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In his work about hypocercivity, Villani [18] considers in particular convergence to equilibrium for the kinetic Langevin process. While his convergence results in L 2 are given in a quite general setting, convergence in entropy requires some boundedness condition on the Hessian of the Hamiltonian. We will show here how to get rid of this assumption in the study of the hypocoercive entropic relaxation to equilibrium for the Langevin diffusion. Our method relies on a generalization to entropy of the multipliers method and an adequate functional inequality. As a byproduct, we also give tractable conditions for this functional inequality, which is a particular instance of a weighted logarithmic Sobolev inequality, to hold.

Settings and main results.

Let U : R d → R be a smooth function such that U ≥ 1 and e -U (x) dx is finite. U will represent the confinement potential for the Hamiltonian H(x, y) = U (x) + 1 2 |y| 2 defined on R 2d . The associated Boltzmann-Gibbs (probability) measure is given by dµ = 1 Z e -H(x,y) dxdy where Z is the normalizing constant e -H(x,y) dxdy. The Langevin dynamics associated to this measure is a flow of probability measures dµ t = f t dµ for t ≥ 0, where f t solves (at least in a weak sense) the Langevin equation

∂ t f t = Lf t ,
L being given by L = -y.∇ x + (∇U (x) -y) .∇ y + ∆ y .

(

) 1 
We are thus interested in solutions belonging to L 1 (µ). Of course, the hypoelliptic regularity theorem ensures that (t, x, y) → f t (x, y) is smooth on R * + ⊗R 2d , whatever the regularity of f 0 .
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It is then easy to see that mass and positivity are preserved so that if f 0 dµ is a probability measure so is f t dµ for any t ≥ 0. The corresponding stochastic process is given by the S.D.E.

dx t = y t dt dy t = -y t dt -∇U (x t )dt + √ 2dW t where (W t ) is an usual d-dimensional Wiener process. The infinitesimal generator of the process is thus L * = y.∇ x -(∇U (x) + y) .∇ y + ∆ y . The law µ is the unique invariant (but not reversible) probability measure for the process, and dµ t = f t dµ is the distribution of the process at time t. One can also write down the P.D.E. satisfied by µ t (or its density w.r.t. Lebesgue measure) which is usually called the kinetic Fokker-Planck equation. We denote by P t = e tL the semi-group on L 1 (µ) with generator (L, D(L)), i.e. f t = P t f 0 .

We are interested in the long time behavior of the Langevin diffusion. The usual ergodic theorem tells us that 1 t t 0 µ s ds weakly converges to µ as t grows to infinity. One can thus ask for the convergence of f t towards 1 as t goes to infinity. This question has been investigated by many authors in recent years both in the PDE community and the probability community. One of the main difference is of course the way to look at this convergence: total variation distance, L 2 (µ) norm, H 1 (µ) semi-norm, relative entropy, Wasserstein distance. Another associated problem is to get some bounds on the rate of convergence, once convergence holds true. Let's review some results in this direction.

More or less at the same time, both probabilists and PDE specialists have considered the problem of the speed of convergence to equilibrium. Talay [START_REF] Talay | Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme[END_REF] and Wu [START_REF] Wu | Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian[END_REF] have built Lyapunov functions and using Meyn-Tweedie's approach have established (non quantitative) exponential convergence to equilibrium (see also [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF] for this approach for kinetic models) under quite general assumptions. Desvillettes and Villani [START_REF] Desvillettes | On the trend to global equilibrium in spatially inhomogeneous entropydissipating systems: the linear Fokker-Planck equation[END_REF] used an heavy Fourier machinery to established sub-exponential entropic convergence. Then Hérau and Nier [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] have carried out the spectral analysis of this equation and thus obtained a L 2 exponential decay with quite sharp constants under general conditions. It has settled the bases for the theory of hypocercivity of Villani [18] for the L 2 and the entropic convergence to equilibrium, when Hess(U ) is bounded in the entropic case, see also [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] for a version without regularity issues. Finally, and quite recently, coupling approaches, using synchronous coupling or coupling by reflection (see [START_REF] Bolley | Trend to equilibrium and particle approximation for a weakly sel-fconsistent Vlasov-Fokker-Planck equation[END_REF] or [START_REF] Eberle | Quantitative Harris type theorems for diffusions and McKean-Vlasov processes[END_REF][START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF]) have established exponential convergence to equilibrium in Wasserstein distance with sharp constants, once again when Hess(U ) is bounded.

As we will adopt the terminology and adapt the methodology of hypocoercivity as in Villani [18], let us describe a little bit further the formalism of this setting. Recall that the variance of a squared integrable function g with respect to µ is defined by

Var µ (g) := g 2 dµ - gdµ 2 = g -gdµ 2 dµ
while the entropy is defined for positive functions by

Ent µ (f ) := f ln f dµ -f dµ ln f dµ .
The law µ is said to satisfy a Poincaré inequality if there exists a positive constant C P such that for all smooth functions g Var µ (g) ≤ C P |∇g| 2 dµ .

Similarly, µ satisfies a logarithmic Sobolev (or log-Sobolev in short) inequality if there exists a constant C LS such that for all smooth functions g,

Ent µ (g 2 ) ≤ C LS |∇g| 2 dµ .
The natural

H 1 µ semi-norm is defined as ||g|| H 1 µ := ||∇g|| L 2 µ . Exponential convergence of P t f 0 to 1 in H 1
µ and variance was proved by Villani [18] under two conditions:

(1-var) |∇ 2 U | ≤ c (1 + |∇U |); (2-var) e -U (x) dx satisfies a Poincaré inequality.
Remark that (2-var) is equivalent to the fact that µ satisfies a Poincaré inequality, thanks to the tensorization property of the latter, since the gaussian measure satisfies a Poincaré inequality.

For convergence in entropy, the assumptions made by Villani are much stronger:

(1-ent) ∇ 2 U is bounded; (2-ent) e -U (x) dx satisfies a log -Sobolev inequality.
Again, (2-ent) is equivalent to the fact that µ satisfies a log-Sobolev inequality, thanks to a similar argument of tensorization. When both these assumptions are satisfied, Villani showed that, for any initial probability density f 0 with finite moments of order 2, the entropy of P t f 0 converges to 0 exponentially fast (see Villani [18] Theorem 39).

Our main goal in this paper is to get rid of the boundedness assumption (1-ent) for ∇ 2 U , replacing it by HypB Assumption 1. there exists η ≥ 0 such that U -2η ∇ 2 U is bounded.

A typical situation where Assumption 1 is satisfied is when both U and ∇ 2 U have polynomial growth at infinity, i.e. U (x) ≥ c 1 (1 + |x|) l and |∇ 2 U | ≤ c 2 (1 + |x|) j so that we may choose η ≥ j 2l . In particular if j = l -2 ≥ 0 as it is the case for true polynomials of degree at least 2, we may choose η = 1 2 -1 l . The counterpart is that we have to reinforce (2-ent) replacing it by the stronger HypU Assumption 2. µ satisfies the following weighted log-Sobolev inequality: there exists ρ > 0 s.t. for all smooth enough g with g 2 dµ = 1:

Ent µ (g 2 ) ≤ ρ (H -2η |∇ x g| 2 + |∇ y g| 2 )dµ. ( 2 

) eqlspoids

Once both Assumptions 1 and 2 are satisfied, we can prove exponential decay in entropy for the Langevin diffusion. Our approach is based on the multiplier method. More precisely we will prove the following:

mHypocoPoids Theorem 1. Under Assumptions 1 and 2, let

λ = H -2η ∇ 2 U ∞ + 2 2 , κ = 1 1300 (η + d) 4 .
Then for all initial probability density f ,

Ent µ (P t f ) ≤ exp - κ 1 + 4λρ t 0 (1 -e -s ) 2 ds Ent µ (f ) .
Section 2 is devoted to the proof of this theorem which contains Villani's result in the case η = 0. The key idea is to use a twisted gradient depending on time, see lemma 4. An important aspect of our result is that the bounded Hessian condition in Villani's approach is relaxed as Assumption 1. In fact it was a major issue raised by Villani [18] concerning the entropic convergence. Indeed, his L 2 multiplier method, at the basis of the entropic hypocercivity, does not rely on a Poincaré inequality but on Brascamp-Lieb inequality. It was thus thought that for the multiplier method to hold for entropy, an entropic Brascamp-Lieb inequality was needed. However Bobkov-Ledoux [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF] proved that this inequality is false in general, and true in very particular setting. Our strategy is then to show that it is not an entropic Brascamp-Lieb inequality that we need but a particular weighted logarithmic Sobolev inequality. Note also that a first attempt to skip the boundedness assumption for the Hessian is contained in [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF] Theorem 6.10, but the statement therein is much weaker than the one of the present theorem and most importantly not at all quantitative .

Next we shall show that, similarly to the non weighted case studied in [7] (see also [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF][START_REF] Cattiaux | Lyapunov conditions for super Poincaré inequalities[END_REF]), the weighted log Sobolev inequality in Assumption 2 is equivalent to some Lyapunov type condition.

To this end we introduce the natural second order operator

L η := H -2η ∆ x + ∆ y -H -2η 2η ∇ x H H + ∇ x H .∇ x -∇ y H.∇ y ,
which is symmetric in L 2 µ and satisfies f L η g dµ = -(H -2η ∇ x f.∇ x g + ∇ y f.∇ y g) dµ .

(3) eqIPP unovCondition Theorem 2. Assume that U goes to infinity at infinity, that |∇H| ≥ h > 0 outside some large ball. Denote A r := {(x, y) : H(x, y) ≤ r}, and

θ(r) = sup z∈∂Ar max i,j=1,...,2d | ∂ 2 H ∂z i ∂z j |
Assume that θ(r) ≤ ce C 0 r with some positive constants C 0 and c for r sufficiently large.

Assume that there exists a Lyapunov function W with W (x) ≥ w > 0 for all (x, y) and some λ, b > 0 satisfying L η W (x, y) ≤ -λH(x, y) W (x, y) + b .

Then µ verifies a weighted logarithmic Sobolev inequality (2).

Remark that the condition θ(r) ≤ ce C 0 r is trivially verified when both U and Hess(U ) have a polynomial growth. Also, a Lyapunov function exists if U satisfies the conditions in the following corollary:

Cor-Lyapunov Corollary 3. Assume that the following conditions hold outside a compact domain (1) ∆ x U ≤ κ|∇ x U | 2 for some κ ∈ (0, 1);

(2) a growth condition:

|∇ x U | 2 ≥ cU 2η+1
for some positive constant c.

Then dµ = 1 Z e -H(x,y) dxdy satisfies a weighted logarithmic Sobolev inequality. Moreover, if we assume that U -2η ∇ 2 U is bounded, then we may apply Theorem 1.

The next section will present the proof of Theorem 1, where the entropic multipliers method is presented. In Section 3, the treatment via Lyapunov condition of weigthed log-Sobolev inequality, i.e. Theorem 2 and Corollary 3, is done. The final section discusses some additional points on weighted inequalities. Indeed, the proof of weighted Poincaré inequality used by Villani relies solely on some Poincaré inequality for each measure and adapt the usual argument of tensorization using heavily the orthogonality inherited from the L 2 µ structure. However, in the entropic case, from a log-Sobolev for each marginal, we are only able to recover a weaker inequality for the product measure.

Proof of Theorem 1.

This section is devoted to the proof of Theorem 1. Actually we will prove a more general statement. Consider an admissible function Ψ, that is Ψ ∈ C 4 and 1 Ψ ′′ is positive concave, as in [START_REF] Monmarché | Generalized Γ calculus and application to interacting particles on a graph[END_REF]. Theorem 1 corresponds to

Ψ : R + → R, u → u ln u + 1 -u ,
while the L 2 µ case corresponds to Ψ(u) = (u -1) 2 . We also define ψ = Ψ ′′ . We only consider the case where f 0 is bounded away from zero. Indeed, if it is not the case, writing g 0 = (1 -δ)f 0 + δ for some δ > 0, then we may prove Theorem 1 for g t = (1 -δ)f t + δ and let δ go to zero to recover the result for f t .

In this general framework we replace the weighted log-Sobolev inequality in Assumption 2 by the following, satisfied for any bounded density of probability f ,

Ψ(f ) dµ ≤ ρ ψ(f ) H -2η |∇ x f | 2 + |∇ y f | 2 dµ. ( 4 
) assump2
We shall obtain the analogue of Theorem 1, replacing the entropy by Ψ(f )dµ, i.e. if [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] and assumption 1 are satisfied, then for all initial probability density f ,

Ψ(P t f ) ≤ exp - κ 3 + λρ t 0 (1 -e -s ) 2 ds Ψ(f ) .
(

5) convpsi

The key point of the proof is to introduce a time and space-dependent twisted gradient. Consider r ∈ N and for 0

≤ i ≤ r, x → b i (x) ∈ R d a smooth vector field, C i = b i .∇, Cf = (C 0 f, . . . , C r f ), t, x → M t (x) a smooth function from R + × R d to M sym+ r×r (R)
the set of positive semi-definite symmetric real matrices of size r, and

F (t) = ψ(P t f ) (CP t f ) T M t CP t f dµ
where A T stands for the transpose of the matrix A and vectors are seen as 1-column matrices.

The following results holds for any diffusion operator:

emGammaPoids Lemma 4. Let L = L s + L a , where L s = 1 2 (L + L * ) and L a = 1 2 (L -L * ) stand for the symmetric and antisymmetric part of L in L 2 µ . Then F ′ (t) ≤ ψ(P t f ) (CP t f ) T 2M t [C, L] + ((2L s -L)M t + ∂ t M t ) C P t f dµ.
where

[C i , L] = C i L -LC i is the (generalized) Lie bracket of C i and L and [C, L] = ([C 0 , L] , . . . , [C r , L]).
Proof. In the following we write f for P t f and M t (x) = (m i,j (t, x)) 0≤i,j≤r . First it holds

∂ t ψ(f )m i,j C i f C j f dµ = ψ(f )∂ t (m i,j )C i f C j f + m i,j ∂ t (ψ(f )C i f C j f ) dµ.
This derivation is justified by the fact that f 0 is uniformly strictly positive and so is f t by hypoellipticity and the control of the growth of the derivative of f t , using Villani [18, Sect. A.21] or [START_REF] Guillin | Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality[END_REF]. Denote as usual the Carré-du-Champ operator 2 Γ(g, h) = L(gh) -gLh -hLg.

Next, µ being invariant for L, and using the diffusion property, i.e. that the chain rule property

LΨ(f 1 , ..., f d ) = d 1 ∂ i Ψ(f )Lf i + i,j ∂ i,j Ψ(f )Γ(f i , f j ) holds for all nice Ψ and f , 0 = L (m i,j ψ(f )C i f C j f ) dµ = L (m i,j ) ψ(f )C i f C j f dµ + m i,j L (ψ(f )C i f C j f ) dµ +2 Γ (m i,j , ψ(f )C i f C j f ) dµ = (L -2L s ) (m i,j ) ψ(f )C i f C j f dµ + m i,j L (ψ(f )C i f C j f ) dµ .
The case where M is constant (and symmetric semi-definite positive) is already treated in [16, Lemma 8] where it is shown that

i,j m i,j L (ψ(f )C i f C j f ) -∂ t (ψ(f )C i f C j f ) ≥ 2ψ(f ) i,j m i,j (C i f ) [L, C j ] f .
The proof follows by taking the integral of both sides.

Proof of Theorem 1. Now consider the case of the Langevin diffusion, namely L is given by [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF]. Note that [L,

∇ y ] = ∇ x + ∇ y [L, ∇ x ] = -∇ 2 U (x).∇ y .
The operator L is decomposed as L = L s + L a where

L s = -y.∇ y + ∆ y L a = -y.∇ x + ∇U (x).∇ y .
Recalling H(x, y) = U (x) + 1 2 |y| 2 , then L a H = 0 and more generally L a (g • H) = 0 for any smooth g : R → R. In particular for η > 0,

(2L s -L) H -η = L s H -η = η(|y| 2 + d)H -η-1 + η(η + 1)|y| 2 H -η-2 ≤ η(2η + d + 4)H -η .
Let a, b, c depend on t and H(x, y), and let M = a b b c and C = ∇, so that Lemma 4 reads

F ′ (t) ≤ -2 ψ(P t f ) (∇P t f ) T N ∇P t f dµ with N =   b -1 2 (L s + ∂ t )a -a∇ 2 U + b -1 2 (L s + ∂ t )b c -1 2 (L s + ∂ t )b -b∇ 2 U + c -1 2 (L s + ∂ t )c   .
In the top left corner b is good news since it gives some coercivity in the x variable. Nevertheless as soon as b = 0, b∇ 2 U in the bottom right corner is an annoying term that can only be controlled by the entropy production if it is bounded (which is where, in the previous studies, the assumption that ∇ 2 U is bounded barged in).

Writing

α(t) = (1 -e -t ), set c = 2εαH -η b = ε 2 α 2 H -2η a = ε 3 α 3 H -3η
for some ε ∈ (0, 1). In other words,

(∇f ) T M ∇f = εαH -η |∇ y f | 2 + εαH -η |∇ y f + εαH -η ∇ x f | 2 ,
so that, in particular, M is positive definite. In that case we bound b -

1 2 (L s + ∂ t )a ≥ ε 2 α 2 H -2η - 3 2 η(6η + d + 4)ε 3 α 3 H -3η - 3 2 ε 3 α 2 e -t H -3η ≥ ε 2 α 2 H -2η 1 - 3 2 η(6η + d + 4)α + 3 2 e -t ε ≥ ε 2 α 2 H -2η 1 -9(η + d) 2 ε -b∇ 2 U + c - 1 2 (L s + ∂ t )c ≥ -ε 2 α 2 H -2η ∇ 2 U ∞ + 2εαH -η -η(2η + d + 4)εαH -η -εe -t H -η ≥ -ε 2 α 2 H -2η ∇ 2 U ∞ -εH -η -2α + η(2η + d + 4)α + e -t ≥ -ε 2 H -2η ∇ 2 U ∞ -3ε (η + d) 2 |b + c -a∇ 2 U -(L s + ∂ t )b| ≤ |ε 2 α 2 H -2η + 2εαH -η -2e -t ε 2 αH -2η | +|ε 3 α 3 H -3η ∇ 2 U | + 2η(4η + d + 4)ε 2 α 2 H -2η ≤ εαH -η ε 2 H -2η ∇ 2 U ∞ + 2 + 8ε(η + d) 2 which implies for ε = 1 4 × 1 9 (η + d) -2 that (∇f ) T N ∇f ≥ 1 4 ε 2 α 2 H -2η |∇ x f | 2 -A|∇ y f | 2 with A = 1 2 ε 2 H -2η ∇ 2 U ∞ + 2 + 2 9 2 + ε 2 H -2η ∇ 2 U ∞ + 1 12 ≤ H -2η ∇ 2 U ∞ + 2 2 := λ.
Writing

G(t) = 1 2λ F (t) + Ψ(P t f )dµ,
we have obtained

G ′ (t) ≤ -Ψ ′′ (P t f ) α 2 ε 2 4λ H -2η |∇ x P t f | 2 + 2 - A λ |∇ y P t f | 2 dµ ≤ - α 2 ε 2 4λ Ψ ′′ (P t f ) H -2η |∇ x P t f | 2 + |∇ y P t f | 2 dµ.
On the one hand,

F (t) ≤ 3εα Ψ ′′ (P t f ) H -2η |∇ x P t f | 2 + |∇ y P t f | 2 dµ,
and on the other hand, using the inequality (4),

Ψ(P t f )dµ ≤ ρ Ψ ′′ (P t f ) H -2η |∇ x P t f | 2 + |∇ y P t f | 2 dµ, which implies G ′ (t) ≤ - α 2 ε 2 1 + 4λρ G(t).
Hence,

Ent µ (P t f ) ≤ G(t) ≤ G(0) exp - ε 2 1 + 4λρ t 0 α 2 (s)ds ,
and G(0) = Ent µ (f ). The proof is complete.

3. Weighted Functional Inequalities with η ≥ 0.

We turn to the study of the functional inequality (4). For simplicity we shall only consider the cases Ψ(u) = (u -1) 2 (Variance) and Ψ(u) = u ln u -u + 1 (Entropy). Recall the definition of L η , 

L η := H -2η ∆ x + ∆ y -H -2η 2η ∇ x H H + ∇ x H .∇ x -∇ y H.∇ y , which satisfies -f L η f dµ = (H -2η |∇ x f | 2 + |∇ y f | 2 ) dµ := E η (f ). ( 6 
L η W ≤ -λ W + 1 Ā .
We provide then the equivalent result for the logarithmic Sobolev inequality.

thmlyap-ent Theorem 6. Assume that H goes to infinity at infinity and that there exists a > 0 such that e aH ∈ L 1 (µ).

(1) If µ satisfies the weighted log-Sobolev inequality (2), then, there exists a Lyapunov function, i.e. a smooth function W such that W (x, y) ≥ w > 0 for all (x, y), two positive constants λ and b such that 

L η W ≤ -λ H W + b . (7) eqlyapls ( 
| ∂ 2 H ∂z i ∂z j |
and assume that θ(r) ≤ ce C 0 r with some positive constants C 0 and c for r sufficiently large. Then µ satisfies the weighted log-Sobolev inequality (2).

These theorems are the analogues, in the weighted situation we are looking at, of (part of) Theorem 1.1 and Theorem 1.2 in [7]. Their proofs are very similar concerning the part 1) of the previous theorem and we shall only give some details in the entropic case. Let us begin by a simple and crucial Lemma, at the basis of the use of Lyapunov type condition. Note that it can also be proved via large deviations argument.

lem52 Lemma 7. For every continuous function W ≥ 1 in the domain of L η such that -L η W/W is µ-a.e. lower bounded, for all g in the domain of L η ,

- L η W W g 2 dµ ≤ H -2η |∇ x g| 2 + |∇ y g| 2 dµ. (8) lem52a 
Proof. This follows from integration by parts and Cauchy-Schwartz inequality. Indeed,

- L η W W g 2 dµ = H -2η ∇ x W, ∇ x g 2 W + ∇ y W, ∇ y g 2 W dµ = H -2η - g 2 W 2 |∇ x W | 2 + 2 g W ∇ x W, ∇ x g + - g 2 W 2 |∇ y W | 2 + 2 g W ∇ y W, ∇ y g dµ ≤ H -2η |∇ x g| 2 + |∇ y g| 2 dµ
Let us now prove Theorem 6.

Proof. For a given nice function φ, introduce the operator G η via G η h = -L η h + φh. For any h in the domain of L η , h G η hdµ = E η (h) + h 2 φ dµ. Choosing φ = -c + 1 A for some set A to be defined, in the variance case and φ = ρ(b -H) in the entropic case, one deduces that G η is continuous for the norms whose square are respectively E η (h) + A h 2 dµ and E η (h)+ h 2 dµ. If a weighted Poincaré inequality (resp. weighted log-Sobolev inequality) is satisfied, following the proof of Theorem 2.1 (resp. Proposition 3.1) in [7], we get that the form h G η h dµ is also coercive so that applying Lax-Milgram theorem we get a solution to G η h = 1, which furnishes the desired Lyapunov function (see [7] for the details).

For the converse, we revisit the proof of [7] Proposition 3.5 in order to adapt it to our case. As usual, we will rather prove the (weighted) log-Sobolev inequality in its equivalent (weighted) Super Poincaré inequality form, i.e. there exist c, β > 0 such that for all smooth f and s > 0,

f 2 dµ ≤ s (H -2η |∇ x f | 2 + |∇ y f | 2 )dµ + c e β/s |f |dµ 2 .
Indeed, the latter implies a defective (weighted) log-Sobolev inequality and a weighted Poincaré inequality (choosing s such that ce β/s = 1) and we obtain a tight (weighted) log-Sobolev inequality by using Rothaus lemma (see [START_REF] Bakry | Analysis and Geometry of Markov Diffusion Operators[END_REF] p.239), which states that

Ent µ (f 2 ) ≤ Ent µ ( f 2 ) + 2Var µ (f ) , (9) eqrot 
where f = f -f dµ. For all this we refer to [START_REF] Cattiaux | Lyapunov conditions for super Poincaré inequalities[END_REF][START_REF] Cattiaux | Some remarks on weighted logarithmic Sobolev inequality[END_REF][START_REF] Wang | Functional inequalities, Markov processes and Spectral theory[END_REF].

Recall A r = {H ≤ r}. For r 0 large enough and some λ ′ < λ we have

L η W ≤ -λ ′ H W + b 1 Ar 0 ,
so that we may assume that

L η W W (x, y) ≤ -λ H(x, y) + b w 1 Ar 0 ,
We have for r > r 0 ,

f 2 dµ ≤ Ar f 2 dµ + A c r λH λr f 2 dµ ≤ Ar f 2 dµ + λH λr f 2 dµ ≤ Ar f 2 dµ + 1 λ r -L η W W + b 1 Ar 0 w f 2 dµ ≤ 1 + b λrw Ar f 2 dµ + 1 λ r H -2η |∇ x f | 2 + |∇ y f | 2 dµ
It remains to control the integral in A r . It is in fact a simple consequence of Nash inequalities for the Lebesgue measure rewritten in its Super Poincaré form (c.f. [8, Prop 3.8]): there exists c d such that for all r large enough, all smooth f and s > 0

Ar f 2 dxdy ≤ s Ar |∇f | 2 dxdy + c d θ d (r)(1 + s -2d ) |f |dxdy 2 ≤ s Ar |∇f | 2 dxdy + c d ce 2dC 0 r (1 + s -2d ) |f |dxdy 2 .
Recall that H ≥ 1. We thus have Ar

f 2 dµ ≤ 1 eZ Ar f 2 dxdy ≤ r 2η e r e s H -2η |∇ x f | 2 + |∇ y f | 2 dµ + Zc d ce 2dC 0 r (1 + s -2d )e 2r Ar |f |dµ 2 .
Letting u = se r-1 r 2η and C ′ = Zcc d , and considering integral on the whole space in the right hand side, we have thus obtained (for r large enough)

Ar f 2 dµ ≤ u H -2η |∇ x f | 2 + |∇ y f | 2 dµ + C ′ r 4dη (1 + u -2d )e 2(1+dC 0 +d)r |f |dµ 2 .
Denoting c = 1 + b λr 0 w , and β d = 2 + d + 2dC 0 , we thus have, for all u > 0 and r large enough

f 2 dµ ≤ u c + 1 λ r H -2η |∇ x f | 2 + |∇ y f | 2 dµ + C ′ (1+u -2d ) r 2dη c e β d r |f | dµ 2 .
(10) eqsuperP Choosing rλ = (uc) -1 and s = 2uc, we have thus proved the existence of some β ′ d such that

f 2 dµ ≤ s H -2η |∇ x f | 2 + |∇ y f | 2 dµ + C ′′ e β ′ d /s |f | dµ 2 ,
and the proof is complete.

Remark 8. For a general weighted logarithmic Sobolev inequality with the weighted energy

w 1 |∇ x f | 2 + w 2 |∇ y f | 2 dµ,
we can introduce the symmetric generator

L w 1 ,w 2 := w 1 ∆ x + w 2 ∆ y -w 1 - ∇ x w 1 w 1 + ∇ x H .∇ x -w 2 - ∇ y w 2 w 2 + ∇ y H .∇ y .
If a Lyapunov function (as in Theorem 2 but for L w 1 ,w 2 ) exists, then following the same line, we can obtain (with the retired additional assumptions on the weights) a weighted logarithmic Sobolev inequality. ♦

We now proceed to the Proof of Corollary 3. Consider a smooth function W (x, y) = e αU (x)+ β 2 |y| 2 with two constants α, β ∈ (0, 1) to be determined. Then for

|(x, y)| ≥ R, L η W W = αH -2η ∆ x U + α - 2η H -1 |∇ x U | 2 + β(d -(1 -β)|y| 2 ) ≤ βd -α (1 -α -κ) |∇ x U | 2 H -2η -β(1 -β)|y| 2
where we used the first condition in the assumption of the corollary.

To bound the last term by some C -λH, we consider α ∈ (0, 1 -κ), β ∈ (0, 1), and divide it into two cases.

If |y| 2 2 ≥ H 2 , then -α (1 -α -κ) |∇ x U | 2 H -2η -β(1 -β)|y| 2 ≤ -β(1 -β)H Otherwise,we have U ≥ H 2 .
Combined with the second condition, it follows

- |∇ x U | 2 H 2η ≤ - cU 2η+1 2 2η U 2η ≤ - c 2 2η+1
H which completes the proof of the Lyapunov condition. Since the second condition implies that U goes to infinity at infinity and |∇ x U | ≥ u ≥ 0, we get a weighted logarithmic Sobolev inequality for µ by the previous theorem.

The next example, which is the simple polynomial case will show the adequacy of our conditions on weighted log-Sobolev inequality with the Assumption 1.

Example 1. Let us consider the example where U (x) = |x| l with l > 2 for |x| large enough, that is,

H(x, y) = |x| l + |y| 2 2 . Then ∆ x U = (dl + l 2 -2l))|x| l-2 and |∇ x U | 2 = l 2 |x| 2l-2
. The first condition is satisfied since l > 2, while for the second condition we need

η ≤ 1 2 - 1 l Note that ||U -2η ∇ 2 U || ∞ ∼ |x| l-2-2lη , to ensure that U -2η ∇ 2 U is bounded, we have to choose η = 1 2 -1 l .
With the case l = 2 we recover Villani's result. Let us give another example which will show that our limit growth for the potential U is below the exponential growth Let us end this section by a remark Remark 9. For the multipliers method in the variance case, Villani does not use H -2η in the energy to get his inequality, as will be seen in the next section but prove a rather stronger inequality with weight in the derivative in x in the energy U (x) -2η (1 + |y| 2 ) -2η . The fact that he deals with the variance helps him enough to prove such a weighted Poincaré inequality. We may also consider a weighted logarithmic Sobolev inequality with such a weight. However, via the Lyapunov condition approach, the condition on η is then too strong to match with Assumption 1. It is thus crucial to have a weighted inequality with weight H -2η for Theorem 1.

The next section presents an alternative approach trying to provide an answer to the problem alluded in the previous remark. Is it possible to provide a "tensorization-like" approach to provide a weighted logarithmic Sobolev inequality as in Villani's paper, thus giving an alternative to Lyapunov conditions? 4. Some further remarks on weighted inequalities.

sec comments

In this final section we shall try to understand whether it is possible to impose conditions on U solely in order to get weighted inequalities. We shall use several times the following elementary inequalities, true for all η ≥ 0, all x and y (recall that U ≥ 1)

U -η (x) 1 + 1 2 |y| 2 -η ≤ H -η (x, y) ≤ min U -η (x) , 1 + 1 2 |y| 2 -η . ( 11 
) eqneqH
We shall use in the sequel the notations U -2η (x) = φ 1 (x) and 1 + 1 2 |y| 2 -2η = φ 2 (y).

4.1. The case of weighted Poincaré inequalities.

Assume that µ satisfies a weighted Poincaré inequality. If we choose an f that only depends on x and use that H -2η (x, y) ≤ U -2η (x) for all y, we immediately see that the first marginal of µ, i.e. dµ 1 (x) := 1 Z 1 e -U (x) dx also satisfies the weighted Poincaré inequality

Var µ 1 (f ) ≤ C U -2η |∇f | 2 dµ 1 . ( 12 
)
Eq-weighted

Conversely we have, x) dx satisfies the weighted Poincaré inequality [START_REF] Eberle | Quantitative Harris type theorems for diffusions and McKean-Vlasov processes[END_REF] with constant C 1 , then µ satisfies the following weighted Poincaré inequality

thmwp Theorem 10. Write µ(dx, dy) = µ 1 (dx) ⊗ µ 2 (dy). If µ 1 (dx) = 1 Z 1 e -U (
Var µ (h) ≤ C ′ (H -2η |∇ x h| 2 + |∇ y h| 2 )dµ with C ′ ≤ max 2 + 4 M 2 , 4C 1 M 2 where M 2 = 1 + 1 2 |y| 2 -2η
µ 2 (dy) .

Proof. A proof is given in Villani [18] Theorem A.3. It uses extensively the spectral theory of the sum of operators. We shall give a more pedestrian (similar) proof.

The first point is that, since we assumed that U ≥ 1,

H -2η (x, y) ≥ φ 1 (x) φ 2 (y) := U -2η (x) 1 + 1 2 |y| 2 -2η . ( 13 
) eqminH
Thus, if we decompose µ(dx, dy) = µ 1 (dx) ⊗ µ 2 (dy) we have

H -2η |∇ x h| 2 µ(dx, dy) ≥ φ 1 (x) φ 2 (y) |∇ x h| 2 µ 1 (dx) ⊗ µ 2 (dy) ≥ 1 C 1 φ 2 (y) h(x, y) -h(u, y)µ 1 (du) 2 µ(dx, dy) . Now write, h(x, y) -h(u, y)µ 1 (du) = h(x, y) -h(u, y)µ 1 (du) -h(x, v)µ 2 (dv) + hdµ 1 dµ 2 + + h(x, v)µ 2 (dv) - hdµ 1 dµ 2 = g 1 (x, y) + g 2 (x) and use (a + b) 2 ≥ 1 2 b 2 -a 2 .
This yields, since φ 2 (y) ≤ 1,

H -2η |∇ x h| 2 µ(dx, dy) ≥ 1 2C 1 φ 2 dµ 2 g 2 2 (x)µ 1 (dx) - 1 C 1 g 2 1 (x, y) µ 1 (dx)µ 2 (dy) .
Notice that for all y, g 2 1 (x, y) µ 1 (dx) = Var µ 1 h(., y) -h(., v) µ 2 (dv) so that

g 2 1 (x, y) µ 1 (dx) ≤ h(x, y) -h(x, v) µ 2 (dv) 2 µ 1 (dx) .
We can thus integrate this inequality w.r.t. µ 2 , use Fubini's theorem, then for each fixed x use the usual Poincaré inequality for the standard gaussian measure µ 2 and finally integrate with respect to µ 1 . This yields Gathering all this we have obtained

g 2 2 (x)µ 1 (dx) ≤ 2 C 1 M 2 H -2η |∇ x h| 2 dµ + 2 M 2 |∇ y h| 2 dµ . ( 14 
) eqpwinter Finally Var µ (h) = h(x, y) -h(x, v)µ 2 (dv) + h(x, v)µ 2 (dv) - hdµ 2 µ(dx, dy) ≤ 2 h(x, y) -h(x, v) µ 2 (dv) 2 µ(dx, dy) + 2 g 2 2 (x)µ 1 (dx) ≤ 2 |∇ y h| 2 (x, y) µ(dx, dy) + 2 g 2 2 (x)µ 1 (dx) ,
and the result follows from [START_REF] Guillin | Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality[END_REF].

As a conclusion the weighted Poincaré inequality on R 2d reduces to a weighted Poincaré inequality on R d (up to some constant). One should think that the previous result is a kind of weighted tensorization property. This is not the case due to the fact that the weight in front of ∇ x depends on both variables x and y.

There are many ways to obtain such an inequality. Of course since it is stronger than the usual Poincaré inequality, our result is weaker than the one of Villani (but with a simpler proof and explicit bounds for the constants), and we will only describe a typical situation where this equality can be obtained.

As we have seen in the previous section, this weighted Poincaré inequality is equivalent to the existence of some Lyapunov function for L 1,η which is built similarly to L η replacing H by U . We can also obtain a slightly different condition. Introduce the probability measure µ φ 1 (dy) = φ 1 (y) M 1 µ 1 (dy) and the µ φ 1 symmetric operator

G φ 1 = ∆ x -1 + 2η U ∇U.∇ .
Assume that we can find a Lyapunov function W ≥ 1 such that

G φ 1 W (x) W (x) ≤ -a U 2η (x)
for |x| larger than some R > 0. If h is compactly supported in |x| > R, we may write

h 2 dµ 1 ≤ - M 1 a G φ 1 W W h 2 dµ φ 1 ≤ M 1 a |∇h| 2 dµ φ 1 = M 1 a |∇h| 2 U -2η dµ 1
according to the computations in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] p.64. Following the method introduced in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] we then obtain that µ 1 satisfies the desired weighted Poincaré inequality. According to [7] Theorem 4.4, the existence of such a Lyapunov function is linked to the fact that µ 1 satisfies some F -Sobolev inequality, with F = ln 2η + . This is for instance the case when U (x) = 1 + |x| α and η = 1 -α -1 .

The case of weighted log-Sobolev inequalities.

We look now at the similar weighted logarithmic Sobolev inequality, namely,

Ent µ (f 2 ) ≤ ρ (H -2η |∇ x f | 2 + |∇ y f | 2 )dµ.
As in the L 2 setting, it implies a weighted log Sobolev inequality for µ 1 on R d i.e.

Ent µ 1 (f 2 ) ≤ C U -2η |∇ x f | 2 dµ 1 . (15) eqls1 
Since the standard gaussian measure µ 2 satisfies a log-Sobolev inequality too (with optimal constant 2), one should expect to obtain the analogue of theorem 10. This is not so easy (actually we did not succeed in proving such a result) and certainly explains the limitation of Villani's approach, since this property reduces to the well known tensorization property of the logarithmic Sobolev inequality only in the case η = 0. The best we are able to do is to prove that, in this situation thmtensorls Theorem 11. Write µ(dx, dy) = µ 1 (dx) ⊗ µ 2 (dy). If µ 1 (dx) = 1 Z 1 e -U (x) dx satisfies the weighted log-Sobolev inequality (15), then µ satisfies (4) with an admissible function u → Ψ(u) behaving like u ln Combined with the results of Section 2 which deals with a decay for more general functionals than the variance or entropy, we are thus able to prove under such conditions an exponential decay for Ψ behaving like u ln As we recalled, the weighted log-Sobolev inequality is equivalent to a (weighted) super Poincaré inequality, for all smooth h and all s > 0, The first term in the sum will be controlled thanks to (18). In order to control the second term, we introduce,once again, some Lyapunov function. Integrating by parts, and after some easy manipulations (see [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] for the details), we will thus obtain for well chosen constants C, C ′ all s > 0 and large enough R, h 2 dµ ≤ C (sR It remains to link (22) to (4). Actually, as explained in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] section 7, one can replace ln + by smooth functions F with a similar behaviour at infinity (and satisfying F (1) = 0. So we choose ψ(u) = ln 

h

2 )

 2 Conversely, assume that there exists a Lyapunov function satisfying (7) and that |∇H|(x, y) ≥ c > 0 for |(x, y)| large enough. Define θ(r) = sup z∈∂Ar max i,j=1,...,2d

Example 2 .

 2 Choose now U (x) = e a|x| b for a, b > 0 for |x| large enough. Then ∆ x U ∼ a 2 b 2 |x| 2(b-1) e a|x| b and |∇ x U | 2 ∼ a 2 b 2 e 2a|x| b . The first condition is thus satisfied , while the second one imposes once again that 2η + 1 ≤ 2. Now, Assumption 1 imposes that 2η > 1 if b ≥ 1 leading to an impossible adequacy of the two sets of conditions and to 2η ≥ 1 if b < 1 and thus the choice of η = 1/2 is admissible.

g 2 1 2 µ

 12 (x, y) µ 1 (dx)µ 2 (dy) ≤ h(x, y) -h(x, v) µ 2 (dv) (dx, dy)≤|∇ y h| 2 (x, y) µ(dx, dy) .

1 2

 1 (u) at infinity.

1 2 2 - 2ηd |y| 2 ( 1 +

 1221 (u) at infinity.Proof. The first step of the proof is the following lemphils Lemma 12. Define the probability measure µ φ 2 (dy) = φ 2 (y) M 2 µ 2 (dy). Then µ φ 2 satisfies a log-Sobolev inequality.An immediate consequence is the following inequality for µ φ (dx,dy) = µ 1 (dx) ⊗ µ φ 2 (dy), Ent µ φ (h 2 ) ≤ C (φ 1 |∇ x h| 2 + |∇ y h| 2 )dµ φ ,(16) eqtenswhich follows from the tensorization property of the log-Sobolev inequality.Proof of Lemma 12. Writeµ φ 2 (dy) = Z φ e -|y| 2 2 +2η ln(1+|y| 2 /2)dy = Z φ e -V 2 (y) dy .A simple calculation shows thatHessV 2 (y) = 1 + 2η 1 + |y| 2 /2 Id -2η (1 + |y| 2 /2) 2 M (y)where M i,j (y) = y i y j . Hence,HessV 2 (y) ≥ 1 + 2η 1 + |y| 2 /|y| 2 /2) 2 Idin the sense of quadratic forms. Hence for |y| large enough (of order c√ n), the potential V 2 (y) is uniformly convex, uniformly in y. This proves (combining Bakry-Emery criterion and Holley-Stroock perturbation argument) the Lemma.

1 2 1 2

 11 (e+u) u and Ψ ′′ = ψ with Ψ(1) = 0. Ψ(u) behaves like F (u) = u ln (e + u)

  ) eqIPP' Let us state our first main results thmlyap-var Theorem 5. The weighted Poincaré inequality Var µ (g) ≤ ρ H -2η |∇ x g| 2 + |∇ y g| 2 dµ is satisfied if and only if there exists a Lyapunov function, i.e. a smooth function W such that W (x, y) ≥ w > 0 for all (x, y), a constant λ > 0 and a bounded open set A such that

  2 dµ φ ≤ s (φ 1 |∇ x h| 2 + |∇ y h| 2 )dµ φ + c e β/s |h| dµ φ R<r<R+1 + 1 R+1≤r .

	2 |h| dµ h 2 ϕ 2 (|y|) dµ e β/s h 2 ϕ 2 (|y|) dµ (H -2η |∇ x h| 2 + |∇ y h| 2 )dµ + c M 2 For R > 1, introduce the 1-Lipschitz function Since φ 2 ≤ 1, it follows h 2 dµ φ ≤ s M 2 h 2 dµ ≤ |y|≤R+1 h 2 dµ + ≤ M 2 φ 2 (R + 1) |y|≤R+1 h 2 dµ φ + ϕ(r) = (r -R) 1 One can write ≤ M 2 φ 2 (R + 1) h 2 dµ φ + h 2 ϕ 2 (|y|) dµ .	.	2	.	(17) eqsuperdef1 (18) eqsuperdef2

  Denote by G the Ornstein-Uhlenbeck operator G = ∆ y -y.∇ y and consider W (y) = e |y| 2 /4 . A simple calculation shows that

	for |y| >	√ 2d. Hence if R >	√	GW W 2d, we get for |y| > R, ≤ 1 4 (2d -|y| 2 )
		1 ≤ 4	-GW W	1 |y| 2 -2d	≤ 4	-GW W	1 R 2 -2d
	and finally				
		h 2 ϕ 2 (|y|) dµ ≤	4 R 2 -2d		-GW W	h 2 ϕ 2 (|y|) dµ .	(19) eqlyap

  2 + R -2 ) (φ 1 |∇ x h| 2 + |∇ y h| 2 )dµ φ + C ′ R 2 e β/s |h| dµ -1/4 , we obtain a super Poincaré inequalityh 2 dµ ≤ C u (φ 1 |∇ x h| 2 + |∇ y h| 2 )dµ φ + C ′ e β ′ /u 2 |h| dµ + h 2 dµ ≤ C (φ 1 |∇ x h| 2 + |∇ y h| 2 )dµ φ .Notice that, since φ 2 ≤ 1, the previous inequality is stronger than+ h 2 dµ ≤ C (H -2η |∇ x h| 2 + |∇ y h| 2 )dµ . (22) eqlsbeta3

			2
			.	(21) eqlsbeta2
		1
	which furnishes a F = ln	2
	h 2 ln	1 2
	h 2 ln	1 2

2

.

(

20

) eqlsbeta Choosing u = s 1 2 and R = s + -Sobolev inequality, i.e. if h 2 dµ = 1,

at infinity. Applying (22) with Ψ instead of u ln 1 2 + (u) (modifying the constant) and h 2 = f we have (the value of C varies from one line to the other)

completing the proof.
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