
HAL Id: hal-01571663
https://hal.science/hal-01571663v2

Submitted on 30 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Truncated Conjugate Gradient (TCG), a
Non-iterative/Fixed-cost Strategy for Computing

Polarization in Molecular Dynamics: Fast Evaluation of
Analytical Forces

Félix Aviat, Louis Lagardère, Jean-Philip Piquemal

To cite this version:
Félix Aviat, Louis Lagardère, Jean-Philip Piquemal. The Truncated Conjugate Gradient (TCG),
a Non-iterative/Fixed-cost Strategy for Computing Polarization in Molecular Dynamics: Fast
Evaluation of Analytical Forces. Journal of Chemical Physics, 2017, 147 (16), pp.161724.
�10.1063/1.4985911�. �hal-01571663v2�

https://hal.science/hal-01571663v2
https://hal.archives-ouvertes.fr

The Truncated Conjugate Gradient (TCG), a

Non-iterative/Fixed-cost Strategy for Computing

Polarization in Molecular Dynamics: Fast

Evaluation of Analytical Forces

Félix Aviat,† Louis Lagardère,∗,†,§ and Jean-Philip Piquemal∗,†,‡,¶

Sorbonne Universités, UPMC Univ. Paris 06, UMR7616, Laboratoire de Chimie

Théorique, F-75005, Paris, France, Institut Universitaire de France,Paris Cedex 05, 75231,

France, and Department of Biomedical Engineering, The University of Texas at

Austin,Austin, Texas, 78712, United States

E-mail: louis.lagardere@upmc.fr; jpp@lct.jussieu.fr

Abstract

In a recent paper (J. Chem. Theory. Comput., 2017, 13, 180-190) we proposed the

Truncated Conjugate Gradient (TCG) approach to compute the polarization energy

and forces in polarizable molecular simulations. The method consists in truncating

the Conjugate Gradient algorithm at a fixed predetermined order leading to a fixed

∗To whom correspondence should be addressed
†Sorbonne Universités, UPMC Univ. Paris 06, UMR7616, Laboratoire de Chimie Théorique, F-75005,

Paris, France
‡Institut Universitaire de France,Paris Cedex 05, 75231, France
¶Department of Biomedical Engineering, The University of Texas at Austin,Austin, Texas, 78712, United

States
§Sorbonne Universités, UPMC Univ. Paris 06, Institut des Sciences du Calcul et des Données, F-75005,

Paris, France

1

http://dx.doi.org/10.1063/1.4985911

The Truncated Conjugate Gradient (TCG), a

Non-iterative/Fixed-cost Strategy for Computing

Polarization in Molecular Dynamics: Fast

Evaluation of Analytical Forces

Félix Aviat,† Louis Lagardère,∗,†,§ and Jean-Philip Piquemal∗,†,‡,¶

†Sorbonne Universités, UPMC Univ. Paris 06, UMR7616, Laboratoire de Chimie

Théorique, F-75005, Paris, France

‡Institut Universitaire de France,Paris Cedex 05, 75231, France

¶Department of Biomedical Engineering, The University of Texas at Austin,Austin, Texas,

78712, United States

§Sorbonne Universités, UPMC Univ. Paris 06, Institut des Sciences du Calcul et des

Données, F-75005, Paris, France

E-mail: louis.lagardere@upmc.fr; jpp@lct.jussieu.fr

Abstract

In a recent paper (J. Chem. Theory. Comput., 2017, 13, 180-190) we proposed the

Truncated Conjugate Gradient (TCG) approach to compute the polarization energy

and forces in polarizable molecular simulations. The method consists in truncating

the Conjugate Gradient algorithm at a fixed predetermined order leading to a fixed

computational cost and can thus be considered ”non-iterative”. This gives the pos-

sibility to derive analytical forces avoiding the usual energy conservation (i.e. drifts)

issues occurring with iterative approaches. A key point concerns the evaluation of the

1

analytical gradients, which is more complex than with an usual solver. In this paper,

after reviewing the present state of the art of polarization solvers, we detail a viable

strategy for the efficient implementation of the TCG gradients calculation. The com-

plete cost of the approach is then mesured as it is tested using a multi-timestep scheme

and compared to timings using usual iterative approaches. We show that the TCG

methods is more efficient than traditional techniques, making it a method of choice for

future long molecular dynamics simulations using polarizable force fields where energy

conservation matters. We detail the various steps required for the implementation of

the complete method by software developers.

Introduction

Polarizable force fields simulations using point dipoles models are not slow anymore. Indeed,

in recent years, the computational cost of the explicit evaluation of the many-body polar-

ization energy and associated forces has been significantly reduced using state of the art

mathematical techniques. More precisely, the bottleneck of such approaches is the manda-

tory resolution of a large set of linear equations (i.e. requiring a matrix inversion) whose

size depends on the number of polarizable sites, which is very large in practice (for example

up to several tens of thousand of atoms for medium sized proteins in water). Therefore,

direct matrix inversion approaches are unfeasible and one has to resort to iterative meth-

ods1 such as the Preconditioned Conjugate Gradient (PCG) or the Jacobi/Direct Inversion

of the Iterative Subspace (JI/DIIS). Both methods have the advantages to ensure conver-

gence and to be compatible with a massively parallel implementation2 coupled to Smooth

Particle Mesh Ewald (SPME),3 enabling the possibility to tackle large systems of interest

that range from materials to biophysics. However, iterative techniques have to address two

aspects simultaneously: a low computational cost and a high accuracy on both energy and

forces. But, in practice, the standard way of computing the forces assumes that the dipoles

are fully converged and thus these forces are not the exact opposite of the gradient of the

2

polarization energy. This means that to avoid energy drifts, users have to enforce the quality

of the non-analytical forces by choosing a tighter convergence criterion of 10–5 to 10–8 Debye

for the dipoles, leading to a strong increase of the number of iterations required to reach

convergence. This degrades the computational efficiency of the solvers, limiting the use of

molecular dynamics with polarizable force fields. In that context, several strategies have

been explored to prevent this drift while ensuring accurate results and a low computational

overhead.

In this paper, we review the present status of the polarization solvers before introducing

the Truncated Conjugate Gradient, a method introduced in ref. 4 to propose an efficient

solution to these challenges. We then address the issue of the fast computation of the

analytical gradients for TCG by presenting a general way to formulate the TCG polarization

forces. Analytical formulas are given for the TCG1 and the TCG2 methods, as well as for

their refinements with the use of a preconditioner and peek steps.4 Indeed as a preconditioner

improves the convergence of the polarization computation, a peek step allows to perform a

additional but inexpensive Jacobi/Picard pseudo-iteration that does not requires any matrix-

vector product as it uses the available residual obtained from the TCG process. Finally,

timings to compute these forces in a production context of a Respa integrator are given

and compared to the ones obtained with standard iterative solvers and different level of

convergence as well as different predictor guesses for these solvers.

Polarization solvers: present status

Several iterative solvers applied to the polarization equations have been presented and tested,

such as the Jacobi Over Relaxation method (JOR), the (Preconditioned) Conjugate Gradi-

ent, the Jacobi/DIIS method (see references 1 and 2) or the recently introduced potentially

faster Divide and Conquer block-Jacobi/DIIS method.5

Considering an iterative solver, several techniques can be used to reduce the computa-

3

tional cost to reach convergence by reducing the number of necessary iteration to do so. In

the context of Krylov methods such as the Conjugate Gradient, it is for example possible to

use a preconditioner. It consists in choosing a matrix P such that P−1 is close to T−1 (where

T is the polarization matrix to be inverted, presented in the third section of the paper) and

in applying the iterative method to the modified linear system where the matrix and the

right hand side are multiplied by P−1. The convergence of the solver is then accelerated

because of the clustering of the eigenvalues of the matrix P−1T1 . Efficient preconditioners

for the polarization equations have been designed, such as the ones proposed by Wang and

Skeel6 which provide a reduction in the number of iteration to reach convergence up to 10

to 20 percent, depending on the system (i.e. on the condition number of the matrix that

one needs to invert).

Another way to improve convergence of an iterative solver is to chose an initial ”predictor”

guess as close as possible to the actual solution of the linear equations. This guess can be

constructed using information from one or a few of the past values of the dipoles. The most

naive way to do so is to chose the value of the dipoles at the previous timestep (previous

guess) but more elaborate and efficient strategies have been designed such as Kolafa’s Always

Stable Predictor Corrector (ASPC)7 or Skeel’s Least Square Predictor Corrector (LSPC),6

that can reduce the number of iterations required to reach convergence up to a factor two in a

standard production context1 . Nevertheless, these two ways to construct initial guesses lose

their efficiency when one uses larger timesteps, as it the case with the RESPA (Reversible

reference System Propagator Algorithm) multiple timestep integrator8 (instabilities occur

when such predictors are used with time steps larger than 2 fs).

Note that the two refinements (preconditioning and choosing the initial guess of the solver

wisely) can be coupled without problem.

In the same spirit, it is also possible to speed up convergence by introducing an extended

Lagrangian scheme to propagate a set of dipoles that are used as initial guess to standard

iterative solvers (iEL/SCF or Extended Lagrangian Self-Consistent Field, see ref. 9). This

4

approach, derived from ab initio MD10 11 , significantly reduces the number of iterations of

the solver (by the same order of magnitude as the ASPC predictor) but requires to use an

additional thermostat in order to prevent energy flows between the degrees of freedom.

However, whatever the different speedups strategies applied of the popular iterative pro-

duction methods such as PCG or JI/DIIS, they still suffer from an important drawback in link

to the way the associated forces are computed. Indeed, they do not address the polarization

energy drifting issues that will be encountered in long simulations of large non-homogeneous

complexes, such as proteins in water or highly charged ionic liquids. In such case, the math-

ematical problem, i.e. the matrix inversion, is costlier to solve as the polarization matrix

itself is worse conditioned than in simple bulk water. Therefore, to ensure stability of very

long timescale simulations towards microseconds where errors accumulate, they should all

employ a tighter dipole convergence criterion (10−7 to 10−8 D) leading to a higher number

of iterations than usually discussed in benchmarks for short simulations, where the 10−5 D

standard is employed, effectively causing really degraded real life performances.

Another set of methods address this issue by considering analytical formulas for the

polarization energy.

The first idea in that direction was introduced by Wang and Skeel,12 who used Chebyshev

polynomials to get analytical expressions of the polarization energy and its derivatives, which

automatically ensures that the source of the energy drift previously evoked is removed. Un-

fortunately, the approach provided energy surfaces that were too far from the ones obtained

with tightly converged iterative method and was thus not further investigated. Significant

progresses were recently made in the same direction by Simmonett et al.13 who proposed

a revisitation of Wang’s proposal through the ExPT (Extrapolated Perturbation Theory)

perturbation approach, which is equivalent to the truncation of the Jacobi iterative method

at a predetermined order combined with the use of a few parameters.

If the parametric aspect of their approach initially limited its global applicability to

any type of systems, the authors recently improved their method which is now denoted

5

OPT3 (OPT=Orders of Perturbation Theory)14 by pushing it to higher order of perturbation

and providing a systematic way for the parametrization, extending the applicability of the

method. One advantage of the approach is its reduced cost compared to the best iterative

approaches.

Alternatively, one can also consider the actual induced dipoles as new degrees of freedom

and build an extended Lagrangian defining the way to propagate them during the dynamics

without any SCF cycles15 . The first results using this strategy are promising and the

method indeed does not require any iteration. On the performance side, one could argue that

using a production PCG solver with a 10−5 D convergence threshold, a RESPA integrator

with a 2 fs time step for the non bonded forces coupled to Kolafa’s ASPC is twice faster

than the sequential iEL/0-SCF method with a 1 fs time step15 . Nevertheless, this PCG

speed advantage is only ”apparent” as it does not solve the energy drift issue for long time

scales whereas the iEl/0-SCF method has been shown to have improved energy conservation

properties. This nice improvement is due to the use of thermostats and therefore, iEL/0-SC

unfortunately suffers from the drawbacks of any extended Lagrangian approach that can

not use time steps larger than 1 fs.6 As we stated before, if iterative methods do not have

any theoretical upper limit to the time step they can be used with,6 it requires not to use

information from the past such as predictor-correctors, removing such speed advantage when

using RESPA.

As we see from this discussion, the question of which method to adopt is complex as it

appears difficult to combine all possible improvements.

In fact, we can state that reducing the computational cost of an iterative method to

compute the polarization energy and forces always come with degraded energy conservation.

Energy conservation is tricky as it depends on the chemical nature of the system (charged

or not, homogeneous or not). For example, polarization of bulk water systems requires less

iterations to converge with PCG solvers. On the other hand, the ExPT method behaves

poorly for the ionic liquid system that will be studied in section 44 and the Jacobi method

6

does not even converge in that case .

A major difficulty to compute the polarization energy and its gradient for future mi-

croseconds simulations is to offer a non-empirical strategy applicable to any kind of systems,

embodying the following properties.

Indeed, such a method should be systematically improvable in order to allow the user

to set the accuracy of the simulation depending on its goal. For example, the simple Ja-

cobi method has been shown not to converge in several cases2 and adding iterations would

not improve the results. It should show good conservation of the total energy during a

microcanonical simulation, ensuring good accuracy on the forces driving the dynamics. It

should also be non parametric to provide a close reproduction of any type of potential en-

ergy surfaces, without having to resort to force-field models reparametrization. In practice,

a polarization scheme should also be affordable with a computational cost as reduced as

possible. It should allow to use larger time steps through multiple timestep schemes such

as RESPA. In the end, the selected criterion to compare computational efficiencies of the

various schemes should be the global cost of computing both energy and derivatives with

similar energy conservation capabilities for a given trajectory length.

TCG : context

To address all these required features we recently introduced a non-empirical and non-

iterative strategy denoted the Truncated Conjugate Gradient (TCG).4 TCG is derived by

explicitly writing down all numerical operations of a finite number of Conjugate Gradient cy-

cles of iteration which can be user-chosen (be TCG-n, n=1,3). As the number of operations

in the TCG approach is fixed once and for all, it is possible to derive an exact analytical

expression of the gradient of the energy like in ExPT/OPT3,14 avoiding by construction any

energy drift in microcanonical simulations and thus ensuring energy conservation in that

context. The higher the TCG level is, the higher its accuracy is, as TCG inherits from the

7

properties of the Conjugate Gradient and benefits from the fact that it is a Krylov method

in which the associated error is monotonically reduced at each iteration. It can be shown

in that context that the CG-method is mathematically optimal, meaning that it minimizes

exactly the polarization energy on the so-called Krylov subspaces at each iteration and there-

fore guarantees that the number of the required matrix-vector products (1 per iteration in

any iterative approach) are reduced to a minimum compared to other iterative methods.

Moreover, the TCG accuracy can be improved at negligible costs (i.e. without any addi-

tional matrix-vector product): (i) by using preconditioners as presented above leading to the

Truncated Preconditioned Conjugate Gradient (TPCG); (ii) by using the residue of the final

CG step, available without any additional cost, to perform an additional “peek” iteration,

equivalent to one step of Jacobi Over Relaxation (JOR) with a relaxation parameter which

can be found adaptively.

Overall, the TCG approach was found to accurately reproduce energy surfaces at a re-

duced computational cost providing analytical forces. As it does not rely on history, it does

not suffer from MD perturbations such as the ones arising when predictor guesses, which

break the time-reversibility of the simulation, are used in polarization solvers. It is for the

same reasons compatible with the use of large timestep with multi-timesteps integrators.

Also, being based on the Conjugate Gradient and thus relying essentially on matrix vector

products and computation of electric fields, it can replace standard solvers in a regular im-

plementation including linear scaling ones using Smooth Particle Mesh Ewald. Furthermore,

it does not require additional advanced thermostating nor any additional parameter.

The purpose of this paper is to address one delicate point which is the main bottleneck

of the TCG method: the complex derivation of its gradients. If TCG answers all the desired

discussed properties for a polarization solver, a naive derivation of the energy gradients

can lead to an undesired additional computational cost, while the method should remain

analytical, accurate but cheap as well. The goal here is to detail a strategy enabling a fast

computation of the analytical gradients that would allow developers to efficiently implement

8

the TCG approach in the software of their choice. We will first present the technical aspect

of TCG and its notations, then we will detail the optimal computation of gradients in a form

that could be implemented by developers.

TCG : notations

We will place ourselves in the context of the AMOEBA force field16 and consider a system of

N atoms, each embodying a multipole expansion (up to quadrupoles) as permanent charge

density and a polarizability tensor αi. We will denote E as the 3N vector gathering all

electric fields ~Ei created by the permanent charge density at atomic position i, and µ is the

equivalent 3N vector gathering the induced dipoles experienced at each atomic site. T is the

3N × 3N polarization matrix, defined by block as follows. It bears the 3 × 3 polarizability

tensors αi along its diagonal block, and the interaction between the ith and jth dipole is

represented as the Tij tensor.

T =



α−11 −T12 −T13 . . . −T1N

−T21 α−12 −T23 . . . −T2N

−T31 −T32
. . .

...
...

...

−TN1 −TN2 . . . α−1N


This matrix is symmetric and positive definite. Thanks to the Thole damping of the

electric field at short range, any polarization catastrophe is prevented. Indeed, the Thole

damping acts on the eigenvalues. Without Thole, negative eigenvalues could be found which

is a problem for Conjugate Gradient methods.1

Using these notations, the total polarization energy can be expressed as follows :

Epol =
1

2
µTTµ− µTE (1)

9

where µTE represents the scalar product of vectors µ and E (also noted 〈µ,E〉). One can

easily see that the dipole vector µ minimizing (1) verifies the following linear system:

Tµ = E (2)

giving the minimized polarization energy:

Epol = −1

2
µTE (3)

As explained earlier, the TCG method that we use to solve this equation, derives from

the Conjugate Gradient algorithm. It uses three vectors upon starting : the guess µ0, the

initial residual r0 = Tµ0 − E, and an initial descent direction p0 that we set to be equal to

r0. It reads as follows:



γi =
rTi ri

pT
i Tpi

µi+1 = µi + γipi

ri+1 = ri − γiTpi

βi+1 =
rTi+1ri+1

rTi ri

pi+1 = ri+1 + βi+1pi

(4)

Instead of using a convergence criterion as a condition to stop iterating, as this is usually

done, one can choose to arbitrarily fix the number of iterations and to unfold a finite num-

ber of computational operations that makes it fixed cost and non-iterative, as explained

above. This defines our Truncated Conjugate Gradient (TCG) method. Besides the obvious

advantage of drastically reducing the computational cost of each induced polarization cal-

culation, it allows one to simulate perfectly stable molecular dynamics, without drift over

time, as explained in Ref. 4. This advantage is not limited to MD and could be exploited in

Monte-Carlo simulations.

10

The exact, total derivative of the energy with respect to the nuclear position should be:

dEpol

dri
=
∂Epol

∂µ

∂µ

∂ri
+
∂Epol

∂ri
(5)

When using an iterative method, the provided solution µ is inexact (approached only),

thus the energy is not perfectly minimized with respect to the dipoles (the term ∂Epol/∂µ is

not zero). One usually still makes this erroneous assumption, giving dEpol/dri = ∂Epol/∂ri.

This leads to computing forces that do not perfectly correspond to the system, and thus to

an unavoidable drift in the subsequent simulations.

If one fixes the number of iterations, it is however possible to ”unroll” the analytical

formula for the final polarization vector, expressed as a function of the starting quantities

(µ0, r0). Noting µTCGn this vector, with n the truncation order (i.e the number of iterations

of the algorithm), one obtains the TCGn family of methods that reads up to order three:

µTCG1 = µ0 + t4r0 (6)

µTCG2 = µ0 + (γ1t2 + t4)r0 − γ1t4P1 (7)

µTCG3 = µ0 + (t4 + γ1t2 + γ2 + γ2β2t2)r0 − (γ1t4 + γ2t4 + γ2β2t4)P1 − γ1γ2P2 (8)

All quantities used in the previous equations are defined in the Appendix. In practice,

we showed that one could stop as the TCG2 level, as it is accurate enough.

Fast computation of the gradients

In this section, we first explain that computing the gradients of the energy, even though an

analytical expression is at our disposal, is not straightforward. We then show how to pass

the different hurdles encountered.

Having the analytical, exact expression of the dipoles allows one to differentiate them in

an equally exact manner. A formal differentiation, with a prime ” ′ ” denoting it, would give

11

for the first two orders:

µ′TCG1 = µ′0 + t4r
′
0 + t′4r0 (9)

µ′TCG2 = µ′0 + (t4 + γ1t2)r
′
0 + (t′4 + γ′1t2 + γ1t

′
2)r0 + γ′1t4P1 + γ1t

′
4P1 + γ1t4P

′
1 (10)

However, the differentiation of a 3N vector with respect to 3N spatial coordinates would

build a 3N × 3N matrix. This leads to three obstacles that slow down the gradient compu-

tation :

• firstly, a scalar product of one such derivative A′ with another vector B would lead

to a (3N)2 operation, which is a non-negligible cost, repeated for all products of this

< A′,B > form.

• Secondly, these products, when using the analytical expressions (equations 9 and 10)

”as is”, are repeated an unnecessary number of times, effectively making this slow-down

a pure stop.

• Thirdly, one can see that there are two types of vectors building µTCGn: the electric

field E, but also the product of the residue with successive powers of the polarization

matrix (r0, Tr0 = P1, more generally Tmr0, with m an integer). Differentiating

Tmr0 exhibits, amongst others, a TpT′Tqr0 term (with p and q two integers verifying

p + q + 1 = m); computing such a T.T′A product is equivalent to a matrix-matrix

product, which is also computationally too expensive.

This makes a naive implementation of our method effectively unusable. Yet to run a classical

simulation, one needs the forces, i.e. the gradients of the polarization energy, rather than

the derivatives of the dipoles themselves. What one really needs is thus the derivative of the

following scalar product :

Epol =
1

2
< E,µTCGn > (11)

12

that is, formally,

E ′pol =
1

2
< E′,µTCGn > +

1

2
< E,µ′TCGn > (12)

Firstly, developing eq. (12) shows all scalar products involved involve a differentiated

quantity : either a differentiated matrix (like < A,T′B >), or the derivative of the field

itself (E′). An analogy, or dimensional analysis, allows us to compare these terms to forces,

with < A,E′ > corresponding to a force produced by the interaction of the dipoles A with

the electric field, and < B,T′C > to a force arising from the interaction between two sets of

dipoles B and C. The expensive part of computing such quantities lies in the calculation of

distances. All of these forces can be computed in a single double loop (whose cost is a O(N2)

for direct calculations, and O(N logN) when using SPME) to minimize the computational

cost and compute the said distances only once. This adresses the first hurdle evoked earlier.

We can also reorganize the gradient computation in order to minimize the number of

the expensive scalar products involving a vector and a differentiated vector, by grouping all

these scalar products and performing them all at once (given three vectors A, B and C, if

one needs to compute < A,B′ > + < C,B′ >, it is much more efficient to first prepare a

vector D = A+C and then to compute < D,B′ >). This optimization, though quite simple

in principle, actually requires quite involved expressions (see Annex). It is a simple solution

to the second obstacle we listed.

Thirdly, since T is a symmetric matrix, we have < TA,B >=< A,TB > for any two

vectors A and B. In particular, for our generic vectors Tmr0,

< TpT′Tqr0,A >=< T′Tqr0,T
pA > (13)

Considering scalar products thus allows us to get rid of the matrix-matrix (T.T′) products,

our third hurdle.

Overall, the solution to overcome our obstacles came from considering the polarization

13

energy instead of the induced dipole themselves.

To illustrate our solution, one can write the analytical formulas as follows, for the TCG

at order one and two respectively :

(14)E ′pol, TCG1 =
1

2

(
〈r′0, a

(1)
1,0E + a

(1)
1,1r0 + a

(1)
1,2Tr0〉+ 〈T′r0, a(1)2,1r0〉

)

(15)

E ′pol, TCG2 =
1

2

(
〈E′,µTCG2〉+ 〈µ′0,E〉

+ 〈r′0, a
(2)
1,0E + a

(2)
1,−1TE + a

(2)
1,1r0 + a

(2)
1,2Tr0 + a

(2)
1,3T

2r0 + a
(2)
1,4T

3r0〉
+ 〈T′r0, a(2)2,0E + a

(2)
2,1r0 + a

(2)
2,2Tr0 + a

(2)
2,3T

2r0〉+ 〈T′Tr0, a
(2)
3,1r0 + a

(2)
3,2Tr0〉

+ 〈T′T2r0, a
(2)
4,1r0〉

)
where the coefficients a

(k)
i,j are the result of the cumbersome derivation evoked earlier ; their

explicit expression can be found in the Annex.

As stated earlier in this paper, the so-called peek-step is a supplementary JOR iteration

based on the last obtained residual rn. It simply improves the solution to reach the following

expression :

µ
(peek)
TCGn = µTCGn + ωαrn (16)

α is the relaxation parameter mentioned earlier; more precisions on its choice can be found

in ref. 4 . Defining µpeek, TCGn = ωαrn, the supplementary contribution of the peek step can

be also written as follows :

(17)
E ′peek, TCG1 = 〈µpeek, TCG1,E

′〉+ 〈r′0, a
(1,p)
1,α0αE + a

(1,p)
1,1αTαE + a

(1,p)
1,1 r0 + a

(1,p)
1,2 Tr0〉

+ 〈T′r0, a(1,p)2,1 r0 + a
(1,p)
2,α0αE〉

E ′peek, TCG2 = 〈µpeek, TCG2,E
′〉

+ 〈r′0, a
(2,p)
1,0ααE + a

(2,p)
1,1αTαE + a

(2,p)
1,2αT2αE + a

(2,p)
1,1 r0 + a

(2,p)
1,2 Tr0 + a

(2,p)
1,3 T2r0

+ a
(2,p)
1,4 T3r0〉

+ 〈T′r0, a(2,p)2,α0αE + a
(2,p)
2,1αTαE + a

(2,p)
2,1 r0 + a

(2,p)
2,2 Tr0 + a

(2,p)
2,3 T2r0〉

+ 〈T′Tr0, a
(2,p)
3,α0αE + a

(2,p)
3,1 r0 + a

(2,p)
3,2 Tr0〉+ 〈T′T2r0, a

(2,p)
4,1 r0〉

(18)

14

(the coefficients a
(k,peek)
i,j , as well as an explicit formula for the µpeek vectors, are repro-

duced in the Annex). One should then simply sum the corresponding terms to obtain the

final expression for the polarization energy gradients in a computationally feasible way : for

example, the scalar product 〈r′0, r0〉 should now be multiplicated by the coefficient a
(1)
1,1+a

(1,p)
1,1

to get the correct gradients for TCG1.

All these formulas have been tested and validated against gradients obtained via finite

differences. Such details could be useful to allow anyone to implement the fast evaluation

of the forces necessary to the use of TCG. The source code of this method will be freely

available in Tinker-HP version 1.1.17

To sum up, the implementation of the gradients calculation that we propose here follows

these three steps : firstly, we compute the successive matrix-vector products to build the

successive Tmr0 vectors needed; secondly we perform the various scalar products appearing

in our analytical formulas, allowing us to assemble (through weighted sums) a second set

of vectors; finally, we perform simultaneously on all these assembled vectors a ”force-like”

calculation. The choice to use – or not – a peek step only changes the assembled vectors on

step two, through an extra set of coefficients as presented above.

Numerical results

In this section, we report the timings of the implementation presented above for different

systems as it has been added to the software Tinker-HP . More precisely, we report the

cost of the calculation of the polarization energy and the associated forces with different

methods: a standard diagonally preconditioned conjugate gradient (PCG) with a 10−5D

convergence threshold, the same method with a tighter 10−8D convergence threshold (that

ensures energy conservation as explained above) and the TPCG1 and the TPCG2 methods

with the ”direct field”1 αE as guess µ0 with a Jacobi peek step (ω=1). For the two PCG

solver settings the average number of iterations is also reported in parenthesis. Note that

15

the computational cost of these two methods would be the same with any other kind of

peek steps whose cost is negligible, as described in ref. 4 . For the PCG solvers, we report

timings using the simple ”direct field” as a guess (noted ”PCG (10−xD)” in the table) and

also timings using the ASPC predictor (noted ”PCG (10−xD, ASPC)”).7 These methods

are timed in the nowadays standard context of the RESPA integrator8 used with a 2 fs time

step for the non bonded forces.

The systems that are tested here are the same than in our previous work:4 three solvated

protein droplets (the HIV nucleocapsid ncp7 made of 18518 atoms, the ubiquitin made of

9737 atoms and the dihydrofolate reductase dhfr with 23558 atoms) and an ionic liquid,

the dimethyl-imidazolium [dmim+][Cl-] (3672 atoms). No boundary conditions are used in

these tests, therefore, each matrix-vector product and force computation involved in the PCG

solvers and in the TCG formulas has a O(N2) computational cost. However, these matrix-

vector products can be easily re-expressed following the possible choices for the boundary

conditions that will give rise to slightly different forms of the polarization matrix. For exam-

ple, TCG being really close to PCG, it can either be applied in the context of the Particle

Mesh Ewald2 18 method with a O(NlnN) cost, or using the Fast Multipole summation tech-

nique19 with a O(N) cost. These operations are by far the costliest in the computation of

the dipoles and of the polarization forces. This is why we report the timings as their pro-

portional cost compared to the PCG solver with a convergence threshold of 10−5 D and the

direct field as a guess, as these proportions would be the same when using other boundary

conditions. We chose these settings to be our reference.

All these (sequential) timings were obtained on an HP 620 Workstation made of Intel

Xeon E5-2665 CPUs at 2.4 Ghz and were averaged over 100 ps of NVT trajectories at 300 K

for the protein droplets and at 425 K for the ionic liquid.

We observe that both the TPCG methods are significantly faster compared to standard

production settings (10-5D). Compared to more strict settings using a convergence criterion

of 10−8 D for the PCG solver, which guarantees energy conservation during the MD simula-

16

Table 1: Average time for the computation of the polarization energy and the associ-
ated forces for different methods, using the PCG converged at 10−5 D as reference, for a
RESPA(2fs) timestep. In parenthesis, mean number of iterations needed.

ubiquitin ncp7 dhfr [dmim+][Cl-]
PCG (10−5D) 100% (8) 100% (8) 100% (8) 100% (8)

PCG (10−5D, ASPC) 88% (6) 85% (6) 88% (6) 84% (5)
PCG (10−8D) 136% (15) 138% (15) 143% (16) 138% (15)

PCG (10−8D, ASPC) 125% (13) 127% (13) 125% (13) 117% (12)
TPCG1 43% 43% 44% 44%
TPCG2 61% 62% 63% 63%

tion, differences are even more striking because the computational cost of the TPCG1 and

TPCG2 methods are found to be respectively more than three times faster and more than

twice faster respectively.

This means that using these methods with the implementation described in this paper

enables not only to guarantee energy conservation but also to save a considerable amount of

time during the computation of the polarization energy and the associated forces.

Concerning the use of ASPC, a striking result at a timestep of 2 fs is the smaller reduction

of iterations necessary to reach convergence compared to the reduction observed at 1 fs1

where a 50% gain was observed for a 10−5D threshold. In other words, ASPC guess is less

efficient when using a bigger timestep. Following intuition, the shorter the timestep, the

more efficient the ASPC. Moreover, in line with our previous study1 , we also observed that

the proportional gain in that regard is even smaller for tighter dipole convergence criterion

(such as 10−8 D), making very long simulations a daunting challenge.

Another remark concerns the use of even larger timesteps with the RESPA integrator. It

has been indeed shown that one can use a 3 fs timestep for the non-bonded forces, provided

that masses of the hydrogen atoms of the system are appropriately redistributed among

heavy atom carriers.20 But such large timesteps limit the use of predictor such as the ASPC

and no gain in the number of iteration can be obtained with these methods. On the contrary,

the computational cost of the T(P)CG family of methods does not suffer from such a change

as no history is taken into account. The computational cost at 3 fs would remain the same

17

that in the 2 fs context, offering an automatic 1.5 acceleration for the same trajectory length

at no cost, increasing the global speedup offered by the use of T(P)CG.

Conclusion

As we have seen, one can reformulate the analytical expressions for the gradients of the

Truncated Conjugate Gradient using a clear strategy. We detailed for interested developers

the various steps required for the implementation of the complete TCG method including

fast forces computations.

This strategy allows the implementation of these gradients to be fast enough for the

computational cost of an evaluation of the polarization energy and the associated forces

to be greatly reduced compared to standard production settings using iterative methods.

The TPCG2 method is more than 1.6 times faster than the PCG solver with a 10−5 D

convergence criterion and the direct field as a guess using a RESPA integrator with a 2 fs

time step (1.4 when ASPC is used). Moreover, it is more than 2 times faster than a PCG

with a convergence criterion of 10−8 D and the same predictor guess, such settings being

mandatory to guarantee energy conservation with standard PCG for long simulations. As

the number of operations in the TCG method is fixed and does not rely on history (i.e. no

previous dipole guess nor predictor guess), it can be applied with larger time-steps for the

same fixed computational cost.

The TCG approach provides an accurate reproduction of energy surfaces4 at a reduced

computational cost, providing analytical forces that avoid by construction the drift issues

without relying on complex parametrization, nor adding extra degrees of freedom limiting

the settings than one can use to integrate MD trajectories. That is why it should be a method

of choice for long timescale and stable simulations using polarizable force fields. Since all

TCG’s analytical formulas involve the expressions of electric fields as well as matrix-vector

products, these latter are easily and directly transposable in different boundary conditions.

18

In particular, the extension to Smooth Particle Mesh Ewald is straightforward. For the

same reasons, the parallel implementation of these methods within the context of spatial

decomposition follow any PCG one and will be described in a future paper dedicated to the

massively parallel Tinker-HP package. In that context, capabilities of the AMOEBA force

field using a TCG/SPME coupling will be tested by comparing various properties obtained

with these methods.

Acknowledgement

This work was supported in part by French state funds managed by CalSimLab and the

ANR within the Investissements d Avenir program under reference ANR-11-IDEX-0004-02.

Jean-Philip Piquemal and Louis Lagardère are grateful for support by the Direction Générale

de l Armement (DGA) Maitrise NRBC of the French Ministry of Defense.

Annex

We introduce the following notations to express the analytical formulas of the induced

dipoles, as well as their derivatives. Each term can be expressed using the starting vec-

tors (r0 and µ0) and the polarization matrix T.

Vectors :

• r0 = E−Tµ0

• p0 = r0

• P1 = Tr0

• P2 = t2P1 − t4T2r0

• P3 = (1 + β2t2)Tr0 − (t4 + β2t4)TP1 −

γ1TP2

Scalars :

• n0 = rT0 r0 • t1 = rT0 P1 • t2 =
n0||P1||2

t21

19

• t3 = t1P
T
1 P2

• t4 =
n0

t1

• t5 = PT
1 P2

• t8 = t5 = t2||P1||2−t4t9

• t9 = rT0 T3r0

• t10 = t21 − n0||P1||2

• γ1 =
t21 − n0||P1||2

t3

• sp0 = rT0 E

• sp1 = PT
1 E = ETTr0

• b1 = sp0 − γ1sp1

• b2 = sp0t2 − t4sp1

• spp1 = 〈αE,E〉

• spp2 = 〈αTr0,E〉

• β2 =
n0 + t24||P1||2+γ21 ||P2||2−2t1t4 − 2γ1t4||P1||2+2γ1t4t5

(t2 − 1)n0

• γ2 =
n0 + t24||P1||2+γ21 ||P2||2−2t1t4 − 2γ1t4||P1||2+2γ1t4t5

(1 + β2t2)rT0 P3 − (t4 + β2t4)PT
1 P3 + γ1PT

2 P3

Peek-step formulas

µpeek, TCG1 = ωαr0 − ωt4αP1 (19)

µpeek, TCG2 = ωαr0 − ωt4αP1 − ωαγ1t2P1 − ωαγ1t4T2r0 (20)

Coefficients for the analytical expressions

The superscript number, between parenthesis, indicates the truncation number (1 or 2). A p

indicates that the coefficient corresponds to the peek-step derivative, and needs to be added

to the energy derivative coefficient itself.

Derivation of Epol, TCG1 :

• a(1)1,0 = t4

• a(1)1,1 = 2sp0
t1

+ t4

• a(1)1,2 = −2sp0n0

t21

• a(1)2,1 = − sp0n0

t21

Peek-step for TCG1 :

20

• a(1,p)1,α0 = ω

• a(1,p)1,1α = −t4ω

• a(1,p)1,1 = −2spp1ω
t1

• a(1,p)1,2 = 2n0spp1ω
t21

• a(1,p)2,α0 = −t4ω

• a(1,p)2,1 = n0spp1ω
t21

TCG2 :

• a(2)1,0 = t4 + γ1t2

• a(2)1,−1 = −γ1t4

• a(2)1,1 = 2b1
t1
− 2np1b2

t3
− 2

np21t10b2
t23t1

+ 2 t9t10b2
t23

+

2np1sp0γ1
t21

• a(2)1,2 = −2n0b1
t21

+ 4 t1b2
t3
− 2n0t9t10b2

t1t23
+

4 t2np1t10b2
t23

− 2 t8t10b2
t23
− 44n0np1sp0γ1

t31

• a(2)1,3 = −4 t1t2t10b2
t23

− 2n0b2
t3

+ 2n0sp0γ1
t21

• a(2)1,4 = 2 t1t4t10b2
t23

• a(2)2,0 = −γ1t4

• a(2)2,1 = −n0b1
t21

+ 2 t1b2
t3
− n0t9t10b2

t1t23
+

2 t2np1t10b2
t23

− t8t10b2
t23
− 2n0np1sp0γ1

t31

• a(2)2,2 = −n0b2
t3
− 2 t1t2t10b2

t23
+ n0sp0γ1

t21

• a(2)2,3 = t1t4t10b2
t23

• a(2)3,1 = −n0b2
t3
− 2 t1t2t10b2

t23
+ n0γ1sp0

t21

• a(2)4,1 = t1t4t10b2
t23

• a(2)3,2 = t1t4t10b2
t23

Peek-step for TCG2 :

• a(2,p)1,0α = ω

• a(2,p)1,1α = −ω(t2γ1 + t4)

• a(2,p)1,2α = −ωt4γ1

• a(2,p)1,1 = −2np1
t21
ωγ1spp1 + (ωt2spp1 + ωt4spp2)

(
2np1
t3

+
2np21t10
t1t23

− 2t9t10
t23

)
− 2

t1
(ωγ1spp2 +

ωspp1)

• a(2,p)1,2 = 4n0np1
t31

ωγ1spp1+(ωt2spp1+ωt4spp2)
(
−4t1

t3
+ 2n0t9t10

t1t23
− 4np1t2t10

t23
+ 2t8t10

t23

)
+2n0

t21
(ωγ1spp2+

ωspp1)

• a(2,p)1,3 = −2n0

t21
γ1ωspp1 + (ωt2spp1 + ωt4spp2)

(
4t1t2t10

t23
+ 2n0

t3

)

21

• a(2,p)1,4 = −(ωt2spp1 + ωt4spp2)
2t1t4t10

t23

• a(2,p)2,α0 = −ω(γ1t2 + t4)

• a(2,p)2,1α = −ωt4γ1

• a(2,p)2,1 = 2n0np1
t31

ωγ1spp1+(ωt2spp1+ωt4spp2)
(
−2t1

t3
+ n0t9t10

t1t23
− 2np1t2t10

t23
+ t8t10

t23

)
+n0

t21
(ωγ1spp2+

ωspp1)

• a(2,p)2,2 = −n0

t21
ωγ1spp1 + (ωt2spp1 + ωt4spp2)

(
n0

t3
+ 2t1t2t10

t23

)
• a(2,p)2,3 = −(ωt2spp1 + ωt4spp2)

t1t4t10
t23

• a(2,p)3,α0 = −ωγ1t4

• a(2,p)3,1 = −n0

t21
ωγ1spp1 + (ωt2spp1 + ωt4spp2)

(
n0

t3
+ 2t1t2t10

t23

)
• a(2,p)3,2 = −(ωt2spp1 + ωt4spp2)

t1t4t10
t23

• a(2,p)4,1 = −(ωt2spp1 + ωt4spp2)
t1t4t10
t23

References

(1) Lipparini, F.; Lagardère, L.; Stamm, B.; Cancès, E.; Schnieders, M.; Ren, P.; Maday, Y.;

Piquemal, J.-P. Journal of Chemical Theory and Computation 2014, 10, 1638–1651.

(2) Lagardère, L.; Lipparini, F.; Polack, E.; Stamm, B.; Cancès, E.; Schnieders, M.; Ren, P.;

Maday, Y.; Piquemal, J. P. Journal of Chemical Theory and Computation 2015, 11,

2589–2599.

(3) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J.

Chem. Phys 1995, 103, 8577–8593.

(4) Aviat, F.; Levitt, A.; Stamm, B.; Maday, Y.; Ren, P.; Ponder, J. W.; Lagardère, L.;

Piquemal, J.-P. Journal of Chemical Theory and Computation 2016, 180––190.

(5) Nocito, D.; Beran, G. J. O. J. Chem. Phys. 2017, 146, 114103.

(6) Wang, W.; Skeel, R. D. J. Chem. Phys. 2005, 123, 164107.

22

(7) Kolafa, J. J. Comput. Chem. 2004, 25, 335–342.

(8) Tuckerman, M.; Berne, B. J.; Martyna, G. J. J. Chem. Phys. 1992, 97, 1990–2001.

(9) Albaugh, A.; Demerdash, O.; Head-Gordon, T. J. Chem. Phys. 2015, 143, 174104.

(10) Niklasson, A.; Steneteg, P.; Odell, A.; Bock, N.; Challacombe, M.; Tymczak, C.; Holm-

ström, E.; Zheng, G.; Weber, V. J. Chem. Phys. 2009, 130, 214109.

(11) Loco, D.; Lagardère, L.; Caprasecca, S.; Lipparini, F.; Mennucci, B.; Piquemal, J.-P.

J. Chem. Theory Comput. 2017, DOI: 10.1021/acs.jctc.7b00572.

(12) Wang, W. Fast Polarizable Force Field Computation in Biomolecular Simulations.

Ph.D. thesis, University of Illinois at Urbana-Champaign, 2013.

(13) Simmonett, A. C.; Pickard IV, F. C.; Shao, Y.; Cheatham III, T. E.; Brooks, B. R. J.

Chem. Phys. 2015, 143, 074115.

(14) Simmonett, A. C.; Pickard IV, F. C.; Ponder, J. W.; Brooks, B. R. J. Chem. Phys.

2016, 145, 164101.

(15) Albaugh, A.; Niklasson, A. M.; Head-Gordon, T. The Journal of Physical Chemistry

Letters 2017, 8, 1714–1723.

(16) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.; Schnieders, M. J.;

Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio, R. A. J.; Head-Gordon, M.;

Clark, G. N. I.; Johnson, M. E.; Head-Gordon, T. J. Phys. Chem. B 2007, 114, 2549–

64.

(17) Tinker-HP. http://www.ip2ct.upmc.fr/tinkerHP/, Accessed:2017-05-31.

(18) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089–10092.

(19) Greengard, L.; Rokhlin, V. J. Comput. Phys. 1987, 73, 325–348.

23

(20) Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E. Journal of Chemical

Theory and Computation 2015, 11, 1864–1874.

24

