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Original Article

Quantitative longitudinal imaging of
activated microglia as a marker of
inflammation in the pilocarpine
rat model of epilepsy using
[11C]-(R)-PK11195 PET and MRI

J Yankam Njiwa1, N Costes2, C Bouillot2, S Bouvard2,3,
S Fieux2, G Becker2, E Levigoureux3,4, G Kocevar5,
C Stamile5, JB Langlois2, R Bolbos3, C Bonnet3,
L Bezin3, L Zimmer2,3,4 and A Hammers1,6

Abstract

Inflammation may play a role in the development of epilepsy after brain insults. [11C]-(R)-PK11195 binds to TSPO,

expressed by activated microglia. We quantified [11C]-(R)-PK11195 binding during epileptogenesis after pilocarpine-

induced status epilepticus (SE), a model of temporal lobe epilepsy.

Nine male rats were studied thrice (D0-1, D0þ 6, D0þ 35, D0¼ SE induction). In the same session, 7T T2-weighted

images and DTI for mean diffusivity (MD) and fractional anisotropy (FA) maps were acquired, followed by dynamic PET/

CT. On D0þ 35, femoral arterial blood was sampled for rat-specific metabolite-corrected arterial plasma input functions

(AIFs). In multiple MR-derived ROIs, we assessed four kinetic models (two with AIFs; two using a reference region),

standard uptake values (SUVs), and a model with a mean AIF.

All models showed large (up to two-fold) and significant TSPO binding increases in regions expected to be affected, and

comparatively little change in the brainstem, at D0þ 6. Some individuals showed increases at D0þ 35. AIF models

yielded more consistent increases at D0þ 6. FA values were decreased at D0þ 6 and had recovered by D0þ 35. MD

was increased at D0þ 6 and more so at D0þ 35.

[11C]-(R)-PK11195 PET binding and MR biomarker changes could be detected with only nine rats, highlighting the

potential of longitudinal imaging studies.
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Introduction

Immune and inflammatory mechanisms may play a
fundamental role in the development of some forms
of epilepsy.1–4 Several lines of evidence support this
assumption like the activation of the immune system
in some patients with seizure disorders or the high inci-
dence of seizures in some forms of autoimmune enceph-
alitis. It has also been reported that various injuries
lead to microglial activation, including status epilepti-
cus (SE) in rats.5–7
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Non-invasive imaging of microglia activation bio-
markers could be a relevant tool for detection, and
especially for monitoring disease progression, therefore
of great support to the evaluation of novel therapies8

especially for epileptogenesis.
The translocator protein 18 kDa (TSPO, previously

the peripheral benzodiazepine receptor), is only lightly
expressed in the healthy brain parenchyma while being
drastically upregulated under neuroinflammatory
conditions. This upregulation correlates with the acti-
vation of microglial cells, or the infiltration of blood-
borne macrophages.9 Microglia are the resident
immune cells of the central nervous system and are
only activated in response to stimuli, thus acting as
early sensors of brain pathology.10

In vivo, microglial activation can be detected using
positron emission tomography (PET) ligands for the
TSPO,11–13 and the reversible antagonist at TSPO
[11C]-(R)-PK11195 is often used for studying diseases
that involve microglial activation or the recruitment of
macrophages as in multiple sclerosis,14 stroke,15,16

Alzheimer disease,17 traumatic brain injury,18 and to
monitor brain lesions.19

SE, i.e. repetitive seizures lasting more than 30min
without regain of consciousness in between20 can cause
an inflammatory brain response and a tendency for
spontaneous seizures.21

Few studies have reported on TSPO imaging in
epilepsy showing that [11C]-(R)-PK11195 binding was
increased in Rasmussen’s encephalitis, but it was indis-
tinguishable from controls in three patients with
end-stage hippocampal sclerosis.22 A focally increased
[11C]-(R)-PK11195 uptake corresponding to the seizure
onset zone was identified in a patient with focal cortical
dysplasia two years after an episode of focal SE.23

Using the TSPO ligand [11C]PBR28, higher standard
uptake values (SUVs 60–120) were seen in temporal
lobe structures ipsilateral to the seizure focus in 16
patients with unilateral temporal lobe epilepsy (TLE)
at the group level, and 12/16 at the individual level.24

Preclinical studies have shown enhanced [18F]PBR111
binding in brain structures in the first week after kainate
SE induction in rats.6 The potential use of TSPO PET as
biomarker for the detection of drug refractoriness in
TLE has also been reported recently in a rodent model.5

These results suggest potential clinical usefulness of
TSPO tracers as sensor of brain status, as well as the
possibility of studying the role of inflammation in the
pathophysiology of epilepsy. For such studies, ideally,
quantification in preclinical studies should be improved
to the point that the study of each individual partici-
pant becomes possible, as is the case for many human
studies now.

It has been claimed that quantification of [11C]-(R)-
PK11195 binding is difficult because of its

pharmacokinetic properties, poor bioavailability in
brain tissue, and a relatively high level of non-specific
binding.25,26 However, while quantitative analyses of
TSPO ligand differences are scarce, one such analysis
suggested substantially higher specific binding for
[3H]PK11195 than [3H]PBR28 in tissue sectioned up
to 14 days prior to use (see p. 1612 in Owen et al.25).

In this study, we investigated the ability of the PET
ligand [11C]-(R)-PK11195 to detect microglia activation
during epileptogenesis after pilocarpine-induced SE, a
model of TLE,27,28 with rats as their own longitudinal
controls. We addressed the challenging topic of quan-
titative analysis of the acquired dynamic [11C]-(R)-
PK11195 PET images for a better understanding and
interpretation of the acquired data.

Materials and methods

Overview

In this longitudinal study, nine Sprague Dawley rats
(Harlan Laboratories, An Venray, The Netherlands;
244� 25 g at the beginning of the experiment) were stu-
died with both magnetic resonance imaging (MRI) and
PET/computed tomography (CT) at three different
time points relative to induction of SE (D0): before
SE (D0-1) and after SE (D0þ 6, D0þ 35). Imaging ses-
sions were performed during the same short isoflurane
anesthesia on the same bed. Young male adult rats were
used to avoid hormonal changes and for optimal
performance of the pilocarpine model. SE induction
was performed early in the morning (8 a.m.).

Each animal was acting as its own control, with the
aim of reducing the number of animals needed. One
day after acquiring the initial baseline MRI and PET
imaging, pilocarpine SE was induced. Subsequently,
MRI and PET were acquired again at days 6 and
35 after SE induction. During the last PET scan
(35 days after SE induction), arterial blood was sampled
to obtain an individual arterial plasma input function
(AIF) for data quantification of the last PET session,
but also, after normalization, of the previous PET ses-
sions. After the last PET sessions, rats were sacrificed.

All studies were carried out in accordance with
European Communities Council Directive (2010/63/
EU) as well as the recommendations of the French
National Committee (2013/113). This study was
reviewed and granted permission by the Comité d’éthique
pour l’expérimentation animale, Neurosciences Lyon
(CELYNE), reference number C2EA42-12-05-0501-
001. The manuscript was written up in accordance
with the Animal Research: Reporting in vivo
Experiments (ARRIVE) guidelines (http://
www.nc3rs.org.uk/arrive-guidelines; accessed 30
October 2015).
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Animals were kept together in small groups (usually
2–3) in cages with a surface of�2000 cm2 enriched with
polyvinyl chloride tubing and wood to nibble. After SE,
they were nursed back to strength and temporarily kept
in individual cages, returning to group living as soon as
possible. Individual rats were identified by their picric
acid markings. Access to food and water was ad libi-
dum. Animals were kept in a 12-h dark/light cycle.

SE induction

Scopolamine methylnitrate (Sigma; 1mg/kg) was given
30min subcutaneously before intraperitoneal (i.p.) injec-
tion of pilocarpine (Sigma; 0.177mg/cm2). Additional
half doses were administrated subcutaneously to rats
that did not reach SE after the first injection, an hour
after the first dose, and a third dose half an hour after
the second injection. Four of the nine rats needed only
one dose of pilocarpine, three needed two doses, and one
received three doses. Four rats reached SE, i.e. continu-
ous seizures, at Racine stage 529 (rats #1, 2, 6, 9) four at
stage 4 (rats #3, 4, 5, 7), and one at stage 3 (rat #8).

Two hours after the onset of SE, diazepam (10mg/
kg i.p.; Roche) was given, followed by another dose of
5mg/kg, given 1 h later subcutaneously.

There was no mortality due to SE.

Animal preparation for imaging sessions

Rats were anesthetized with isoflurane (4% induction,
1.75–2.25% maintenance), and a venous catheter
was inserted into the tail vein for PET tracer adminis-
tration. The customized scanning MRI and PET com-
patible plastic support bed (Bruker Biospec Animal
Handling Systems) was equipped with a warm water
recirculation system. The temperature was maintained
at 37�C, and the breathing rate was monitored through-
out the experiment. Prior to the third PET scan, a
femoral artery was catheterized under isoflurane anes-
thesia, with additional local analgesia with lidocaine
(5mg/kg).

MR imaging

Magnetic resonance (MR) experiments were carried out
using a Bruker BioSpec 7T (Bruker BioSpin MRI,
Ettlingen, Germany), a small-animal MR system oper-
ating at 300.26MHz. T2 rapid acquisition with
relaxation enhancement (RARE) sequences were used
for acquiring structural images of the rat brain. The
parameters used for the acquisition of coronal brain
slices were the following: TE/TR¼ 69.1/13,445.8ms,
FOV¼ 3� 1.5 cm2, matrix dimension 256� 128, slice
thickness 0.4mm, number of slices¼ 75, RARE
factor¼ 8.

Subsequently, echo planar imaging (EPI)-based dif-
fusion tensor images (DTI) were acquired to assess
microstructural mechanisms underlying neuroinflam-
mation after the brain insult. The acquisition
parameters were as follows: TE/TR¼ 19.3/6250ms, dif-
fusion directions¼ 30, number of A0 images¼ 5,
FOV¼ 3� 1.5 cm2, matrix dimension¼ 128� 64, slice
thickness¼ 0.8mm, number of slices¼ 25.

The mean diffusivity coefficient (MD) and the
fractional anisotropy (FA) maps were derived using
the DTIfit toolbox, a module of FMRIB’s Software
Library.30

PET imaging

Following the MRI scans, animals were kept under
anesthesia (except for the last scan, where the PET
examination was performed a few hours after MRI,
with the rat in supine rather than prone position as
for the MRI in order to facilitate the arterial blood
sampling procedure) and transported on the same bed
to the micro PET/CT scanner room (Siemens Inveon).
For each rat, a CT scan was acquired for attenuation
correction and registration. A mean activity of� 37
MBq of [11C]-(R)-PK11195 was injected as a bolus via
the venous catheter, simultaneously with the start of the
dynamic PET acquisition.

Data were acquired in list mode over 60min after
injection and rebinned in frames of 9� 20; 4� 60;
4� 120; and 3� 900 s. Images were reconstructed by
filtered back-projection with a voxel size of
0.38� 0.38� 0.79 mm3.

Blood sampling

Femoral arterial blood was sampled at D0þ 35 to
derive rat-specific metabolite-corrected plasma input
functions for kinetic modeling. Thirteen blood samples
(200 ml) were collected through the femoral artery cath-
eter, initially at 3, 10, 20, 30, 40, 50 s, and then at 1, 2, 5,
10, 25, 40, 50min post-injection.

Four samples (5, 25, 40, and 50min) were used to
analyse metabolites. After centrifugation of the blood
samples during 5min at 5000 g, plasma was extracted
and analysed with solid-phase extraction followed by
HPLC chromatography with online radioactivity and
UV detectors set at 310 nm (Merck Hitachi). Fifty
micro litre (ml) plasma samples were mixed with
150 ml of acetonitrile and 50 ml of unlabelled [11C]-(R)-
PK11195. After centrifugation, the supernatant was
withdrawn and filtered using 0.45mm filters. Twenty
micro litre of this filtered composition was passed
through HPLC at 1ml/min with a mobile phase of
H3PO4 0.1M/CH3CN (7:3). Twenty HPLC elution
fractions were then collected and radioactivity
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quantified with a Cobra gamma counter. The parent
fraction curve was fitted with a biexponential function.

with fp standing for the tracer not bound to plasma
proteins. The fraction computation assumes negligible
metabolites before a Begin time point (parent
concentration¼ 1).

The AIF of the unmetabolized tracer in plasma was
generated by multiplying the total plasma input function
with the result of the parent ratio fitted function.31 This
AIFwas used for compartmentalmodeling of theD0þ 35
PET time activity curves (TACs). The AIF were derived
for each of the seven rats which underwent arterial blood
sampling. For the baseline, and for the D0þ 6 scan, a
derived AIF was computed by normalization of the
D0þ 35 AIF. The normalization was obtained as follows

AIFD0þi ¼ AIFD0þ35
SUVD0þi

SUVD0þ35
ð2Þ

with SUV standing for SUV of the activity at each time
points

SUV ¼
ConcentrationðBq=ml Þ

Injected doseðBqÞ
� weight gð Þ ð3Þ

For the computation of the mean AIF at each time
point, equation (2) was used replacing AIFD0þ 35 by
the normalized mean AIF. Normalization was obtained
by initially rescaling between min and max of all the
AIFs at D0þ 35. They were then rescaled using the
mean weight and injected dose corresponding to the
mean AIF.

The arterial whole blood activity curve of D0þ 35
was obtained as follows. From the 13 discrete arterial
samples was derived the plasma over blood ratio mod-
eled by a straight line as in Jenkinson et al.31 Whole
blood activity curves of baseline and D0þ 6 scans were
obtained with the normalization procedure using equa-
tion (2). The arterial whole blood activity for each
sample was multiplied with the ratio to obtain the
total plasma activity concentration at each time point.

Image processing

Within and between subject comparisons were per-
formed at a brain regional level. Brain region parcella-
tion was obtained using an automated multi-atlas

image segmentation approach accounting for normal
and atrophic rat brains. The multi-atlas propagation

with enhanced registration (MAPER) algorithm,32,33

which has been developed to accurately segment
normal and atrophic human brains, was adapted for
this aim. MRIs of a multiple rat dataset of 7 MRIs
and atlases containing 29 regions each (independent
of the present dataset but acquired on the same MR
scanner34) were registered to the MRI space of each
individual rat time point based on MAPER principles,
and then registered to the individual CT for the region-
of-interest propagation and fusion of labelled images of
the atlas dataset onto individual PET images.

The non-rigid NiftyReg registration algorithm of the
NiftyReg software35 was used for MRI to MRI regis-
trations, and SPM8 (Wellcome Trust Centre for
Neuroimaging, www.fil.ion.ucl.ac.uk/spm) was used
for registration between MRI and CT images.

We hypothesized that inflammation would be most
pronounced in three temporal regions (the hippocam-
pus, the amygdala, the temporal cortex) and the
thalamus.

PET kinetic modeling

In vivo quantification of tracer kinetics was performed
using the dynamic PET images representing the local
concentration of the exogenous [11C]-(R)-PK11195
ligand in the tissue. Several kinetic models were assessed
for [11C]-(R)-PK11195 regional TAC modeling.

Two groups of models were used. The first group
consists of methods using arterial blood samples and
plasma metabolite-corrected AIFs. They provide quan-
titative total volume of distribution (VT) of tracer in
tissue. Among them, the Logan plot (LP)36 method is
based on a graphical solution of the partial derivative
equations of the compartment model of tracer distribu-
tion in tissues. The second method (one tissue class –
1TC – model) describes the bidirectional flux of tracer
between blood and tissue. It uses non-linear fitting of
PET TACs on algebraic solutions of the partial deriva-
tive equations of the compartmental model. We also
evaluated the two-tissue class model, but this led to a
very large number of model failures in the regions exam-
ined, and it was not further pursued (data not shown).

The second group of methods does not need an AIF,
but uses a reference region (assumed to be devoid of

fparent tð Þ ¼ fp:
1 t � Begin

Ae�uln2=�1 þ ð1� AÞe�uln2=�2 t4Begin, u ¼ t� Begin

� �
ð1Þ
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specific binding). The Logan reference tissue (LR)
method37 and the simplified reference tissue model
(SRTM)38 were assessed. These methods provided the
non-displaceable binding potential (BPND) of the
ligand in the tissue. Reference tissue methods were vali-
dated against methods using AIF. The variability of the
kinetic parameters and the magnitude of the percentage
increase after SE were taken into account to assess the
efficiency and the robustness of the models.

Quantification of kinetics was performed using the
Pmod (http://www.pmod.com/technologies/index.html)
tools for image processing and general kinetic modeling.

Correlation coefficients r̂p, ratio of the covariance
between two variables and the variance of each vari-
able, were computed for some assessments.

Results

The imaging time points (baseline, D0þ 6 and D0þ 35
after SE induction, i.e. healthy, acute and chronic
stages of TSPO expression) could be visually differen-
tiated by the brain structures’ ligand binding on
summed radioactivity images (see Figure 1), dynamic
images, and TACs. There was almost no binding at
baseline as expected confirming the low expression of
TSPO in the healthy brain. After SE, an upregulation
of microglia was observed during epileptogenesis (six
days after SE induction) and lower at the chronic
phase of epilepsy, here 35 days after SE.

Model comparisons

The brainstem had the least variation between rats and
time points and was used as reference region for the
kinetic modelling with the LR and SRTM models.
We have also run the SRTM with cerebellum as the
reference region, with overall higher variability at all
time points (data not shown). Distribution volume
ratios (DVRs corresponding to BPNDþ 1) were

computed for the assessment of the models in order
to avoid negative numbers. Especially at baseline,
BPND may assume negative values (i.e. the binding
potential of the target region is lower than that of the
reference region) due to noise and the near-absence of
TSPO expression in the healthy brain.

Quantification of [11C]-(R)-PK11195 binding in the
brain was possible in all brain datasets and all
29 regions per brain with three of the four models
(see below for details). The intersubject variability
was below 20% in all cases, compatible with expected
normal biological variation, except for the SRTM
model at baseline (35%). Results are summarized in
Table 1.

In terms of inter-regional variability, in almost all
time points and for every rat (data not shown), the
SRTM model yielded a high coefficient of variation
(>20%). This variability was lower with the other
models in almost all animals at every time point
(<20%) except in two rats (rat #1 at D0þ 6, rat #6

Figure 1. The effects of inflammation on brain structures. [11C]-(R)-PK11195 PET total sum images are superimposed on coronal

MRI selected slices for a representative rat. D0-1 is baseline image; D0þ 6/D0þ 35 images were acquired 6 and 35 days after SE

induction. Images are scaled to the same colour scale.

Table 1. Comparison of kinetic parameters derived from the

Logan plot (LP), the 1 tissue compartment (1TC) model, the

simplified reference tissue model (SRTM) and the Logan refer-

ence (LR) model.

LP (VT) 1TC (VT) SRTM (DVR) LR (DVR)

D0-1 3.2� 0.5 2.6� 0.4 0.8� 0.3 0.9� 0.1

D0þ 6 5.6� 0.9 4.8� 0.9 1.2� 0.2 1.3� 0.2

þ75% þ86% þ49% þ39%

D0þ 35 3.3� 0.7 2.6� 0.4 1.1� 0.1 1.1� 0.1

þ4% þ2% þ28% þ17%

Note: An arterial input function is used for the LP and the 1TC. The

reference region used for the SRTM and LR is the brainstem. Values are

the mean value of the mean values of each rat in 26 ROIs (excluding the

ventricles) at each time point�mean values of standard deviation for

each rat in 26 ROIs at each time point. Note that percentage increases

in binding given in bold are in comparison to the baseline. DVR:

Distribution volume ratio.
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at D0þ 35) for the LP/1TC/LR models and in an
additional rat for the LR model (rat #6 at baseline).
The SRTM model failed in some structures, five times
at baseline and once at D0þ 6 and D0þ 35 after SE
induction. There was no failure with the other three
models. Thus, the results derived with the LP, 1TC
and LR were more robust than those derived with the
SRTM.

Quantification of [11C]-(R)-PK11195 binding to acti-
vated microglia showed similar significant increases of
the kinetic parameters computed at D0þ 6 (p< 0.009)
for all regions expected to be affected (three temporal
regions: hippocampus, amygdala, temporal cortex, and
thalamus) with all quantification methods used in this
study. From D0þ 6, parameters returned towards
baseline values after 35 days. This decrease was signifi-
cant (p< 0.05) from day 6 to day 35 after SE with all
four models used. While the kinetic parameter vari-
ations were more marked in the regions expected to
be most affected in the epilepsy model, i.e. temporal/
limbic regions, changes also occurred in the frontal
cortex and, to a lesser degree, in the brainstem, indicat-
ing widespread changes. The results are illustrated in
Figure 2.

In the brainstem, changes were minor, just signifi-
cant using a parametric test (Student t test), and not
significant using a non-parametric test (Mann-Whitney
U). This consolidated our choice of this region as a
reference region (Table 2).

The overall results obtained from the four kinetic
models used in this study suggest that the availability
of blood input samples helps estimating more consist-
ent kinetic parameters.

Biological results

Given the model comparisons in the preceding sections,
in the following, we will only discuss results obtained
with the AIF-based model 1TC, which had lower VT

dispersion in the different brain structures than the LR
model.

The 1TC model detected large VT increases on day
6 after SE: 118% in the hippocampus, 86% in the
amygdala, 94% in the temporal cortex, and 79% in
the thalamus, but only 17% in the brainstem.
Significant decreases of VT (p< 0.05, U test) were
also observed from day 6 to day 35 after SE induc-
tion in all structures except in the brainstem. The VT

decreases relative to the peak at day 6 were 53% in
the hippocampus, 44% in the amygdala, 47% in the
temporal cortex, 44% in the thalamus and 31% in
the brainstem (Table 2). Only the thalamic VT

remained significantly higher than at baseline at day
35 (Figure 2).

It was also possible to demonstrate that structural
changes occurred in the lateral ventricles, visible on
MRI acquisitions. The lateral ventricles enlarged by
43% at day 6 and by 91% at day 35 after SE induction
in comparison to the baseline. Changes in lateral ven-
tricle volumes were highly significant (p< 0.005) at
D0þ 35 and already significant (p< 0.05) at D0þ 6
compared to the baseline. The continuing enlargement
of the ventricles did not show a high correlation with the
increases of VT atD0þ 6 andD0þ 35 regarding the base-
line. The correlation coefficient in terms of the percentage
changes in VT and the percentage enlargement of the ven-
tricles from the baseline to D0þ 6 was r̂p ¼ 0:40 and
r̂p ¼ 0:36 between the baseline and D0þ 35.

The evolution of the VT values for the 1TCmodel had
the same trend in the temporal/limbic regions, expected
to be affected by SE, in all rats. In contrast, not all rats
did show such a trend in the brainstem (Figure 3).

Using the average AIF, changes in VT showed simi-
lar trends as when using individual AIFs (see
Figures 4(b) and 2(b)). Highly significant increases
(p< 0.0005) in VT were observed as following six days
after SE induction: 115% in the hippocampus, 86% in
the amygdala, 92% in the temporal cortex, 85% in the
thalamus. The changes in the brainstem were 32%
(p< 0.05). Decreases in VT values were detected in com-
parison to the top reached at day 6 after SE induction
of 39% in the hippocampus, 35% in the amygdala,
32% in the temporal cortex, 32% in the thalamus,
and 23% in the brainstem. These decreases were signifi-
cant (p< 0.0005). However, and in contrast to the
results obtained with individual AIFs, VTs at D0þ 35
remained significantly higher than at baseline in several
structures.

SUVs showed similar trends in variation observed
regarding each considered time point (baseline,
D0þ 6 and D0þ 35 after SE induction), see
Figure 4(a). Significant increases were detected from
the baseline at day 6 as following in the different
brain structures: 101% in the hippocampus, 50% in
the amygdala, 55% in the temporal cortex, 66% in
the thalamus and only 23% in the brainstem.
Decreases from D0þ 6 to D0þ 35 were 72% in the
hippocampus, 62% in the amygdala, 55% in the tem-
poral cortex, 74% in the thalamus, and 117% in the
brainstem. However, and again in contrast to the
results obtained with the 1TC model with individual
AIFs, SUVs at D0þ 35 remained significantly higher
than at baseline in two structures.

While the magnitude of the changes in VT

obtained with the 1TC model and either individual
or mean AIFs and changes in SUV were broadly
similar at D0þ 6, the intersubject variability was
much reduced when not using the individual AIF.
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In addition, the ‘‘gold standard’’ 1TC model with
individual AIF did not show increases relative to
baseline, whereas both the 1TC model with mean
AIF and SUVs did (Table 3).

In terms of DTI-derived diffusion coefficients, there
was a decrease in FA values at D0þ 6 and a recovery at
D0þ 35. The MD increased at D0þ 6 and continued to
do so at D0þ 35.

(a)

(b)

(c)

(d)

Figure 2. Mean left/right regional VT and DVR (mean� SD) time course data before (D0-1) and after (D0þ 6, D0þ 35) pilocarpine-

induced SE in selected brain structures (* highlights p values< 0.05 and ** for p< 0.009 computed with t test against baseline):

(a) Logan plot model, (b) one tissue compartment model, (c) Logan reference model, (d) simplified reference tissue model. Changes were

considered significant in a structure when they were significant both on the left and the right side of the given structure. Seven rats had

arterial input functions and could be analysed with the 1TC and LR models; all nine could be used for the LR and SRTM models.
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The correlation coefficient between the percentage of
changes in VT and in FA was r̂p ¼ 0:68 at D0þ 6 and
r̂p ¼ 0:74 at D0þ 35. This coefficient was smaller
regarding the MD values (̂rp ¼ 0:07 at D0þ 6 and
r̂p ¼ 0:3 at D0þ 35).

Discussion

The ability to detect [11C]-(R)-PK11195 PET binding
changes after SE was validated in this longitudinal
study of microglia activation in a rodent model of

Figure 3. The trend of VT changes, in the 1TC model, for individual rats at each time point of the longitudinal study, i.e. baseline

(D0-1), D0þ 6 and D0þ 35 after SE induction. The results of rat #5 which had an AIF available is not shown because information at

D0þ 35 were not extracted for this rat due to the corresponding MRI dataset being unusable.

Table 2. 1TC modeling: mean (left/right) regional VT (mean� std) values before (D0-1) and after (D0þ 6, D0þ 35) pilocarpine

induced SE in seven rats.

Thalamus Hippocampus Amygdala Temporal cortex Frontal cortex Brainstem

D0-1 2.5� 0.9 2.3� 0.8 2.8� 1.0 2.7� 0.9 2.3� 0.7 3.0� 1.0

D0þ 6 4.5� 2.0 5.1� 2.2 5.2� 2.6 5.3� 2.4 4.9� 2.0 3.5� 1.2

(p¼ 0.03)** (p¼ 0.02)** (p¼ 0.13)* (p¼ 0.02)** (p¼ 0.007)** (p¼ 0.3)

79% 118% 86% 94% 114% 17%

D0þ 35 2.5� 0.7 2.4� 2.2 2.9� 1.1 2.8� 0.9 2.9� 1.1 2.4� 0.8

(p¼ 0.94) (p¼ 0.83) (p¼ 0.83) (p¼ 0.62) (p¼ 0.23) (p¼ 0.13)

�44% � 53% � 44% � 47% � 40% � 31%

Note: Expressions in brackets are the highest p values derived from U tests for either left or right side of the structure. Asterisks (*left or right side, **

both sides) are highlighting structures where the p values indicated significant (p< 0.05) changes. Values are based on the seven rats which had arterial

input functions. Beside the regions hypothesised to show changes, frontal cortex and brainstem are shown as regions expected to show less change.

Percentage increases of VT at D0þ 6 compared to the baseline and percentage decreases of VT from D0þ 6 to D0þ 35 are given in bold in the

corresponding cells. Note that the percentage changes are expressed relative to the earlier time point.
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TLE. This detection was possible with the seven rats
which had an AIF derived from blood sampling at
D0þ 35 and with all nine rats in which using a tissue
reference region was possible.

This study showed, based on qualitative and quan-
titative assessments, that differentiation of baseline
PET images from images of the time points following
SE induction was possible. The AIF, corrected for
metabolites, allows an estimation of tracer delivery to
the brain, and is the gold standard for absolute quan-
tification. Therefore, the quantification results were
strengthened by the availability of individually derived
AIFs. The choice of the 1TC with individual AIFs as
the method of reference was also motivated by the find-
ing of relatively low inter-rat variability at baseline as
expected, high interindividual variability after status (as
expected after any insult), and as a result the best dif-
ferentiation between these two states (Figure 2).

The longitudinal design of the study has permitted
the detection of interindividual differences. For exam-
ple, rats which had a slightly higher baseline VT (rats
#4, #8, and #9 in Figure 3) had a stronger

inflammatory reaction in the expected areas than the
other rats. This might be related to interindividual dif-
ferences in the severity of epilepsy in the chronic phase.
While these could not be quantified in the present work,
they would be an interesting area for future study.

We could directly check involvement of the reference
region chosen, i.e. the brainstem, via the independent
AIF. While changes were much smaller than in the
regions expected to show changes, they were present
in at least some rats (Figure 3). Our finding of better
performance of the brainstem compared with the cere-
bellum will not necessarily hold in other models, and
scientists should check their assumptions in those situ-
ations. When using a reference region in the absence of
pathology, BPND may be negative in the absence of
pathology for at least half of regions (Figure 2 (c)
and (d)). While the cerebellum is often used as reference
for various tracers, in this study, it provided results
with higher dispersion than the brainstem (data not
shown, see comment in Results section). The use of
DVR helped mathematically with the calculation of
measures of spread, notably the standard deviation.

(a)

(b)

Figure 4. Mean left/right regional VTand SUV (mean� std) time course data before (D0-1) and after (D0þ 6, D0þ 35) pilocarpine-

induced SE in selected brain structures (* highlights p values< 0.05 and ** for p< 0.005, *** for p< 5*10� 4,þ for p< 5*10�5, þþ for

p< 5*10�6 computed with t test against baseline): (a) SUV, (b) 1TC – one tissue compartment model using a normalised mean arterial

input function (normalised according to the injected dose and the weight of each rat, and averaged over seven rats). Changes were

considered significant in a structure when they were significant both on the left and the right side of the given structure.
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Although previous epilepsy studies in humans22–24

and animals5 have shown increased [11C]-(R)-PK11195
uptake in temporal regions and those affected by inflam-
mation, none of them have performed kinetic modeling
for the quantification of the acquired data. It has been
also shown in this study that despite the partial volume
effects probably affecting neighboring voxels, [11C]-(R)-
PK11195 had enough specific signal to distinguish
between healthy and inflammatory stages.

Increased VT values reflect microglia activation related
to brain inflammation, early after SE induction, corres-
ponding to epileptogenesis. The increase of VT is gener-
ally interpreted as an increase in activated microglia but
could also be due to reactive astrocytes and peripheral
macrophages crossing the blood brain barrier after SE
and persisting in the brain days after SE.3 While a prior
study in humans24 found that medial temporal TSPO
expression was due primarily to choroid plexus, binding
increases in our study were generally far away from the
ventricles and hence the choroid plexus (Figure 1).

The decreases of VT towards baseline observed in the
chronic epilepsy phase (D0þ 35) may correspond to a
return to normal regulation of microglia in the brain. In
a different model of TLE (kainic acid-induced SE), the
peak of microglial activation as assessed with
[3H]PK11195 autoradiography was at two weeks, with
a slow return towards baseline values but with some
persistent activation in the chronic phase.20 It is

therefore possible that the more widespread activation
seen with the 1TC model with average AIF corresponds
more closely to biological reality, even if the use of the
average input function seems to blunt interindividual
differences in response (cf. Figures 2(b) versus 4(b)).
Such interindividual differences are to be expected as
in any pathology and are required to study the relation-
ship between imaging and epilepsy parameters.39 A
limitation of our study is that due to infrastructure
limitations we were unable to quantify seizures in this
study. Notably, we had not implanted electroencephal-
ography electrodes as they lead to local inflammation
with microglial activation (L Bezin, personal
communication).

Simple weighted images of tissue radioactivity (SUV)
did show the overall time course (Figure 1), significant
increases at D0þ 6, and an – albeit slight – expected
increase in variability at D0þ 6. While SUVs will be
vulnerable to changes in peripheral clearance of [11C]-
(R)-PK11195, for example in a model with a pharmaco-
logical intervention, they remain the most easily
implemented option for simpler models, requiring only
careful calibration of the scanner and precise determination
of animal weight and (cross-calibrated) injected dose.

PET results were consolidated by MRI biomarkers:
in the acute phase, VT increases reflecting microglia
activation and related to brain inflammation corrobor-
ate structural damage related to the SE insult resulting
in decreased FA and increased MD. VT and FA recov-
ery may reflect remaining axonal structures and
decreasing oedema in brain structures. The continuing
increases of the MD in the chronic phase of epilepsy
could be the result of long-term activation of microglia
combined with cell death. This continuing increase of
the MD values at D0þ 35 may reflect presence of
microglial scar related to neurodegenerative processes
and unsuccessful axonal regeneration which is a
common phenomenon following acute injury of the
central nervous system.40 This phenomenon may also
explain why the percentage increases in ventricle size do
not correlate with the percentage increases in VT.

The significant changes of the axial diffusivity
observed at D0þ 35 in all the structures expected to
be affected except the amygdala, but including the
white matter, may be explained by axonal degeneration
in the concerned structures. The important changes in
the values of radial diffusivity observed at D0þ 6 and
D0þ 35 describe persistent structural damage and may
reflect hippocampal sclerosis.

Almost all of the brain regions showed increased
[11C]-(R)-PK11195 binding and changes in DTI param-
eters. On our point of view, this is suggested to be due
to the diffuse distribution of the pilocarpine in the brain
in contrast to electrical stimulation, which has a more
focal effect.

Table 3. Comparison of two methods not requiring individual

arterial input functions against the reference method 1TC.

Brain structures D0þ 6 D0þ 35

1TC

Hippocampus 118% (0.44) 2% (0.28)

Amygdala 86% (0.49) 3% (0.37)

Temporal cortex 94% (0.45) 4% (0.32)

Thalamus 79% (0.44) 0% (0.28)

Brainstem 17% (0.35) �19% (0.33)

1TC_mean AIF

Hippocampus 85% (0.28) 25% (0.28)

Amygdala 86% (0.31) 21% (0.31)

Temporal cortex 92% (0.23) 30% (0.30)

Thalamus 85% (0.28) 25% (0.28)

Brainstem 32% (0.27) 2% (0.22)

SUV

Hippocampus 101% (0.30) 28% (0.30)

Amygdala 50% (0.27) 19% (0.35)

Temporal cortex 55% (0.21) 25% (0.20)

Thalamus 66% (0.26) 17% (0.22)

Brainstem 12% (0.19) �2% (0.15)

Note: Percentage changes relative to baseline. Coefficients of variation

(standard deviation/mean) are given in brackets.

ITC: 1 tissue compartment.
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Quantification of PET data acquired in this study
performed through modelling with an average AIF
showed results in line with those obtained with individ-
ual AIF. These results open perspectives to use this
mean AIF in other studies and avoid the invasive
nature of the arterial blood sampling and sacrifying
the animals after the procedure. However, the good
apparent performance of the average AIF method
may be due in part to an artificial decrease in intersub-
ject variability through the use of the same (albeit
scaled) input function for all animals (cf. Figures 2(b)
versus 4(b) and discussion above).

The conventional arterial blood sampling is invasive,
noisy due to the small volumes of blood available, and
technically difficult to set up. Further, as our quantifi-
cation results have shown, it is not always obvious to
determine a reference region free from tracer binding.
Notwithstanding, SUV (Figure 4), LR, and SRTM
(Figure 2) were able to show significant and systematic
differences, and may be sufficient for answering many
biological questions.

The SRTM model could in principle be extended to
supervised reference tissue extraction30 with the avail-
able data. Our pilot studies exploring this option had
been encouraging,41 but there were also serious limita-
tions, notably due to the order of magnitude fewer
voxels per tissue volume unit available in rat PET data
compared to human PET, and the resulting much more
severe partial volume effects (unpublished data). While
we did not exhaust this or indeed all SRTM options,
using cerebellum rather than brainstem led to much
more variable BPND estimates even at baseline (data
not shown). A two-compartment model has also been
used recently42 for quantifying changes in VT values in
human patients with TLE, compared to healthy con-
trols, using [11C]PBR28 PET. However, in our study,
the two-compartment model did not perform well.

Other future work could include the assessment of
image derived AIFs via multimodal imaging43 and
comparisons with the results obtained here.

[11C]-(R)-PK11195 PET was able to detect TSPO
upregulation reflecting neuroinflammation, following
pilocarpine-induced SE. Quantitative binding changes
could be detected with only 7–9 rats, complementing
MRI biomarker results.
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