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In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the non-negativity of the solution, conserves the mass and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. This convergence result is proved by assuming only that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, under these assumptions, we obtain a new proof of existence of solutions for such equations.

We apply our results to several examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.

Introduction

In this article we consider the nonlinear Fokker-Planck-Kolmogorov (FPK) equation: Equation (F P K) is understood as an equation for measures, in the sense that we seek for a solution m in the space C([0, T ]; P 1 (R d )). Note that the coefficients b and a i,j depend, a priori, on the values m(t) ∈ P 1 (R d ) in the entire time interval [0, T ]. The notion of weak solution to this equation, as well as the assumptions we impose on the coefficients b and σ i,j , will be detailed in Section 2.

∂ t m -1 2 1≤i,j≤d
Equation (FPK) has been mostly studied in the linear case, i.e. when b(m, x, t) = b(x, t) and σ i,j (m, x, t) = σ i,j (x, t) for all i = 1, . . . , d and j = 1, . . . , r. This is in part due to the close relation between solutions to (F P K) and solutions to the standard Stochastic Differential Equation (SDE) (1.1) dX(t) = b(X(t), t)dt + σ(X(t), t)dW (t), X(0) = x, where σ is the matrix d × r matrix whose (i, j) entry is σ i,j , W is an r-dimensional Brownian motion and x ∈ R d . Indeed, under some assumptions on b and σ i,j , it is possible to show a correspondence of solutions to (F P K) and the time marginal laws of weak solutions to (1.1) for almost every x ∈ R d with respect to (w.r.t) m0 (see e.g. [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF][START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients[END_REF][START_REF] Bogachev | Fokker-Planck-Kolmogorov equations[END_REF] and the references therein). We refer the reader to [START_REF] Bogachev | Fokker-Planck-Kolmogorov equations[END_REF] for a systematic account of the theory of linear FPK equations and their probabilistic interpretation. When b(m, x, t) = b(m(t), x, t) and σ i,j (m, x, t) = σ i,j (m(t), x, t) the associated FPK equation is often called "Sapienza", Università di Roma, Dipartimento di Matematica Guido Castelnuovo, 00185 Rome, Italy (carlini@mat.uniroma1.it).
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McKean-Vlasov equation and several results exist concerning the well-posedness of the equation and its probabilistic interpretation (see e.g. [START_REF] Funaki | A certain class of diffusion processes associated with nonlinear parabolic equations[END_REF][START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF]). In the case of general nonlinear coefficients, the article [START_REF] Bogachev | Nonlinear evolution and transport equations for measures[END_REF] provides an existence result when σ i,j = 0 and in the articles [START_REF] Manita | Nonlinear parabolic equations for measures[END_REF][START_REF] Manita | Nonlinear parabolic equations for measures[END_REF] sufficient conditions on the coefficients defining (F P K) are given in order to ensure the existence of solutions in the second order case. The uniqueness of solutions to (F P K) is a difficult matter. The reader is referred to [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF][START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients[END_REF] for the analysis in the linear case with rough coefficients, which borrow some ideas from [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF][START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] dealing with the analogous problem when σ i,j = 0, and to [START_REF] Manita | On uniqueness of solutions to nonlinear Fokker-Planck-Kolmogorov equations[END_REF][START_REF] Manita | Uniqueness of a probability solution of a nonlinear Fokker-Planck-Kolmogorov equation[END_REF][START_REF] Bogachev | Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations[END_REF] for the nonlinear case.

Let us now comment on the numerical approximation of FPK equations. One of the most popular numerical schemes in the linear case is the one introduced by Chang and Cooper in [START_REF] Chang | A practical difference scheme for Fokker-Planck equations[END_REF]. An interesting feature of this finite difference scheme is that the discrete solution preserves some intrinsic properties of the analytical one such as non-negativity and conserves the mass of the initial condition. Starting from this article, several improvements have been obtained in subsequent works, see for instance [START_REF] Zorzano | Numerical solution of two-dimensional Fokker-Planck equations[END_REF][START_REF] Drozdov | Solution of nonlinear Fokker-Planck equations[END_REF], where high order finite difference schemes have been proposed also for the nonlinear case. Let us also mention [START_REF] Annunziato | A Fokker-Planck control framework for multidimensional stochastic processes[END_REF] dealing with the application of this scheme in the context of stochastic optimal control problems. Finally, finite element approximation have also been discussed in [START_REF] Spencer | On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems[END_REF].

In the '70s, Kushner has provided a systematic procedure to discretize the solution of a SDE by a discrete-time, discrete-state space Markov chain. The method the author proposes induces finite difference schemes for the associated Kolmogorov backward and forward equations (see e.g. [START_REF] Kushner | Finite difference methods for the weak solutions of the Kolmogorov equations for the density of both diffusion and conditional diffusion processes[END_REF][START_REF] Kushner | Probability methods for approximations in stochastic control and for elliptic equations[END_REF][START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF]) and so a finite difference discretization of (F P K) in the linear case. A proof of convergence of the scheme by using probabilistic tools (weak convergence of probability measures) is provided under the assumption that the coefficients of the SDE are bounded and uniformly continuous. More recently, in the context of Mean Field Games (MFGs) systems (see [START_REF] Lasry | Mean field games[END_REF][START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]), Achdou and Capuzzo-Dolcetta introduced in [START_REF] Achdou | Mean field games: numerical methods[END_REF] a semi-implicit finite difference scheme for a linear FPK equation. The scheme is obtained by computing the adjoint scheme of a monotone and consistent discretization of the corresponding dual equation, i.e. the Kolmogorov backward equation. Finally, in the first order case σ i,j = 0, we refer the reader to the recent articles [START_REF] Delarue | Convergence order of upwind type schemes for transport equations with discontinuous coefficients[END_REF][START_REF] Schlichting | Convergence rates for upwind schemes with rough coefficients[END_REF] dealing with explicit upwind finite volume schemes for the linear equation and to [START_REF] Lagoutière | Analysis and simulation of nonlinear and nonlocal transport equations[END_REF] for a similar scheme in the nonlinear and nonlocal case. Let us underline that all the schemes mentioned above share some of the good features of the Chang-Cooper scheme. Indeed, the approximated solutions are non-negative and conserve the initial mass. On the other hand, the main drawback of finite difference and finite element schemes is that, when implemented in their explicit form, they have to satisfy a CFL condition, which implies a strong restriction on the size of the time steps.

A different class of methods in the linear case is the so-called path integration method, introduced in [START_REF] Naess | Response statistics of nonlinear, compliant offshore structures by the path integral solution method[END_REF]. These are explicit schemes where the marginal laws of the solution of (1.1) are approximated via an Euler-Maruyama discretization of (1.1) using Gaussian one step transition kernels. Recently, in [START_REF] Chen | On numerical density approximations of solutions of SDEs with unbounded coefficients[END_REF], a convergence result for the discrete-time marginal laws in the L 1 strong topology is proved in the framework of a linear and uniformly elliptic FPK equation with unbounded coefficients.

Inspired by the papers [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF][START_REF] Carlini | A semi-Lagrangian scheme for a degenerate second order mean field game system[END_REF], dealing with the approximation of Mean Field Games (MFGs), our aim in this article is to provide a discretization of the general (F P K) and to establish some convergence results. In the linear case, the scheme we propose can be seen as a particular discrete-time, discrete-state space Markov chain approximation of (1.1) and can be obtained as the dual scheme to the Semi-Lagrangian (SL) scheme proposed in [START_REF] Camilli | An approximation scheme for the optimal control of diffusion processes[END_REF] for the associated linear Kolmogorov backward equation. In this sense, our discretization is related to the one proposed by Kushner in [START_REF] Kushner | Finite difference methods for the weak solutions of the Kolmogorov equations for the density of both diffusion and conditional diffusion processes[END_REF], but using a different Markov chain approximation that allows us to avoid the CFL condition and hence consider large time steps. For this reason, we find that Semi-Lagrangian scheme is a good appellation for our discretization. More importantly, our scheme naturally adapts to the general (F P K) equation, preserves also the positivity, conserves the total mass and allows us to obtain convergence results under rather general assumptions on b and σ i,j . Namely, continuity of b and σ i,j and sublinear growth w.r.t. the space variable x, uniformly w.r.t. m and t, are sufficient conditions to prove that if the time step h and space step ρ tend to zero and satisfy that ρ 2 /h → 0, then every limit point of the approximated solutions (there exists at least one) solves (F P K). Naturally, if the (F P K) equation admits a unique solution, then we get the convergence of the whole sequence of approximated solutions. As a by-product of this result, we obtain a new proof of existence of solutions to (F P K).

Note also that the initial condition m0 is rather general, we can consider for instance singular measures (e.g. Dirac masses) as initial distributions. Moreover, as we will see in Section 4, we can also construct our scheme by using suitable approximations of the coefficients b and σ i,j and the convergence result remains valid. Two nonlinear examples in Section 5 show that this is an important issue. Indeed, in these examples we do not have access to an explicit expression of the coefficients and they have to be approximated by suitable and computable coefficients.

Let us point out that a different SL scheme for the (F P K) equation has been proposed in [START_REF] Klar | A Semi-Lagrangian method for a Fokker-Planck equation describing fiber dynamics[END_REF] in the linear case. In this article, the advection part and the diffusion reaction term are approximated separately by using two fractional steps. Furthermore, in order to obtain a conservative scheme, the Semi-Lagrangian method applied to the advection part needs to be adjusted. Since our scheme is derived directly from the probabilistic interpretation of (F P K), it has the advantage that the advection and diffusion terms can be treated together and the conservation of the mass is automatically verified (see also the paper [START_REF] Bonaventura | Semi-Lagrangian methods for parabolic problems in divergence form[END_REF], where a conservative SL scheme for a parabolic equation in divergence form is studied).

We study in this work several applications of the scheme. We first consider two linear equations. The first one deals with a FPK equation where the underlying dynamics models a damped noisy harmonic oscillator, while the second FPK equation is of first order and describes the distribution of a prey-predator system modeled by a Lotka-Volterra system including effects of seasonality. Even if these two examples are simple, we have chosen them because of the following features. In the first model the exact solution admits an explicit expression, which allows us to quantify exactly the error of the approximation. In the second model, we consider a large time horizon in order to capture the asymptotic behavior of the system, which allows us to show the benefits of being able to chose large time steps. Next, we consider two nonlinear models. In the first one, we apply our scheme to a particular non-degenerated FPK arising in MFGs. The resulting approximation is similar to the one proposed in [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF][START_REF] Carlini | A semi-Lagrangian scheme for a degenerate second order mean field game system[END_REF], the main difference being that the non-degeneracy of the system allows us to prove the convergence of the approximation in general dimensions. In the second model, we propose a variation of the Hughes model for pedestrian dynamics (see [START_REF] Hughes | The flow of large crowds of pedestrians[END_REF]), where, differently from MFGs, agents do not forecast the evolution of the crowd in order to choose their optimal trajectories. We prove an existence result for the associated FPK, as well as the convergence of the proposed discretization.

The article is organized as follows. In Section 2 we introduce the main notations and recall some fundamental results about the space C([0, T ]; P 1 (R d )), which are the keys to establish the convergence result. Section 3 presents the scheme, first in the linear case, for pedagogical reasons, and then in the general nonlinear case. In Section 4 we prove our main results, concerning the convergence of the discretization. Finally, in Section 5 we consider the application of the scheme to the models described in the previous paragraph.
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Preliminaries

We denote by P(R d ) the space of probability measures on R d . Given a Borel measurable function Ψ : R d → R d and µ ∈ P(R d ), we denote by Ψ µ ∈ P(R d ) the probability measure defined as Ψ µ(A)

:= µ(Ψ -1 (A)) for all A ∈ B(R d ). Given p ∈ [1, ∞[, the set P p (R d ) denotes the subset of P(R d ) with bounded p moments, i.e. P p (R d ) := µ ∈ P(R d ) ; R d |x| p dµ(x) < ∞ . Define d p (µ 1 , µ 2 ) := inf R d ×R d |x -y| p dγ(x, y) 1 p ; γ ∈ P(R d × R d ), π 1 γ = µ 1 , π 2 γ = µ 2 ,
where [START_REF] Villani | Topics in Optimal Transportation[END_REF]Theorem 7.3]) and that P p (R d ), d p is a separable complete metric space (see e.g. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Proposition 7.1.5]). Moreover, (2.1) 

π i : R d × R d → R d (i = 1, 2) is defined as π i (x 1 , x 2 ) = x i . It is well known that d p is a distance in P p (R d ) (see e.g.
d p (µ 1 , µ 2 ) p ≤ inf R d |x -T (x)| p dµ 1 (x) ; T : R d → R d is Borel measurable and T µ 1 = µ 2 ,
with equality if µ 1 has no atoms (see [START_REF] Ambrosio | Lectures notes on optimal transport problem[END_REF]Theorem 2.1]). Finally, let us mention an important result that says that d 1 corresponds to the Kantorovic-Rubinstein metric, i.e.

d 1 (µ 1 , µ 2 ) = sup R d f (x)d(µ 1 -µ 2 )(x) ; f ∈ Lip 1 (R d ) ,
where Lip 1 (R d ) denotes the set of Lipschitz functions defined in R d with Lipschitz constant less or equal than 1 (see e.g. [START_REF] Villani | Topics in Optimal Transportation[END_REF]). Now, let C ⊆ C([0, T ]; P 1 (R d )) and suppose that there exists a modulus of continuity ω : [0, +∞[→ R, i.e. ω ≥ 0, ω is continuous and ω(0) = 0, such that

(2.2) sup µ∈C d 1 (µ(t 1 ), µ(t 2 )) ≤ ω(|t 1 -t 2 |) ∀ t 1 , t 2 ∈ [0, T ].
Assume in addition that there exists C > 0 such that [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Proposition 7.1.5]), (2.3), (2.2) and the Arzelá-Ascoli theorem yield the following result.

(2.3) sup µ∈C sup t∈[0,T ] R d |x| 2 dµ(t)(x) ≤ C. Since the set µ ∈ P 1 (R d ) ; R d |x| 2 dµ(x) ≤ C is compact in P 1 (R d ) (see
Lemma 2.1. Under the above assumptions, C is a relatively compact subset of C([0, T ]; P 1 (R d )).

For notational convenience, for ψ = b, σ i,j we set ψ[µ](x, t) := ψ(µ, x, t). We say that m ∈ C([0, T ];

P 1 (R d )) solves (F P K) if for all t ∈ [0, T ] and ϕ ∈ C ∞ 0 (R d ), the space of C ∞ -functions with compact support, we have (2.4) R d ϕ(x)dm(t)(x) = R d ϕ(x)d m0 (x) + t 0 R d [b[m](x, s) • ∇ϕ(x)] dm(s)(x)ds + t 0 R d 1 2 i,j a i,j [m](x, s)∂ 2 xi,xj ϕ(x) dm(s)(x)ds.
(H) We will suppose that: (i) The maps b and σ are continuous.

(ii) There exists C > 0 such that

(2.5) |b[µ](x, t)| + |σ[µ](x, t)| ≤ C(1 + |x|) ∀ µ ∈ P 1 (R d ), t ∈ [0, T ].
The aim of this article is to study convergent numerical schemes for solutions to (F P K) (if they exists). As it can be guessed from the references [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF][START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients[END_REF][START_REF] Bogachev | Fokker-Planck-Kolmogorov equations[END_REF] in the linear case, i.e. when b and σ i,j do not depend on m, the existence of solutions to (F P K) should be related with the existence of (weak) solutions to the McKean-Vlasov equation

(2.6) dX(t) = b[m](X(t), t)dt + σ[m](X(t), t)dW (t), X(0) = X 0 .
In (2.6), W is an r-dimensional Brownian motion defined on a probability space (Ω, F, P), m belongs to C([0, T ]; P 1 (R d )) and satisfies m(t) = Law(X(t)) for all t ∈ [0, T ], where we have denoted by Law(Y ) the law induced in R d by a d-valued random variable Y , and X 0 is a random variable, independent of W , and such that Law(X 0 ) = m 0 . This observation, relating formally solutions of (F P K) and (2.6), leads naturally to study the laws of discrete approximations of (2.6), for which existence is not difficult to show, and then to study their limit behavior. This strategy will be followed in the next sections.

Remark 2.1. In this article we do not tackle the study of uniqueness of solutions to (F P K). As it can be seen in [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF][START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients[END_REF][START_REF] Bogachev | Fokker-Planck-Kolmogorov equations[END_REF], in the linear case, the study of uniqueness is already quite complicate in the absence of first order information, w.r.t. the space variable, of b and σ. We refer the reader to [START_REF] Manita | On uniqueness of solutions to nonlinear Fokker-Planck-Kolmogorov equations[END_REF][START_REF] Manita | Uniqueness of a probability solution of a nonlinear Fokker-Planck-Kolmogorov equation[END_REF][START_REF] Bogachev | Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations[END_REF] for some recent and interesting results in the general nonlinear case.

The fully-discrete scheme

In this section we describe the scheme we propose and study its main properties. In order to introduce the main ideas we will start by considering first the (F P K) equation with σ = 0 and b independent of m, i.e. the first order linear FPK equation, also called continuity equation. Then, we will consider the stochastic case σ = 0 but still with coefficients b and σ independent of m. Finally, the scheme for the general (F P K) will easily follow by freezing the m dependence of b and σ. We motivate the schemes by assuming stronger assumptions on b and σ, which will imply uniqueness of the underlying SDEs, in order to take advantage of the semi-group properties of the solutions and somehow guess a consistent approximation. However, after the scheme is derived, we can dispense with these assumptions and study the limit behavior under assumption (H) only.

So, let us assume first that σ ≡ 0 and that b does not depend on m, i.e. b[m](x, t) = b(x, t). In addition to (H), assume that b is Lipschitz w.r.t. x, uniformly in t ∈ [0, T ]. For any 0 ≤ s ≤ t ≤ T and x ∈ R d , we set Φ(x, s, t) = X(t) where X is the unique solution of

(3.1) Ẋ(t ) = b(X(t ), t ) for t ∈]s, T [, X(s) = x.
We have that Φ defines a measurable function of (x, s, t)

(if t ≤ s we simply set Φ(x, s, t) = x). Then, m ∈ C([0, T ]; P 1 (R d )) defined as (3.2) m(t)(A) := Φ(•, 0, t) m0 (A) ∀ A ∈ B(R d ), t ∈ [0, T ],
is the unique solution of (F P K) (see [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields and applications[END_REF]). We also have that for all t ∈ [0, T ] and h ∈ [0, T -t]

(3.3) m(t + h)(A) = Φ(•, t, t + h) m(t)(A) ∀ A ∈ B(R d ).
Given N ∈ N we set h = T /N . Let us consider the following explicit time discretization of (3.2), based on a standard explicit Euler approximation of (3.1) and property (3.3)

(3.4) m 0 = m0 , m k+1 := Φ k m k , where Φ k (x) := x + hb(x, t k ) ∀ k = 0, . . . , N -1. 
The sequences m k and Φ k (k = 0, . . . , N ) depend of course on h but we have omitted this dependence in order to ease the reading. Let us now introduce some standard notations that will be used for the space discretization. Let ρ > 0 be a given space step, and consider a uniform space grid

G ρ := {x i = iρ ; i ∈ Z d }.
Given a regular triangulation T ρ of R d , with vertices belonging to G ρ , we consider a P 1 basis (β i ) i∈Z d , i.e. for all i ∈ Z d , β i is continuous, affine on each element of T ρ and such that β i (x j ) = 1 if i = j and β i (x j ) = 0 otherwise. Moreover, the support supp(β i ) of β i is compact and

β i satisfies 0 ≤ β i ≤ 1 ∀ i ∈ Z d , and 
i∈Z d β i (x) = 1 ∀ x ∈ R d .
We look for a discretization of (3.4) taking the form

(3.5) m k = i∈Z d m i,k δ xi ∀ k = 0, . . . , N -1.
For all i ∈ Z d , let us define

E i := x ∈ R d ; |x -x i | ∞ ≤ ρ 2 .
In Section 4 we will let ρ ↓ 0, thus, without loss of generality, we can assume that m0 (∂E i ) = 0 for all i ∈ Z d . We define the weights m i,k of the Dirac masses in (3.5) inductively as

(3.6) m i,0 = m0 (E i ), m i,k+1 = j∈Z d β i (Φ j,k )m j,k ∀ k = 0, . . . , N -1, i ∈ Z d , where (3.7) Φ i,k := Φ k (x i ) = x i + hb(x i , t k ) ∀ i ∈ Z d .
The sequences of weights in (3.6) depends on (ρ, h), but, for notational convenience, we have omitted this dependence.

Remark 3.1. (i) In order to understand the intuitive meaning of (3.6), take d = 1, ρ = 1 and

β i (x) := max{1 -|x -x i |, 0} for all i ∈ Z, x ∈ R.
Then, the mass m i,k+1 , at x i at time t k+1 , is obtained by first considering the set A i,k of j's such that Φ j,k ∈ supp(β i ) and then adding the masses m j,k (j

∈ A i,k ) weighted by 1 -|Φ j,k -x i |.
For instance, if Φ j,k = x i + 1/2 then half of the mass m j,k will go to x i and the other half will go to x i+1 .

(ii) In this deterministic setting if d = 1 it is easy to check that (3.6) coincides with the scheme proposed in [START_REF] Piccoli | Time-evolving measures and macroscopic modeling of pedestrian flow[END_REF].

Now, if σ[m](x, t) = σ(x, t)
is not identically zero we can consider the same type of scheme, taking into account that the characteristics curves are stochastic. Indeed, consider a filtered probability space (Ω, F, F, P), an r-dimensional Brownian motion W defined in this probability space and adapted to the filtration

F := {F t } t∈[0,T ] . Define Φ : Ω × R d × [0, T ] × [0, T ] → R d as Φ(ω, x, s, t) = x if t ≤ s and, for s < t, Φ(ω, x, s, t) = X(t, ω), where X solves (3.8) dX(t ) = b(X(t ), t )dt + σ(X(t ), t )dW (t ) for t ∈]s, T [, X(s) = x.
Then, assuming that b and σ are Lipschitz with respect to x, uniformly in t ∈ [0, T ], we have that (see e.g. [START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients[END_REF])

(3.9) m(t)(A) := Ω Φ(ω, 0, t) m0 (A)dP(ω) = E (Φ(•, 0, t) m0 (A)) ∀ A ∈ B(R d ), t ∈ [0, T ].
Analogously to (3.3), we have that

(3.10) m(t + h)(A) = E (Φ(•, t, t + h) m(t)(A)) ∀ A ∈ B(R d ).
Therefore, if we discretize the Brownian motion W by an r-dimensional random walk with N time steps, the stochastic characteristic

X(t + h) = X(t) + t+h t b(X(t ), t )dt + t+h t σ(X(t ), t )dW (t ),
can be approximated with an explicit Euler scheme by (3.11)

X(t + h) = X(t) + hb(X(t), t) + √ rhσ(X(t), t)Z,
where Z is an r-valued random variable, independent of X(t), satisfying that for all = 1, . . . , r, (3.12)

P({Z = 1) = P(Z = -1) = 1 2d and P   1≤ 1< 2≤r {Z 1 = 0} ∩ {Z 2 = 0}   = 0.
Relations (3.11)-(3.12) motivate the following extensions of Φ i,k , defined in (3.4),

(3.13) Φ ,+ i,k := x i + hb(x i , t k ) + √ rhσ (x i , t k ) ∀ i ∈ Z d , k = 0, . . . , N -1, = 1, . . . , r, Φ ,- i,k := x i + hb(x i , t k ) - √ rhσ (x i , t k ) ∀ i ∈ Z d , k = 0, . . . , N -1, = 1, . . . , r.
Inspired by (3.6), relation (3.10) induces the following explicit scheme

(3.14) m i,0 := m0 (E i ) ∀ i ∈ Z d , m i,k+1 := 1 2r r =1 j∈Z d β i (Φ ,+ j,k ) + β i (Φ ,- j,k ) m j,k ∀ i ∈ Z d , k = 0, . . . , N -1.
Remark 3.2. Note that the previous scheme is conservative. Indeed, for all k = 0, . . . , N -1,

i∈Z d m i,k+1 = j∈Z d m j,k 2r r =1 i∈Z d β i (Φ ,+ j,k ) + β i (Φ ,- j,k ) = i∈Z d m i,k , and so i∈Z d m i,k+1 = i∈Z d m i,0 = 1.
Markov chain interpretation: Note that (3.14) can be interpreted in terms of a discrete-time and countably-state space Markov chain. Indeed, given the initial law m •,0 on G ρ , consider the non-homogeneous Markov chain {X k ; k = 0, . . . , N } with values in G ρ defined by the previous initial law and the transition probabilities

p (k) ji := P X k+1 = x i X k = x j := 1 2r r =1 β i (Φ ,+ j,k ) + β i (Φ ,- j,k ) ∀ i, j ∈ Z d , k = 0, . . . , N -1.
Then, (3.14) gives the distribution of X k for all k = 0, . . . , N .

Remark 3.3. (i) Note that if σ ≡ 0, we recover the scheme (3.6).

(ii) As we will see in Section 4, the Markov chain (X k ) N k=0 is a consistent approximation, in the sense of Kushner (see [START_REF] Kushner | Probability methods for approximations in stochastic control and for elliptic equations[END_REF]), of the diffusion in (3.8) with s = 0 and with Law(X 0 ) = m0 . It is easily seen that, as a function of m0 , scheme (3.14) can be formally understood as the dual scheme associated to the Semi-Lagrangian scheme (see [START_REF] Milstein | The probability approach to numerical solution of nonlinear parabolic equations[END_REF]) for the Kolmogorov backward equation

∂ t u -1 2 1≤i,j≤d a i,j ∂ 2 xi,xj u + b • ∇u = 0, u(•, T ) = g(•), as a function of g ∈ C b (R d ) (where C b (R d ) is the space of bounded continuous functions in R d ). (iii) In [19, Section 3.1]
, it is shown that scheme (3.14) can also be constructed from the weak formulation of (F P K) (when b and σ are independent of m).

In the general non-linear case, as we have explained at the end of Section 2, formally, m solves (F P K) iff for all t ∈ [0, T ], we have that m(t) = Law(X(t)), where X solves (2.6) (assuming that (2.6) admits a solution in a weak sense). On the other hand, even in the particular case of regular coefficients and local in time dependence on m, i.e. b[m](x, t) = b(m(t), x, t) and σ[m](x, t) = σ(m(t), x, t), with b and σ regular w.r.t. x, we have that X is not a Markov process. Nevertheless, loosely speaking again, X solves

(2.6) iff Law(X(•)) ∈ C([0, T ]; P 1 (R d )) is a fixed point of the application (3.15) µ ∈ C([0, T ]; P 1 (R d )) → F(µ) := Law(X[µ](•)) ∈ C([0, T ]; P 1 (R d )),
where

X[µ](•) solves (3.16) dX(t) = b[µ](X(t), t)dt + σ[µ](X(t), t)dW (t) for t ∈]0, T [, X(0) = X 0 .
Since for every fixed µ, X[µ] defines a Markov diffusion, we can apply (3.14) to approximate its law. Even if the previous discussion is purely formal, it provides the idea to construct a natural discretization of (F P K) by considering a discrete version of the fixed-point problem (3.15), which will be constructed using (3.14). However, since b[•](x, t) and σ[•](x, t) act on C([0, T ]; P 1 (R d )), given ρ and h we first need to extend elements on

S ρ,h :=    (µ i,k ) i∈Z d , k=0,...,N ; µ i,k ≥ 0, ∀ i ∈ Z d , i∈Z d µ i,k = 1, i∈Z d |xi|µ i,k < ∞, for all k = 0, . . . , N    , to elements in C([0, T ]; P 1 (R d ))
. This can be naturally done by using time interpolation. Given µ ∈ S ρ,h , we still denote by µ the element of C([0, T ];

P 1 (R d )) defined by (3.17) µ(t) := t -t k h i∈Z d µ i,k+1 δ xi + t k+1 -t h i∈Z d µ i,k δ xi if t ∈ [t k , t k+1 [, for all k = 0, . . . , N -1. Using this notation, define (3.18) µ ∈ S ρ,h → F ρ,h (µ) := (Law(X k [µ])) k=0,...,N ∈ S ρ,h , where we compute P(X k [µ] = x i ) := m i,k [µ] recursively with (3.14) with Φ ,+ j,k and Φ ,- j,k replaced by Φ ,+ i,k [µ] := x i + hb[µ](x i , t k ) + √ rhσ [µ](x i , t k ), Φ ,- i,k [µ] := x i + hb[µ](x i , t k ) - √ rhσ [µ](x i , t k ), respectively. For µ ∈ S ρ,h let us set ν k [µ] := F ρ,h (µ) k (k = 0, . . . , N )
. By definition of the scheme, using that m0 ∈ P 2 (R d ) and that m0 (∂E i ) = 0, we have

R d |x| 2 dν 0 [µ](x) = i∈Z d |x i | 2 m0 (E i ) = i∈Z d Ei |x -(x -x i )| 2 d m0 (x) ≤ 2 R d |x| 2 d m0 (x) + dρ 2 /2 < +∞.
Moreover, arguing exactly as in the proof of Proposition 4.1 in the next section, under (H)(ii) we obtain the existence of c > 0, independent of µ, such that

(3.19) R d |x| 2 dν k [µ](x) = i∈Z d |x i | 2 ν i,k [µ] ≤ c ∀ k = 0, . . . , N, ∀ µ ∈ S ρ,h .
In particular, F ρ,h is well-defined. The discretization of (F P K) we propose is

(3.20) find m ∈ S ρ,h such that m = F ρ,h (m),
or equivalently, find m ∈ S ρ,h such that (3.21)

m i,0 = m0 (E i ) ∀ i ∈ Z d , m i,k+1 = 1 2r r =1 j∈Z d β i (Φ ,+ j,k [m]) + β i (Φ ,- j,k [m]) m j,k ∀ i ∈ Z d , k = 0, . . . , N -1.
Now, let us prove the existence of solutions of (3.20). In the following proof we identify S ρ,h with a subset of P 1 (R d ) N +1 by letting for all µ ∈ S ρ,h

(3.22) µ k = i∈Z d µ i,k δ xi ∀ k = 0, . . . , N.
Proposition 3.1. There exists at least one solution m ρ,h ∈ S ρ,h of (3.20).

Proof. As before, for µ ∈ S ρ,h denote by 

ν k [µ] := F ρ,h (µ) k (k = 0, . . . , N ). Let c > 0 be such that (3.19) holds. Then, defining S ρ,h c :=    µ ∈ S ρ,h ; i∈Z d |x i | 2 µ i,k ≤ c, ∀ k = 0, . . . , N    , we have that S ρ,h c is convex and F ρ,h (S ρ,h c ) ⊆ S
S ρ,h c is a compact subset of P 1 (R d ) N +1 .
Finally, if µ n ∈ S ρ,h converge to µ ∈ S ρ,h , seen as elements of P 1 (R d ) N +1 , then, using the extension (3.17), assumption (H)(i) implies that Φ ,+ j,k [µ n ] and Φ ,- j,k [µ n ] converge to Φ ,+ j,k [µ] and Φ ,- j,k [µ], respectively, which implies the continuity of F ρ,h . Since the topology of P 1 (R d ) is the restriction to P 1 (R d ) of the topology induced by the modified Kantorovic-Rubinstein norm on the linear space of all bounded Borel measures on R d with respect to which all the Lipschitz functions are integrable (see the discussion before Proposition 1.1.4 in [START_REF] Bogachev | The Monge-Kantorovich problem: achievements, connections, and prospects[END_REF]), the existence of a solution of (3.20) follows from Schauder's fixed point theorem.

The computation in Remark 3.2 applies in the nonlinear case and so the scheme is conservative.

Remark 3.4. [Explicit and implicit schemes] Note that if for all t ∈ [0, T ], b[m](x, t) = b(m(• ∧ t), x, t)
and σ[m](x, t) = σ(m(•∧t), x, t) for some functions b and σ defined in C([0, T ]; P 1 (R d ))×R d ×[0, T ], then the scheme (3.21) is explicit in the time steps and the existence of solution, as well as the uniqueness, of the scheme is straightforward. In the general case, the scheme is implicit in the time steps and, as we have seen in the proof of the previous proposition, the existence of solutions is a consequence of Shauder fixed point theorem. The latter situation is the one we face when we consider MFGs, as we will see in Section 5.3. In the implicit cases, the uniqueness of solutions is generally not true and its fulfilment depends on the problem at hand.

Convergence analysis

Let us first introduce and recall some classical properties of the linear interpolation operator we consider (see e.g. [START_REF]Handbook of numerical analysis[END_REF][START_REF] Quarteroni | Numerical Mathematics[END_REF] for further details). Let B(G ρ ) the space of bounded functions on G ρ and for f ∈ B(G ρ ) set f i := f (x i ). We consider the following linear interpolation operator (4.1)

I[f ](•) := i∈Z d f i β i (•) for f ∈ B(G ρ ). Given φ ∈ C b (R d ), let us define φ ∈ B(G ρ ) by φi := φ(x i ) for all i ∈ Z d . Suppose that φ : R d → R is Lipschitz with constant L. Then, (4.2) I[ φ] is Lipschitz with constant √ dL and sup x∈R d |I[ φ](x) -φ(x)| = c 0 ρ,
for some c 0 > 0. On the other hand, if φ ∈ C 2 (R d ), with bounded second derivatives, then there exists

c 1 > 0 such that (4.3) sup x∈R d |I[ φ](x) -φ(x)| = c 1 ρ 2 .
Now, let {N n } n∈N be a sequence in N such that N n → ∞ as n → ∞ and set h n := T /N n . Given a sequence of space steps ρ n , such that ρ n → 0 as n → ∞, we want to study the limit behavior of the extensions to C([0, T ]; P 1 (R d )), defined in (3.17), of sequences of solutions m n := m ρn,hn ∈ S ρn,hn of (3.20), with ρ = ρ n and h = h n (by Proposition 3.1 we now that (3.20) admits at least one solution). First note that by considering the transport plan T (x) = x i if x ∈ E i , and arbitrarily defined in ∂E i (because m0 (∂E i ) = 0), we have that T m0 = m n (0). Thus, inequality (2.1) with p = 1 yields

(4.4) d 1 ( m0 , m n (0)) ≤ R d |x -T (x)|d m0 (x) = i∈Z d Ei |x -x i |d m0 (x) ≤ √ dρ n /2,
which implies that m n (0) → m0 in P 1 (R d ) as n → ∞. We will prove in this section that under suitable conditions over ρ n and h n the set C := {m n ; n ∈ N} satisfies (2.2) and (2.3). Therefore, Lemma 2.1 will imply that m n has at least one limit point m ∈ C([0, T ]; P 1 (R d )). Finally, we will show that m solves (F P K).

In the proof of (2.2) and (2.3) we will need some properties of the Markov chain X n , defined by the transition probabilities

p n,k ji := P X n k+1 = x i X n k = x j := 1 2r r =1 β i (Φ ,+ j,k [m n ]) + β i (Φ ,- j,k [m n ]) ∀ i, j ∈ Z d ,
and k = 0, . . . , N -1. Note that (3.21) implies that the mariginal distributions of this chain are given by m n . Moreover, it is easy to check that (4.2) (resp. (4.3)) implies that if φ : R d → R is Lipschitz (reps. C 2 with bounded second derivatives), then

(4.5) E φ(X n k+1 ) X n k = x i = 1 2r r =1 I[ φ](Φ ,+ i,k [m n ]) + I[ φ](Φ ,- i,k [m n ]) = 1 2r r =1 φ(Φ ,+ i,k [m n ]) + φ(Φ ,- i,k [m n ]) + O(ρ n ), (resp.) E φ(X n k+1 ) X n k = x i = 1 2r r =1 φ(Φ ,+ i,k [m n ]) + φ(Φ ,- i,k [m n ]) + O(ρ 2 n ). Proposition 4.1. Suppose that ρ 2 n = O(h n ).
Then, there exists a constant c > 0 such that

(4.6) sup n∈N sup t∈[0,T ] R d |x| 2 dm n (t) ≤ c.
Proof. By (3.17), it is enough to show that there exists c > 0, independent of n, such that

(4.7) sup k=0,...,Nn R d |x| 2 dm n (t k ) ≤ c.
For notational convenience we will omit the superscript n. By definition,

R d |x| 2 dm(t k+1 )(x) = i∈Z d |x i | 2 m i,k+1 = E(|X k+1 | 2 ),
from which, using (4.5) and (H)(ii),

E(|X k+1 | 2 ) = i∈Z d E |X k+1 | 2 X k = x i m i,k , = 1 2r r =1 i∈Z d Φ ,+ i,k [m] 2 + Φ ,- i,k [m] 2 m i,k + O(ρ 2 n ), = E X k + h n b[m](X k , t k ) + √ rh n σ[m](X k , t k )Z k 2 + O(ρ 2 n ), = E |X k | 2 + h 2 n |b[m](X k , t k )| 2 + rh n r =1 |σ [m](X k , t k )| 2 + 2h n X k • b[m](X k , t k ) +O(ρ 2 n ), ≤ (1 + Ch n )E(|X k | 2 ) + Ch n + O(ρ 2 n )
, where Z k is an r-valued random variable, independent of X k , satisfying (3.12) and C is independent of n. Iterating, we get

R d |x| 2 dm(t k+1 )(x) ≤ (1 + Ch n ) T hn E(|X 0 | 2 ) + (Ch n + O(ρ 2 n )) N k=0 (1 + Ch n ) k + O(ρ 2 n ) ≤ e CT E(|X 0 | 2 ) + T hn Ch n + O(ρ 2 n ) e CT + O(ρ 2 n ) ≤ e CT E(|X 0 | 2 ) + CT + O ρ 2 n hn e CT ,
from which the result follows.

Now, we prove a consistency property of the chain X n in the spirit of Kushner [START_REF] Kushner | Probability methods for approximations in stochastic control and for elliptic equations[END_REF]. For all 0

≤ k ≤ N n -1 let us define δ k X n := X n k+1 -X n k , Y n k := δ k X n -E (δ k X n |X n k ). Lemma 4.1. For all k = 0, . . . , N n -1 we have that E(δ k X n |X n k ) = h n b[m n ](X n k , t k ), E(|Y n k | 2 |X n k ) = h n r =1 |σ [m n ](X n k , t k )| 2 + O(ρ 2 n ).
Proof. By definition of p n,k i k ,i k+1 we have

E(δ k X n |X n k = x i k ) = i k+1 x i k+1 -x i k p n,k i k ,i k+1 = 1 2r r =1 I[id -x i k ](Φ ,+ i k ,k [m n ]) + I[id -x i k ](Φ ,- i k ,k [m n ]) = h n b[m n ](x i k , t k ),
where id(x) = x and the last equality follows from the fact that I[id -

x i k ](y) = y -x i k for all y ∈ R d . Analogously, E(|Y n k | 2 |X n k = x i k ) = i k+1 x i k+1 -x i k -E(δ k X n |X n k = x i k ) 2 p n,k i k ,i k+1 .
Using (4.3) and the definition of p n,k i k ,i k+1 again we get that

E(|Y n k | 2 |X k = x i k ) = h n d =1 |σ [m n ](x i k , t k )| 2 + O(ρ 2 n ),
from which the result follows.

Now, we prove that

C := {m n ; n ∈ N} satisfies (2.2). Proposition 4.2. Suppose that ρ 2 n = O(h n ).
Then, there exists a constant C > 0 such that

(4.8) sup n∈N d 2 (m n (t), m n (s)) ≤ C|t -s| 1 2 ∀ t, s ∈ [0, T ].
In particular, since d 1 ≤ d 2 , we have that C satisfies (2.2).

Proof. The proof is divided into two steps:

Step 1: We first show that for given N n there exists a constant C, independent of n, such that (4.9)

d 2 (m n (t k ), m n (t k )) ≤ C |k -k |h n ∀ k, k = 0, . . . , N n .
We assume, without loss of generality, that k = 0. For notational convenience, we omit the superscript n on the sequences X n k , δ k X n and Y n k . By the definition of d 2 we have (4.10)

d 2 (m n (t k ), m n 0 ) ≤ E(|X k -X 0 | 2 ) 1 2 .
We have that

(4.11) E |X k -X 0 | 2 = E k-1 p=0 (Y p + E (δ p X|X p )) 2 ≤ 2E k-1 p=0 Y p 2 + 2E k-1 p=0 E (δ p X|X p ) 2 .
Now, for 0 ≤ r < l ≤ k -1 conditioning on F l := σ(X 0 , . . . , X l ) and using that, by the Markov property,

E(δ l X|F l ) = E(δ l X|X l ) we get E(Y l • Y r ) = E [(δ l X -E (δ l X|X l )) • Y r ] = E(E (δ l X -E (δ l X|X l )) F l • Y r ) = 0
, and so, by Lemma 4.1, (4.12)

E k-1 p=0 Y p 2 = k-1 p=0 E(E(|Y p | 2 |X p )) = h n k-1 p=0 r =1 E(|σ [m n ](X p , t p )| 2 ) + O kρ 2 n ≤ Ch n k 1 + sup p=0,...,N E|X p | 2 + O kρ 2
n . On the other hand, using Lemma 4.1 again,

k-1 p=0 E (δ p X|X p ) 2 ≤ Ch 2 n k k-1 p=0 (1 + |X p | 2 ),
and so

(4.13) E k-1 p=0 E (δ p X|X p ) 2 ≤ Ch 2 n k 2 1 + sup p=0,...,N E|X p | 2 .
By Proposition 4.1, (4.12), (4.13), (4.11) and our assumption ρ 2 n = O(h n ), we get the existence of C > 0 such that (4.9) holds true.

Step 2: proof of (4.8): Let 0 ≤ s < t ≤ T and k , k such that s ∈ [t k , t k +1 [ and t ∈ [t k , t k+1 [. Then, by the triangular inequality

(4.14) d 2 (m n (t), m n (s)) ≤ d 2 (m n (t), m n (t k )) + d 2 (m n (t k ), m n (t k +1 )) + d 2 (m n (t k +1 ), m n (s)).
By the dual representation of d 2 2 (•, •) (see [START_REF] Villani | Topics in Optimal Transportation[END_REF]Theorem 1.3]), this function is convex in P 2 (R d ) × P 2 (R d ). Thus, relations (3.17) and (4.9) imply that

d 2 2 (m n (t), m n (t k )) ≤ t -t k h n d 2 2 (m n (t k+1 ), m n (t k )) ≤ C 2 (t -t k ), from which (4.15) d 2 (m n (t), m n (t k )) ≤ C(t -t k ) 1 2 .
Analogously,

(4.16) d 2 (m n (t k +1 ), m n (s)) ≤ C(t k +1 -s) 1 2 .
Relations (4.14), (4.15), (4.16) and the Cauchy-Schwarz inequality imply the existence of C > 0, independent of n, such that

d 2 (m n (t), m n (s)) ≤ C|t -s| 1 2 . Relation (4.8) follows. For notational convenience, for all ϕ ∈ C ∞ 0 (R d ) let us set L b,σ,ϕ [µ](x, t) := 1 2 i,j ai,j[µ](x, t)∂ 2 x i ,x j ϕ(x) + b[µ](x, t) • ∇ϕ(x) ∀ (µ, x, t) ∈ C([0, T ]; P1(R d )) × R d × [0, T ].
Now, we have all the elements to prove our main convergence result.

Theorem 4.1. Assume (H) and that ρ 2 n = o(h n ). Then, every limit point m ∈ C([0, T ]; P 1 (R d )) of m n (there exists at least one) solves (F P K). In particular, under assumption (H), (F KP ) admits at least one solution.

Proof. By Proposition 4.1, Proposition 4.2 and Lemma 2.1, with C = {m n ; n ∈ N}, the sequence m n has at least one limit point m. We use the same superscript n to index a subsequence m n converging to m in C([0, T ]; P 1 (R d )) and we need to show that m satisfies (2.4). Let t ∈]0, T ] and, wihtout loss of generality, consider a sequence

t n = n h n such that t ∈]t n , t n +1 ]. Then, for every ϕ ∈ C ∞ 0 (R d ) (4.17) R d ϕ(x)dm n (t n )(x) = R d ϕ(x)dm n (0)(x) + n -1 k=0 R d ϕ(x)d [m n (t k+1 ) -m n (t k )] (x).
For all k = 0, . . . , n -1 we have that (4.18)

R d ϕ(x)dm n (t k+1 )(x) = i∈Z d ϕ(x i )m n i,k+1 = j∈Z d m n j,k 1 2r r =1 i∈Z d ϕ(x i ) β i (Φ ,+ j,k [m n ]) + β i (Φ ,- j,k [m n ]) = j∈Z d m n j,k 1 2r r =1 I[ϕ](Φ ,+ j,k [m n ]) + I[ϕ](Φ ,- j,k [m n ]) = j∈Z d m n j,k 1 2r r =1 ϕ(Φ ,+ j,k [m n ]) + ϕ(Φ ,- j,k [m n ]) + O(ρ 2 n ) = j∈Z d m n j,k [ϕ(x j ) + h n L b,σ,ϕ [m n ](x j , t k )] + O ρ 2 n + h 2 n = R d [ϕ(x) + h n L b,σ,ϕ [m n ](x, t k )] dm n (t k )(x) + O ρ 2 n + h 2 n ,
where we have used a fourth order Taylor expansion for the terms ϕ(Φ ,+ j,k [m n ]) and ϕ(Φ ,- j,k [m n ]). As a consequence, (4.17) yields

(4.19) R d ϕ(x)dm n (t n )(x) = R d ϕ(x)dm n (0)(x) + hn n -1 k=0 R d L b,σ,ϕ [m n ](x, t k )dm n (t k )(x) + O ρ 2 n hn + hn .
Assumption (H)(i) implies the existence of a modulus of continuity ω1 , independent of k, such that

R d L b,σ,ϕ [m n ](x, t k )dm n (t k )(x) = R d L b,σ,ϕ [m](x, t k )dm(t k )(x) + ω1 (d 1 (m n , m)).
Thus,

(4.20) R d ϕ(x)dm n (t n )(x) = R d ϕ(x)dm n (0)(x) + h n n -1 k=0 R d L b,σ,ϕ [m](x, t k )dm(t k )(x) +O ρ 2 n hn + h n + ω1 (d 1 (m n , m)) .
Since m ∈ C([0, T ]; P 1 (R d )), (H)(i) implies that the second term in the r.h.s. of (4.20) converges to the Riemman integral

t 0 R d L b,σ,ϕ [m](x, s)dm(s)(x).
Thus, passing to the limit in (4.20), we get that (2.4) holds true.

Remark 4.1. In particular, Theorem 4.1 yields a Peano type existence result for (F P K). We point out that more general existence results for the (F P K) equation are proven in the articles [START_REF] Manita | Nonlinear parabolic equations for measures[END_REF][START_REF] Manita | Nonlinear parabolic equations for measures[END_REF], by using purely analytical techniques.

As we will see in Section 5, in some applications we do not know explicitly the coefficients b and σ. In this case, we need to approximate them numerically in order to obtain an implementable scheme. Let (ρ n , h n ) be as in Theorem 4.1 and consider a family of coefficients

b n : C([0, T ]; P 1 (R d )) × R d × [0, T ] → R d , (σ n ) i,j : C([0, T ]; P 1 (R d )) × R d × [0, T ] → R, i = 1, . . . , d, j = 1, . . . , r,
satisfying that for all t ∈ [0, T ] the mappings b n (•, •, t) and (σ n ) i,j (•, •, t) are continuous and that the linear growth condition (2.5) holds uniformly in n ∈ N. Assume that for any sequence µ n ∈ C([0, T ];

P 1 (R d )) and µ ∈ C([0, T ]; P 1 (R d )) such that µ n → µ in C([0, T ]; P 1 (R d )), we have (4.21) b n [µ n ](•, •) → b[µ](•, •) and σ n [µ n ](•, •) → σ[µ](•, •) uniformly in compact subsets of R d × [0, T ].
Let us define m n as the extension (3.17) to C([0, T ]; P 1 (R d )) of a solution m n := m ρn,hn ∈ S ρn,hn of (3.20) with coefficients given by b n and σ n . Since the proof of Proposition 3.1 does not use the continuity in time of the coefficients, we have that m n is well-defined. Arguing exactly as in the proof of Theorem 4.1 we obtain the following result. Theorem 4.2. Under the above assumptions every limit point m ∈ C([0, T ]; P 1 (R d )) of m n (there exists at least one) solves (F P K).

Remark 4.2. The approximation of the coefficients can also be useful in order to approximate the (F P K) equation with coefficients b and σ defined almost everywhere w.r.t. the Lebesgue measure. In this case, in order to give a meaning to a solution m of (2.4) one can require that m(t) should be absolutely continuous w.r.t. the Lebesgue measure for almost every t ∈ [0, T ]. One can then consider coefficients b n and σ n which regularize b and σ, but in general we can only expect L 1 convergence L b n ,σ n ,ϕ to L b,σ,ϕ . In this case, the scheme (3.20) should be modified in order to discretize the density of m and a stronger compactness result, for example in L ∞ endowed with the weak * topology, should be proved for the constructed approximation m n . As we will discuss in Remark 5.1(ii), this is exactly the situation in degenerate MFGs (see [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF][START_REF] Carlini | A semi-Lagrangian scheme for a degenerate second order mean field game system[END_REF]).

Applications and Numerical simulations

We describe several applications where our scheme can be efficiently used to approximate the solution of the FPK equation. We consider first two standard linear models. The first one consists in a FPK equation where the underlying two-dimensional dynamics models a damped noisy harmonic oscillator. In this case, there is an explicit exact solution, which is helpful in order to test the scheme and compute the numerical errors. In the second linear model we consider a first order FPK equation, where the underlying dynamics describes a predator-prey model under the effect of a periodic force that models seasonality. In this test we propose a simple modification of the scheme which allows us to simulate the long time behavior of the dynamics by considering very large time steps.

Next, we apply our scheme to solve two non-linear models with σ[m](x, t) ≡ σI d for some σ = 0 (where I d is the d × d identity matrix), but where b[m](x, t) does not admits an explicit expression and has to be approximated (see the end of the previous section). In the first model we consider an example of the so-called MFG system with non-local interactions (see [START_REF] Lasry | Mean field games[END_REF]). In this case, the drift b[m](x, t) is related to the value function of an optimal control problem starting at x at time t, having running and terminal costs depending on {m(s) ; s ∈]0, T [} and m(T ), respectively. Therefore, as explained in Remark 3.4, the proposed scheme is implicit. Our approximation is similar to the one in [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF][START_REF] Carlini | Semi-Lagrangian schemes for mean field game models[END_REF][START_REF] Carlini | A semi-Lagrangian scheme for a degenerate second order mean field game system[END_REF] dealing with degenerated MFG systems and where the authors prove the convergence when d = 1. In our present nondegenerate setting, the theory developed in Section 4 allows us to prove the convergence of the scheme in general space dimensions. In the second non-linear model, we consider a FPK equation where the velocity field b[m](x, t) depends on the value function of an optimal control starting at x at time t with running and terminal costs depending only on the value m(t). This model, which seems to be new, is inspired by the Hughes model [START_REF] Hughes | The flow of large crowds of pedestrians[END_REF] and could be used to model crowd motion in some panic situations. We prove that the related FPK equation admits at least one solution and we also provide a convergence result for the associated scheme. 5.1. Linear case: damped noisy harmonic oscillator. We consider the numerical resolution of a FPK equation modeling a harmonic oscillator with damping coefficient γ > 0 and noise coefficient σ > 0. The dynamics is described by the following two dimensional SDE in an interval ]0, T [ (5.1)

dX 1 (t) = X 2 (t)dt dX 2 (t) = [-X 1 (t) -γX 2 (t)] dt + √ 2σdW (t), (X 1 (0), X 2 (0)) = ( X1 (0), X2 (0)) with Law(( X1 (0), X2 (0))) = m0 ∈ P 2 (R 2 ),
and ( X1 (0), X2 (0)) independent of the one-dimensional Brownian motion W . The associated (degenerated) FPK equation is

(5.2) ∂ t m -σ∂ x2,x2 m + ∂ x1 (x 2 m) -∂ x2 ((x 1 + γx 2 )m) = 0 in R 2 ×]0, T [, m(0) = m0 .
Supposing that m0 := δ x0 (x 0 ∈ R 2 ), it is shown in [START_REF] Zorzano | Numerical solution of two-dimensional Fokker-Planck equations[END_REF] that the solution m to (5.2) has a density, which has the following explicit expression

(5.3) m(x, t) = ν(x, t) R d ν(y, t)dy
, where ν(x, t) := e γt-sx 0 (x,t)/2∆(t)

2π ∆(t) ,

with s x0 (x, t) := a(t)(ψ(x, t) -ψ(x 0 , 0)) 2 + 2H(t) [ψ(x, t) -ψ(x 0 , 0)] [η(x, t) -η(x 0 , 0)] +b(t)(η(x, t) -η(x 0 , 0)) 2 , ∆(t) := a(t)b(t) -H(t) 2 , and ψ(x, t) := (x 1 µ 1 -x 2 )e -µ2t , η(x, t) := (x 1 µ 2 -x 2 )e -µ1t , H(t) := -2σ µ1+µ2 (1 -e -(µ1+µ2)t ), a(t) := σ µ1 (1 -e -2µ1t ), b(t) := σ µ2 (1 -e -2µ2t ), µ 1 := -γ 2 + ( γ 2 4 -1) 1 2 , µ 2 := -γ 2 -( γ 2 4 -1) 1 2 
.

We apply our scheme to approximate the solution of (5.2) in the time interval [0, T ] := [0, 2] with γ = 2.1, σ = 0.8 and m0 := δ x0 with x 0 := (1, 1). Since most of the support of the exact solution m is contained in O := (-4, 4) 2 , we consider the solution of our scheme restricted to this domain (which implies that the total mass is not conserved) in order to obtain an implementable method. An alternative would be to impose Neumann boundary conditions (see the next example) in order to maintain the total mass constant. However, in that case we loose the explicit expression (5.3) for the exact solution.

Given ρ, h = T /N > 0 (N ∈ N), and the weights m i,k (i ∈ Z 2 , k = 0, . . . , N ), defined by recursively by (3.14), we set m ρ,h (x, t)

:= m i,k /ρ 2 if (x, t) ∈ E i × [t k , t k+1
), which, for fixed t, defines a density which is uniform on E i . Let us set (5.4)

E ρ,h := 1 K 2 i (m ρ,h (x i , T ) -m(x i , T )) 2 1 2
, where K is the total number of grid nodes. The value E ρ,h measures a discrete L 2 error between the density of m and its approximation. Note that the convergence theory presented in Section 4 does not imply that E ρ,h should tend to 0 as ρ and h tend to zero. Nevertheless, we observe this behavior numerically. Indeed, for ρ = 0.1, 0.05, 0.025 we set h = ρ/2 and compute E ρ,h for the corresponding numerical approximations.

In the first two columns of Table 1 we show the selected parameters. In the third and fourth columns we show the associated error E ρ,h and the convergence rate, respectively. In Figure 1, we display on the left the contour level set of m ρ,h (•, t) at the level 0.2 defined as Γ t := {x ∈ O ; m ρ,h (x, t) = 0.2} and we computed this set at times t = 0.2, 0.5, 1, 2 with ρ = 0.025. To the right in the same figure, we provide a 3D view of the numerical solution computed at the final time T = 2 with ρ = 0.025. Even in this simple linear setting, this test shows two main advantages of our scheme. Compared to explicit finite difference schemes, the discretization we propose is stable, explicit and, at the same time, allows large time steps. Moreover, it can handle initial data with very weak regularity (a Dirac mass in this particular case). Damped oscillator: On the left we display the contour level sets for m ρ,h (x, t) = 0.2 at times t = 0.2, 0.5, 1 and 2. The black point corresponds to (1, 1), which is the point where the initial mass is concentrated. On the right, we display a 3D view of the numerical solution at time T = 2 computed with ρ = 0.025. 5.2. Linear and deterministic case: Lotka-Volterra model with seasonality. We consider now a Lotka-Volterra type system that models the time evolution of a two-species predator-prey system under the effect of seasonality (see [START_REF] King | The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics[END_REF]). The number of predators and preys, as functions of time, are denoted by U and V , respectively. The dynamics of (U, V ) in the time interval [0, +∞[ is described by (omitting the initial conditions)

(5.5) dU (t) = [-U (t) + U (t)V (t)] dt dV (t) = (1 + λ sin(t))V (t) -U (t)V (t) -γV (t) 2 dt,
where λ ≥ 0 and γ > 0. The predators have death and growth rates equal to 1. The preys have death rates equal to 1, due to the presence of predators, but they are also affected by self-limitations effects (due, for instance, to resource limitation) which are modeled by the term γV (t) 2 . The growth rate of the preys has periodic variations t → 1 + λ sin(t) to model seasonality. If λ = 0, system (5.5) has a unique non trivial positive equilibrium, while in the seasonal case λ > 0 the equilibrium is shown to be a periodic orbit around the origin. We refer the reader to [START_REF] King | The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics[END_REF] for analytical details on this model. The system can be simplified by the logarithmic transformation

X 1 = ln U, X 2 = ln V into (5.6) dX 1 (t) = -1 + e X2(t) dt dX 2 (t) = 1 + λ sin(t) -e X1(t) -γe X2(t) dt.
Note that the coefficients defining (5.6) do not satisfy the growth assumption (H)(ii). Despite this fact, we will show next that the scheme we propose approximates correctly the associated FPK equation. O ν(y)dy

I O (x) with ν(x 1 , x 2 ) := e -(x 1 -0.4) 2 -(x 2 -0.4) 2 0.05
, and I O (x) = 1, if x ∈ O, and I O (x) = 0, otherwise. Since we consider a bounded space domain, we complement the FPK equation with an homogeneous Neumann boundary condition which, in terms of the underlying characteristics, means that trajectories are reflected once they touch the boundary. As a consequence, the total mass is preserved during the evolution. Accordingly, at the level of fully-discrete scheme we reflect the discrete characteristics. This modification of the scheme is detailed discussed in [START_REF] Carlini | A semi-Lagrangian scheme for a modified version of the Hughes' model for pedestrian flow[END_REF],

in the context of Hughes model for pedestrian flow (see [START_REF] Hughes | The flow of large crowds of pedestrians[END_REF]). Let us point out, that a theoretical study of the convergence of the resulting scheme has not yet been established and remains as an interesting subject of future research. Since the time horizon T = 150 is long, in order to allow large time steps and maintain the accuracy of the numerical method we modify our scheme in the following way. We define a second time step δ > 0, such that h = P δ, with P ∈ N. This new time step is used to compute the discrete flow (3.7), at each node x i on each time interval [t k , t k+1 ] of size h, in the following way: Φ i,k := z P k (x i ) where z P k (x i ) is the discrete trajectory computed after P iterations of the Euler scheme with time step δ: z 0 k = x i and z p+1 k Let us point out that in [START_REF] Naess | Lotka-Volterra systems in environments with randomly disordered temporal periodicity[END_REF] the authors implement a path integration method for a FPK equation associated to a stochastic Lotka-Volterra system whose drift b is given by (5.7). Due to the absence of the diffusion term in system (5.6), we observe that the approximated time average density in Figure 2 is more concentrated than the one displayed in [START_REF] Naess | Lotka-Volterra systems in environments with randomly disordered temporal periodicity[END_REF]. On the other hand, the shapes of the periodic orbits are very similar in both cases. 

(x i ) = z p k (x i ) + δb(z p k (x i ), t k + pδ) (p =

5.3.

Mean Field Games as a non-linear implicit model. We consider here the MFG system

(5.8) -∂tv -σ 2 2 ∆v + 1 2 |∇v| 2 = F (x, m(t)) in R d × (0, T ), ∂tm -σ 2 2 ∆m -div ∇vm = 0 in R d × (0, T ), v(x, T ) = G(x, m(t)) for x ∈ R d , m(0) = m0(•) ∈ P2(R d ),
where σ = 0 and F , G : R d × P 1 (R d ) → R are continuous and satisfy that there exists a constant c > 0 such that for ψ = F, G

(5.9) sup

x∈R d ,µ∈P1(R d ) |ψ(x, µ)| + |∇ x ψ(x, µ)| + |∇ 2 xx ψ(x, µ)| ≤ c.
System (5.8) is a particular instance of a generic class of models introduced by Lasry and Lions in [START_REF] Lasry | Jeux à champ moyen I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] that characterize Nash equilibria of stochastic differential games with an infinite number of players. In order to explain the intuition behind (5.8), for m ∈ C([0, T ]; P 1 (R d )) consider the HJB equation

(5.10) -∂ t v -σ 2 2 ∆v + 1 2 |∇v| 2 = F (x, m(t)) in R d × (0, T ), v(x, T ) = G(x, m(T )) for x ∈ R d .
Standard results in stochastic control (see e.g. [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF]) imply that the unique solution v[m] of (5.10) can be represented as

(5.11) v[m](x, t) := inf α E T t 1 2 |α(s)| 2 + F (X x,t,α (s), m(s)) ds + G(X x,t,α (T ), m(T )) ,
where the expectation E is taken in a complete probability space (Ω, F, P) on which an r-dimensional Brownian motion W is defined, the R d -valued processes α are adapted to the natural filtration generated by W , completed with the P-null sets, and they satisfy E T 0 |α(t)| 2 dt < ∞, and X x,t,α is defined as the solution of (5.12) dX(s) = α(s)ds + σdW (s) s ∈ (t, T ),

X(t) = x.
Problem (5.11) can be interpreted in terms of a generic small agent whose state is x at time t and optimizes a cost depending on the future distribution of the agents {m(s) ; s ∈]t, T ]}. The solution v[m] of (5.10) is classical (see e.g. [START_REF] Cardaliaguet | Notes on Mean Field Games: from P.-L. Lions' lectures at Collège de France[END_REF] where the proof is based upon the Hopf-Cole transformation) and so, by a formal verification argument (see e.g. [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF]), the optimal trajectory for v[m](x, t) in (5.11) is given by the solution X x,t of (5.13)

dX(s) = -∇ x v[m] (X(s), s) ds + σdW (s) s ∈ (t, T ), X(t) = x,
and the optimal control α is given in feedback form α(x, t) = -∇ x v[m] (x, t). Thus, if all the players, distributed as m 0 at time 0, act optimally according this feedback law, then the evolution of m 0 will be described by the FPK equation

∂ t µ - σ 2 2 ∆µ -div ∇v[m]µ = 0 in R d × (0, T ), µ(0) = m 0 ,
and the equilibrium condition reads m = µ, i.e.

(5.14)

∂ t m - σ 2 2 ∆m -div ∇v[m]m = 0 in R d × (0, T ), m(0) = m 0 .
The equilibrium equation (5.14) is a particular instance of (F KP ) with r = d, σ ij = σ if i = j and 0 otherwise, and

(5.15) b[µ](x, t) := -∇v[µ](x, t) ∀ (µ, x, t) ∈ C([0, T ]; P 1 (R d )) × R d × [0, T ],
which depends on µ non-locally in time through {m(s) ; s ∈ (t, T ]} by (5.11) (with m replaced by µ).

Let us now recall some properties of v that allow to check assumption (H) for b. Note that (5.11), assumption (5.9) and standard estimates for the solutions of the controlled SDE (5.12) imply that v is continuous. Moreover, v is uniformly semiconcave w.r.t. the space variable (see e.g. [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF] and [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF]Chapter 4]), i.e. there exists c > 0, independent of t ∈ [0, T ] and µ ∈ C([0, T ];

P 1 (R d )), such that for all x ∈ R d , µ ∈ P 1 (R d ) and t ∈ [0, T ], (5.16) v[µ](x + h, t) -2v[µ](x, t) + v[µ](x -h, t) ≤ c|h| 2 ∀ h ∈ R d , or equivalently, since v[µ](•, t) is differentiable, there exists a constant c > 0, independent of t ∈ [0, T ] and µ ∈ P 1 (R d ), such that (5.17) v[µ](x + h, t) ≤ v[µ](x, t) + ∇ x v[µ](x, t) • h + c|h| 2 ∀ h ∈ R d , t ∈ [0, T ].
In addition, the uniform Lipschitz property for F (•, µ) and for G(•, µ) and formulation (5.11) imply, using again the stability results for the solutions of (5.12) in terms of the initial condition, that

(5.18) sup t∈[0,T ], µ∈C([0,T ];P1(R d )) ∇ x v[µ](•, t) ∞ < ∞.
As a consequence, the continuity of v yields that for any (µ n , x n , t n ) → (µ, x, t) we have that any limit point p of ∇ x v[µ n ](x n , t n ) (there exists at least one by (5.18)) must satisfy Consequently, the results of Sections 3 and 4 are applicable to (5.13). However, from the numerical point of view, we cannot implement the fully-discrete scheme directly with b, because we do not have an explicit expression for this vector field, which depends on the value function v. To overcome this difficulty, we argue as at the end of Section 4 and approximate b by a sequence of computable vector fields. In order to approximate b we consider a Semi-Lagrangian scheme for the solution of (5.10) with m replaced by µ. Given ρ > 0, h = T /N > 0, with N ∈ N, and µ ∈ C([0, T ]; P 1 (R d )) we first define v ρ,h [µ] in G ρ × {0, . . . , N } recursively as

v[µ](x + h, t) ≤ v[µ](x, t) + p • h + c|h| 2 ∀ h ∈ R d , t ∈ [0, T ].
(5.19) v ρ,h i,k = inf α∈R d h 2 |α| 2 + 1 2d d =1 I[v ρ,h •,k+1 ](xi + hα + σ √ hde ) + I[v ρ,h •,k+1 ](xi + hα -σ √ hde ) +hF (xi, µ(t k )) ∀ k = 0, . . . , N -1, v ρ,h i,N = G(xi, µ(T )),
where {e ; = 1, . . . , d} is the canonical basis of R d , and we have omitted the µ dependence of v ρ,h . We then define v ρ,h : C([0, T ];

P 1 (R d )) × R d × [0, T ] → R by v ρ,h [µ](x, t) = I[v ρ,h •,k [µ]](x, t k ) if t ∈ [t k , t k+1 [.
In order to get a function differentiable w.r.t. the space variable, given ε > 0 and φ ∈ C ∞ (R d ), nonnegative and such that

R d φ(x)dx = 1, let us set φ ε (x) := 1 ε d φ(x/ε). We define v ρ,h,ε : C([0, T ]; P 1 (R d ))× R d × [0, T ] → R by v ρ,h,ε [µ](•, t) := φ ε * v ρ,h [µ](•, t) ∀ t ∈ [0, T ].
In [22, 

∇ x v ρ,h,ε [µ](y, t) -∇ x v ρ,h,ε [µ](x, t) • (y -x) ≤ c |y -x| 2 + ρ 2 ε 2 .
Using the previous ingredients, we can prove the following result. hn → 0, which is a standard result proved with the theory developed in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] (see e.g. [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully non-linear diffusion equations[END_REF]Theorem 4.2]). The argument to establish the uniform convergence of ∇ x v ρn,hn,εn [µ n ] is similar to the proof of [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF]Theorem 3.5]. Namely, for all n ∈ N and x n → x and t n → t, and y = x we have (for n large enough)

v ρn,hn,εn [µ n ](y, t n ) -v ρn,hn,εn [µ n ](x n , t n ) -∇ x v ρn,hn,εn [µ n ](x n , t n ) • (y -x n ) ≤ r 1n + r 2n , where r 1,n := ρn εn |y-xn| 0 ∇ x v ρn,hn,εn [µ n ](x n + τ (y -x n ), t n ) -∇ x v ρn,hn,εn [µ n ](x n , t n ) • (y -x n )dτ, r 2,n := 1 ρn εn|y-xn| ∇ x v ρn,hn,εn [µ n ](x n + τ (y -x n ), t n ) -∇ x v ρn,hn,εn [µ n ](x n , t n ) • (y -x n )dτ
Since ρn εn → 0, the uniform Lipschitz character of v ρn,hn,εn [µ n ](•, t), for t ∈ [0, T ], implies that r 1,n → 0. On the other hand, by (5.20),

r 2,n ≤ 1 ρn εn |y-xn | c τ τ 2 |y -x n | 2 + ρ n ε n 2 dτ ≤ 1 0 τ dτ ≤ c 2 |y -x n | 2 .
By the uniform convergence of v ρn,hn,εn [µ n ], we conclude that any limit point p of ∇ x v ρn,hn,εn [µ n ](x n , t n ) (there exists at least one because this sequence is uniformly bounded) must satisfy 

v[µ](y, t) ≤ v[µ](x, t) + p • (y -x) + c 2 |y -x| 2 ∀ y ∈ R d , t ∈ [0, T ], which implies that p = ∇ x v[µ](x,
R d [F (x, m 1 ) -F (x, m 2 ] d(m 1 -m 2 )(x) > 0 ∀ m 1 , m 2 ∈ P 1 (R d ), m 1 = m 2 , R d [G(x, m 1 ) -G(x, m 2 ] d(m 1 -m 2 )(x) ≥ 0 ∀ m 1 , m 2 ∈ P 1 (R d ),
then system (5.8) admits a unique solution (v, m) (see [START_REF] Lasry | Mean field games[END_REF]). In this case the entire sequence m n in Corollary 5.1 converges to m. (ii) In the articles [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF][START_REF] Carlini | A semi-Lagrangian scheme for a degenerate second order mean field game system[END_REF] a very similar scheme is proposed for degenerated MFG systems when m 0 is absolutely continuous, with a compact support and with an essentially bounded density. In those frameworks, the velocity field b[µ](x, t) is only defined for a.e. x ∈ R d . Therefore (see Remark 4.2), the proposed scheme discretizes the density of m for which an L ∞ bound is proved if d = 1. Moreover, the authors show the L 1 convergence of the approximations of the velocity field, which is weaker than the result in Proposition 5.1. On the other hand, when d = 1, uniform bounds in L ∞ are shown for the approximated densities, which allows them to prove, in these degenerated cases, a version of Corollary 5.1 in the one dimensional case. In their entire analysis, the extra assumptions on m 0 play an important role. By formula (5.11) the interpretation in this setting is that agents want to reach the meeting areas, defined by the set P, without spending to much effort (modeled by the |α| 2 term in (5.11)), and to avoid congestion, modeled by the coupling terms F and G. Once the players reach the meeting areas they have not incentives to leave and they remain in P.

We heuristically solve the implicit scheme (3.21) using the learning procedure proposed in [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF] (analyzed at the continuous level). More precisely, given the discretization parameters ρ, h and ε and an initial guess m 0 for the solution of (3.21), we compute v 0 by solving backwards (5. [START_REF] Carlini | A semi-Lagrangian scheme for a modified version of the Hughes' model for pedestrian flow[END_REF]) with µ = m 0 . The new iterate m 1 is computed using scheme (3.14) with

Φ ± j,k = x j -h ∇(v 0 ) ε j,k ± √ hσ,
where ∇(v 0 ) ε j,k is an approximation of ∇ x v ρ,h,ε [m 0 ](x j , t k ). Then, given m p (p ≥ 1) we compute v p by solving backwards (5.19) with µ = 1 p+1 p p =0 m p and define m p+1 using (3.14) with

Φ ± j,k = x j -h ∇(v p ) ε j,k ± √ hσ,
where ∇(v p ) ε j,k is an approximation of ∇ x v ρ,h,ε [m p ](x j , t k ). We continue with these iterations until the difference between m p and m p+1 is less than 0.01 in the discrete infinity norm. Remark 5.2. Numerically, this heuristic performs rather well. The proof of convergence of this algorithm is not analyzed in this paper and it is postponed to a future work. One could expect that the arguments in [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF] apply to a discrete time, discrete space MFG (see [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF]). The main issue with the approximation (3.21) is that it does not correspond exactly to a discrete MFG because the distribution of the players does not evolve according to the discrete optimal controls of the typical players (computed as the optimizers of the r.h.s. of (5.19)), but with they evolve according to their approximations ∇ x v ρ,h,ε [m p ](x j , t k ).

The numerical approximation of the density m ρ,h,ε for ρ = 0.02, h = ρ, ε = 0.15 and δ = 0.02 is depicted in Figure 3. In Figure 4, we plot the densities m ρ,h,ε at times t = 0, 0.6 and 5. We observe that the density of agents divides into three groups. The largest one moves towards the right meeting area which is the closest one. The second largest group moves towards the left area. The third and smallest group waits before moving towards the meeting area. We note that in this equilibrium, the agents somehow take rational decisions based on their aversion to crowed places out of the meeting zones. 

∂ t m - σ 2 2 ∆m -div ∇v[m]m = 0 in R d × (0, T ), m(0) = m0 , where v : C([0, T ]; P 1 (R d )) × R d × [0, T ] → R is given by (5.23) v[m](x, t) := inf α E T t 1 2 |α(s)| 2 + F (X x,t,α (s), m(t)) ds + G(X x,t,α (T ), m(t)) ,
and the processes α and X x,t,α are as in Section 5.3. We also assume that F and G satisfy (5.9). Note that the main difference with the MFG model considered in Section 5.3 is that the optimal control problem solved by an agent located at point x at time t depends on the global distribution m of the agents only through its value at time t. In this sense, agents do not forecast, or in other words, no learning procedure has been adopted by the population of agents regarding their future behavior (see [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF] for the analysis of the fictitious play procedure in MFGs which can explain the formation of the equilibria). This model is a variation of the one introduced by Hughes in [START_REF] Di Francesco | On the Hughes' model for pedestrian flow: The one-dimensional case[END_REF] where the optimal control problem solved by the generic player is stationary of minimum time type. In terms of PDEs, at each time t ∈ (0, T ) we consider the HJB equation

(5.24) -∂ s u(x, s) -σ 2 2 ∆u(x, s) + 1 2 |∇u(x, s)| 2 = F (x, m(t)) in R d × (t, T ), v(x, T ) = G(x, m(t)) for x ∈ R d , which admits a classical solution u[m(t)]. We have that v[m](x, t) = u[m(t)](x, t)
. By the continuity of F and G, assumption (5.9) and the representation formula (5.23), we have that v is continuous. This can also be seen as a consequence of the stability of viscosity solutions with respect to continuous parameter perturbations (for equation (5.24) the parameter is m(t)). Moreover, as in the case of MFG, assumption (5.9) implies that

(5.25) sup t∈[0,T ], m∈C([0,T ];P1(R d )) ∇ x v[m](•, t) ∞ < ∞,
and that for all t ∈ [0, T ], v[m](•, t) is semiconcave, with a semiconcavity constant which is independent of (m, t). Using this property and arguing exactly as in Section 5.3 we obtain that (m, x, t) ∈ C([0, T ]; As in the case of MFGs, in practice we do not known explicitly the velocity vector field -∇ x v[m](x, t) and so we have to approximate it. We consider the following approximation: given ρ > 0, h = T /N > 0, with N ∈ N, µ ∈ C([0, T ]; P 1 (R d )) and k = 0, . . . , N -1, we define We also define v ρ,h : C([0, T ]; (5.19), where given µ ∈ C([0, T ]; P 1 (R d )) the scheme discretizes only equation (5.10) (with m replaced by µ), (5.26) discretizes the PDEs (5.24) for each t = t k (k = 0, . . . , N -1). As in the case of MFGs, given ε > 0 and φ ∈ C ∞ (R d ), non-negative and such that R d φ(x)dx = 1, we define v ρ,h,ε : C([0, T ];

P 1 (R d )) × R d × [0, T ] → ∇ x v[m](x, t) ∈ R d is
P 1 (R d )) × R d × [0, T ] → R by v ρ,h [µ](x, t) = I[v ρ,h •,k [µ(t k )]](x, t k ) if t ∈ [t k , t k+1 [. Comparing with
P 1 (R d )) × R d × [0, T ] → R by v ρ,h,ε [µ](•, t) := φ ε * v ρ,h [µ](•, t) ∀ t ∈ [0, T ],
where φ ε (x) := 1 ε d φ(x/ε). By assumption (5.9), the bound (5.18) and the semiconcavity property (5.20) remain valid in this context. Now, let ρ n , h n and ε n satisfy the conditions in Proposition 5.1 and let m n ∈ C([0, T ]; P 1 (R d )) be the extension to C([0, T ]; P 1 (R d )) of the solution of (3.21) computed with coefficients b n [µ](x, t) := ∇ x v ρn,hn,εn [µ](x, t) and σ n = σe ( = 1, . . . , d). As before, using that ∇ x v ρn,hn,εn [m n ](•, t) is uniformly bounded in t and n, we have that m n has at least one limit point m ∈ C([0, T ]; P 1 (R d )). Moreover, reasoning as in the proof of [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF]Theorem 3.3], for each fixed t ∈ [0, T ] we have that v ρn,hn,εn [m n ](•, t) → u[m(t)](•, t) = v[m](•, t) and so, by (5.20) and the proof of Proposition 5.1, we have that ∇ x v ρn,hn,εn [m n ](•, t) → ∇ x v[m](•, t). However, we cannot prove that this convergence is uniform in t ∈ [0, T ], due to the fact that at each time a different HJB equation is considered. Therefore, we cannot directly apply Theorem 4.2 to obtain the convergence. On the other hand, from the proof of Theorem 4. Using that there exists a constant c > 0, independent of n, such that ∇ x v ρn,hn,εn [m n ]( Finally, using that ∇ x v ρn,hn,εn [m n ](•, t) is uniformly bounded in t and n, if h n = o(ε 2 n ), Lebesgue's dominated convergence theorem allows us to pass to the limit in (5.28) and prove that m satisfies (2.4). We have obtained the following result. We proceed iteratively in the following way: given the discrete measure m ρ,h,ε k at time t k (k = 0, . . . , N -1), we compute at each space grid point j the discrete value function v j,k by using (5.26) with µ(t k ) replaced by m ρ,h,ε k . We regularize the interpolated function I[v •,k ] by using a discrete space convolution with a mollifier φ ε . We denote by ∇v ε j,k the approximation of its spatial gradient at x j . Then we calculate m ρ,h,ε k+1 with scheme (3.21) by approximating the discrete trajectories by Φ ± j,k = x j -h ∇v ε j,k ± √ hσ, and we iterate the process until k = N -1. Note that, by construction, the scheme is explicit in time.

The approximation of the density evolution in the (x, t) domain, computed with ρ = 0.02, h = ρ, ε = 0.15 and δ = 0.01, is shown in Figure 5. In Figure 6, we plot the approximated density at times t = 0, 0.6 and 5. We observe that the initial density m0 divides into two parts. The first one quickly reaches the meeting area on the right and once there it stops and begins to accumulate in this zone. The second part of the density moves in the opposite direction trying to reach the left meeting area. In contrast to the presented MFG model, in this model the agents make their decisions based only in the current global configuration. As a consequence, we observe faster and higher accumulation of agents in the meeting zones. 

∂ 2

 2 xi,xj (a i,j (m, x, t)m) + div (b(m, x, t)m) = 0, m(0) = m0 , (F P K) where, denoting by P 1 (R d ) (respectively P 2 (R d )) the space of probability measures on R d with first (respectively second) bounded moments, m0 ∈ P 2 (R d ) and b : C([0, T ]; P 1 (R d )) × R d × [0, T ] → R d , a i,j (m, x, t) := r k=1 σ ik (m, x, t)σ jk (m, x, t) ∀ i, j = 1, . . . , d, σ i,j : C([0, T ]; P 1 (R d )) × R d × [0, T ] → R, ∀ i = 1, . . . , d, j = 1, . . . , r.

  Figure 1.Damped oscillator: On the left we display the contour level sets for m ρ,h (x, t) = 0.2 at times t = 0.2, 0.5, 1 and 2. The black point corresponds to (1, 1), which is the point where the initial mass is concentrated. On the right, we display a 3D view of the numerical solution at time T = 2 computed with ρ = 0.025.

5. 2 . 1 .

 21 Numerical simulation. We numerically solve the associated first order linear FPK equation (or continuity equation) with λ = 0.05 and γ = 0.05 on the bounded domain O×[0, T ] := [-1.5, 1, 5] 2 ×[0, 150] and with an absolutely continuous initial condition with density given by m0 (x) = ν(x)

  0, . . . , P -1), with (5.7) b(x, t) := (-1 + e x2 , 1 + λ sin(t) -e x1 -γe x2 ) . Defining m ρ,h as in the previous example, in Figure 2 we show the time averaged density computed on the time interval I T = [100, 150] by the formula m ρ,h (x) = 1 |I T | t k ∈I T m ρ,h (x, t k )h with ρ = 0.015, h = 8ρ and P = 16.

Figure 2 .

 2 Figure 2. Time averaged solution m ρ,h (x) computed with ρ = 0.015, h = 8ρ, P = 16, using parameters λ = 0.05 and γ = 0.05.

  and so p = ∇ x v[µ](x, t) by [16, Proposition 3.3.1 and Proposition 3.1.5(c)]. Therefore, b, defined in (5.15), is continuous. Since (5.18) implies that b is bounded, we have that b satisfies (H).

Proposition 5 . 1 . 2 n 2 n

 5122 Consider sequences ρ n , h n and ε n of positive numbers converging to 0 and such that ρ hn → 0 and ρ n = o(ε n ). Then, for every sequenceµ n ∈ C([0, T ]; P 1 (R d )) converging to µ we have that v ρn,hn,εn [µ n ] and ∇ x v ρn,hn,εn [µ n ] converge to v[µ] and ∇ x v[µ](y, t), respectively, uniformly over compact subsets of R d × [0, T ].Proof. The assertion on the convergence of v ρn,hn,εn [µ n ] is a consequence of the uniform convergence over compact sets of v ρn,hn [µ n ] to v[µ] if ρ

Corollary 5 . 1 .

 51 Suppose that ρ n , h n and ε n satisfy the conditions in Proposition 5.1, denote by m n ∈ C([0, T ]; P 1 (R d )) the extension to C([0, T ]; P 1 (R d )) of the solution of (3.21) computed with coefficients b n [µ](x, t) := ∇ x v ρn,hn,εn [µ](x, t) and σ n = σe ( = 1, . . . , d). Since b n is bounded, Proposition 5.1 implies that b n and σ n satisfy (4.21). Thus, by Theorem 4.2 we get the following result for this discretization of the MFG system (5.8). Under the above assumptions every limit point m ∈ C([0, T ]; P 1 (R d )) of m n (there exists at least one) solves (5.14). Remark 5.1. (i) If F and G satisfy the following monotonicity conditions

5. 3 . 1 . 2 ,

 312 Numerical test. We consider the MFG system (5.8) in dimension d = r = 1 on the space-time domain O × [0, T ] := [-3, 3] × [0, 5], σ = 0.01 and with running and terminal costs given respectively by (5.21) F (x, m) := d(x, P) 2 V δ (x, m) G(x, m) := F (x, m), where V δ (x, m) := (φ δ * (φ δ * m))(x) with φ δ (x) := 1 and d(•, P) denotes the distance to the set P := [-2, -2.5] ∪ [1, 1.5]. We choose as initial distribution m0 (x) = ν(x) O ν(y)dy I O (x) with ν(x) := e -x 2 /0.2 .

Figure 3 .

 3 Figure 3. Test 5.3.1: 3D and 2D view in the (x, t) domain of the evolution of the density of agents.

Figure 4 .

 4 Figure 4. Test 5.3.1: Densities at times t = 0, 0.6 and 5 (black squares on the x axis represent the boundary of the "meeting areas").

Proposition 5 . 2 .

 52 continuous and so Theorem 4.1 gives the following result. Equation (5.22) admits at least one solution.

( 5 . 26 )

 526 v ρ,h i,k [µ(t k )] = inf α∈R d h 2 |α| 2 + 1 2d d =1 I[v ρ,h •,k +1 [µ(t k )]](xi + hα + σ √ hde ) +I[v ρ,h •,k +1 [µ(t k )]](xi + hα -σ √ hde ) +hF (xi, µ(t k )) ∀ k = k, . . . , N -1, v ρ,h i,N [µ(t k )] = G(xi, µ(t k )).

  1 and using the notations therein with b[µ](x, t) replaced by b n [µ](x, t) := ∇ x v ρn,hn,εn [m n ](x, t) and σ [µ](x, t) replaced by σe ( = 1, . . . , d), for every ϕ ∈ C ∞ 0 (R d ) we have (5.27)R d ϕ(x)dm n (t n )(x) = R d ϕ(x)dm n (0)(x) + hn n -1 k=0 R d L bn,σ,ϕ [m n ](x, t k )dm n (t k )(x) + O ρ 2 n hn + hn .

( 5 . 28 ).

 528 R d ϕ(x)dm n (t n )(x) = R d ϕ(x)dm n (0)(x) + t n 0 R d Ln bn,σ,ϕ [m n ](x, s)dm n (s)(x)ds +O By the uniform convergence ∇ x v ρn,hn,εn [m n ](•, s) → ∇ x v[m](•, s) for all s ∈ [0, T ], we have that R d Ln bn,σ,ϕ [m n ](x, s)dm n (s)(x) → R d Ln b,σ,ϕ [m n ](x, s)dm(s)(x) ∀ s ∈ [0, T ].

Proposition 5 . 3 .

 53 Assume that ρ 2 n = o(h n ) and h n = o(ε 2 n ). Then, every limit point m ∈ C([0, T ]; P 1 (R d )) of m n (there exists at least one) solves (5.22). 5.4.1. Numerical test. For the sake of comparison, we consider here the same framework than the one in Subsection 5.3.1, i.e. we take d = r = 1, we work on the domain O × [0, T ] = [-3, 3] × [0, 5] and we impose an homogenous Neumann boundary condition on the FPK equation(5.22). The functions F and G are also as in the previous test, as well as the initial distribution m0 of the agents.

Figure 5 .

 5 Figure 5. Test 5.4.1: 3D and 2D view in the (x, t) domain of the evolution of the density of agents.

Figure 6 .

 6 Figure 6. Test 5.4.1: density of agents at times t = 0, 0.6 and 5 (black squares on the x axis represents the boundary of the 'meeting areas').

Table 1 .

 1 Damped Oscillator: E ρ,h errors and convegence rate

	ρ	h	E ρ,h	convergence rate
	0.1	0.05	1.02 • 10 -2	-
	0.05	0.025 5.37 • 10 -3	0.93
	0.025 0.0125 2.45 • 10 -3	1.12

  Lemma 3.2 (i)] it is shown that v ρ,h,ε [µ](•, t) is Lipschitz, uniformly in (ρ, h, ε, µ, t) which shows the bound (5.18) for v ρ,h,ε . Using that v ρ,h satisfies a discrete semiconcavity property (see [22, Lemma 3.1 (ii)]), by[START_REF] Achdou | On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations[END_REF] Lemma 4.3 and Remark 4.4] there exists a constant c > 0, independent of (ρ, h, ε, µ, t), such that v ρ,h,ε [µ](•, t) satisfies the following weak semiconcavity property(5.20) 

  t) by [16, Proposition 3.3.1 and Proposition 3.1.5(c)]. Thus, if for all i = 1, . . . , d we denote by ∂ xi v[µ](x, t) and so the local uniform convergence of ∇ x v ρn,hn,εn [µ n ](•, •) to ∇ x v[µ](•, •) follows (see e.g. [8, Chapter V, Lemma 1.9]).

	b sup i	:=	lim sup x →x,t →t,n→∞	∂ xi v ρn,hn,εn [µ n ](x , t ), b inf i :=	lim inf x →x,t →t,n→∞	∂ xi v ρn,hn,εn [µ n ](x , t )
	we deduce that b sup i	= b inf i =		

  •, t) is c/ε n -Lipschitz, we have the existence of another positive constant, still denoted by c and independent of n,such that L bn,σ,ϕ [m n ](•, t k ) is c/ε n -Lipschitz. Therefore, by definition of the distance d 1 , Proposition 4.2 and using that v ρ,h,ε [µ](•, t) is constant for t ∈ [t k , t k+1 ), we get R d L bn,σ,ϕ [m n ](x, t k )dm n (t k )(x) = R d L bn,σ,ϕ [m n ](x, t k )dm n (t)(x) + O( Ln bn,σ,ϕ [m n ](x,t)dm n (t)(x) + O( = 0, . . . , N -1 , where Ln bn,σ,ϕ [m n ](x, s) := L bn,σ,ϕ [m n ](x, t k ) if s ∈ [t k , t k+1 [. By (5.27), we get that

			√ εn ), hn
	=	R d	√ εn ), hn
	for all k