defined by the condition ν > 1 [25]. It is interpreted in terms

of GR frequencies ωr, ωθ shifted in phase with respect to the classical value

of ω(cl) = ωr(cl) = ωθ(cl) so that ωr(gr) < ωθ(gr). In this model, the GR

effect of the angular precession giving the perihelion advance is defined as the

difference ∆ω(gr) = ωr(gr)− ωθ(gr). There is no suggestions about possible

equations of motion supporting the derivation of the effect, and it is not clear

if it is consistent with the traditional value ∆θcen ≈ 43 arcsec.

The above two approaches to the assessing of the GR perihelion advance

use quite opposite assumptions about phase shifts in angular and radial com-

ponents of orbital motion. In each way, an assumption is made in favor of

the desired effect. However, one needs to formulate and validate predictions

of Einstein’s theory but not its models based on unproved assumptions.

As we know, angular and temporal GR equations of orbital motion have

the same (dimensionless) roots. This means that angular and temporal fre-

quency cannot be phase-shifted. The fact that they are shifted in approximate

model approaches, tells us that the approximations are in contradiction with

the GR Dynamics, so they are flawed.

Our explanation of ambiguity of approximate model approaches goes to the

fact that the time dependent GR problem has never been studied, and both

the angular solution r(θ) and the radial one r(t) have never been obtained

in the form of the general exact solution of the GR equation of motion. We

return to this problem in the next subsection, which is devoted to our results

of exact full solutions of Einstein’s problem and a comparison of the prediction

with the Classical theory solutions.

5.4 The notion of time, and the time rate in GR

and classical theories

Recall, we use the ideal model of the test particle orbiting about the Sun,

mass of which is concentrated in the origin of the fixed coordinate system.

The following initial conditions are fixed common for both theories at t = 0

and τ = 0, the test particle is positioned at θ = 0; this is a minimal distance
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(perihelion) from the Sun rp with a maximal orbital speed of the particle β0,

while the radial speed is zero βr = 0. Next, the denotation of τgr is used

for the time variable in GR Dynamics, and in the classical theory, the time

variable is denoted as tcl. Both time variables are dynamic ones measured

with the use of standard clocks running uniformly at different rates.

The matter is that Einstein’s perihelion advance problem is a special one

in GR since it admits local conservation laws in the ideal planetary model,

where planets are considered not interacting point-like particles. The planet

Mercury is considered the standard test particle probing the field in one-body

spherical symmetric problem. The time and angular variables are inalienably

connected with the locally conserved angular momentum and total energy.

Such a formulation is specific in GR, it admits the Lagrangian approach based

on time translation and reverse symmetries yielding the conservation laws, in

accordance with Noether’s theorem [26]. Consequently, the time τgr (in GR)

and tcl (classical) in each theory is measured by a locally at rest observer,

who conducts observations of the test particle (Mercury) in a motion relative

to the observer.

As a consequence of conservative properties of gravitational field, it follows

that, in physically different GR and classical theories, the standard atomic

clocks run uniformly. Not surprisingly, time periods calculated independently

in both theories are necessarily different, and suggestion of their equality

would be principally wrong. The difference implies that the GR angular per-

ihelion advance must be defined in strict correspondence with the temporal

shift. One has to conclude that the time scalings in each theory are linear

and proportional to each other with some proportionality coefficient.

5.5 The input data for exact computations of full

solutions

For our calculations we used the most recent input data taken from [27, 28, 29],

namely:

• the speed of light c = 299792458 m/s;

• the Solar mass parameter (heliocentric gravitational constant) µ = 1.32712440041×
1020 m3/s2, that makes Schwarzschild radius rsch = 2953.2500770 m;

• Mercury’s perihelion distance rp = 4.600× 1010 m;

• Mercury’s aphelion distance ra = 6.982× 1010 m;
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From these data, we have ρ0 = 3.21 × 10−8. The second parameter β20 =

3.87 × 10−8 can be obtained from rp, ra and ρ0. The value β20 has been

rounded to three significant figures for fixing identical initial conditions in both

classical and GR computations. This makes Mercury’s velocity at perihelion

vp = 5.898×104 m/s, which agrees with [29]. The aphelion value then becomes

ra = 6.9811764705882 × 1010 meters in the classical theory with millimeter

precision.

Having the classical initial conditions fixed, the three roots in the GR

equation (13) are found exactly, as discussed. The first root, the inverse

values of rp being rescaled ξ1 = 1 corresponds to the perihelion. Now we

have the second and the third roots exactly ξ2 = 0.65891486 corresponding

to the aphelion, and the third GR term ξ3 = 1.5576322× 107. Then the GR

equation (13) is numerically specified (from here and below, we print up to

eight significant digits while the calculations were performed with 600 digits):(
dξ

dθ

)2

= 6.42× 10−8 ξ3 − ξ2 + 1.6589147 ξ − 0.65891479 . (39)

The corresponding Weierstrass form (27) of the above equation is(
dx

dθ

)2

= 4x3 − 0.083333307x− 0.0046296274 (40)

with roots x1 = −0.083333317, x2 = −0.083333323, x3 = 0.16666664. How-

ever, in SAGE and in PARI/GP we do not need to transform the equation

into Weierstrass form in order to compute the periods. The software allows

for arbitrary cubic polynomial with scaled major coefficient, produces the cor-

responding ℘ elliptic function and computes the semi-periods. For our input

the half periods are ω1 = 3.141592904530036 and ω2 = 20.40947598338886 i.

Direct numerical integration reproduces the same result for the orbital half

period ω1 up to 300 significant digits, it is difficult to obtain higher preci-

sion for this type of numerical approximation. Taking into account Mercury’s

sidereal orbit period 0.2408467 Earth years, we obtain the known value of the

Mercury’s perihelion advance ≈ 42.98 arcsec per century.

It should be noted that such a seemingly small angular advance integral

effect in the solution is actually of the order of potential term ρ0, and it is

triggered by the GR cubic differential term ∝ ρ0β20 , which is of the next order

smallness in the non-linear equation of motion. This means that it could not
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be neglected in any of approximate solutions.

5.6 The criterion of three events

Since the two theories of gravitational field are methodologically different,

they have different concepts of time, length, mass etc. To study them in

comparison, one needs to normalize physical units. Such a gauging has been

actually done in our exact numerical calculations, when the initial conditions

were fixed common for both theories, and physical units gauged to fit Earth’s

physical units in terms of the standard (atomic) clocks. This means that the

time unit of one second (the time duration between two sequent ticks) is the

same in both theories, and this is also true for other physical units.

Specifically, we compare the results of our study of orbital space and time

characteristics focusing the attention on the GR angular and time shifts with

respect to the classical theory predictions. The latter reflects Newtonian inde-

pendent concepts of absolute time and 3-space, while the GR dynamics theory

suggests a unique 4-space, in which the time and the 3-space are united by

the GR metric.

As emphasized, the GR Mercury’s angular advance historically was stud-

ied in a separation with the time concept problem. It was suggested that a

seemingly tiny difference of time period in GR and classical theories could

be neglected in approximate solutions. Contrarily, we solve exactly the pair

of GR angular and time dependent dynamics equations and the correspond-

ing pair of classical equations, both pairs being coupled by the constraints

imposed by the common initial conditions.

It was found that “the classical atomic clock” runs slower than “the GR

clock” that is, the classical time half-period is greater than the GR one by

the amount ∆t = 0.555 s (at the starting point, both clocks are set τgr = 0,

tcl = 0). Therefore, the GR and classical time lines are related to each other

by the following linear expression: tcl = k tgr where the coefficient k is a ratio

of classical and GR time periods k = Tcl/Tgr > 1. Recall, as the quantitative

gauge, the Earth physical units are used.

Our final results are principally different from those obtained by solely

computing the GR angular advance of orbital. Still, the question arises, what

criterion of comparison should be formulated. Specifically we applied the three

events scheme formulated in terms of orbital characteristics at three distinct

time moments in the GR and classical theories. As a base line, we take the
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GR time scale τ = τgr in relationship with similar classical characteristics on

the classical time scale tcl.

The three events scheme is suggested in the first half period, as follows:

• Event 1 at the instant τ1 when θgr = π (the aphelion is not reached yet).

• Event 2 at the instant τ2 when the GR aphelion is reached.

• Event 3 at the instant τ3 when the GR clock displays t2 value of the

classical aphelion (the equality of numbers of ticks of standard clocks in

both theories, τ3 = t2 ).

The corresponding time instants t1, t2, t3 displayed by the classical clock

follows, as next.

• The instant t1 corresponds to τ1 (when θgr = π).

• The instant t2 is when the classical aphelion is reached.

• The instant t3 corresponds to τ3 (when τ3 = t2), t2 is the classical

aphelion moment.

5.7 Results of comparison

Let us sum up and discuss the results of three events comparison presented

in tables 2 to 5.

In table 2, the common input Mercury’s data reflecting the initial condi-

tions are presented. In the output data, the main orbital characteristics are

shown for each theory in comparison. Numbers characterizing the differences

are rounded up to 4-5 significant digits.

In table 3, the three-events comparison of the GR with respect to the

classical theory is shown in numbers: the absolute values of main orbital

characteristics at events 1, 2, 3, predicted in each theory, including the time,

the radius, the angle, the particle orbital speed, and the passed length. The

corresponding absolute and relative differences between the two theories are

also given. To the precision of 4 significant digits, differences do not change

over the time interval including the three events. From this fact, one can

assess the precision requirements to the perihelion observations.

In table 4, the absolute differences of the above variables between events

(2, 1), (3, 2), and (3, 1) are shown for each theory.

Finally, in table 5, the projections of each of the three events on GR time

scale τgr to the corresponding classical scale tcl are shown. The main predicted
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values of angular shifts and the corresponding time shift are seen in the inter-

vals between events (2, 1), (3, 2), and (3, 1) on each of GR and classical time

scales. It follows that the assumption suggesting the equality of time periods

in GR and classical theories is not consistent with the comparison criterion

based on the combined exact solutions of GR and classical formulation of the

Mercury’s problem.

It is immediately seen that “the GR particle” compared to “the classi-

cal particle”, moves on average faster, its aphelion is smaller, consequently,

its angular period is advanced by the value 5.019×10−7 rad/rev that is, the

relative difference of the angle shift with respect to the classical value π is

7.988×10−8; this is the known GR Mercury’s perihelion advance. In the time

scale, the full time period of the GR orbit is about 1.111 sec/rev shorter than

the classical one; that makes a relative difference -1.461×10−7. This tempo-

ral effect should be called “the GR temporal advance”, which is a replica of

the corresponding perihelion angular advance. Their common cause is a tiny

non-classical cubic term in (13) of the second order smallness compared to

values of the integral GR effects.

The remarkable fact is that the predicted angular advance is accomplished

in the time interval between events (2, 1), but the time period difference

takes place in the time interval (3, 2). Both angular and temporal effects are

nearly doubled if considered in the full interval (3, 1) (from θ = π in GR to the

classical aphelion at θ = π). In other words, judging by the angular perihelion

advance on the GR time line in comparison with half-period time completion,

one has to acknowledge that the common GR aphelion does not exists, unless

GR Dynamics is exactly reduced to Classical Dynamics by zeroing both effects.

The conclusion has to be made that the naturally looking equality as-

sumption Tgr = Tcl is principally wrong because it would mean that the GR

4-space curvature structure was replaced with the Newtonian absolute time

and space by neglecting the cubic term. Observational tests guided by a chart

not accounting for the exact solutions would be misleading.

Let us outline how significant, in our view, are our findings concerning a

current status of the GR Mercury’s perihelion advance problem.

• There is a belief among physical community including GR researchers

that the Mercury’s perihelion advance problem formulated by Einstein

in November 1915 [1] has been fully studied and understood so that

there were no issues to be considered anymore. We state, however, that
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it is not true. In this work, it is shown that the problem has never

been studied as concerns full (angular and temporal) exact solutions

to the GR equations of the test particle motion in spherical symmetric

geometry. Only such solutions can reveal a correctly dynamic structure

of the GR curved 4-space described by the GR Dynamics.

• The GR prediction of perihelion angular advance apart from a prediction

of the corresponding GR temporal shift with respect to the classical

picture is not sufficient for understanding the problem at the deeper

level and formulating the criteria of a theoretical comparison of GR and

classical theories. The small disparity between GR and classical scales

of dynamical variables such as time, angle, radius, and others cannot be

revealed in the so-called “approximate solutions” and cannot be ignored

in the problem of empirical testing of Einstein’s theory.

• In a manner of classical theory, the angular and temporal advance in-

creases with a field strength with no restriction. So, it must eventually

result in a violation of the Causality Principle in a sense of admitting the

superluminal motion. This is confirmed by the exact solutions of the GR

strong field phenomena, as seen below. For this and other reasons, we

consider below the SR-based approach to the problem, as the alternative

to be further studied.

• The presented ideas and findings are novel and constructing, a denial of

them would be a discreditation of the real value of General Relativity

theory for Astronomy and other applications. We suggest to reconsider

the current status of GR particle dynamics together with approxima-

tions in methodologies of GR treatments of observations, the required

computational and observational precisions, and the criteria of GR ver-

ification/falsification. To account for full exact solutions of the problem

is the necessity.

6 The GR strong field problem

6.1 Orbital motion

All main equations of GR particle dynamics presented in section 2.2 are valid

for the strong field conditions. They are used further in illustrative examples

of strong-field problems. In particular, the equation (13), by virtue of the
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Schwarzscild metric being an exact solution of Einstein’s field model (in the

academic GR framework), is claimed to be valid not only under weak field

conditions, but also in the whole range of field strength. However, it has

never been used for an exact description of the strong fields, particularly, BH

environment. Here, for the first time we use the equation for this purpose.

Recall, the problem is formulated in the spherical symmetric geometry with

the point-like source of mass M � m, where m is the the point-like mass of

the test particle. The central mass can be taken a unit m = 1 to be rescaled

to physical units when needed.

The abstract point-likeness concept of material bodies is a necessary re-

quirement of the ideal model. In practice, the real size of the source, the

radius R is considered in comparison with the gravitational radius rg or the

Schwarzschild radius rsch = 2 rg, in particular, in “vacuum solutions”. For

example, for Solar system planets, the radius of Sun R� ≈ 7×108 m is meant

when results are physically interpreted. It is not in contradiction with aca-

demic study of mathematical properties of the equations. Bearing in mind the

ideal model requirements of point-like masses, we found all possible GR exact

solutions and their classification, including those for strong fields (previously

discussed).

In literature, the GR particle orbital motion in strong gravitational fields is

often associated with the Black Hole environment. The concept of Black Hole

used in Astrophysics suggests that a material spherical object having several

solar masses, undergoes the hypothetical process of gravitational collapse.

This is a hypothetical phenomenon rather than a mathematical abstraction.

It does not follow from the GR academic framework we use. Moreover, it is

completely estranged from the Standard Particle Model.

The GR equation of motion implies the conservation laws and periodic

time-reversal solutions, so that the test particle never perish in a collision

with an ideal point like center. Lagrangian properties are always preserved,

particularly, in spiral fall orbits. As the parameter β20 → 0, the orbital pre-

cession frequency and the particle speed rapidly increase.

An example of orbital motion in a moderately strong field is shown in fig. 7

with the following parameters: ρ0 = 0.05, and β20 = 0.04. As seen from orbit

classification table 1, it is of sub-circle type with notably precessing orbit.

The angular half period there is about 4.53 radians, which is by 44% larger

than the corresponding classical value π, the time period is by 7% smaller,
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the periapsis by 38% smaller, and the velocity at periapsis by 63% higher.

6.2 Spiral fall and the particle speed

The spiral fall orbit does not have an analogy in the classical theory. This is

the GR phenomenon in the strong field in the sub-circle orbits, when the roots

ξ2 and ξ3 approach each other. The case ξ2 = ξ3 is “the edge point” so that

the spiral fall occurs in the region where the roots ξ2 and ξ3 become complex

numbers, fig. 9. More details about spiral fall formation can be found in [4].

The particle can start from the initial weak field condition and fall upon the

center under extremely strong fields before returning back with a huge angular

advance. For ρ0 > 1/4, the only possible type of Black Hole orbits is of spiral

fall, as seen from tables and figures of orbit classification. An example of

typical spiral fall orbit is shown in fig. 5.

The angular advance and total speed of the test particle increase with

σ = ρ0/β
2
0 . There is no mechanism in GR Dynamics, which can restrict this

tendency, hence, it is possible that the particle would move faster than light.

This issue is discussed in the textbook [25] in connection with a radial fall

(the exact full solution of the orbital motion problem was not available at the

time when it was published). They correctly concluded that the superluminal

motion can occur after the particle crossed the Schwarzschild surface of radius

rsch = 2 rg.

The existence of superluminal motion is confirmed as one of results of our

exact solutions of orbital motion. From the conservation laws in the case of

non-zero angular momentum, we obtain the expression for the total speed of

the particle along an orbit:

β2(ξ) = β20 − 2 ρ0 − 2 ρ0 β
2
0 + 2 ρ0 ξ + 2 ρ0 β

2
0 ξ

3 . (41)

From this, the total speed at Schwarzschild radius is found in terms of ele-

mentary functions

v2(rsch) = 1− 2 ρ0 + β20

(
1− 2 ρ0 +

1

4 ρ20

)
= (1− 2 ρ0)

(
1 + β20

)
+

β20
4 ρ20

,

(42)

with radial and angular velocities given by eqs. (9) and (10).
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Depending on the initial velocity, the full speed at Schwarzschild radius

can be smaller than, equals to or greater than the speed of light. Fig. 13

shows the condition on ρ0 and β20 in order to achieve the speed of light at

Schwarzschild radius. Example of a spiral fall trajectory from case 3 of fig. 9

is shown in fig. 10. The particle crosses the Schwarzschild surface at the speed

βsch = 1.982 and continues to accelerate.

Let us consider the components of velocity for particle crossing the horizon

ξsch = 1/(2 rg) = 1/(2 ρ0), also in exterior and interior regions. On the

horizon sphere, the GR effective potential always takes a zero value, V 2
eff = 0

(straightforward verification). Consequently, the squared radial speed is equal

to the total (squared) energy, β2r = ε20 always taking values less than unit,

β2sch = ε30 < 1 in the whole range of interior region (including the Schwarzschild

surface).

The orbital component could be any, depending on β20 . Indeed, l0 =

r0 β0 = r βθ, r = 1/ξ or

βθ(ξ) = β0 ξ , β2θ (ξ) = β20 ξ
2 . (43)

At a however small β20 , a however small (squared) addition to the radial speed

makes the resultant speed less than the speed of light, β < 1, or, at some

greater value, makes β ≥ 1, as in the example of fig. 10.

One would like to know from our results how fast a particle moves in a

spiral fall in the exterior and interior regions that is, before and after crossing

the Schwarzschild surface, the so-called horizon. This question never arose in

literature because of common belief that a particle in spiral fall always crosses

the horizon at the speed of light. However, such a belief does not have a

rigorous proof, it rather comes from arguments based on suggested formulas

with no association with the equation (1).

Figures 11 and 12 demonstrate GR predictions of particle motion in the

interior (and while crossing the horizon) with speed less and greater than

the speed of light. In the example of field strength ρ0 = 0.050, we have the

following speed (squared) values at the horizon ξsch = 10:

• subluminal case, β20 = 0.0001, Figure 12: β2 = 0.910, β2r = 0.900,

β2θ = 0.010;

• superluminal case, β20 = 0.0080, Figure 11: β2 = 1.707, β2r = 0.907,

β2θ = 0.080.
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• For a greater value of β20 = 0.030 (still less than the edge value β20 =

0.03419), it would be β2 = 3.927, β2r = 0.927, β2θ = 0.300.

• It is easy to find that the particle crosses the horizon at the speed of

light for ρ0 = 0.005, β20 = 0.0010: β2 = 1.000, β2r = 0.900, β2θ = 0.100.

6.3 Free radial fall

As previously noted, GR Dynamic equations of orbital motion are reduced to

classical ones when the GR cubic term of interference of angular momentum

with the potential energy is neglected. Because the angular momentum of the

particle in free radial fall is zero by definition, the GR equation of the radial

motion has to be automatically coincide with the corresponding classical one,

provided the appropriate initial conditions are fixed.

In conventional GR Dynamics, however, the radial fall equation differs

from the classical one. The reason for that is that the GR equation is derived

with the use of GR expression of conserved total energy εrad (7) [30], also

[25, 31]. Recall, unlike in orbital motions, in the GR case of a radial fall, we

have two time variable, τ and t, having different meaning.

Below, we follow the conventional derivation of equations starting from

the initial conditions in the expression for εrad:

εrad = (1− 2 rg/r) dt/dτ = (1− 2 rg/ric) dtic/dτic . (44)

Assume the initial conditions are fixed at “far away”. To avoid the infinite

time of motion from infinity, let us introduce the “far-away” distance rfa

however great but finite, and let the initial inward speed be (dr/dt)fa =

(1 − 1/γ2fa)
−1/2. Then, the inward speed of a particle in the radial fall is

found:

(dr/dt)fa(r) = (1− 2rg/r)
(
1− (1− 2rg/r)/γ

2
fa)
)1/2

. (45)

Here, γfa = E0/m0 ≥ 1 is considered the “far-away” total energy. Respec-

tively, the formula is interpreted in terms of the “far-away” observer whose

wristwatch shows the coordinate time t. At the same time, let us introduce

the so-called “shell observer” placed at some point rshell < rfa, which is not

fixed in the initial conditions, whose wristwatch must show the proper time

τshell. Then, the radial speed drshell/dτshell, viewed by the “shell” observer in
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accordance with (44), must be given by

(dr/dτ)shell(r) =
(
1− (1− 2rg/r)/γ

2
fa)
)1/2

. (46)

The formula (45) has to be understood from the viewpoint of “far-away”

observer. It shows that the particle sent from infinity to the center begins

to accelerate, but at some point, it starts decelerating. The motion looks

“strange”, however. The matter is that the particle, before approaching the

Schwarzschild radius rsch = 2rg, at some point dependent on γfa, starts de-

celerating: the higher initial kinetic energy, the farther the deceleration point

from the center. For γfa ≥
√

3/2, the particle will never accelerate in a

gravitational field. The gravitational force exerted on the particle becomes

repulsive in the entire space.

Quite differently, the formula (46) shows that, from the viewpoint of

“shell” observer, the particle always accelerates. When crossing the Schwarzschild

sphere, it reaches the speed of light. In the internal space, the particle is

considered not observable (due to “light trap”), likely, its motion becomes

superluminal till it “crashes” at the center. This picture is widely known in

association with the particle radial fall onto Black Hall.

We consider the radial motion the ideal case of a pure academic interest

because the requirement of the exact zero angular momentum is physically

not realistic.

7 The Special Relativity theory

7.1 Transition from the abstract proper 4-space to

the observable coordinate space-time

In this work, we challenge the statement that, unlike Einstein’s General Rela-

tivity theory, the Special Relativity theory is not able to describe the Newto-

nian gravity [30]. They say that SR Dynamics failed to explain observations of

Mercury’s perihelion advance in the gravitational field of the Sun, and some

other observations. The objection points to the fact that the argument of

incompatibility with gravitation is based on certain assertions and actually

not strictly proven [32]. In particular, it is shown that an introduction of the

relativistic concept of field dependent proper mass makes the difference.
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SR Dynamics (motion in field of forces) starts from the concept of the

abstract proper 4-space xµ known in connection with the earlier developed

SR Kinematics (motion by inertia with no forces). In both cases, the proper

4-space is converted to the coordinate space-time, in which SR Kinematics

and Dynamics is formulated in the real physical space and time.

The starting point is the concept of a world line s(xµ) characterized by the

abstract proper time τ serving the role of affine parametrization of space and

time variables (with a usual convention of speed of light at infinity c0 = 1).

The metric quadratic form in the abstract 4-space is given by

ds2(τ) = c20 dτ2 . (47)

The proper unit 4-vector Uµ = d(xµ)/ds is introduced, which is tangential to

the world line, so that the metric tensor is diagonal:

UµU
µ = 1, Uµ(dUµ/dτ) = 0 . (48)

The proper 4-coordinate infinitesimal displacement dxµ of the world line is

defined in connection with the 4-space and the 4-momentum (complementary)

space Pµ through Uµ:

dxµ = dτ(xµ)Uµ, Pµ = m(xµ)Uµ . (49)

Next, the 4-vector force in the abstract proper 4-space is defined

Kµ = dPµ(s)/ds . (50)

This is the Minkowski 4-force having, as any 4-vector, the proper (temporal)

part and spatial components of 3-vector. One can proceed further in a formu-

lation of the angular momentum, the torque, etc. in the tensor form similarly

to that in Relativistic Electrodynamics.

Eventually, all abstract physical quantities are put in connections with

real measurable or observable quantities in physical world. For example, the

Minkowski 4-force is associated with the scalar, – the conserved total energy,

and the components of “ordinary” force, – the vector in 3-space [33].

The Lorentz transformations is the main tool of conversion of the abstract

4-space to the coordinate space-time, what is the observable Minkowski space-

time. Similarly, the abstract 4-momentum is connected with the correspond-
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ing real physical quantities. At the same time, the SR Lagrangian formulation

of the problem is important in the generalization of SR Kinematics to the SR

Dynamics.

With the transition to the coordinate (the observable) space-time, one can

forget the abstract proper 4-space and the abstract equations there. Unfor-

tunately, a terminology of “proper quantities” is used for observables also,

– in a sense of the observables at rest with respect to imaginary observers

exchanging their information with respect to each other in a relative motion.

In the operational language, they do it using the standard (atomic) clocks

serving also the role of the standard emitter/detector of the light signal.

7.2 Field dependent proper mass

In the conventional SR theory, the proper mass is constant. We consider

it a weak field approximation, after Synge, [33], who developed the theory

accounting for the proper mass variation in the field but thought the effect

be practically negligible, as a reasonable approximation. This point of view

is widely accepted among the Relativistic Mechanics community. The history

of this issue and the consequences of the approximation are discussed in [32],

also see [34].

The advanced SR particle dynamics is formulated in the coordinate space-

time of observables, where the static mass or the mass in the comoving ref-

erence frame (both usually called the proper mass, as noted) are field depen-

dent proper mass. In the static spherical symmetric field, a dependence of the

proper mass on radius is given by

m(r) = mtest exp(−ρ0(r0/r)) . (51)

Here, mtest is the mass of the test particle having a limit m(r) = minf as

r →∞. As shown below, it can be considered in relations with the Einstein-

DeBroglie’s concept of the standard clock characterized by the frequency of

ticks, what allows the comparing the time rate as the field strength (the

potential function) changes. In the ideal (one body) model, the test particle

mass is canceled on left and right sides of the SR equations of motion, similarly

to that in Classical Dynamics.

Thus, the static potential function in the space-time coordinate space takes
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the form

V (r) = − (1− exp(−rg/r)) , (52)

which is reduced to Newtonian potential V (r) ∝ 1/r at rg/r0 � 1.

To consider the proper mass constancy “an approximation” would be actu-

ally methodologically wrong because the values of dt and m must be inversely

proportional due to the complementarity of the SR space-time vector and dxµ

and the 4-momentum vector Pµ, therefore, their scalar product is constant:

Pµ·∆xµ = m∆t . (53)

It is the absolute value of constant 4-phase vector. It is consistent with the

Einstein-de Broglie relationship. There, a period of a quantum oscillation is

related to the frequency

mc20 = h f, ∆τ = 1/f , (54)

where h is Planck’s constant, c0 = 1, m0 = 1. Next, we take dt = ∆t meaning

a however small finite period of the standard quantum oscillator in (54) (the

time interval between consequent clock’s ticks).

We have to reiterate that SR Dynamics with the field dependent proper

mass is fully relevant to the relativistic motion in the gravitational field, and it

obeys the Causality Principle (as follows from the SR Dynamics formulation

and the corresponding equations). Also, we make a strong statement that

the known central infinities in the existing field theories would be naturally

eliminated with the introduction of the field dependent proper mass in the

spherical symmetric geometry. Consequently, the force on the test particle

has a zero limit as the radius approaches the center. This fact is illustrated

in fig. 14.

Remarkably, the picture reminds the QCD phenomenon of “quark rad/rad

overrad/rad overconfinement” related to “the asymptotic freedom”. The arti-

ficial mathematical procedures of “mass renormalization” became not needed.

For this and other reasons, we suggest SR Dynamics be considered the alter-

native to GR particle dynamics [3, 32, 35].

Next, the principles of advanced SR Dynamics applied to the spherical

symmetric field, and the corresponding orbital motion equations are formu-

lated.
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7.3 Principles and equations of SR Dynamics

In brief, the SR Dynamics problem of orbits is formulated in the relativistic

Lagrangian approach consistently with Noether symmetries of space-time (the

3-space isotropy, and the coordinate time translation and time reversal) in

relationship with the conservation laws. Therefore, the coordinate time t

runs uniformly while the comoving observer’s time pace tcom is affected by

the field.

In polar coordinates, the 4-coordinate displacement vector and the 4-

momentum vector are defined, as follows: dXµ(r) = γ∆t (1, βr, βθ) with

the Lorentz factor γ = (1 − β2)−1/2, β is the total orbital speed. The 4-

momentum vector is Pµ(r) = γ m(r) (1, βr, βθ), where 3-velocity components

and the Lorentz factor are functions of r and θ, with a usual convention c0 = 1.

We shall see that the equations of motions are characterized by two roots.

In other words, the equation of motion in a dimensionless form is governed

by two independent physical parameter. In this sense, there is a similarity

of the GR and SR Dynamics but the results would be radically different

because the principles of SR Dynamics do not allow superluminal motion in

any circumstances.

In terms of initial conditions, there are only two independent physical

parameters, which are parameters of the equations of motion, for example,

the field strength ρ0 and the squared angular speed β20 , their ratio being the

classical orbit classification parameter σ0 = ρ0/β
2
0 . Also, we may use the

analogous relativistic parameter σr = γ2σ0.

There are two conservation laws, – the conserved total energy ε0, and

the conserved angular momentum L0 given below for the initial conditions

r(r) = r0, θ = 0, βr = 0, βθ = β0:

ε0 = γ0 γr,0 = γ γr , (55)

L0 = γ0 γr,0 r0 β0 = γ γr r βθ . (56)

Instead of (56), it is convenient to use a conserved quantity l0 = ε0/L0:

l0 = r βθ . (57)

Here, a squared inverted Lorentz factor is 1/γ2 = 1−β2r −β2θ , and βr = dr/dt,

βθ = r dθ/dt. To get the angular equation, consider βr = (dr/dθ)(dθ/dt),

and transform (57) into β2θ = l20/r
2. After introducing a variable ξ = r0/r, we
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arrive to the exact relativistic equation of orbital motion of a bounded test

particle. The equation is valid for a however strong field by the criterion rg/r:(
dξ

dθ

)2

=
1

β20
− ξ2 − 1

γ20 β
2
0

exp

(
2 rg
r0

(1− ξ)
)
. (58)

The Newtonian limit, or weak field conditions, is given by a linear approxi-

mation of the exponential function:

(dξ/dθ)2 = (1− 2σr) + 2σr ξ − ξ2 − 2σr (rg/r0) (1− ξ)2 , (59)

By definition, there is a useful relationship

dξ/dθ = (dr/dt)/β0 , (60)

where (dr/dt)2 = β2r (r) is the radial (squared) component to the total (squared)

speed β(r):

β2(r) = β2r (r) + β2θ , (61)

with the angular speed term

β2θ = r20 β
2
0/r

2 . (62)

The particle speed at free radial fall is:

β(r) =
(
1− (1/γ20) exp(−2 rg/r)

)1/2
. (63)

8 The Mercury problem in SR Dynamics

In a full analogy with quantitative comparison of GR Dynamics with respect

to Classical Dynamics of orbital motion, we introduce the three event scheme

comparison of SR Dynamics with respect to Classical Dynamics. Unlike in

GR, the SR events delay with respect to classical time instants. The three

event instants on the base SR time line tsr are defined, as follows.

• Event 1 at the instant tsr,1, when SR clock displays the value of the clas-

sical aphelion, the event 2 (the equality of numbers of ticks of standard

clocks in both theories, tsr,1 = tcl,2).

• Event 2 at the instant tsr,2, when the SR aphelion is reached.
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• Event 3 at the instant tsr,3, when the SR orbital angle is π.

The corresponding time instants t1, t2, t3 displayed by the classical clock are

specified, as well:

• The instant t1 corresponds to tsr,1 (when tsr,1 = tcl,2).

• The instant t2 is when the classical aphelion is reached.

• The instant t3 corresponds to tsr,3 (when the SR orbital angle is π).

Results of comparison based on the 3 events scheme for the exact combined

solutions of the Mercury problem in SR and Classical Dynamics are presented

in tables 6 to 9.

In table 6, the input and output data for computing Mercury’s orbital

characteristics in Classical and SR Dynamics are given. In the input, must

be only two independent model parameters, for example, ρ0 and β20 . In the

output, absolute values of main classical characteristics integrated over the

full period and their absolute and relative differences with respect to corre-

sponding SR Dynamics results are given.

In table 7, orbital characteristics qsr computed at 3 events in SR Dynamics

time scale tsr in comparison with qcl computed in the classical time scale

tcl starting with initial conditions. Also shown their absolute and relative

differences ∆q = qsr − qcl, δq = (qsr − qcl)/qcl. The following characteristics

are computed: the time passed tsr, tcl, the radius rsr, rcl, the orbital angle

rθ, rθ, the orbital speed vsr, vcl, the orbital length lsr, lcl.

In table 8, absolute differences of orbital characteristics between events (2,

1), (3, 2), (3, 1) computed in SR Dynamics and Classical theory.

Finally, in table 9, the projection of the three SR events on the base time

line tsr and the classical time line tcl is shown. Notice, dealing with disparity

of events on time and angular scales, one has distinguish between the angle π

in Classical and and Relativistic theories.

Similarly to the GR Mercury problem, the corresponding SR time instants

t1, t2, t3 displayed on the time lines are specified, where the standard clocks

run uniformly in both theories too. However, the standard “SR clock” on the

base time line runs slower than “the classical clock”. The SR and classical

time lines are related to each other by the following linear expression: tcl =

k tsr where the new coefficient k is a ratio of classical and SR time periods

k = Tcl/Tsr < 1. Again, it is a disparity of SR and classical time lines, which

requires a necessity of difference in SR and classical time periods.
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The relativistic SR effects characterize the retardation of the angular and

temporal rates with respect to the classical theory predictions. Namely, in a

first half period, starting from the initial conditions, the angular shift ∆θ =

−8.365 × 10−8 rad, or the relative effect δθ = −2.663 × 10−8, are delayed

with respect to the classical theory. The effect is three times smaller but

has an opposite sign than the corresponding GR effect. The about same

factor of retardation is seen in the time half period where the difference is

∆t = 0.191613 s, or the relative effect δt = 5.042× 10−8.

Clearly, the SR retardation is due to the proper mass dependence on the

field strength implemented into SR Dynamics. It must prevent the particle

motion from the appearance of superluminosity under strong field conditions:

with the rise of a field strength, the particle motion rise is restricted by SR

laws. Moreover, the central infinity is naturally eliminated and more positive

consequences follow, and the Black Hole GR concept and other String field

phenomena are revised.

The retardation of SR angle is equivalent to the angular classical advance,

so we suggest the following law of the angular shift under weak field conditions

analogous to the GR angular advance, (33). Its precision increases with the

decrease of field strength

∆θ = σ0 ρ0 (64)

Here, ∆θ = θcl/θsr − 1 = σ0 ρ0 is a relative angular advance rad/rad of the

classical angle with respect to the SR angle (initially averaged over half a

period), θcl = π, σ0 = ρ0/β
2
0 for ρ0 � 1. As opposed to GR, the value of the

angular shift in SR Dynamics with respect to the Classical theory is exactly

3 times less than in GR, but has an opposite sign. The time period is greater

in SR Dynamics by about the same factor 3 of retardation.

As noted earlier, the observational tests are out of scope of this theoretical

work. One can argue nevertheless, that observations are consistent with the

GR angular advance anyway, so why do we need to consider the alternatively

predicted “retardation” anyway?

Our counter arguments follows from the statement that, in view of the

exact GR temporal solution, the GR confirmation criterion needs to be re-

considered, in particular, due to our finding that the GR prediction of about

one second difference of classical and GR periods ∆T = Tcl − Tgr needs to

be observationally “confirmed” too. This requires a stabilization of observa-

tional tools to the precision, at least, 0.1 sec over one or more periods (this
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looks hardly possible today for many practical reasons, but this matter must

be actually judged by professional Astronomers). From the SR Dynamics

predictions, even higher precision of space-time observations is required.

We conclude that, in the alternative to GR Dynamics, – the SR based

Dynamics, the GR controversies and problems, related, in particular, the

superluminosity in a sense of Causality Principle breakage, infinities, τ vs t

time variables, and others, do not arise.

9 Comments on additional topics: Gravi-

tational Waves, and GPS

The physical phenomenon of Gravitational waves (GW) is allegedly one of

the GR predictions. According to the nowadays views, allegedly detectable

GWs originate in very strong fields during spiral merges of supermassive Black

Holes (BHs). Einstein’s field equations (EFEs) along with GR Dynamics are

supposed to provide a reliable theory, which rigorously, fully, and consistently

explains the GW phenomenon in the whole range of field strength. From our

study, however, it follows that GR explanations, which are made in terms of

“metric waves”, encounter numerous fundamental contradictions with the GR

basic concepts.

The Global Positioning Systems (GPS) is practically used in weak fields of

planetary system, first of all, under the Earth conditions. The GPS requires

an extremely high precision of functioning and fast operational control of the

database. Its theory is based on theoretical approximations claimed to be GR

weak field approximate GPS model. Strangely enough, there were no attempts

to exactly solve the Relativistic Dynamic equations in the GR framework and

compare the results with the classical theory. From our study, it follows that

the existing theoretical GPS model is in conflict with the GR Dynamics.

There is numerous historical and modern literature devoted to each (GW

and GPS) of the problems. The reason of our brief comments on them is a

continuing arguing about whether the GR theory is satisfactory for physical

explanations and quantitative predictions of the corresponding observations

and predictions. The Author’s critical view on the GR problems presented

below is arguable and intended to stimulate among Physical Community new

discussions beyond main-stream theories.
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9.1 The GR phenomenon of gravitational waves

The GR basic theoretical concepts in GW theory

Among GR, Astrophysical and Cosmological communities, new detection op-

portunities of the GW due to a progress of technology is considered the fun-

damentally important step for unveiling not answered yet quests about phys-

ical world we live in, see “The Gravitational Wave International Committee

Roadmap”, [36, 37], GW calculations [38, 39], the future of gravitational wave

astronomy, [40]. The history of the problem is given in [41], the current status

and perspectives see in [42], see also detailed presentation of the GW problem

[30]. There are numerous specific aspects of observations, explanations, and

predictions appear in the growing literature.

Here, facts concerning the GR mathematical theory of GWs are outlined.

On GR inconsistency with Fundamentals of Physics

The GR as “geometrical gravitation” is inconsistent with Modern Physics

branches such as SR Kinematics and Dynamics, Quantum theory, Particle

Physics. The GR, supposed to be a theory beyond Newton’s gravitational

force instant action at distance, but contrary, it ignores the fundamental con-

cept of relativistic field of forces acting at distance. Instead, it suggests local

metric “disturbances” and their propagation with the speed of light (GWs)

in the proper coordinate system so that the speed depends on the choice of

coordinate system. Consequently, the GR violates the Causality Principle in

terms of particle motions slower than light. The GW concept is claimed to be

developed in the GR framework in the whole range of field strength. In prac-

tice, it is based on metric linearization, – the PPN (weak field) approximation,

which is actually not sufficient for the purpose. There is a common belief that

the GR is reduced to the Newtonian limit for a body in slow motion in weak

fields. However, this belief is not true, as shown in this work. It is clear that

the GR major flaws are rooted in Einstein’s field equations (EFEs).

EFEs

The equations are formulated for Lorentzian manifolds defined by the proper

4-space metric d̃s = c0dτ . All admitted solutions have the time variable τ

while observations are conducted in the coordinate space-time with the time
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variable t. This causes fundamental problem of solution interpretation when

the GR predictions are compared with observations.

There are only two physically meaningful types of solutions admitted by

EFEs:

a) The vacuum one-body solutions with the point source of mass M . Typ-

ically, it is the Schwarzschild field and the corresponding geodesics for a

point test particle of mass m�M .

b) The metric space expansion in Cosmology for a continuous matter dis-

tribution. The N-body problem (N > 1) has no GR solution. Here, we

are restricted to the N = 1 (one-body) vacuum solution, which is not

reducible to the Newtonian limit for typically 2-body problems.

In GR, there are no local conservation laws. However, in the vacuum

solution (the one-body problem), the force acting on the test particle is con-

servative because of m�M . There is a price for it: the force keeping the test

particle in orbital motion is not gravitational; it is a non-inertial or “tidal”

force, which is due to the space-time curvature.

Actually, in all types of GR problems, the gravitational field is interpreted

in terms of non-inertial or tidal forces. Genuine gravitational field would

appear in a pseudo-tensor form, and for this reason cannot be added to the

matter part in the stress tensor when geodesics are derived. The gravitational

world constantG is introduced there not from the GR first principles but solely

for making normalized solutions similar to those in Newtonian gravity.

The above listed GR drawbacks prevent the formulation of GW prob-

lem for practical use. There are other reasons, discussed in publications, for

doubting the GW detection by LIGO.

LIGO today

As of today, the working GW model seems hardly different from that in [30].

As before, it is affected by the GR concept of gravitational field, which is

the field of non-inertial and tidal forces. It excludes the genuine gravitational

force and corresponding scalar potential field, studied by Newton and his

counterparts. This embarrassing property is not discussed by GR experts.

In comparing the electromagnetic waves (e/m), which follows from rela-

tivistic electrodynamics, one can see there Fundamental Physical Principles

governing the e/m radiation. This is, firstly, the Causality Principle ensured
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by inductive properties of “empty” space, namely, its characterization by the

electric permittivity ε and the magnetic permeability µ. They are in intimate

relationship with the value of speed of light c. As a transverse wave, light is

naturally driven by consequent changes of electric and magnetic components

(the induction process). The same processes take place in transmitting and

detecting antennas. The second Fundamental Physical Principle is valid for

isolated systems. It manifests the conservative properties of e/m forces in

relationship with space-time symmetries. It follows that the e/m waves can

originate only at the expense of energy from an external energy storage. Those

Principles fully explain the nature of e/m origination, emission, propagation,

and detection, however, they are completely broken in the GR Foundations.

The GW is not a physical wave but rather a metric wave that is, a motion of a

specific metrical disturbance among numerous other disturbances depending

on the choice of a coordinate system. The physical cause of the existence of

such type of GW is not clear. The claimed cause is all types of acceleration

of massive body, likely, in analogy with the e/m radiation from accelerated

charged bodies. But this analogy is wrong. The most important doubt con-

cerns a replacement of Newtonian gravity (allegedly reduced from GR in PPN

approximation) by a field of non-inertial and tidal forces (which are actually

results of e/m forces).

There are a lot of contradictions of GR concept of GW, as seen from our

studies of exact solutions. For example, geodesics of test particles and GWs

are derived in terms of temporal variable τ , which is replaced by the coordinate

time t with no comments. Typical GW sources are pairs of merging BHs,

which is the two body problem not admitted by EFE solutions. The system of

two bounded bodies are subjected to conservative fores, which cannot generate

GWs. The BH in GR is not observable. A typical merging process of two

BHs takes a huge time by Earth’s clock, not a short “flash” time. It is also

not clear, how, in several detection events, the GW source were specified in

so many details.

A typical objection to the GW metric waves is the statement: if the pho-

ton wavelength stretches as the LIGO antenna does, the gauge change and the

interferometric phase shift would be unobservable. To make them observable,

the perturbed gauge should be compared with the original one (before pertur-

bation) at the time of GW detection, but this is not the LIGO case. The GR

expertise answer to the objection is related to a role of the GW quadrupole
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model. This is not a satisfactory explanation because an interferometric phase

shift is no way restricted by the wave configuration.

The conclusion is that the LIGO concept is based on assumptions, which

are not substantiated, GW Physics is not clear and contradictory. The atten-

tion needs to be focused on the LIGO fantastic sensitivity to a tiny spatial

shift being about 3 orders smaller than the proton size. The accuracy of sta-

bilization of LIGO functioning at this regime (an uncharted QM region) is

not clear for us.

9.2 The GPS problem

Below, our comments concern a development of GPS theoretical model based

on the GR methodology of space-time curvature caused by massive bodies.

This methodology somehow differs from that of GW, but its GR principles

remain the same.

The GR-based Model of GPS

A history of GW and GPS problems are dated back to early nineteenth, when

contemporary GR ideologists laid out GPS basic ideas. In [43], it is empha-

sized that a successful realization of the GPS Project is vitally important

for future new technologies, but it would depend on clear understanding of

the radically new GR theory based on the space-time being curved by massive

bodies. A sketch of “a conceptual GPS Model” is drawn there. Unfortunately,

it is far beyond capacities of the Author of this work to catch it.

In a reputed work [25], the problem academic formulation for scientific

communities begins with the Schwartzschild metric (earlier discussed in this

work). In our view, it demonstrates an approach, which is, in some parts,

inconsistent with GR or even physically erroneous. Luckily, the practical de-

velopment and realization of GPS project in 1995 by special teams of engineers

and experts were carried out independently of academic works [44]. There,

the gravitational time dilation and SR motion dilation are taken into account,

what is a reflection of numerous works on GPS [45].

From [25], we have

dτ2 = (1− 2 rg/r) dt2 − (1− 2 rg/r)
−1 dr2 − r2 dθ2 , (65)

where c = 0, hence, time variables are measured in length units. Let apply
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the equation twice: firstly, to the GPS clock orbiting with the constant speed,

dr = 0 (for example, in the equatorial plane), secondly, to the clock located on

the Earth (the equator), both uniformly rotating around the Earth’s center.

From it, let us make

(dτ/dt)2 = 1− 2 rg/r − r2 (dθ/dt)2 , (66)

where dτ is the wristwatch time interval between ticks of either atomic clock,

and r dθ/dt = v – a circular speed measured by “the bookkeeper” far away.

Consequently,

(dτ/dt)2 = 1− 2 rg/r − r2 (dθ/dt)2 . (67)

There, dτ = dtgps either dτ = dtearth. From the above, it is suggested to

make the equation to be linearized for further work:(
dtgps

dtearth

)
= (1− rg/rgps − v2gps)1/2)(1− rg/rearth − vearth)−1/2 . (68)

Next, the authors suggest readers to practice and confirm that the GPS clock

runs faster by about 50 000 nanoseconds, but it is not clear from this what

relativistic effects are. Neither it’s clear why one needs to put the Earth

rotation and the GPS orbital rotation on the same footing. A speed vgps

and the orbital time Tgps are determined by the GPS geodesics in classical

and GR theories, and a small difference between GR and classical dynamics

results must be found. However, the authors construct the whole GPS Model

using static parameters instead of formulating equations of motion and solving

them. As for Earth rotation, it is not relevant to the above equations, it is

rather a separate issue of choosing the right coordinate systems, in which the

GR technical triangulation problem is to be solved.

It is not clear at all, why the GPS problem is not considered here in an

analogy with Mercury problem. As discussed in this work, the latter has

been thoroughly studied in GR with the result of the GR perihelion advance

∆θ = 3σ0(rg/r0) in dimensionless form. From this result, it is easy to assess

the corresponding GPS temporal advance of the circular orbit. Such an effect

a relativistic effect there is quite significant in the GPS motion and could be

tested provided theoretical experts focused GPS researchers’ attention on this

approach and clearly formulated the predicted results.

In this work, the Mercury problem was also studied in the SR Dynamics
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framework with a remarkable conclusion that the effects is three times smaller

than in GR and have an opposite sign. In other words, the orbital retardation

rather than the advance takes place. Undoubtedly, GPS problem should be

thoroughly studies in the SR Dynamics too.

10 The main claims, suggestions, conclu-

sions

The results are finalized, as follows.

• The main goal of the work is the comparison of GR and Classical Dy-

namics predictions of the main characteristics of the Mercury’s orbital

motion in 3-space and time relevant to criteria of empirical verifications

or falsification. An unambiguous formulation of comparison and required

precisions of calculations and observations are made.

• There is a belief among physical “mainstream” community including GR

workers that the Mercury’s perihelion advance problem formulated by

Einstein in November 1915 [1] has been fully studied and understood so

that there were no issues to be considered anymore. We state, however,

that it is wrong. In this work, it is shown that the problem has never

been studied by finding full (angular and temporal) exact solutions to

the GR equations of the test particle motion. Only such solutions reveal

the role of dynamic structure of the GR curved 4-space.

• We suggest to abandon the geometrical orbital models in spherical sym-

metric geometry in favor of Physical parametrization for good reasons,

in particular, to use minimal two independent parameters in relativistic

theories in connections with the initial conditions. There, the σ pa-

rameter is actually expresses the Virial Theorem meaning an averaging

potential and kinetic energies over time periods. This theorem can be

principally generalized in relativistic models of “unclosed” orbits.

• The GR prediction of perihelion angular advance apart from a prediction

of the corresponding GR temporal shift with respect to the classical

picture is not sufficient for understanding the problem at the deeper

level and formulating the criteria of a theoretical comparison of GR and

classical theories.
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• The disparity between GR and classical scales of dynamical variables

such as time, angle, radius, and others cannot be ignored in the concept

of empirical testing of Einstein’s theory. Consequently, a usage of “ap-

proximations” related to the assumed equality of GR and Classical time

would be flawed.

• The exact solutions of the GR particle motion in the whole range of

field strength are conducted for the first time. They are also applicable

to rigorous treatments of planetary motions as well Astrophysical and

Cosmological observations. So far in literature, they are “explained”

only in the approximate models.

• It is claimed that all quantitative results are correct and verifiable by

calculations.

• The results confirm the existence of known controversial issues concern-

ing both weak and strong field solutions, also reveal new questions. Con-

sequently, the alternative approach to the GR particle dynamics is sug-

gested and realizes in this work. The approach is based on the SR

Dynamics methodology and basically consistent with the quantum field

theories. It is concluded that old and new questions and problems do

not arise there. For this reason, the Alternative (SR-based) Dynamics

is additionally studied, which is claimed to be free of GR controver-

sies, beyond that, suggesting new interpretations of strong field physical

phenomena.

• We suggest to reconsider the current status of GR particle dynamics,

allegedly, with “no questions left”, including approximate methodolo-

gies of GR treatments of observations, and the criteria of GR verifica-

tion/falsification. The criterion needs to account for full exact solutions

of the problem. The questions are raised concerning unambiguous phys-

ical formulations of exact versus approximate solutions to be further

studied.

• The presented ideas and findings are claimed to be novel and construct-

ing, denying of which would be a discreditation of the real value of

General Relativity theory for Astronomy and other applications.

This work is intended to draw the attention of researchers in General

Relativity theory, as well as Astronomy, Astrophysics, Particle Physics, and
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Cosmology, to our new results concerning the classical and relativistic gravita-

tional theories in their comparison, and interpretations of non-classical effects

in the whole range of field strength. Also, it can be interesting for Physi-

cal community, including workers in Mathematics and Philosophy of Natural

sciences. It can be of pedagogical value as well. The author appreciate any

critical comments, recommendations, and questions stimulating further dis-

cussions and studies.
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35(5):951–959, 2003. Über das Gravitationsfeld eines Massenpunktes

nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussis-

chen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse 1916,

189–196.

[10] Peter Gabriel Bergmann. Introduction to the Theory of Relativity.

Kessinger Publishing, 2008.

[11] Vladimir Fock. The Theory of Space, Time and Gravitation. Pergamon,

1959.

[12] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. The classical

theory of fields. Pergamon Press, Oxford, 1971.

[13] Yvonne Choquet-Bruhat. General relativity and the Einstein equations.

Oxford University Press, 2009.

[14] Edmund Taylor Whittaker and George Neville Watson. A Course of

Modern Analysis. Cambridge University Press, 1927.

[15] Richard Courant and Adolf Hurwitz. Funktionentheorie. Verlag von

Julius Springer, Berlin, 1929.

[16] Claus Lämmerzahl. Testing Basic Laws of Gravitation–Are Our Pos-

tulates on Dynamics and Gravitation Supported by Experimental Evi-

dence? In Mass and Motion in General Relativity, pages 25–65. Springer,

2011.

[17] Henri Cohen. A course in computational algebraic number theory, volume

138 of Graduate Texts in Mathematics. Springer, 1993.

[18] John Cremona. Algorithms for modular elliptic curves. Cambridge Uni-

versity Press, 1997.

[19] Jean-Benôıt Bost and Jean-François Mestre. Moyenne arithmético-
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Figure 1: Classical orbits plotted in (x, y) plane, r =
√
x2 + y2. Illustration of the

σ family of orbits: (1) Sub-circle ellipse, σ = 1.9; (2) Circle, σ = 1; (3) Over-circle
ellipse, σ = 0.6; (4) Parabola, σ = 0.5; (5) Hyperbola, σ = 0.4. The gravity center
is placed at the coordinate origin, which is at rest with respect to the far-away
stars (an inertial coordinate system). All orbits are produced by launching a test
particle at the point x0 = 1 with different initial speed β0 =

√
rg/σ, the arrow

shows the geometry without value specification. The meaning of terms “subcircle”
and “overcircle” follows from the the orbit classification, and is illustrated in the
picture, see the text.
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Figure 2: All possible roots of a cubic r.h.s. of (13):
1) complex ξ2, ξ3 roots; 2) ξ3 6 ξ2 < 1; 3) ξ2 < 0, ξ3 > 1;
4) 0 < ξ2 < 1, ξ3 > 1; 5) 1 < ξ2 < ξ3; 6) ξ2 = 0, ξ3 > 1;
7) ξ2 = 1, ξ3 > 1; 8) 1 < ξ2 = ξ3; 9) ξ2 < 0, ξ3 = 1;
10) 0 < ξ2 < 1, ξ3 = 1; 11) ξ2 = 0, ξ3 = 1; 12) ξ2 = 1, ξ3 = 1.
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Table 1: GR orbit classification: SF – spiral fall, H – hyperbola, P – parabola, C –
circle, OC – over-circle, SC – sub-circle.

condition on ξ2, ξ3 relation between β20 and ρ0 orbit type fig. 2

ξ2, ξ3 not real or
ξ3 < 1

ρ0 <
1
6 , β20 <

16 ρ20
1+4 ρ0−12 ρ20

or
1
6 < ρ0 <

1
3 , β20 <

ρ0
1−3ρ0 or

ρ0 > 1
3

SF 1), 2)

ξ2 < 0, ξ3 > 1
ρ0 6 1

4 , β20 >
2ρ0

1−2ρ0 or
1
4 < ρ0 <

1
3 , β20 >

ρ0
1−3ρ0

H 3)

ξ2 < 1 < ξ3 ρ0 <
1
4 ,

ρ0
1−3 ρ0 < β20 <

2ρ0
1−2ρ0 OC 4)

1 < ξ2 < ξ3 ρ0 <
1
6 ,

16 ρ20
1+4 ρ0−12 ρ20

< β20 <
ρ0

1−3ρ0 SC 5)

ξ2 = 0, ξ3 > 1 ρ0 <
1
4 ,

2ρ0
1−2ρ0 P 6)

ξ2 = 1, ξ3 > 1 ρ0 <
1
6 , β20 = ρ0

1−3 ρ0 C 7)

1 < ξ2 = ξ3 ρ0 <
1
6 , β20 =

16 ρ20
1+4 ρ0−12 ρ20

SC, SF 8)

ξ2 < 0, ξ3 = 1 1
4 < ρ0 <

1
3 , β20 = ρ0

1−3 ρ0 H, C, SF 9)

0 < ξ2 < 1 = ξ3
1
6 < ρ0 <

1
4 , β20 = ρ0

1−3 ρ0 OC, C, SF 10)

ξ2 = 0, ξ3 = 1 ρ0 = 1
4 , β20 = 1 P, C, SF 11)

ξ2 = ξ3 = 1 ρ0 = 1
6 , β20 = 1

3 C, SF 12)
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Classification of orbits depending on ρ0 and β2
0

Figure 3: GR orbit classification on (ρ0,β
2
0) plane: H – hyperbolic type; OC – over-

circular type; SC – sub-circular type; SF – spiral fall type; parabolic type – line next
to H; circular orbits – middle curve from 0 till ρ0 = 1/6 continuing to ρ0 = 1/4.
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Figure 4: Orbit classification in classical mechanics (dashed lines): the top region
corresponds to hyperbolic orbits, the top dashed line – parabolic orbits, in between
the dashed lines – over-circular orbits, the bottom dashed line – circular orbits,
below – sub-circular orbits. In GR theory (dotted curves) there is an additional (at
the very bottom, below the dotted line) region with spiral-fall type of orbits. When
ρ0 and β2

0 are small, the orbit classification in classical mechanics becomes similar
to that in GR.
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Figure 5: Spiral fall trajectory for ρ0 = 0.05, β2
0 = 0.03. Shown only half period.
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Figure 6: Typical case of polynomial f(ξ) with three roots (here ρ0 = 0.05, β0 = 0.04,
the dashed line). The integration is performed from ξ1 = 1 to ξ2 under the solid
line.
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Figure 7: Orbit for ρ0 = 0.05 and β0 = 0.04. Starting point (1,0), following solid
line first periapsis at point (0.41,4.53), following dashed line first period completed
at point (1,9.07), continuing by dotted line for another period. All points are given
in polar coordinates.
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Figure 8: Dependence ∆θ = 3 ρ0 σgr of relative precessional advance on σgr as ρ0
varies (exact numerical integration). Two curves are normalized to the same vertical
plotting scale. Normalization coefficient k = 10 for ρ0 = 0.001 (weak-field), and
k = 1/5 for ρ0 = 0.050 (mildly strong field) so that all lines for ρ0 < 0.001 with
proportionally however smaller effect coincide with the line for ρ0 = 0.001. Deviated
curves appear as the field strength rises with ρ0 > 0.001.
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Input parameters from the initial conditions:
dimensionless ρ0 = rg/r0 3.21×10−8

dimensionless β20 3.87×10−8

dimensionless r0 1

Scaling quantities:
The speed of light c 299792458 m/s

Sun’s standard gravitational parameter µ0 = rgc
2 1.32712440041×1020 m3/s2

Perihelion r0 = rp 4.6×1010 m
Velocity at perihelion 58976 m/s

Output:
Absolute Relative

Computed Classical theory difference difference
characteristics qcl qgr − qcl qgr/qcl − 1

Aphelion radius ra 69811764705.882 m -14237.080 m -2.039×10−7

Velocity at aphelion 38860.233 m/s 7.924×10−3 m/s 2.039×10−7

Angular full period 2π rad 5.019×10−7 rad 7.988×10−8

Time full period 7599967.916 s -1.111 s -1.461×10−7

Full period orbit length 3.600×1011 m -12603.073 m -3.501×10−8

Table 2: General comparison of the input and output results for Mercury in GR vs
classical mechanics. In the input, we fixed perihelion and velocity at perihelion as
well as the gravitational field strength in the initial conditions, which chosen common
for the GR and the classical theory. The output includes the main exactly calculated
values of classical characteristics qcl of the orbit, also the absolute differences of the
corresponding GR values qgr−qcl and the relative differences qgr/qcl−1 with respect
to the classical values.
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Event 1: Event 2: Event 3:
at θgr = π GR aphelion τ3 = t2

τ 3799982.951801 s 3799983.402610 s 3799983.957976 s
rgr 69811750468.802 m 69811750468.802 m 69811750468.801 m
θgr π = 3.141592654 rad pi+ 2.509× 10−7 rad π + 5.600× 10−7 rad
vgr 38860.241 m/s 38860.241 m/s 38860.241 m/s
lgr 179978550169.643 m 179978567688.220 m 179978589269.852 m

t 3799983.507166 s 3799983.957976 s 3799984.513341 s
rcl 69811764705.882 m 69811764705.882 m 69811764705.881 m
θcl π − 2.509× 10−7 rad π = 3.141592653 rad π + 3.091× 10−7 rad
vcl 38860.233 m/s 38860.233 m/s 38860.233 m/s
lcl 179978556471.180 m 179978573989.757 m 179978595571.387 m

Absolute differences of GR and classical theory values

τ − t -0.555365 s -0.555365 s -0.555365 s
rgr − rcl -14237.080 m -14237.080 m -14237.080 m
θgr − θcl 2.509× 10−7 rad 2.509× 10−7 rad 2.509× 10−7 rad
vgr − vcl 0.007925 m/s 0.007925 m/s 0.007925 m/s
lgr − lcl -6301.538 m -6301.537 m -6301.535 m

Relative differences of GR with respect to classical values

(τ − t)/t −1.461× 10−7 −1.461× 10−7 −1.461× 10−7

∆r −2.039× 10−7 −2.039× 10−7 −2.039× 10−7

∆θ 7.988× 10−8 7.988× 10−8 7.988× 10−8

∆v 2.039× 10−7 2.039× 10−7 2.039× 10−7

∆l −3.501× 10−8 −3.501× 10−8 −3.501× 10−8

Table 3: Three-events comparison between classical theory and General Relativity
theory. Shown are the absolute values of main orbital characteristics at events 1, 2,
3, predicted in each theory, including the time τ , t, the radius rgr, rcl, the angle θgr,
θcl, the full orbital speed vgr, vcl, and the passed length along orbital trajectory lgr,
lcl. Here and in the next tables, they are calculated in the first half-period starting
from the initial conditions. The corresponding absolute values qgr − qcl and relative
differences of GR values with respect to classical ones qgr/qcl − 1 are also given. To
the precision of 4 significant digits, differences do not change over the time interval,
which includes the three events.
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classical theory GR

Difference of values at event 2 and event 1
time 0.450810 s 0.450810 s

radius 5.689× 10−4 m 5.689× 10−4 m
polar angle 2.509× 10−7 rad 2.509× 10−7 rad

full speed −4.002× 10−10 m/s −3.986× 10−10 m/s
trajectory length 17518.577 m 17518.578 m

Difference of values at event 3 and event 2
time 0.555365 s 0.555365 s

radius −8.634× 10−4 m −8.634× 10−4 m
polar angle 3.091× 10−7 rad 3.091× 10−7 rad

full speed 6.039× 10−10 m/s 6.050× 10−10 m/s
trajectory length 21581.630 m 21581.631 m

Difference of values at event 3 and event 1
time 1.006175 s 1.006175 s

radius −2.945× 10−4 m −2.945× 10−4 m
polar angle 5.601× 10−7 rad 5.601× 10−7 rad

full speed 2.064× 10−10 m/s 2.064× 10−10 m/s
trajectory length 39100.207 m 39100.209 m

Table 4: Three-events comparison between classical theory and General Relativity
theory. Shown are the absolute differences of values of main orbital characteristics
at events 1, 2, 3, predicted in each theory, including the time, the angle, the radius,
the particle orbital speed, and the passed length, starting from the common initial
conditions. They do not change in 4 significant numbers.
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τgr
τ1t τ2t τ3t� - � -0.450810 0.555365
∆θ = 2.509× 10−7 ∆θ = 3.091× 10−7

tcl
t1

t
t2

t
t3

t
� - � -0.450810 0.555365

∆θ = 2.509× 10−7 ∆θ = 3.091× 10−7

XXXXXXXXXXX

XXXXXXXXXXX
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Table 5: Projections of GR three events to the classical time line. This is an
illustration of the fact that the GR angular advance ∆θ = 2.509 × 10−7 rad and
the temporal advance ∆τ = 0.555 s are caused by the common reason, – the cubic
term in GR dynamics equations. The effects on the classical time line delay. In
both theories, the time shift is formed between events (3, 2), while the GR angular
shift between the events (2, 1) in half periods. The plot makes clear that “the
approximation” of equality of GR and classical periods would mean a disappearance
of the angular advance that is, flawed.
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Figure 9: Plotted f(ξ) (see text) for ρ0 = 0.050. The curve 2 shows the edge point
ξ2 = ξ3 = 4.5, with initial squared velocity β2

edge = 0.0341880. The curve 1 is a
sub-circle orbit with β2

0 = 0.038. The curve 3 is an over-edge orbit, with β2
0 = 0.030

and it illustrates the spiral fall trajectory that begins with β2
0 < β2

edge, when the
roots ξ2 and ξ3 become complex.
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Figure 10: Spiral fall onto the center: crossing the Schwarzschild surface (ξ = 10,
r = 0.10, r0 = 1) in an over-edge orbit, ρ0 = 0.0500, β2

0 = 0.300, the case 3)
in fig. 9. This figure shows proximity of a spiral sharp-dive onto the point center
r = 0. The trajectory shown from some point before crossing of the Schwarzschild
surface (dashed line). A particle crosses the Schwarzschild surface at the speed
βsch = 1.982, and, as shown in the picture, ended up deep inside the Schwarzschild
sphere, at r = rg/15 (ξ = 300), having a speed β(1/300) = 285.
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Figure 11: Example of over-edge motion: a spiral fall onto the center; ρ0 = 0.050,
β2
0 = 0.008. Shown squared relative velocities of the test particle β2

r (ξ) (9), β2
θ (ξ)

(10), β2(ξ) (41); a conserved (squared) total energy ε20 = 0.907 (that is, a bounded
motion). The particle crosses the Schwarzschild surface ξsch = 10 (rsch = 0.10) at
the resultant speed β = 1.304 (faster than light) with the kinetic energy β2

r = 0.907.
The angular component of speed is β2

θ = 0.800 (in this example, it is less than the
speed of light), and the resultant one β2 = 1.707 (faster than light). The particle
reaches the resultant speed equal to the speed of light β = 1 at the radial point
ξ = 7.54 (r = 0.133), that is outside the interior region.
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Figure 12: The case of subluminal motion: spiral fall onto the center; ρ0 = 0.050,
β2
0 = 0.0001. Shown squared relative velocity components β2

r (ξ) (9), β2
θ (ξ) (10),

β2
t (ξ) (41); a conserved (squared) total energy ε20 = 0.900. The particle crosses the

horizon at the resultant speed βt = 0.910 (less than speed of light) with velocity
(squared) components β2

r = 0.900, β2
θ = 0.010.
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Figure 13: Conditions of the luminal speed at Schwarzschild radius. For the values
(ρ0, β

2
0) below the thick line the full speed of a particle at Schwarzschild radius is

lower than the speed of light, between the thick and the solid lines, the speed is
greater than the speed of light.
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Figure 14: Newtonian attractive force F (r) ∼ rg/r
2 (thick line) and its relativistic

generalization FR(r) ∼ rg/r
2 exp(−rg/r) in the concept of field-dependent proper

mass, in the example of a strong interaction rg = 0.05. It has a maximal absolute
value at r = rg, and FR(r)→ 0 as r → 0; in the range r < rg, it rises with distance
and asymptotically FR(r)→ F (r) as r →∞.
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Input parameters:
dimensionless ρ0 = rg/c

2 3.21×10−8

dimensionless β20 3.87×10−8

dimensionless r0 1

Scaling quantities:
The speed of light c 299792458 m/s

Sun standard gravitational parameter µ0 = rgc
2 1.32712440041×1020 m3/s2

Perihelion rp 4.6×1010 m
Velocity at perihelion 58976 m/s

Output:
Absolute relative

Computed Classical theory difference difference
characteristics qcl ∆q δq

Aphelion ra 69811764705.882 m 4877.583 m 6.987×10−8

Velocity at aphelion 38860.233 m/s -2.715×10−3 m/s -6.986×10−8

Angular full period 2π rad -1.673×10−7 rad -2.663×10−8

Time full period T 7599967.916 s 0.383 s 5.042×10−8

Full period orbit length 3.600×1011 m 4510.132 m 1.253×10−8

Table 6: The input and output data for computing Mercury’s orbital characteristics
in Classical and SR Dynamics are shown. In the input, there are only two inde-
pendent model parameters, ρ0 and β2

0 , from the initial conditions common for both
theories. In the output, absolute values of main classical characteristics qcl inte-
grated over the full period, and their absolute and relative differences ∆q = qsr−qcl,
δq = qsr/qcl − 1 with respect to corresponding Classical Dynamics, are given.
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Event 1: Event 2 Event 3:
tsr(1) = tcl(2) SR aphelion SR θ = π

tsr 3799983.957976 s 3799984.149588 s 3799984.299859 s
rsr 69811769583.465 m 69811769583.465 m 69811769583.465 m
θsrd π − 1.903× 10−7 rad π − 8.364× 10−8 rad π = 3.141592653 rad
vsr 38860.230 m/s 38860.230 m/s 38860.230 m/s
lsr 179978568798.694 m 179978576244.823 m 179978582084.349 m

tcl 3799983.766362 s 3799983.957976 s 3799984.108246 s
rcl 69811764705.882 m 69811764705.882 m 69811764705.882 m
θcl π − 1.066× 10−7 rad π = 3.141592653 rad π + 8.364× 10−8 rad
vcl 38860.233 m/s 38860.233 m/s 38860.233 m/s
lcl 179978566543.628 m 179978573989.757 m 179978579829.283 m

Absolute differences between SRD and classical theories

∆t 0.191613 s 0.191613 s 0.191613 s
∆r 4877.583 m 4877.583 m 4877.583 m
∆θ −8.365× 10−8 rad −8.365× 10−8 rad −8.365× 10−8 rad
∆v -0.002715 m/s -0.002715 m/s -0.002715 m/s
∆l 2255.066 m 2255.066 m 2255.066 m

Relative differences between SRD and classical theories

δt 5.042× 10−8 5.042× 10−8 5.042× 10−8

δr 6.987× 10−8 6.987× 10−8 6.987× 10−8

δθ −2.663× 10−8 −2.663× 10−8 −2.663× 10−8

δv −6.987× 10−8 −6.987× 10−8 −6.987× 10−8

δl 1.253× 10−8 1.253× 10−8 1.253× 10−8

Table 7: Orbital Mercury’s characteristics qsr computed at 3 events in SR Dynamics
time scale tsr in comparison with qcl computed in the classical time scale tcl starting
with the common initial conditions are shown. Also shown their absolute and relative
differences ∆q = qsr−qcl, δq = qsr/qcl−1. The following characteristics are computed
at each event: the time passed tsr, tcl, the radius rsr, rcl, the orbital angle θsr, θcl,
the orbital speed vsr, vcl, the orbital length lsr, lcl.
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Classical theory SR theory
Difference between Event 2 and Event 1

Time 0.191613 s 0.191613 s
Radius 1.028× 10−4 m 1.028× 10−4 m

Polar angle 1.067× 10−7 rad 1.067× 10−7 rad
Full speed −7.276× 10−11 m/s −7.202× 10−11 m/s

Trajectory length 7446.129 m 7446.129 m

Difference between Event 3 and Event 2
Time 0.150270 s 0.150270 s

Radius −6.321× 10−5 m −6.321× 10−5 m
Polar angle 8.365× 10−8 rad 8.365× 10−8 rad
Full speed 4.366× 10−11 m/s 4.429× 10−11 m/s

Trajectory length 5839.526 m 5839.526 m

Difference between Event 3 and Event 1
Time 0.341883 s 0.341883 s

Radius 3.957× 10−5 m 3.957× 10−5 m
Polar angle 1.903× 10−7 rad 1.903× 10−7 rad
Full speed −2.773× 10−11 m/s −2.773× 10−11 m/s

Trajectory length 13285.655 m 13285.654 m

Table 8: Absolute differences of orbital characteristics between events (2, 1), (3, 2),
(3, 1) computed in SR Dynamics and Classical theory.
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Table 9: The projections of the three SR events on the base time line tsr and the
classical time line tcl are shown, which, again, demonstrate the disparity of angular
and temporal shifts on the uniform time scales. The retardation of SR time clock
and angular shift, as opposed to the GR advance, is demonstrated. It makes a
tremendous positive impact on SR Physics of orbits, see the text
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