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Abstract

Fragility curves are commonly used in civil engineering to assess the vulnerability of struc-

tures to earthquakes. The probability of failure associated with a prescribed criterion (e.g. the

maximal inter-storey drift of a building exceeding a certain threshold) is represented as a func-

tion of the intensity of the earthquake ground motion (e.g. peak ground acceleration or spectral

acceleration). The classical approach relies on assuming a lognormal shape of the fragility curves;

it is thus parametric. In this paper, we introduce two non-parametric approaches to establish

the fragility curves without employing the above assumption, namely binned Monte Carlo sim-

ulation and kernel density estimation. As an illustration, we compute the fragility curves for a

three-storey steel frame using a large number of synthetic ground motions. The curves obtained

with the non-parametric approaches are compared with respective curves based on the lognormal

assumption. A similar comparison is presented for a case when a limited number of recorded

ground motions is available. It is found that the accuracy of the lognormal curves depends on the

ground motion intensity measure, the failure criterion and most importantly, on the employed

method for estimating the parameters of the lognormal shape.

Keywords: earthquake engineering – fragility curves – lognormal assumption – non-parametric

approach – kernel density estimation – epistemic uncertainty

1 Introduction

The severe socio-economic consequences of several recent earthquakes highlight the need for

proper seismic risk assessment as a basis for efficient decision making on mitigation actions
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and disaster planning. To this end, the probabilistic performance-based earthquake engineering

(PBEE) framework has been developed, which allows explicit evaluation of performance measures

that serve as decision variables (DV) (e.g. monetary losses, casualties, downtime) accounting for

the prevailing uncertainties (e.g. ground motion characteristics, structural properties, damage

occurrence). The key steps in the PBEE framework comprise the identification of seismic hazard,

the evaluation of structural response, damage analysis and eventually, consequence evaluation.

In particular, the mean annual frequency of exceedance of a DV is evaluated as [1, 2, 3]:

λ(DV ) =

∫ ∫ ∫
P (DV |DM) dP (DM |EDP ) dP (EDP |IM) |dλ(IM)| , (1)

in which P (x|y) is the conditional probability of x given y, DM is a damage measure typically

defined according to repair costs (e.g. light, moderate or severe damage), EDP is an engineer-

ing demand parameter obtained from structural analysis (e.g. force, displacement, drift ratio),

IM is an intensity measure characterizing the ground motion severity (e.g. peak ground ac-

celeration, spectral acceleration) and λ(IM) is the annual frequency of exceedance of the IM .

Determination of the probabilistic model P (EDP |IM) constitutes a major challenge in the

PBEE framework since the earthquake excitation contributes the most significant part to the

uncertainty in the DV . The present paper is concerned with this step of the analysis.

The conditional probability P (EDP ≥ edp|IM), where edp denotes an acceptable demand

threshold, is commonly represented graphically in the shape of the so-called demand fragility

curves [4]. Thus, a demand fragility curve represents the probability that an engineering demand

parameter exceeds a prescribed threshold as a function of an intensity measure of the earthquake

motion. For the sake of simplicity, demand fragility curves are simply denoted fragility curves

hereafter, which is also typical in the literature [5, 6]. We note however that the term fragility

may also be used for P (DM ≥ dm|IM) or P (DM ≥ dm|EDP ), i.e. the conditional probability

of the damage measure exceeding a threshold dm given the ground motion intensity [7] or the

engineering demand parameter [2, 3], respectively.

Originally introduced in the early 1980’s for nuclear safety evaluation [8], fragility curves are

nowadays widely used for multiple purposes, e.g. loss estimation [9], assessment of collapse risk

[10], design checking [11], evaluation of the effectiveness of retrofit measures [12], etc. Several

novel methodological contributions to fragility analysis have been made in recent years, including

the development of multi-variate fragility functions [13], the incorporation of Bayesian updating

[14] and the consideration of time-dependent fragility [15]. However, the traditional fragility

curves remain a popular tool in seismic risk assessment and recent literature is rich with relevant

applications on various type of structures, such as irregular buildings [6], underground tunnels

[16], pile-supported wharfs [17], wind turbines [18], nuclear power plant equipments [19], masonry

buildings [20]. The estimation of such curves is the focus of the present paper.

Fragility curves are typically classified into four categories according to the data sources,
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namely analytical, empirical, judgment-based or hybrid fragility curves [21]. Analytical fragility

curves are derived from data obtained by analyses of structural models. Empirical fragility curves

are based on the observation of earthquake-induced damage reported in post-earthquake surveys.

Judgment-based curves are estimated by expert panels specialized in the field of earthquake

engineering. Hybrid curves are obtained by combining data from different sources. Each of

the aforementioned categories has its own advantages and limitations. In this paper, analytical

fragility curves based on data collected from numerical structural analyses are of interest.

The typical approach to compute analytical fragility curves presumes that the curves have

the shape of a lognormal cumulative distribution function [22, 23]. This approach is therefore

considered parametric. The parameters of the lognormal distribution are determined either by

maximum likelihood estimation [22, 24, 13] or by fitting a linear probabilistic seismic demand

model in the log-scale [5, 25, 26, 27]. The assumption of lognormal fragility curves is almost

unanimous in the literature due to the computational convenience as well as due to the ease of

combining such curves with other elements of the seismic probabilistic risk assessment framework.

However, the validity of such assumption remains questionable (see also [28]).

In this paper, we present two non-parametric approaches for establishing the fragility curves,

namely binned Monte Carlo simulation (bMCS) and kernel density estimation (KDE). The main

advantage of bMCS over existing techniques also based on Monte Carlo simulation is that it

avoids the bias induced by scaling ground motions to predefined intensity levels. In the KDE

approach, we introduce a statistical methodology for fragility estimation, which opens new paths

for estimating multi-dimensional fragility functions as well. The proposed methods are subse-

quently used to investigate the validity of the lognormal assumption in a case study, where we

develop fragility curves for different thresholds of the maximum drift ratio of a three-story steel

frame subject to synthetic ground motions. The comparison between KDE-based and lognormal

fragility curves is also shown for a concrete bridge column subject to recorded motions using

results from an earlier study by the authors [29]. The proposed methodology can be applied in

a straightforward manner to other types of structures or classes of structures or using different

failure criteria.

The paper is organized as follows: in Section 2, the different approaches for establishing

the fragility curves, namely the lognormal and the proposed bMCS and KDE approaches, are

presented. In Section 3, the method recently developed by Rezaeian and Der Kiureghian [30] for

generating synthetic ground motions, which is employed in the following numerical investigations,

is briefly recalled. The case studies are presented in Sections 4 and 5 and the results are discussed

in Section 6. The paper concludes with a summary of the main findings and perspectives on

future research.
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2 Computation of fragility curves

Fragility curves represent the probability of failure of a system, associated with a specified

criterion, for a given intensity measure (IM) of the earthquake motion. Failure herein represents

the exceedence of a prescribed demand limit. A commonly used demand parameter in earthquake

engineering is the maximal drift ratio ∆, i.e. the maximal relative horizontal displacement

normalized by the corresponding height [6]. Thus, the fragility function is cast as follows:

Frag(IM ; δo) = P[∆ ≥ δo|IM ], (2)

in which Frag(IM ; δo) denotes the fragility at the given IM for a threshold δo of ∆. In order

to establish the fragility curves, a number N of transient finite element analyses of the structure

under consideration are used to provide paired values {(IMi,∆i) , i = 1, . . . , N}.

2.1 Lognormal approach

The classical approach for establishing fragility curves consists in assuming a lognormal shape for

the curves described in Eq. (2). Two techniques are typically used to estimate the parameters

of the lognormal fragility curves, namely maximum likelihood estimation and linear regression.

These are presented below.

2.1.1 Maximum likelihood estimation

One assumes that the fragility curves can be written in the following general form:

F̂rag(IM ; δo) = Φ

(
ln IM − lnα

β

)
, (3)

where Φ(·) denotes the standard Gaussian cumulative distribution function (CDF), α is the

“median” and β is the “log-standard deviation” of the lognormal curve. Shinozuka et al. [22]

proposed the use of maximum likelihood estimation to determine these parameters as follows:

One denotes by ω the event that the demand threshold δo is reached or exceeded and assumes

that Y (ω) is a random variable with a Bernoulli distribution. In particular, Y takes the value 1

with probability Frag(·; δo) and the value 0 with probability 1 − Frag(·; δo). Considering a set

of i = 1, . . . , N ground motions, the likelihood function reads:

L (α, β, {IMi, i = 1, . . . , N}) =
N∏

i=1

[Frag(IMi; δo)]
yi [1− Frag(IMi; δo)]

1−yi , (4)

where IMi is the intensity measure of the ith seismic motion and yi represents a realization of

the Bernoulli random variable Y . The latter takes the value 1 or 0 depending on whether the

structure under the ith ground motion sustains the demand threshold δo or not. The parame-

ters (α, β) are obtained by maximizing the likelihood function. In practice, a straightforward
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optimization algorithm is applied on the log-likelihood function:

{α∗; β∗}T = arg max lnL (α, β, {IMi, i = 1, . . . , N}) . (5)

2.1.2 Linear regression

One first assumes a probabilistic seismic demand model, which relates a structural response quan-

tity of interest (herein drift ratio) to an intensity measure of the earthquake motion. Specifically,

the demand ∆ is assumed to follow a lognormal distribution of which the log-mean value is a

linear function of ln IM , leading to:

ln ∆ = A ln IM +B + ζ Z, (6)

where Z ∼ N (0, 1) is a standard normal variable. Parameters A and B are determined by means

of ordinary least squares estimation in a log-log scale. Parameter ζ is obtained by:

ζ2 =
N∑

i=1

e2
i / (N − 2) , (7)

where ei the residual between the actual value ln ∆ and the value predicted by the linear model:

ei = ln ∆i −A ln (IMi)−B. Then, Eq. (2) rewrites:

F̂rag(IM ; δo) = P [ln ∆ ≥ ln δo] = 1− P [ln ∆ ≤ ln δo]

= Φ

(
ln IM − (ln δo −B) /A

ζ/A

)
.

(8)

A comparison to Eq. (3) shows that the median and log-standard deviation of the lognormal

fragility curve in Eq. (8) are α = exp [(ln δo −B) /A] and β = ζ/A, respectively. This approach

to fragility estimation is widely employed in the literature, see e.g. [23, 31, 32, 33] among others.

The two methods described in this section are parametric because they impose the shape of

the fragility curves (Eq. (3) and Eq. (8)), which is that of a lognormal CDF when considered

as a function of IM . We note that by using the linear-regression approach, one accepts two

additional assumptions, namely the linear function for the log-mean value of ∆ and the constant

dispersion (or homoscedasticity) of the residuals independently of the IM level. Effects of these

assumptions have been investigated by Karamlou and Bocchini [28]. In the sequel, we propose

two non-parametric approaches to compute fragility curves without relying on the lognormality

assumption.

2.2 Binned Monte Carlo simulation

Having at hand a large sample set {(IMj ,∆j) , j = 1, . . . , N}, it is possible to use binned Monte

Carlo simulation (bMCS) to compute the fragility curves, as described next. Let us consider a

given abscissa IMo. Within a small bin surrounding IMo, say [IMo − h, IMo + h] one assumes
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that the maximal drift ∆ is linearly related to the IM . This assumption is exact in the case

of linear structures, but would only be an approximation in the nonlinear case. Therefore, the

maximal drift ∆j , which is related to IMj ∈ [IMo − h, IMo + h], is converted into the drift

∆̃j(IMo), which is related to the jth input signal scaled to have an intensity measure equal to

IMo:

∆̃j(IMo) = ∆j
IMo

IMj
. (9)

This procedure is illustrated in Figure 1. The fragility curve at IMo is then obtained by a crude
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Figure 1: (Left) Maximal drifts versus IM before scaling. (Right) Maximal drifts versus IM after

scaling within the bin marked with red color. (Note: a large bin is considered in the figure only to

facilitate visualization of the method.)

Monte Carlo estimator:

F̂rag(IMo) =
Nf (IMo)

Ns (IMo)
, (10)

where Nf (IMo) is the number of points in the bin such that ∆̃j(IMo) > δo and Ns(IMo) is the

total number of points that fall into the bin [IMo − h, IMo + h].

We note that the bMCS approach bears similarities to the stripe analysis introduced by Shome

et al. [34]. However, when using stripe analysis, one scales all ground motions to the intensity

level of interest. As a result, certain signals are scaled with factors that are considerably larger

or smaller than unity, which may lead to gross approximations of the corresponding responses

[35, 36, 37]. The reader is referred to [37] for some illustrations of the effects of the scale factor

on the introduced bias, with the latter represented by the ratio of the median nonlinear response

of the considered system subject to the scaled motions to the respective median response of

the system subject to natural motions with all motions characterized by the same IM level. In

general, the bias ratio tends to become larger with increasing deviation of the scale factor from

unity. On the other hand, the scaling in binned MCS is confined in the vicinity of the intensity
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level IMo, where the vicinity is defined by the bin width 2h chosen so that the scale factors are

close to unity. Accordingly, the bias due to ground motion scaling is negligible in bMCS.

Following the above discussion, it should be noted that bias from scaling can be avoided by

a proper selection of ground motions. For instance, Shome et al. [34] showed that the scaling

of motions that correspond to a narrow interval of earthquake magnitudes and source-to-site

distances does not introduce bias into the nonlinear response estimates. Furthermore, Luco and

Bazzurro [35] showed that the bias can be reduced by selecting records that have appropriate

response spectrum shapes. According to Bazzurro et al. [38] and Vamvatsikos and Cornell [39],

the existence of scale-induced bias also depends on several other factors, such as the structural

characteristics and the considered intensity and damage measures. The topic of ground motion

scaling is complex and falls outside the scope of this paper. We underline that by using the

bMCS approach, we avoid introducing bias in the results independently of the ground motion

characteristics or other factors. In the following case studies, the resulting fragility curves serve as

reference for assessing the accuracy of the various considered techniques for fragility estimation.

2.3 Kernel density estimation

The fragility function defined in Eq. (2) may be reformulated using the conditional probability

density function (PDF) f∆|IM as follows:

Frag(a; δo) = P (∆ ≥ δo|IM = a) =

+∞∫

δo

f∆(δ|IM = a) dδ. (11)

By definition, this conditional PDF is given as:

f∆(δ|IM = a) =
f∆,IM (δ, a)

fIM (a)
, (12)

where f∆,IM (·) is the joint distribution of the vector (∆, IM) and fIM (·) is the marginal dis-

tribution of the IM . If these quantities were known, the fragility function in Eq. (11) would

be obtained by a mere integration. In this section, we propose to determine the joint and

marginal PDFs from a sample set {(IMi,∆i) , i = 1, . . . , N} by means of kernel density esti-

mation (KDE).

For a single random variable X for which a sample set {x1, . . . , xN} is available, the kernel

density estimate of the PDF reads [40]:

f̂X (x) =
1

Nh

N∑

i=1

K

(
x− xi
h

)
, (13)

where h is the bandwidth parameter and K(·) is the kernel function which integrates to one.

Classical kernel functions are the Epanechnikov, uniform, normal and triangular functions. The

choice of the kernel is known not to affect strongly the quality of the estimate provided the
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sample set is large enough [40]. In case a standard normal PDF is adopted for the kernel, the

kernel density estimate rewrites:

f̂X (x) =
1

Nh

N∑

i=1

1

(2π)
1/2

exp

[
−1

2

(
x− xi
h

)2
]
. (14)

In contrast, the choice of the bandwidth h is crucial since an inappropriate value of h can lead

to an oversmoothed or undersmoothed PDF estimate [41].

Kernel density estimation may be extended to a random vector X ∈ Rd given an i.i.d sample

{x1, . . . ,xN} [40]:

f̂X (x) =
1

N |H|1/2
N∑

i=1

K
(
H−1/2(x− xi)

)
, (15)

where H is a symmetric positive definite bandwidth matrix with determinant denoted by |H|.
When a multivariate standard normal kernel is adopted, the joint distribution estimate becomes:

f̂X (x) =
1

N |H|1/2
N∑

i=1

1

(2π)
d/2

exp

[
−1

2
(x− xi)TH−1(x− xi)

]
, (16)

where (·)T denotes the transposition. For multivariate problems (i.e. X ∈ Rd), the bandwidth

matrix typically belongs to one of the following classes: spherical, ellipsoidal and full matrix,

which respectively contain 1, d and d(d + 1)/2 independent unknown parameters. The matrix

H can be computed by means of plug-in or cross-validation estimators. Both estimators aim at

minimizing the asymptotic mean integrated squared error (MISE):

MISE = E



∫

Rd

[
f̂X(x; H)− fX(x)

]2
dx


 . (17)

However, the two approaches differ in the formulation of the numerical approximation of MISE.

For further details, the reader is referred to Duong [41]. In the most general case when the

correlations between the random variables are not known, the full matrix should be used. In

this case, the smoothed cross-validation estimator is the most reliable among the cross-validation

methods [42].

Eq. (14) is used to estimate the marginal PDF of the IM , namely f̂IM (a), from a sample

{IMi, i = 1, . . . , N}:

f̂IM (a) =
1

(2π)
1/2

NhIM

N∑

i=1

exp

[
−1

2

(
a− IM i

hIM

)2
]
. (18)

Eq. (16) is used to estimate the joint PDF f̂∆,IM (δ, a) from the data pairs {(IMi, ∆i), i = 1, . . . , N}:

f̂∆,IM (δ, a) =
1

2πN |H|1/2
N∑

i=1

exp


−1

2


 δ −∆i

a− IMi




T

H−1


 δ −∆i

a− IMi





 . (19)
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The conditional PDF f∆(δ|IM = a) is eventually estimated by plugging the estimations of

the numerator and denominator in Eq. (12). The proposed estimator of the fragility function

eventually reads:

F̂rag(a; δo) =
hIM

(2π |H|)1/2

+∞∫
δo

N∑
i=1

exp


−1

2


 δ −∆i

a− IMi




T

H−1


 δ −∆i

a− IMi





dδ

N∑
i=1

exp

[
−1

2

(
a− IM i

hIM

)2
] . (20)

The choice of the bandwidth parameter h and the bandwidth matrix H plays a crucial role

in the estimation of fragility curves, as seen in Eq. (20). In the above formulation, the same

bandwidth is considered for the whole range of the IM values. However, there are typically few

observations available corresponding to the upper tail of the distribution of the IM . This is due

to the fact that the annual frequency of seismic motions with IM values in the respective range

(e.g. PGA exceeding 1g) is low (see e.g. [43]). This is also the case when synthetic ground

motions are used, since these are generated consistently with statistical features of recorded

motions. Preliminary investigations have shown that by applying the KDE method on the data

in the original scale, the fragility curves for the higher demand thresholds tend to be unstable

in their upper tails [44]. To reduce effects from the scarcity of observations at large IM values,

we propose the use of KDE in the logarithmic scale, as described next.

Let us consider two random variables X, Y with positive supports, and their logarithmic

transformations U = lnX and V = lnY . One has:

+∞∫

y0

fY (y|X = x) dy =

+∞∫

y0

fX,Y (x, y)

fX(x)
dy =

+∞∫

ln y0

fU,V (u, v)

x y
fU (u)

x

y dv =

+∞∫

ln y0

fV (v|U = u) dv. (21)

Accordingly, by substituting X = IM and Y = ∆, the fragility function in Eq. (11) can be

obtained in terms of U = ln IM and V = ln ∆ as:

F̂rag(a; δo) =

+∞∫

δo

f̂∆(δ|IM = a) dδ =

+∞∫

ln δo

f̂V (v|U = ln a) dv. (22)

The use of a constant bandwidth in the logarithmic scale is equivalent to the use of a varying

bandwidth in the original scale, with larger bandwidths corresponding to larger values of IM .

The resulting fragility curves are smoother than those obtained by applying KDE with the data

in the original scale.

2.4 Epistemic uncertainty of fragility curves

It is of major importance in fragility analysis to investigate the variability in the estimated curves

arising due to epistemic uncertainty. This is because a fragility curve is always computed based
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on a limited amount of data, i.e. a limited number of ground motions and related structural

analyses. Large epistemic uncertainties may affect significantly the total variability of the seismic

risk assessment outcomes. Characterizing and propagating epistemic uncertainties in seismic loss

estimation has therefore attracted attention from several researchers [2, 45, 46].

The theoretical approach to determine the variability of an estimator relies on repeating the

estimation with an ensemble of different random samples. However, this approach is not feasible

in earthquake engineering because of the high computational cost. In this context, the bootstrap

resampling technique is deemed appropriate [2]. Given a set of observations X = (X1, . . . ,Xn)

of X following an unknown probability distribution, the bootstrap method allows estimation of

the statistics of a random variable that depends on X in terms of the observed data X and their

empirical distribution [47].

To estimate statistics of the fragility curves with the bootstrap method, we first draw M inde-

pendent random samples with replacement from the original data set {(IMi,∆i) , i = 1, . . . , N}.
These represent the so-called bootstrap samples. Each bootstrap sample has the same size N

as the original sample, but the observations are different: in a particular sample, some of the

original observations may appear multiple times while others may be missing. Next, we compute

the fragility curves for each bootstrap sample using the approaches in Sections 2.1, 2.2 and 2.3.

Finally, we perform statistical analysis of the so-obtained M bootstrap curves. In the subse-

quent example illustration, the above procedure is employed to evaluate the median and 95%

confidence intervals of the estimated fragility curves and also, to assess the variability of the IM

value corresponding to a 50% probability of failure.

3 Synthetic ground motions

3.1 Properties of recorded ground motions

Let us consider a recorded earthquake accelerogram a(t), t ∈ [0, T ] where T is the total duration

of the motion. The peak ground acceleration is PGA = max
t∈[0,T ]

|a(t)|. The Arias intensity Ia is

defined as:

Ia =
π

2g

T∫

0

a2(t) dt. (23)

Defining the cumulative square acceleration as:

I(t) =
π

2g

t∫

0

a2(τ) dτ , (24)

one determines the time instant tα by:

tα : I(tα) = αIa α ∈ [0, 1]. (25)
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In addition to the Arias intensity, important properties of the accelerogram in the time domain

include the effective duration, defined as D5−95 = t95%− t5%, and the instant tmid at the middle

of the strong-shaking phase [49]. Based on the investigation of a set of recorded ground motions,

Rezaeian and Der Kiureghian [49] proposed that tmid is taken as the time when 45% of the Arias

intensity is reached i.e. tmid ≡ t45%.

Other important properties of the accelerogram are related to its frequency content. Analyses

of recorded ground motions indicate that the time evolution of the predominant frequency of an

accelerogram can be represented by a linear model, whereas its bandwidth can be considered

constant [30]. Rezaeian and Der Kiureghian [30] describe the evolution of the predominant

frequency in terms of its value ωmid at the time instant tmid and the slope of the evolution ω′.

The same authors describe the bandwidth in terns of the bandwidth parameter ζ. A procedure

for estimating the parameters ωmid, ω
′ and ζ for a given accelerogram is presented in [30],

whereas a simplified version is proposed in [49].

Next, we describe a method for simulating synthetic accelerograms in terms of the set of pa-

rameters (Ia, D5−95, tmid, ωmid, ω
′, ζf ); this method will be used to generate the seismic motions

in a subsequent case study.

3.2 Simulation of synthetic ground motions

The use of synthetic ground motions has been attracting an increasing interest from the earth-

quake engineering community. This practice overcomes the limitations posed by the small num-

ber of records typically available for a design scenario and avoids the need to scale the motions.

Use of synthetic ground motions allows one to investigate the structural response for a large

number of motions, which is nowadays feasible with the available computer resources (see e.g.

[48]).

Different stochastic ground motion models can be found in the literature, which can be

classified in three types [49]: record-based parameterized models that are fit to recorded motions,

source-based models that consider the physics of the source mechanism and wave travel-path, and

hybrid models that combine elements from both source- and record-based models. Vetter and

Taflanidis [50] compared the source-based model by Boore [51] with the record-based model by

Rezaeian and Der Kiureghian [49] with respect to the estimated seismic risks. It was found that

the latter leads to higher estimated risks for low-magnitude events, but the risks are quantified

in a consistent manner exhibiting correlation with the hazard characteristics. This model is

employed in the present study to generate a large suite of synthetic ground motions that are used

to obtain pairs of the ground motion intensity measure and the associated structural response,

(IM,∆), in order to conduct fragility analysis. The approach, originally proposed in [30], is

summarized below.
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The seismic acceleration a(t) is represented as a non-stationary process. In particular, the

non-stationarity is separated into two components, namely a spectral and a temporal one, by

means of a modulated filtered Gaussian white noise:

a(t) =
q(t,α)

σh(t)

t∫

0

h [t− τ,λ (τ)]ω(τ) dτ, (26)

in which q(t,α) is the deterministic non-negative modulating function, the integral is the non-

stationary response of a linear filter subject to a Gaussian white-noise excitation and σh(t) is the

standard deviation of the response process. The Gaussian white-noise process denoted by ω(τ)

will pass through a filter h [t− τ,λ(τ)], which is selected as the pseudo-acceleration response of

a single-degree-of-freedom (SDOF) linear oscillator:

h [t− τ,λ(τ)] = 0 for t < τ

h [t− τ,λ(τ)] =
ωf (τ)√
1− ζ2

f (τ)
exp [−ζf (τ)ωf (τ)(t− τ)] sin

[
ωf (τ)

√
1− ζ2

f (τ)(t− τ)
]

for t ≥ τ.

(27)

In the above equation, λ(τ) = (ωf (τ), ζf (τ)) is the vector of time-varying parameters of the filter

h, with ωf (τ) and ζf (τ) respectively denoting the filter’s natural frequency and damping ratio

at instant τ . Note that ωf (τ) corresponds to the evolving predominant frequency of the ground

motion represented, while ζf (τ) corresponds to the bandwidth parameter of the motion. As

noted in Section 3.1, ζf (τ) may be taken as a constant (ζf (τ) ≡ ζ), while ωf (τ) is approximated

as a linear function:

ωf (τ) = ωmid + ω′(τ − tmid), (28)

where tmid, ωmid and ω′ are as defined in Section 3.1. After being normalized by the standard

deviation σh(t), the integral in Eq. (26) becomes a unit-variance process with time-varying

frequency and constant bandwidth. The non-stationarity in intensity is then captured by the

modulating function q(t,α), which determines the shape, intensity and duration T of the signal.

This is typically described by a Gamma-like function [49]:

q(t,α) = α1t
α2−1exp(−α3t), (29)

where α = {α1, α2, α3} is directly related to the energy content of the signal through the

quantities Ia, D5−95 and tmid defined in Section 3.1 (see [49] for details).

For computational purposes, the acceleration in Eq. (26) can be discretized as follows:

â(t) = q(t,α)
n∑

i=1

si (t,λ(ti)) Ui, (30)

where the standard normal random variable Ui represents an impulse at instant ti = i× T

n
, i =

12



1, . . . , n, (T is the total duration) and si(t,λ(ti)) is given by:

si(t,λ(ti)) =
h [t− ti,λ(ti)]√∑i
j=1 h

2 [t− tj ,λ(tj)]
. (31)

As a summary, the considered seismic motion generation model consists of the three temporal

parameters (α1, α2, α3), which are related to (Ia, D5−95, tmid), the three spectral parameters

(ωmid, ω
′, ζf ) and the standard Gaussian random vector U of size n. Rezaeian and Der Ki-

ureghian [49] proposed a methodology for determining the temporal and spectral parameters

according to earthquake and site characteristics, i.e. the type of faulting of the earthquake

(strike-slip fault or reverse fault), the closest distance from the recording site to the ruptured

area and the shear-wave velocity of the top 30 m of the site soil. For the sake of simplicity,

in this paper these parameters are directly generated from the statistical models given in [49],

which are obtained from analysis of a large set of recorded ground motions.

4 Steel frame structure subject to synthetic ground mo-

tions

4.1 Problem setup

We determine the fragility curves for the three-storey three-span steel frame shown in Figure 2.

The dimensions of the structure are: storey-height H = 3 m, span-length L = 5 m. The vertical

load consists of dead load (weight of frame elements and supported floors) and live load (in ac-

cordance with Eurocode 1 [52]) resulting in a total distributed load on the beams q = 20 kN/m.

In the preliminary design stage, the standard European I beams with designation IPE 300 A and

IPE 330 O are chosen respectively for the beams and columns. The steel material has a non-

linear isotropic hardening behavior following the uniaxial Giuffre-Menegotto-Pinto steel model

as implemented in the finite element software OpenSees [53]. Ellingwood and Kinali [5] have

shown that uncertainty in the properties of the steel material has a negligible effect on seismic

fragility curves. Therefore, the mean material properties are used in the subsequent fragility

analysis: E0 = 210, 000 MPa for the Young’s modulus (initial elastic tangent in the stress-strain

curve), fy = 264 MPa for the yield strength [54, 55] and b = 0.01 for the strain hardening

ratio (ratio of post-yield to initial tangent in the stress-strain curve). Figure 2 depicts the hys-

teretic behavior of the steel material at a specified section for an example ground motion. The

structural components are modelled with nonlinear force-based beam-column elements charac-

terized by distributed plasticity along their lengths, while use of fiber sections allows modelling

the plasticity over the element cross-sections [56]. The connections between structural elements

are modeled with rigid nodes. The first two natural periods of the building obtained by modal
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analysis are T1 = 0.61 s and T2 = 0.181 s, corresponding to natural frequencies f1 = 1.64 Hz and

f2 = 5.53 Hz. Rayleigh damping is considered with the damping ratio of the first two modes set

equal to 2%.
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Figure 2: (Left) Steel frame structure. (Right) Hysteretic behavior of steel material at section 1-1

for an example ground motion.

The structure is subject to seismic motions represented by synthetic acceleration time histo-

ries at the ground level. Each time history is modelled in terms of six randomized parameters

(α1, α2, α3, ωmid, ω
′, ζf ) directly related to the parameters in Table 1 and a Gaussian input vector

U as described in Section 3. The statistics of the parameters in Table 1 are taken from [49]; in the

latter study, the authors derived the listed distributions and associated parameters by analyzing

a set of recorded ground motions corresponding to strong strike-slip and reserve earthquakes

with moment magnitudes in the range 6-8 and rupture distances in the range of 10-100 km. The

reader is referred to [49] for viewing the correlations between these parameters. The duration

of each time history is computed from the corresponding set of parameters (α1, α2, α3) and is

used to determine the size of the Gaussian vector U . Two example synthetic acceleration time

histories are shown in Figure 3. Transient dynamic analyses of the frame are carried out for a

total of N = 20, 000 synthetic motions using the finite element software OpenSees.

Numerous types of IM can be used to describe the earthquake severity, see e.g. [57]. Peak

ground acceleration (PGA) is a convenient measure that is straightforward to obtain from a

given time history and has been traditionally used in attenuation relationships and design codes.

However, structural responses may exhibit large dispersions for a certain PGA, since they are

also highly dependent on other features of earthquake motions, e.g. the frequency content and

duration of the strong motion phase. Structure-specific IMs, such as the spectral acceleration Sa

and the pseudo spectral acceleration Psa, tend to be better correlated with structural responses

[57, 58]. In the following, we compute fragility curves considering both PGA and Sa as IMs.
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Table 1: Statistics of synthetic ground motion parameters according to [49].

Parameter Distribution Support µX σX

Ia (s×g) Lognormal (0, +∞) 0.0468 0.164

D5−95 (s) Beta [5, 45] 17.3 9.31

tmid (s) Beta [0.5, 40] 12.4 7.44

ωmid/2π (Hz) Gamma (0, +∞) 5.87 3.11

ω′/2π (Hz) Two-sided exponential [-2, 0.5] -0.089 0.185

ζf Beta [0.02, 1] 0.213 0.143
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Figure 3: Examples of synthetic ground motions.

Sa represents Sa(T1) i.e. the spectral acceleration for a single-degree-of-freedom system with

period equal to the fundamental period T1 of the frame and viscous damping ratio equal to 2%.

The engineering demand parameter commonly considered in fragility analysis of steel build-

ings is the maximal inter-storey drift ratio, i.e. the maximal difference of horizontal displace-

ments between consecutive storeys normalized by the storey height (see e.g. [5, 59, 60]). Accord-

ingly, we herein develop fragility curves for three different thresholds of the maximal inter-storey

drift ratio over the frame. To gain insight into structural performance, we consider the thresholds

0.7%, 1.5% and 2.5%, which are associated with different damage states in seismic codes. In

particular, the thresholds 0.7% and 2.5% are recommended in [61] to respectively characterize

light and moderate damage for steel frames, while the threshold 1.5% corresponds to the damage

limitation requirement for buildings with ductile non-structural elements according to Eurocode

8 [62]. These descriptions only serve as rough damage indicators, since the relationship between

drift limit and damage in the PBEE framework is probabilistic.
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4.2 Fragility curves

As described in Section 2, the lognormal approach relies on assuming that the fragility curves have

the shape of a lognormal CDF and estimating the parameters of this CDF. Using the maximum

likelihood estimation (MLE) approach, the observed failures for each drift threshold are modeled

as outcomes of a Bernoulli experiment and the parameters (α, β) of the fragility curves are

determined by maximizing the respective likelihood function. Using the linear regression (LR)

technique, the parameters of the lognormal curves are derived by fitting a linear model to the

paired data (ln IM, ln ∆). Figure 4 depicts the paired data (lnPGA, ln ∆) and (lnSa, ln ∆)

together with the fitted models based on linear regression. It can be seen that a single linear

model is not appropriate for the cloud of points (lnSa, ln ∆) and thus, bilinear regression is

used in this case (see also [63, 64, 65] for use of a similar model). The break point in the

bilinear model (Sa = 0.45 g) is determined according to the method presented in [66] using the

R package segmented. When PGA is used as IM , the coefficient of determination of the fitted

linear model is R2 = 0.663; when Sa is used as IM , it is R2
1 = 0.978 and R2

2 = 0.785 for the

first and second part of the bilinear model, respectively. Note that use of Sa as IM leads to a

smaller dispersion, i.e. a smaller ζ in Eq. (6), as compared to PGA; this is expected since Sa

is a structure-specific IM . In the bMCS method, the bin width h is set equal to 0.25 IMo. The

resulting scale factors vary in the range [0.75, 1.25] corresponding to a bias ratio approximately

equal to unity [37]. The KDE approach requires estimation of the bandwidth parameter and

the bandwidth matrix. Using the cross-validation estimation implemented in R [67], these are

determined as h = 0.133, H =
[
0.031 0.024; 0.024 0.027

]
when PGA is used as IM , and

h = 0.155, H =
[
0.023 0.023; 0.023 0.024

]
when Sa is used as IM .

For the two types of IM and the three drift limits considered, Table 2 lists the medians and

log-standard deviations of the lognormal curves obtained with both the MLE and LR approaches.

The median determines the position where the curve attains the value 0.5, whereas the log-

standard deviation is a measure of the steepness of the curve. Note that the MLE approach

yields a distinct log-standard deviation for each drift threshold, whereas a single log-standard

deviation for all drift thresholds is obtained with the LR approach. The medians of the KDE-

based curves are also computed and are listed in Table 2 for comparison. The KDE-based

medians, which serve as the reference values, may be overestimated or underestimated by the

lognormal approach, depending on the method used to estimate the parameters, the considered

IM and the drift threshold; the absolute deviations tend to be larger for larger drift thresholds.

For the case when PGA is considered as IM , Figure 5 (left) shows the fragility curves ob-

tained with the MLE- and LR-based lognormal approaches and the bMCS- and KDE-based

non-parametric approaches. One first observes a remarkable consistency between the curves

obtained with the two non-parametric approaches despite the distinct differences in the under-

16



Table 2: Steel frame structure - Parameters of the obtained fragility curves.

PGA Sa

δo Approach Median Log-std Median Log-std

0.7%

MLE 0.35 g 0.70 0.49 g 0.36

LR 0.37 g 0.64 0.44 g 0.13

KDE 0.36 g 0.45 g

1.5%

MLE 1.10 g 0.56 1.66 g 0.31

LR 0.87 g 0.64 1.47 g 0.24

KDE 1.08 g 1.53 g

2.5%

MLE 1.76 g 0.56 2.82 g 0.37

LR 1.55 g 0.64 3.29 g 0.24

KDE 1.82 g 3.04 g

10
−3

10
−2

10
−1

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

PGA (g)

∆

 

 

Cloud of points

ln ∆=0.8889 ln PGA−4.08

10
−3

10
−2

10
−1

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

Sa (g)

∆

 

 

Cloud of points

ln ∆=0.96782 ln Sa−4.1772

ln ∆=0.63486 ln Sa−4.4457

Figure 4: Paired data {(IMi,∆i) , i = 1, . . . , N} and fitted models in log-scale (the units of the

variables in the fitted models are the same as in the axes of the graphs).

lying algorithms. This validates the accuracy of the proposed methods. For the lower threshold

(δo = 0.7%), both parametric curves are in good agreement with the non-parametric ones. For

the two higher thresholds, the LR-based lognormal curves exhibit significant deviations from

the non-parametric ones leading to an overestimation of the failure probabilities. Note that for

δo = 1.5% and δo = 2.5%, the median PGA (leading to 50% probability of exceedance) is respec-

tively underestimated by 19% and 15% when the LR aproach is used (see Table 2). In contrast,

the MLE-based lognormal curves are in a fair agreement with their non-parametric counterparts

with the largest discrepancies observed for the highest threshold δo = 2.5%.
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Figure 5 (right) shows the resulting fragility curves when Sa is considered as IM . The

non-parametric curves based on bMCS and KDE remain consistent independently of the drift

threshold. For δo = 0.7%, the fragility curves are steep, which is due to the strong correlation

between Sa and ∆ when the structure behaves linearly. For this threshold, the LR-based curve is

closer to the non-parametric curves than the MLE-based one. For the two larger thresholds, the

MLE-based curves are fairly accurate, whereas the LR-based curves exhibit significant deviations

from their non-parametric counterparts. In particular, the LR-based curves overestimate the

failure probabilities for δo = 1.5% and underestimate the failure probabilities for δo = 2.5%.

Note that for δo = 1.5%, the median Sa is underestimated by 4%, whereas for δo = 1.5%, the

median Sa is overestimated by 8% when the LR aproach is used (see Table 2).
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Figure 5: Fragility curves with parametric and non-parametric approaches using PGA and Sa as

intensity measures (LR: linear regression; MLE: maximum likelihood estimation; bMCS: binned

Monte Carlo simulation; KDE: kernel density estimation).

Summarizing the above results, the MLE-based lognormal approach yields fragility curves

that are overall close to the non-parametric ones; however, it smooths out some details of the

curves that can be obtained with the non-parametric approaches. On the contrary, the LR-based

lognormal curves can be highly inaccurate. As noted in Section 2.1.2, the LR approach assumes

that the residuals of the fitted model in the log-scale (Eq. (6)) follow a normal distribution with

a constant standard deviation independently of the IM level. Figure 6 shows histograms of ln ∆

at two example levels of PGA and Sa together with the fitted normal distributions according to

Eq. (6). The responses ∆ at each IM level are obtained consistently with the bMCS approach.

Obviously, the assumption of a normal distribution is not valid, which is more pronounced when

Sa is used as IM . This explains the inaccuracy of the LR-based fragility curves for both types

of IM , despite the relatively high coefficients of determination of the fitted models in the case
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of Sa.
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Figure 6: Histograms and fitted normal distributions for ln ∆ at two levels of PGA and Sa.

4.3 Estimation of epistemic uncertainty by bootstrap resampling

In the following, we use the bootstrap resampling technique (see Section 2.4) to investigate

the epistemic uncertainty in the fragility curves estimated with the proposed non-parametric

approaches.

We examine the stability of the estimated curves by comparing those with the bootstrap

medians, and the variability in the estimation by computing bootstrap confidence intervals. For

the two considered IMs and the three drift thresholds of interest, Figure 7 shows the median

bMCS- and KDE-based fragility curves and the 95% confidence intervals obtained by bootstrap

resampling with 100 replications together with the respective estimated curves (also shown in
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Figure 5). Figure 7 clearly shows that both the bMCS-based and the KDE-based median fragility

curves obtained with the bootstrap method do not differ from the curves estimated with the

original set of observations. This shows the stability of the proposed approaches. For a specified

IM and drift limit, the confidence intervals of the bMCS- and KDE-based curves have similar

widths. The interval widths tend to increase with increasing drift limit and increasing IM value.
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(B) Kernel density estimation (PGA)
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(C) Binned Monte Carlo simulation (Sa)
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Figure 7: Estimated and mean bootstrap fragility curves and 95% confidence intervals for the binned

Monte Carlo simulation and the kernel density estimation approaches.

In order to quantify the effects of epistemic uncertainty, one can estimate the variability of

the median IM , i.e. the IM value leading to 50% probability of exceedance. Assuming that the

median IM (PGA or Sa) follows a lognormal distribution [68], the median IM is determined

for each bootstrap curve and the log-standard deviation of the distribution of the median is
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computed. Table 3 lists the log-standard deviations of the median IM values for the same cases

as in Figure 7. These results demonstrate that epistemic uncertainty is increasing with increasing

threshold δo. In all cases, the log-standard deviations are relatively small indicating a low level

of epistemic uncertainty, which is due to the large number of transient analyses (N = 20, 000)

considered in this study. Although use of such large sets of ground motions is not typical in

practice, it is useful for the refined analysis presented here.

Table 3: Log-standard deviation of median IM .

δo Approach PGA Sa

0.7%
bMCS 0.0003 g 0.005 g

KDE 0.0005 g 0.005 g

1.5%
bMCS 0.037 g 0.054 g

KDE 0.037 g 0.050 g

2.5%
bMCS 0.114 g 0.090 g

KDE 0.120 g 0.080 g

5 Concrete column subject to recorded ground motions

To demonstrate the comparison between the lognormal and the non-parametric approaches for

the case when fragility curves are based on recorded ground motions, we herein briefly summarize

a case study by the authors originally presented in [29].

In this study, we estimate the fragility of a reinforced concrete column with a uniform cir-

cular cross-section, representing a pier of a typical California highway overpass bridge [63] (see

Figure 8). The column is modelled in the finite element code OpenSees as a fiberized nonlin-

ear beam-column element. For details on the modelling of the concrete material and the steel

reinforcement, the reader is referred to [29]. The loading-unloading behavior and the pushover

curve of the column are shown in Figure 8. Three-dimensional time-history analyses of the

bridge column are conducted for N = 531 earthquake records (each comprising three orthogonal

component accelerograms). These records are obtained from the PEER strong motion database

and cover a wide range of source-to-site distances and earthquake moment magnitudes [63]. The

developed fragility curves represent the probability of the maximal drift ratio ∆ in the transverse

direction exceeding specified thresholds δo as a function of the peak ground acceleration PGA or

the pseudo-spectral acceleration Psa corresponding to the first transverse mode (T1 = 0.535 s).

The considered drift ratio thresholds, shown in Table 4, are recommended for the operational
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and life safety levels by two different sources [69, 70].
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Figure 8: Bridge configuration [63] and hysteretic behavior.

Table 4: Bridge performance and respective drift-ratio threshold.

Reference Level Description Damage Drift ratio δo

[69] II Operational Minor 0.01

[69] III Life safety Moderate 0.03

[70] II Operational Minor 0.005

[70] III Life safety Moderate 0.015

The fragility curves are established with the MLE-based and LR-based lognormal approaches

and the KDE-based non-parametric approach. Due to the relatively small number of data, the

bMCS method is not considered herein. Figure 9 depicts the clouds of points (IMi, ∆i) in the

logarithmic scale for the two IMs together with the linear fitted models. The coefficients of

determination of the latter are R2 = 0.729 for the case of PGA and R2 = 0.963 for the case of

Psa. Note that for small values of Psa (Psa <0.2 g) a linear function provides a perfect fit,

which is due to the fact that in this range of Psa, the column behavior can be represented by a

linear single-degree-of-freedom model. Further details on the parameters of the different fragility

functions can be found in [29].

Figure 10 depicts the obtained fragility curves for the two types of IM and the four drift-

ratio thresholds of interest. When PGA is used as IM , the curves obtained with the two
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Figure 9: Paired data {(IMi,∆i) , i = 1, . . . , N} and fitted models in log-scale (the units of the

variables in the fitted models are the same as in the axes of the graphs).

lognormal approaches are close to each other for all thresholds, but exhibit deviations from the

non-parametric curves, which tend to be larger for higher PGA levels and larger drift limits.

When Psa is used as IM , the MLE-based curves are in a fair agreement with the KDE-based

ones; however, the former smooth out some details that can be obtained with the non-parametric

approach. In contrast, the LR-based curves are inaccurate for all but the smaller drift threshold.

Overall, the LR-based curves exhibit larger deviations from the non-parametric ones for Psa

than for PGA as IM , although the R2 coefficient of the linear fit is higher for Psa. This can

be explained by the fact that the assumption of homoscedastic errors, inherent in Eq. (6), is not

valid for the specific data set (Psa,∆), as one can observe in Figure 9.

6 Discussion

Using the non-parametric fragility curves as reference, the accuracy of the lognormal curves

is found to depend on the method used to estimate the parameters of the underlying CDF,

the considered IM and the drift threshold of interest. In most cases, the MLE-based curves

are fairly close to the non-parametric ones, whereas the LR-based curves exhibit significant

deviations. The lognormal curves tend to deviate more from the non-parametric ones for larger

drift limits. Considering both case studies, the MLE-based curves are more accurate for a

structure-specific IM (Sa, Psa) than for PGA. Different IMs have been recommended in the

literature for structures of different type, size and material [58, 71]. Accordingly, the accuracy of

the lognormal fragility curves may depend on those factors as well. Possible dependence of the

accuracy of the lognormal curves on the considered response quantity needs to be investigated
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Figure 10: Fragility curves with parametric and non-parametric approaches using PGA and Psa

as intensity measures (LR: linear regression; MLE: maximum likelihood estimation; KDE: kernel

density estimation.

as well.

As noted in Section 2.2, the bMCS approach bears similarities with the so-called stripe

analysis [34, 38, 72]. A comparison between the stripe and cloud analyses, where the latter

corresponds to the LR-based lognormal approach [59, 73, 74, 75], was carried out by Celik

and Ellingwood [74]. In the mentioned study, concrete structures were subject to 40 synthetic

ground motions. Differences in the response statistics obtained with the two methods for three

IM levels were found insignificant and hence, use of the cloud analysis was justified. In contrast,

Baker [73] showed that cloud analysis can significantly underestimate the mean annual rate of

exceeding a large maximum interstory drift. Karamlou and Bocchini [28] recently conducted

large-scale simulations on bridge structures in order to investigate the underlying assumptions

of the cloud analysis. Their results showed that, in general, the conditional distribution of a

demand parameter for a given IM level is not lognormal. In addition, it was found that the

assumptions of a linear function for the probabilistic seismic demand model in the log-scale

(power function in the normal scale) and of constant dispersion of the respective errors can lead

to significant errors in fragility analysis. These findings are consistent with our results shown in

Figure 6. The limitations of the LR-based approach have also been mentioned by Jalayer et al.

[75].

Based on the results of our case studies and the above discussion, we recommend the use of

the MLE approach if fragility curves are developed in a parametric manner. The superiority of

the MLE over the LR approach relies on the fact that the former avoids the assumptions of the

linear model and the homoscedasticity of the errors that are inherent in the latter. However,
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when a detailed description of the fragility function is important, a non-parametric approach

should be used. The bMCS method requires a large number of data, which can be typically

obtained by use of synthetic motions; note that due to the current computer capacities and the

use of distributed computing, large-scale simulations are becoming increasingly popular among

both researchers and practitioners. On the other hand, the KDE approach can be employed

even with a limited number of recorded motions at hand, as shown in our second case study. We

again emphasize that the two non-parametric approaches lead to almost identical curves in the

case when they could be applied independently with the same (large) dataset.

7 Conclusions

Seismic demand fragility evaluation is one of the basic elements in the framework of performance-

based earthquake engineering (PBEE). At present, the classical lognormal approach is widely

used to establish such fragility curves mainly due to the fact that the lognormality assumption

makes seismic risk analysis more tractable. The approach consists in assigning the shape of a

lognormal cumulative distribution function to the fragility curves. However, the validity of this

assumption remains an open question.

In this paper, we introduce two non-parametric approaches in order to examine the validity

of the classical lognormal approach, namely the binned Monte Carlo simulation and the kernel

density estimation. The former computes the crude Monte Carlo estimators for small subsets

of ground motions with similar values of a selected intensity measure, while the latter estimates

the conditional probability density function of the structural response given the ground motion

intensity measures using the kernel density estimation technique. The proposed approaches can

be used to compute fragility curves when the actual shape of these curves is not known as well as

to validate or calibrate parametric fragility curves. Herein, the two non-parametric approaches

are confronted to the classical lognormal approach in two case studies, considering synthetic and

recorded ground motions.

In the case studies, the fragility curves are established for various drift thresholds and different

types of the ground motion intensity measure, namely the peak ground acceleration (PGA), and

the structure-specific spectral acceleration (Sa) and pseudo-spectral acceleration (Psa). The

two non-parametric curves are always consistent, which proves the validity of the proposed

techniques. Accordingly, the non-parametric curves are used as reference to assess the accuracy

of the lognormal curves. The parameters of the latter are estimated with two approaches, namely

by maximum likelihood estimation and by assuming a linear probabilistic seismic demand model

in the log-scale. The maximum likelihood estimation approach is found to approximate fairly

well the reference curves in most cases, especially when a structure-specific intensity measure
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is used; however, it smooths out some details that can be obtained with the non-parametric

approaches. In contrast, the assumption of a linear demand model in the log-scale is found

overall inaccurate. When integrated in the PBEE framework, inaccuracy in fragility estimation

may induce errors in the probabilistic consequence estimates that serve as decision variables

for risk mitigation actions. The bootstrap resampling technique is employed to assess effects of

epistemic uncertainty in the non-parametric fragility curves. Results from bootstrap analysis

validate the stability of the fragility estimates with the proposed non-parametric methods.

Recently, fragility surfaces have emerged as an innovative way to represent the vulnerability

of a system [13]; these represent the failure probability conditional on two intensity measures of

the earthquake motions. The computation of these surfaces is not straightforward and requires

a large computational effort. The present study opens new paths for establishing the fragility

surfaces: similarly to the case of fragility curves, one can use kernel density estimation to obtain

fragility surfaces that are free of the lognormality assumption and consistent with the surfaces

obtained by Monte Carlo simulation.

We note that the computational cost of the two proposed approaches is significant when they

are based on large Monte Carlo samples. In order to reduce this cost, alternative approaches

may be envisaged. Polynomial chaos (PC) expansions [76, 77] appear as a promising tool. Based

on a smaller sample set (typically a few hundreds of finite element runs), PC expansion provides

a polynomial approximation that surrogates the structural response. The feasibility of post-

processing PC expansions in order to compute fragility curves has been shown in [78, 79] in the

case a linear structural behavior is assumed. The extension to nonlinear behavior is currently in

progress.

We underline that the proposed non-parametric approaches are essentially applicable to other

probabilistic models in the PBEE framework, relating decision variables with structural dam-

age and structural damage with structural response. Once all the non-parametric probabilistic

models are available, they can be incorporated in the PBEE framework by means of numer-

ical integration. Then a full seismic risk assessment may be conducted by avoiding potential

inaccuracies introduced from simplifying parametric assumptions at any step of the analysis.

Optimal high-fidelity computational methods for incorporating non-parametric fragility curves

in the PBEE framework will be investigated in the future.
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