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ABSTRACT 

The capabilities of the polarizable force fields for alchemical free energy calculations have been limited 

by the high computational cost and complexity of the underlying potential energy functions. In this 

work, we present a GPU based general alchemical free energy simulation platform for polarizable 

potential AMOEBA. Tinker-OpenMM, the OpenMM implementation of the AMOEBA simulation 

engine has been modified to enable both absolute and relative alchemical simulations on GPUs, which 

leads to a ~200-fold improvement in simulation speed over a single CPU core. We show that free 

energy values calculated using this platform agree with the results of Tinker simulations for the 

hydration of organic compounds and binding of host-guest systems within the statistical errors. In 

addition to absolute binding, we designed a relative alchemical approach for computing relative 

binding affinities of ligands to the same host, where a special path was applied to avoid numerical 

instability due to polarization between the different ligands that bind to the same site.  This scheme is 

general and does not require ligands to have similar scaffolds. We show that relative hydration and 

binding free energy calculated using this approach match those computed from the absolute free energy 

approach.    

 



 

INTRODUCTION 

 Free energy is the driving force for spontaneous molecular processes and accurate alchemical 

free energy calculations can benefit a broad range of chemical and biomedical applications1-5. The 

accurate prediction of the binding affinities for ligands to their target proteins has been a great 

challenge in the computational drug development process6. Today, it is common to utilize empirical 

docking algorithms in the identification of potential lead compounds7-11. However, in order to screen 

large ligand libraries in a short amount of time, empirical docking typically relies on incomplete 

physics models12, and only account for limited system dynamics (such as loop flexibility) when 

predicting ligand affinity13.  These limitations result in a lack of the accuracy necessary for lead 

optimization14,15. The calculation of ligand binding free energies from elaborated molecular simulations 

has also been limited by a combination of underlying force fields and sampling algorithms16,17. 

 One pathway for the calculation of binding free energies is the double decoupling approach. In 

this approach, one includes a parameter (lambda) that controls the interaction of a ligand with its 

environment. When transitioning from lambda=1 (full ligand intermolecular interaction) to lambda=0 

(no ligand intermolecular interaction), a ligand’s interaction with its environment is evaluated. 

Simulations of the system are conducted with the solvated ligand and the protein-ligand complex, and 

the binding free energy is calculated as the complexation energy minus the solvation energy, plus 

standard state and other corrections18. In this methodology restraints19 are often used to keep the ligand 

bound to the protein complex throughout the decoupling process . The magnitude of this restraint term 

is then analytically corrected for. 

 Another major class of approaches of binding free energy involve the calculation of the 

potential of mean force. In these approaches, pioneered by the Roux lab20, one calculates the average 



force needed to maintain a system in a given configuration (e.g. the distance and orientation between a 

ligand and the active site). Free energy is then calculated by calculating the work integral from the 

starting to ending distances. In order to obtain energy data on all relevant distances, a biasing process 

such as steered MD21,22 or umbrella sampling20,23 is often used. The advantage of this technique is that 

it allows for the collection of free energy profiles, including information about the energy barriers to 

binding. The main challenge of this approach is the difficulty in defining an appropriate reaction 

coordinate for the biasing process. Therefore, this technique has been mostly applied to systems such as 

channel proteins24,25 that have an obvious pulling dimension.  However, this technique can also be 

applied to general protein-ligand binding26-28.  

  The free energy between the bound and unbound states in either approach can be sampled by 

using various techniques such as free energy perturbation (FEP)3, thermodynamic integration (TI)29, 

metadynamics30-32 or Orthogonal Space Random Walk (OSRW)33,34. A common method for calculating 

the free energy between neighboring states in alchemical perturbation is the Bennett acceptance ratio 

(BAR)35. The free energy of binding can then be calculated as the difference between the ligand-host 

interaction energy and the ligand-water interaction energy. In thermodynamic integration, one utilizes 

lambda much like in setting up a simulation for BAR and calculate the numerical integration of 

<∂H/∂λ)>λ from lambda=0 to lambda=129. Compared to BAR, it can be difficult to determine which 

discrete values of lambda should be used, as convergence can be difficult in regions of high curvature 

of <∂H/∂λ)>λ. Due to this, comparison studies36 have suggested that TI simulations may require more 

states than BAR to reach converged free energies. However, TI simulations require less post-simulation 

processing than BAR based approaches.  

 The second ingredient of free energy simulations is the choice of force field. Popular force 

fields include CHARMM37-40 and AMBER41-44. More recent advances have resulted in the 

development of force fields with more complex electrostatics models, particularly incorporation of 



polarization. General polarizable force fields include polarizable multipole based AMOEBA,45-47 

polarizable OPLS48-50, fluctuating charge51,52 and Drude-Oscillator53-55 based CHARMM force fields. 

The defining feature of the AMOEBA force field we have been developing is its electrostatic model 

based on permanent atomic multipoles, as well as many-body polarization through induced dipoles. 

These added terms, while computationally expensive, allow for a more rigorous modeling of ligand-

protein interaction, particularly at short range, than is possible using a fixed-charge based force field.  

Previous work using AMOEBA force field has shown an accurate recapitulation of 

experimental free energies in small molecules hydration,56,57-59 metal ion hydration60-62, as well as 

ligand binding in synthetic hosts63, and protein systems64-70.   The inclusion of a complex electrostatic 

force leads to increasing computational cost, so that potential it can benefit even more from parallel 

computing of protein-scale systems consisting of tens of thousands of atoms. Earlier implementations 

of AMOEBA in Tinker have utilized OpenMP71, which allows for limited parallelism on commercially 

available CPUs. Massively parallel computation using AMOEBA is possible on supercomputers using 

the Tinker-HP package72-74. In addition, AMOEBA has been previously implemented in OpenMM, 

enabling massively parallel molecular dynamics simulations on GPUs75,76.   In order to enable 

alchemical free energy calculations in OpenMM, we have incorporated “lambda” into force and energy 

calculation via a soft-core approach,77 which is necessary to remove the singularities in van der Waals 

(vdW) interactions that occurs when atoms are in close contacts.78  In addition, we modified the tinker-

OpenMM interface to allow for perturbation of the electrostatic force via the scaling of electrostatic 

parameters. Another feature of OpenMM that is now supported by the Tinker-OpenMM interface is the 

addition of support for the CustomCentroidBondForce. This addition enables the coupling of a two 

groups of atoms (such as a ligand and its binding site). 

 Compared to the state of CPU alchemical free energy calculations, GPU alchemical free energy 

calculations is still in its infancy. It is possible to perform MD simulations on GPUs using a few 



software, including AMBER79, NAMD80, and OpenMM75. However, very few GPU platforms have yet 

supported alchemical simulations. In addition to the work with OpenMM-AMOEBA described here, 

the YANK package81 for the use of OpenMM to simulate AMBER force fields is currently in 

development.  Therefore, the AMOEBA on GPU implementation described here(Tinker-OpenMM) 

constitutes the first available platform for free energy perturbation simulations on GPUs using a 

polarizable force field.  

 It is not always necessary to compute the absolute alchemical free energy, and binding or 

solvation energies relative to a reference ligand are sufficient. In those cases, it may be advantageous to 

calculate relative energies instead of absolute energies.  Many previous relative binding free energy 

calculation use a “dummy atom” single topology approach82-86 where a pair of ligands are simulated as 

a common core of atoms connected to a set of atoms sufficient to describe both desired molecules. This 

dummy atom approach has been used to calculate a number of molecular properties, including binding 

free energies83-87 Previous work with the AMOEBA force fields on CPUs have accurately calculated 

the relative binding free energies of ligands to trypsin using a single topology approach66,67,69. The 

weakness of this scheme is that it is not general; it is more suitable for pairs of molecules with 

significant chemical similarity. A different approach is that of dual topology free energy calculation, 

where two ligands are always present in the binding pocket.  Relative complexation free energy is 

calculated via a path starting in a state with fully ligand 1-environmental interaction, and ending at a 

state of fully ligand 2- environmental interaction. Dual topology free energy calculations have been 

possible in CHARMM since the late 80’s88 and have more recently been implemented in AMBER79. 

However, this dual topology scheme is more difficult to implement in a polarizable force field due to 

the complexity of the electrostatics making it difficult to selectively “scale” the polarization between 

two ligands. By utilizing a pathway where only one ligand is charged during any perturbation step, we 

were able to avoid this complication.  



Currently, the ability to perform GPU based platform alchemical simulations, particularly for 

polarizable force fields, has been limited. In this work, we created Tinker-OpenMM, an  OpenMM 

implementation of AMOEBA that  enables alchemical free energy calculations on GPUs, while also 

adding the capability to perform dual topology simulations to both the Tinker89 and OpenMM75,76 

platforms. We then proceed to test the GPU based free energy calculations  for hydration free energies 

of aromatic systems90, absolute and relative binding free energies of the sampl4 host-guest systems91.  

IMPLEMENTATION DETAILS 

Tinker-OpenMM interface: 

 Tinker-OpenMM is built using an interface to pass tinker coordinates and parameters to 

OpenMM. Tinker reads in the input key and coordinate files, and passes the relevant variables in to a 

C++ script. This script then uses the OpenMM C API to create the relevant OpenMM parameters and 

forces, and initiates GPU Molecular Dynamics simulation. Coordinate saving is then managed by 

occasionally transferring atomic coordinates and velocities from the GPU to main system memory. 

Tinker then saves these outputs in tinker coordinate and velocity files, enabling post-processing by 

Tinker commands(eg. BAR). This interface was originally created by Mark Friedrichs, Lee-Ping Wang, 

Kailong Mao, and  Chao Lu. 

 

Absolute binding free energy: 

 In this work, we employ double-decoupling and alchemical perturbation to compute free energy 

of binding. First, the electrostatic interactions between the ligand and its environment (water or 

protein/water) are scaled from 0 to 100% in a series of simulations. With no electrostatic interaction 

between ligand and surroundings, a series of simulations are run where the (softcore) vdW interactions 

between ligand and environment are scaled. The path utilized for absolute complexation simulations is 



shown in Figure 1. This process is also repeated in an aqueous environment to account for hydration 

free energy. 

After running these simulations, the Bennett Acceptance Ratio (BAR) method is used to 

calculate the free energy difference between each pair of neighboring states. Since energy is a state 

function, we can calculate the total complexation energy as the sum of many small perturbations in 

ligand-environmental interaction strengths. The binding energy is calculated as the complexation free 

energy, minus the hydration free energy, with the addition of several corrections explained below. 

When conducting alchemical perturbation, it is necessary to denote which atoms belong to the 

ligand. In the simulation system, the ligand atom indices are identified by using the ligand keyword in 

the key file (e.g. “ligand -1 14” denotes that atoms 1 through 14 belong to a ligand). 

Alteration of the electrostatic interactions between the ligand and its environment is 

accomplished via the scaling of the electrostatic parameters passed from the Tinker interface to 

OpenMM. The atomic charge, dipole, quadrupole, and polarizability of all ligand atoms are each 

multiplied by the current simulation electrostatic lambda value (between 0 and 1), which is denoted by 

the ele-lambda keyword. This results in no electrostatic interaction between the ligand and its 

environment when ele-lambda=0, and full interaction strength when ele-lambda=1. This methodology 

also “turns off” the intra-ligand electrostatic interactions. When calculating hydration free energy, the 

intra-ligand/solute electrostatic contributions are added back by “growing” the electrostatic parameters 

for ligand alone (in gas phase). However, when calculating binding free energy, this contribution is 

exactly canceled by an equal omission in the ligand-solvent interaction.  

 When conducting alchemical perturbation simulations, the change in energy and structure that 

results from each perturbation needs to be relatively small. To avoid the numerical instability of the 

standard vdW function when the ligand-environment interaction approaches zero, a softcore buffered 



14-7 vdW (energy equation shown below) has been used to calculate the forces and energies.69  

𝑈 = 𝜆 𝜀
.

. .

.

. ∗ .
− 2 (1) 

 

Here εij is the well depth, and ρij represents the current interatomic distance divided by rmin, the 

interatomic distance that results in the lowest vdW energy. In order to use this softcore vdW force, we 

need to assign the appropriate value of the lambda parameter 𝜆 . In this implementation, each ligand 

atom is assigned a lambda value equal to the vdW-lambda keyword value in the simulation input key 

file. Each non-ligand atom is assigned a lambda value of 1. When calculating a pairwise vdW 

interaction, it is necessary to have a set of combining rules to convert two atomic vdW lambdas into a 

combined, 𝜆 . For a pair of atom i and j, 𝜆  is determined as the lesser of 𝜆  and 𝜆 . If the two lambda 

values are identical (as is the case in an intra-ligand or water-water interaction), 𝜆 = 1.  

In order to ensure that the ligand stays in the binding pocket even when intramolecular 

interactions are weak, a distance restraint (𝑘(𝑟 − 𝑟 ) ) is applied between the centers of mass of the 

ligand and the center of the binding pocket. The bias introduced by the restraint is corrected for at the 

start and end of our thermodynamic path. The restraint correction at the end of simulation where no 

intermolecular interaction between ligand and environment is given by92  

Δ𝐺 = 𝑅𝑇𝑙𝑛 𝐶  (2) 

 Here C0 represents standard state concentration (1 mol/L). In this work, we use a force constant (k) of 

15 kcal/mol/Å2, and this correction amounts to 6.25 kcal/mol.  

In order to remove the ligand restraint from the system with full ligand-protein interaction, we 

repeat the simulation but with the restraint off. The free energy difference between the two simulations 

is then calculated using BAR. Alternatively, one could also gradually turn off the restraint while the 



interaction strength between ligand and protein increases so that no additional correction is needed. 

Dual-topology based relative free energy: 

 Relative binding free energy can potentially be calculated more reliably as it avoids simulation 

of the non-ligand bound form of the protein. In this implementation of the calculation of relative 

binding free energies, we take a thermodynamic path where we first reduce ligand 1’s electrostatic 

parameters to zero magnitude. We then proceed to reduce the vdW interactions between ligand 1 and 

environment, while simultaneously increasing the vdW interactions between ligand 2 and environment. 

Finally, we increase ligand 2’s electrostatic parameters from zero to full. The path we used to calculate 

relative complexation energy (ligand binding to receptor in water) is shown in Figure 2. Since the two 

ligands are never charged at the same perturbation step, ligand 1 and 2 never interact with each other 

(the vdW interactions are also turned off via the soft-core formula), which requires minimal changes to 

the electrostatic force in the existing OpenMM code.  

In order to run the simulations in our thermodynamic path, we require independent (ligand1 and 

ligand2) keywords to denote the indices of ligand 1 and ligand 2, respectively. The electrostatic 

perturbation segments of our path require that we independently control the electrostatic interaction of 

ligand 1 and ligand2. This is accomplished by having two electrostatic lambda keywords (ele-lambda1 

and ele-lambda2, respectively). The charge, dipole, quadrupole and polarizability of each ligand is 

multiplied by the appropriate ele-lambda variable.  

When perturbing the vdW force, we need to assign each ligand atom the correct lambda value. 

The vdW-lambda of all ligand 1 atoms is equal to the value specified by the vdW-lambda keyword, and 

vdW-lambda of all ligand 2 atoms is equal to 1 minus vdW-lambda. Therefore, changing the vdw-

lambda keyword from 1.0 to 0.0 results in removing all ligand1-environment interactions while setting 

all ligand2 atoms to full vdW interaction with the environment. 



When conducting relative binding simulations or BAR energy calculations, we need to ensure 

that the two ligands do not interact via the vdW force. Therefore, we need a way for our vdW force and 

energy calculations kernels to know which ligand each atom belongs to. This is accomplished by 

adding an internal variable to the vdW force used to designate which ligand (if any) an atom belongs 

to. This variable is equal to 0 for environmental (non-ligand) atoms, 1 for ligand 1, and 2 for ligand 2. 

Each pairwise vdW interaction is checked to ensure that ligand1- ligand2 interactions are omitted.  

The relative binding free energy is calculated as the relative complexation energy minus the 

relative hydration energy. Note that if one uses the same force constant for ligand-receptor restraint for 

all simulations, the restraint correction discussed above is identical for both ligands and drops out in the 

relative binding free energy. 

METHODS 

Simulation setup: 

 Prior to all simulation, the system energy was minimized to 1 kcal/mol/Å in order to avoid close 

atomic contacts. All simulations were run under OpenMM mixed precision mode. Ewald cutoff was set 

to 7.0 Å, with a 12 Å vdW cutoff in both simulations. All simulations converge the induced dipole 

moments between iterations to <0.00001 D. Sampl4 and aromatic simulations use a cubic box of 40 Å  

an Ewald grid of 48 x 48 x 48 , while the larger bench7 dataset uses an Ewald grid of 64 x 64 x 64 and 

a cubic box of 62.23 Å. Example Tinker key files are included in the Supplementary Materials.  

Molecular dynamics: 

 Perturbation steps for absolute binding and solvation simulations were conducted with a   

stepwise reduction of the ele-lambda keyword, followed by a stepwise reduction of the vdw-lambda 

keyword at 0 ele-lambda.  MD used a RESPA integrator, and a BUSSI thermostat. Information on what 

perturbation steps were used is included in the Supplementary Materials. 



Relative binding and solvation simulations were conducting starting with the ele-lambda1 and 

vdw-lambda keywords at 1.0, and the ele-lambda2 keyword at 0.0. In a series of simulations, the ele-

lambda1 keyword is then gradually reduced to 0.0. This is followed by simulations with a stepwise  

reduction of vdw-lambda1 to 0.0, then a stepwise increase of ele-lambda2 to 1.0.  

  All CPU simulations were conducted using Tinker dynamic.x for 1ns with a 2fs time step and 

snapshots saved every 1ps. Each GPU perturbation simulation was conducted using dynamic_omm for 

5ns, with a 2fs time-step and snapshots saved every 2ps (except for relative free energy simulations, 

which had snapshots saved every 1ps).  All simulations were conducted at 298K. 

Bennett Acceptance Ratio 

Bar was computed using Tinker’s BAR program. This program iterates between the two equations 

below until convergence: 

𝑒 =
〈 ( ( ))〉

〈 ( ( ))〉

𝐶 = 𝛥𝐹

𝑓(𝑥) =

(3) 

For all CPU based trajectories, BAR used frames 400 to 1000 for calculation, with the initial 400ps 

equilibration discarded. For absolute free energy trajectories generated on the GPU, BAR used frames 

1 to 2500(0-5ns) for calculation.  For the relative free energy trajectories generated on the GPU, BAR 

used frames 1 to 5000(0-5ns) due to more frequently saved snapshots.  

Hydration of aromatic compounds: 

 Parameters for the aromatic molecules were previously generated.90 Structures of the 10 

compounds are shown in Figure 3. Initial simulation systems were generated by solvating each ligand 

in water boxes using the Tinker commands solvate and crystal. Initial structures for relative HFE 

simulations were generated by concatenating ligand 2’s coordinates to the solvated ligand 1 pose.  



In order to calculate the absolute hydration free energy, it is necessary to correct for the 

contribution of intramolecular electrostatics as we scale the solute electrostatic parameters in 

“disappearing” or “growing” the solute molecule. The intra-solute electrostatic energy was calculated 

by running simulations on CPU (this same value was used for both the CPU and GPU simulations). 

Each molecule was simulated alone in a non-periodic system at ele-lambda values of 0, 0.1, … and 1.0. 

Simulations were run for 1ns using a time step of 0.1 fs, with structures saved every 0.5 ps at constant 

volume of 40.0 Å with temperature at 298K. The intra-solute electrostatic energy was then calculated 

using BAR. 

Sampl4 binding simulations: 

Parameters and starting poses for 12 molecules of the sampl4 dataset were generated as 

described previously63. Structures of the sampl4 ligands utilized in this study are shown in Figure 4.  

Relative binding poses were generated as in the relative aromatic simulations. 

The final absolute binding energy was calculated as ΔG of complexation (from no interaction to full 

interaction) - ΔG of solvation (from no interaction to full interaction) + ΔG of going from no restraint 

to full restraint at 0 interaction lambda + ΔG of removing the restraint at full interaction energy.  

The latest version of Tinker is available at https://github.com/jayponder/tinker.  Tinker-OpenMM is 

available at https://github.com/pren/tinker-openmm. Note that Tinker only works using the modified 

Tinker-OpenMM, not the main OpenMM release.  

RESULTS 

Force agreement: 

Correct simulation of molecular systems requires an accurate calculation of both force and 

energy. However, since energy is only utilized by Tinker in the BAR process, and isn’t used during 



OpenMM molecular dynamics, we focused our initial analysis of Tinker-OpenMM on agreement of 

OpenMM forces with those of Tinker. To ensure that lambda was working in the Tinker-OpenMM 

implementation, we tested molecule 1 of the sampl4 dataset bound to the host at a range of lambda 

values, and compared the resulting static forces to those of Tinker. The Tinker-OpenMM platform was 

able to closely match that of Tinker for all tested lambda values, with a root mean squared error of 

approximately 8.6*10-4 kcal/mol/Å, and a maximal atomic force deviation of approximately 4.7*10-3 

kcal/mol/Å (Table 1). These degrees of deviation are negligible when considering that the RMS force is 

31 kcal/mol/ Å. The force deviation is partially due to the single precision used in GPU force 

evaluation. 

Computational efficiency: 

 In order to test the speed and scalability of the Tinker-OpenMM platform, we ran 1000 steps of 

MD on sampl4 molecule 1 (6417 atoms), and the bench7 test case distributed with Tinker (a protein 

system of 23,558 atoms). For both test systems, the NVidia GTX1070 and GTX 970 were 

approximately 66-fold and 40-fold faster than an 8 core CPU simulation, respectively (Table 2). A 

single CPU core is approximately 200-fold slower than simulation on a GTX1070 due to the poor core 

scalability of Tinker utilizing OpenMP.  The GPU platform shows better than linear scaling with 

respect to system size, with a 3.7-fold increase in particle number resulting in a 2.4-fold or 2.5-fold 

decrease in speed on the GTX1070 and GTX970 platforms, respectively. This better then linear scaling 

is likely a result of the smaller sampl4 systems being unable to saturate GPU core utilization, as 

verified by profiling GPU core utilization during simulations. The change of the vdW force to the 

softcore 14-7 force resulted in no observable difference in speed compared to the kernel used in 

OpenMM. This was confirmed by running simulations using a version of Tinker-OpenMM that had 

been modified to utilize a standard, non-softcore 14-7 vdW force without the presence of the lambda 

parameter in the codebase.   



In order to test the cost of utilization of relative vdW, tests were run on bench7 with the relative 

VDW activated by using two waters (atoms 9000-9002 and 9003-9005) as “ligands” for the alchemical 

dual topology process. Both of these waters had their ele-lambda values set at 0.0, with a utilized vdW-

lambda of 1.0.  This allowed for the activation of dual topology kernels without introducing extra costs. 

This system was minimized, and a speed test was run as above. This resulted in a speed of 4.68 ns/day 

on a GTX 970, an approximately 2.5% speed reduction when compared to the absolute simulations. 

This small cost is only present when doing relative free energy calculations; when no ligand2 

parameter is set, the cheaper absolute vdW kernel is used for force and energy calculation. 

Tinker-OpenMM defaults to a utilizing a “mixed” precision mode in all calculations. This 

mixed precision mode uses 32-bit floating point calculation for all forces, and integrates using 64-bit 

floating point precision. Due to the poor double floating point calculation of the consumer GeForce line 

of graphics cards, the use of double precision for both integration and force calculation results in an 

18.1-fold reduction in performance on a GTX 970.  

GPU/CPU absolute free energy agreement: 

 As a test of the ability of the Tinker-OpenMM platform to reproduce the results of the Tinker 

CPU implementation, we performed hydration free energy calculation on a dataset of 10 aromatic 

compounds, as well as binding free energies on 12 ligands of the sampl4 dataset (9). Both the solvation 

(Figure 5) and sampl4 datasets (Figure 6) show agreement within the uncertainty of BAR, with R2 

values of (0.9924) and (0.9987), respectively.  This, along with the static force calculations provides 

strong evidence that the GPU and CPU implementations of the AMOEBA force field produce 

comparable results. The fact that a high degree of agreement is possible despite the fact that the GPU 

simulations were run for 5 times longer (5ns vs 1ns at each perturbation step) is an indication that the 

tested systems converge relatively rapidly.  



GPU/CPU relative free energy agreement: 

We then proceeded to test the capability of the dual-topology based relative free energy 

platform by computing the relative solvation values for the aromatic dataset. For all tested aromatic 

pairs, the relative hydration free energy values computed from the dual-topology approach and the 

absolute HFE showed an agreement within 0.3 kcal/mol, with an R2 value of 0.999 (Table 3). The 

observed deviation is likely a result of random, non-systematic statistical error.   

We then proceeded to test the capability of the dual-topology based relative free energy 

platform by computing the relative solvation values for the aromatic dataset. For all tested aromatic 

pairs, the relative hydration free energy values computed from the dual-topology approach and the 

absolute HFE showed an agreement within 0.3 kcal/mol, with an R2 value of 0.999 (Table 3). The 

observed deviation is likely a result of random, non-systematic statistical error.   

 Finally, we tested the relative binding prediction of two pairs of sampl4 compounds. The first 

set of compounds, mol05 and mol06 share similar scaffolds, and show agreement in both complexation 

and solvation to within the uncertainty of BAR. 

  The relative binding between molecules 9 and 10 constitutes a more challenging case that 

cannot be handled using the dummy atom based approach due to the lack of a shared scaffold. In 

addition, this dissimilarity between the ligands may theoretically make convergence more difficult in 

the intermediate vdW transitions. Nonetheless, the relative binding platform was still able to agree with 

the absolute platform to within 0.3 kcal/mol, demonstrating the advantage of dual-topology platform. 

DISCUSSION AND CONCLUSIONS 

 This work reports a GPU implementation of alchemical free energy simulation for polarizable 

force field AMOEBA. The enhanced speed of GPU over CPU will be valuable for applications such as 

lead optimization. We have shown that the Tinker-OpenMM GPU platform is capable of reproducing 



the results of Tinker CPU platform, with an approximately 200-fold improvement in computational 

performance over what is possible on a single CPU core.  This usage of GPU computation greatly 

improved sampling, which should allow for accounting for slow dynamics such as induced fit effects 

and other local changes in protein structure. Therefore, we expect the better sampling afforded by the 

GPU based platform will potentially lead to improved accuracy in ligand binding free energy 

prediction.  

 In addition to raw performance, one of the biggest challenges facing the free energy calculation 

field is the application of techniques to improve sampling of flexible systems to enable convergence 

with lesser simulation times. One methodology to achieve this increase in sampling efficiency is the 

calculation of relative binding free energies. Unlike previously utilized dummy atom based approaches 

82-86 , the framework presented here is general and doesn’t require a shared set of atoms to be utilized 

effectively. A special path has been designed to avoid unstable ligand-ligand polarization in the dual-

topology approach. We expect that for flexible protein systems, the dual-topology approach will be 

more efficient and reduce the time needed for convergence in comparison with absolute free energy 

approaches.  
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FIGURES 



  

Figure 1: Thermodynamic path used to calculate the absolute complexation energy of a ligand using a 

double-decoupling approach. 

 

 

 



 

 

 

 

Figure 2: Path used to determine the relative complexation interaction energy of two ligands using a 

dual topological approach.  



 

Figure 3: Structures of the 12 sampl4 molecules utilized in this study. 

 

 

 



   

Figure 4: Structures of the 10 aromatic compounds used in this study. 

 

 

 



 

Figure 5: Comparison between the sampl4 binding free energies of 12 sampl4 compounds computed by 

the Tinker-OpenMM GPU and Tinker CPU platforms. GPU simulations were run for 5ns at each 

perturbation step, while CPU simulations were run for 1ns.  
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 Figure 6: Comparison between the calculated solvation free energies for the 10 molecule aromatic 

compound dataset on the Tinker-OpenMM GPU and Tinker CPU platforms.  
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TABLES 

Table1: Force comparison between the Tinker-AMOEBA CPU and Tinker-OpenMM-AMOEBA GPU 

platforms for Sampl4 molecule 1 at a range of lambda values. 

VDW lambda/ ele-lambda RMSE force       

(10- 4 kcal/mol/Å) 

Max  force deviation            

(10- 3 kcal/mol/Å) 

1/1 8.584 4.69 

1/0.5 8.59 4.66 

1/0.0 8.58 4.71 

0.5/0.0 8.58 4.72 

0.0/0.0 8.58 4.72 

 

Table 2: Performance of Tinker-OpenMM on Nvidia GTX1070 and GTX970 GPUs without the 

relative binding calculations compared to Tinker CPU running on 8 OpenMP threads (4X of single 

CPU speed). Values are in nanoseconds/day 

 GTX1070 GTX970 CPU 

mol01(6417 atoms) 20.0  12.2 0.3 

bench7(23558 atoms) 8.3  4.8  0.16 

 

 

 



 

 

 

 

 

 

 

 

 

Table 3: Comparison between the Tinker-OpenMM absolute and relative platform calculation of the 

solvation energy between pairs of aromatic compounds. Values are in kcal/mol. 

 
Relative from Dual-

Topology 

Difference by 

Absolute 

Aniline/Benzene 4.2±0.1 4.0±0.1 

Adenine/Pyrrole 11.4±0.1 11.3±0.1 

Aniline/Adenine -10.2±0.1  -10.2±0.1 

Benzene/3-Methylimidizole -9.0±0.1 -8.7±0.1 

3-Methylpytidine/pyridine -0.1±0.1 0.0±0.1 

 

 



 

 

 

 

 

 

Table 4: Comparison between the Tinker-OpenMM absolute and relative platform calculations of the 

relative binding free energy between pairs of sampl4 compounds. Values are in kcal/mol. 

 
mol05-mol06 mol09-mol10 

 
Relative from 

absolute 

GPU 

Relative from 

dual topology 

Relative 

from 

absolute 

GPU 

Relative from 

dual topology 

Complexation 

energy 

44.3±0.1 44.3±0.1 -56.3±0.1 -56.0±0.1 

solvation energy 47.3±0.1 47.3±0.1 -68.0±0.1 -68.0±0.1 

total ΔΔG  -2.9±0.1 -2.9±0.1 10.4±0.2 10.7±0.1 
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