Transverse multipolar light-matter couplings in evanescent waves - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review A : Atomic, molecular, and optical physics [1990-2015] Année : 2016

Transverse multipolar light-matter couplings in evanescent waves

Ivan Fernandez-Corbaton
  • Fonction : Auteur
Nicolas Bonod

Résumé

We present an approach to study the interaction between matter and evanescent fields. The approach is based on the decomposition of evanescent plane waves into multipoles of well-defined angular momentum transverse to both decay and propagation directions. We use the approach to identify the origin of the recently observed directional coupling of emitters into guided modes, and of the opposite Zeeman state excitation of atoms near a fiber. We explain how to rigorously quantify both effects, and show that the directionality and the difference in excitation rates grow exponentially with the multipolar order of the light-matter interaction. We also use the approach to study and maximize the transverse torque exerted by an evanescent plane wave onto a given spherical absorbing particle. The maximum occurs at the quadrupolar order of the particle, and for a particular polarization of the plane wave. All the obtained physical insights can be traced back to the two main features of the decomposition of evanescent plane waves into transverse multipolar modes: A polarization independent exponential dominance of modes with large transverse angular momentum, and a polarization controlled parity selection rule.
Fichier principal
Vignette du fichier
jy.pdf (1.31 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01571587 , version 1 (19-07-2018)

Identifiants

Citer

Ivan Fernandez-Corbaton, Xavier Zambrana-Puyalto, Nicolas Bonod, Carsten Rockstuhl. Transverse multipolar light-matter couplings in evanescent waves. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2016, 94 (5), pp.053822. ⟨10.1103/PhysRevA.94.053822⟩. ⟨hal-01571587⟩
82 Consultations
59 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More