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INTRODUCTION

Free energy is the driving force for spontaneous molecular processes and accurate alchemical free energy calculations can benefit a broad range of chemical and biomedical applications [START_REF] Sanz | Solubility of KF and NaCl in water by molecular simulation[END_REF][START_REF] Seeliger | Protein thermostability calculations using alchemical free energy simulations[END_REF][START_REF] Aqvist | Ion-water interaction potentials derived from free energy perturbation simulations The[END_REF][START_REF] Garrido | 1-Octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies[END_REF][START_REF] Jayaraman | Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3methylimidazolium chloride[END_REF] . The accurate prediction of the binding affinities for ligands to their target proteins has been a great challenge in the computational drug development process [START_REF] Chodera | Alchemical free energy methods for drug discovery: progress and challenges[END_REF] . Today, it is common to utilize empirical docking algorithms in the identification of potential lead compounds [START_REF] Ferreira | Molecular docking and structure-based drug design strategies[END_REF][START_REF] Moustakas | Development and validation of a modular, extensible docking program: DOCK 5[END_REF][START_REF] Friesner | Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy[END_REF][START_REF] Verdonk | Improved proteinligand docking using[END_REF][START_REF] Tanrikulu | The holistic integration of virtual screening in drug discovery[END_REF] . However, in order to screen large ligand libraries in a short amount of time, empirical docking typically relies on incomplete physics models [START_REF] Warren | A critical assessment of docking programs and scoring functions[END_REF] , and only account for limited system dynamics (such as loop flexibility) when predicting ligand affinity [START_REF] Fischer | Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery[END_REF] . These limitations result in a lack of the accuracy necessary for lead optimization [START_REF] Enyedy | Can we use docking and scoring for hit-to-lead optimization?[END_REF][START_REF] Jorgensen | The many roles of computation in drug discovery[END_REF] . The calculation of ligand binding free energies from elaborated molecular simulations has also been limited by a combination of underlying force fields and sampling algorithms [START_REF] Mobley | Predicting Binding Free Energies: Frontiers and Benchmarks[END_REF][START_REF] Gilson | Calculation of protein-ligand binding affinities[END_REF] .

One pathway for the calculation of binding free energies is the double decoupling approach. In this approach, one includes a parameter (lambda) that controls the interaction of a ligand with its environment. When transitioning from lambda=1 (full ligand intermolecular interaction) to lambda=0 (no ligand intermolecular interaction), a ligand's interaction with its environment is evaluated. Simulations of the system are conducted with the solvated ligand and the protein-ligand complex, and the binding free energy is calculated as the complexation energy minus the solvation energy, plus standard state and other corrections [START_REF] Jorgensen | Efficient Computation of Absolute Free-Energies of Binding by Computer-Simulations -Application to the Methane Dimer in Water[END_REF] . In this methodology restraints [START_REF] Gilson | The statistical-thermodynamic basis for computation of binding affinities: A critical review[END_REF] are often used to keep the ligand bound to the protein complex throughout the decoupling process . The magnitude of this restraint term is then analytically corrected for.

Another major class of approaches of binding free energy involve the calculation of the potential of mean force. In these approaches, pioneered by the Roux lab [START_REF] Roux | The Calculation of the Potential of Mean Force Using Computer-Simulations[END_REF] , one calculates the average force needed to maintain a system in a given configuration (e.g. the distance and orientation between a ligand and the active site). Free energy is then calculated by calculating the work integral from the starting to ending distances. In order to obtain energy data on all relevant distances, a biasing process such as steered MD [START_REF] Izrailev | Computational molecular dynamics: challenges, methods, ideas[END_REF][START_REF] Gullingsrud | Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations[END_REF] or umbrella sampling [START_REF] Roux | The Calculation of the Potential of Mean Force Using Computer-Simulations[END_REF][START_REF] Torrie | Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling[END_REF] is often used. The advantage of this technique is that it allows for the collection of free energy profiles, including information about the energy barriers to binding. The main challenge of this approach is the difficulty in defining an appropriate reaction coordinate for the biasing process. Therefore, this technique has been mostly applied to systems such as channel proteins [START_REF] Allen | Molecular dynamics -potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels[END_REF][START_REF] Zhang | Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain[END_REF] that have an obvious pulling dimension. However, this technique can also be applied to general protein-ligand binding [START_REF] Woo | Calculation of absolute protein-ligand binding free energy from computer simulations[END_REF][START_REF] Lau | The hidden energetics of ligand binding and activation in a glutamate receptor Nature structural & molecular biology[END_REF][START_REF] Doudou | Standard free energy of binding from a onedimensional potential of mean force[END_REF] .

The free energy between the bound and unbound states in either approach can be sampled by using various techniques such as free energy perturbation (FEP) [START_REF] Aqvist | Ion-water interaction potentials derived from free energy perturbation simulations The[END_REF] , thermodynamic integration (TI) [START_REF] Straatsma | Free-Energy of Ionic Hydration -Analysis of a Thermodynamic Integration Technique to Evaluate Free-Energy Differences by Molecular-Dynamics Simulations[END_REF] , metadynamics [START_REF] Barducci | Well-tempered metadynamics: a smoothly converging and tunable free-energy method[END_REF][START_REF] Laio | Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics[END_REF][START_REF] Bussi | Equilibrium free energies from nonequilibrium metadynamics Physical review letters[END_REF] or Orthogonal Space Random Walk (OSRW) [START_REF] Zheng | Random walk in orthogonal space to achieve efficient freeenergy simulation of complex systems[END_REF][START_REF] Zheng | Simultaneous escaping of explicit and hidden free energy barriers: Application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling[END_REF] . A common method for calculating the free energy between neighboring states in alchemical perturbation is the Bennett acceptance ratio (BAR) [START_REF] Bennett | Efficient Estimation of Free-Energy Differences from Monte-Carlo Data[END_REF] . The free energy of binding can then be calculated as the difference between the ligand-host interaction energy and the ligand-water interaction energy. In thermodynamic integration, one utilizes lambda much like in setting up a simulation for BAR and calculate the numerical integration of <∂H/∂λ)>λ from lambda=0 to lambda=1 [START_REF] Straatsma | Free-Energy of Ionic Hydration -Analysis of a Thermodynamic Integration Technique to Evaluate Free-Energy Differences by Molecular-Dynamics Simulations[END_REF] . Compared to BAR, it can be difficult to determine which discrete values of lambda should be used, as convergence can be difficult in regions of high curvature of <∂H/∂λ)>λ. Due to this, comparison studies [START_REF] Shirts | Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration[END_REF] have suggested that TI simulations may require more states than BAR to reach converged free energies. However, TI simulations require less post-simulation processing than BAR based approaches.

The second ingredient of free energy simulations is the choice of force field. Popular force fields include CHARMM [START_REF] Brooks | Charmm -a Program for Macromolecular Energy, Minimization, and Dynamics Calculations[END_REF][START_REF] Vanommeslaeghe | CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[END_REF][START_REF] Klauda | Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types The[END_REF][START_REF] Mackerell | Development and current status of the CHARMM force field for nucleic acids[END_REF] and AMBER [START_REF] Pearlman | a Package of Computer-Programs for Applying Molecular Mechanics, Normal-Mode Analysis, Molecular-Dynamics and Free-Energy Calculations to Simulate the Structural and Energetic Properties of Molecules[END_REF][START_REF] Wang | Development and testing of a general amber force field[END_REF][START_REF] Pérez | Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers[END_REF][START_REF] Meagher | Development of polyphosphate parameters for use with the AMBER force field[END_REF] . More recent advances have resulted in the development of force fields with more complex electrostatics models, particularly incorporation of polarization. General polarizable force fields include polarizable multipole based AMOEBA, [START_REF] Ren | Polarizable atomic multipole water model for molecular mechanics simulation[END_REF][START_REF] Wu | Automation of AMOEBA polarizable force field parameterization for small molecules Theoretical chemistry accounts[END_REF][START_REF] Shi | Polarizable atomic multipole-based AMOEBA force field for proteins[END_REF] polarizable OPLS [START_REF] Maple | A polarizable force field and continuum solvation methodology for modeling of protein-ligand interactions[END_REF][START_REF] Stern | Fluctuating charge, polarizable dipole, and combined models: parameterization from ab initio quantum chemistry[END_REF][START_REF] Kaminski | Development of an accurate and robust polarizable molecular mechanics force field from ab initio quantum chemistry[END_REF] , fluctuating charge [START_REF] Patel | CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations[END_REF][START_REF] Patel | CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model[END_REF] and Drude-Oscillator [START_REF] Baker | Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model[END_REF][START_REF] Lopes | Polarizable empirical force field for aromatic compounds based on the classical drude oscillator[END_REF][START_REF] Baker | Accurate calculation of hydration free energies using pair-specific Lennard-Jones parameters in the CHARMM Drude polarizable force field[END_REF] based CHARMM force fields.

The defining feature of the AMOEBA force field we have been developing is its electrostatic model based on permanent atomic multipoles, as well as many-body polarization through induced dipoles.

These added terms, while computationally expensive, allow for a more rigorous modeling of ligandprotein interaction, particularly at short range, than is possible using a fixed-charge based force field.

Previous work using AMOEBA force field has shown an accurate recapitulation of experimental free energies in small molecules hydration, [START_REF] Ren | Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules[END_REF][START_REF] Shi | Multipole Electrostatics in Hydration Free Energy Calculations[END_REF][START_REF] Abella | Hydration Free Energy from Orthogonal Space Random Walk and Polarizable Force Field[END_REF][START_REF] Schnieders | The Structure, Thermodynamics and Solubility of Organic Crystals from Simulation with a Polarizable Force Field[END_REF] metal ion hydration [START_REF] Jiao | Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential[END_REF][START_REF] Wu | Polarizable Molecular Dynamics Simulation of Zn(II) in Water Using the AMOEBA Force Field[END_REF][START_REF] Grossfield | Ion solvation thermodynamics from simulation with a polarizable force field[END_REF] , as well as ligand binding in synthetic hosts [START_REF] Bell | Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field[END_REF] , and protein systems [START_REF] Zhang | Polarizable Force Fields for Scoring Protein-Ligand Interactions Protein-Ligand Interactions[END_REF][START_REF] Shi | Probing the effect of conformational constraint on phosphorylated ligand binding to an SH2 domain using polarizable force field simulations[END_REF][START_REF] Jiao | Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential[END_REF][START_REF] Jiao | Trypsin-Ligand Binding Free Energies from Explicit and Implicit Solvent Simulations with Polarizable Potential[END_REF][START_REF] Shi | Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins[END_REF][START_REF] Jiao | Calculation of protein-ligand binding free energy by using a polarizable potential[END_REF][START_REF] Zhang | Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential[END_REF] . The inclusion of a complex electrostatic force leads to increasing computational cost, so that potential it can benefit even more from parallel computing of protein-scale systems consisting of tens of thousands of atoms. Earlier implementations of AMOEBA in Tinker have utilized OpenMP [START_REF] Dagum | OpenMP: an industry standard API for shared-memory programming[END_REF] , which allows for limited parallelism on commercially available CPUs. Massively parallel computation using AMOEBA is possible on supercomputers using the Tinker-HP package [START_REF] Narth | Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles[END_REF][START_REF] Lagardere | Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald[END_REF][START_REF] Lipparini | Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: I. toward massively parallel direct space computations[END_REF] . In addition, AMOEBA has been previously implemented in OpenMM, enabling massively parallel molecular dynamics simulations on GPUs [START_REF] Eastman | OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation[END_REF][START_REF] Eastman | Rapid Development of High Performance Algorithms for Molecular Dynamics bioRxiv[END_REF] . In order to enable alchemical free energy calculations in OpenMM, we have incorporated "lambda" into force and energy calculation via a soft-core approach, [START_REF] Levitt | Protein Folding by Restrained Energy Minimization and Molecular-Dynamics[END_REF] which is necessary to remove the singularities in van der Waals (vdW) interactions that occurs when atoms are in close contacts. [START_REF] Hornak | Development of softcore potential functions for overcoming steric barriers in molecular dynamics simulations[END_REF] In addition, we modified the tinker-OpenMM interface to allow for perturbation of the electrostatic force via the scaling of electrostatic parameters. Another feature of OpenMM that is now supported by the Tinker-OpenMM interface is the addition of support for the CustomCentroidBondForce. This addition enables the coupling of a two groups of atoms (such as a ligand and its binding site).

Compared to the state of CPU alchemical free energy calculations, GPU alchemical free energy calculations is still in its infancy. It is possible to perform MD simulations on GPUs using a few software, including AMBER [START_REF] Salomon-Ferrer | An overview of the Amber biomolecular simulation package Wires[END_REF] , NAMD [START_REF] Phillips | Adapting a Message-Driven Parallel Application to GPU-Accelerated Clusters International Conference for High Performance Computing[END_REF] , and OpenMM [START_REF] Eastman | OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation[END_REF] . However, very few GPU platforms have yet supported alchemical simulations. In addition to the work with OpenMM-AMOEBA described here, the YANK package 81 for the use of OpenMM to simulate AMBER force fields is currently in development. Therefore, the AMOEBA on GPU implementation described here(Tinker-OpenMM) constitutes the first available platform for free energy perturbation simulations on GPUs using a polarizable force field.

It is not always necessary to compute the absolute alchemical free energy, and binding or solvation energies relative to a reference ligand are sufficient. In those cases, it may be advantageous to calculate relative energies instead of absolute energies. Many previous relative binding free energy calculation use a "dummy atom" single topology approach [START_REF] Jorgensen | Monte Carlo simulations of the hydration of substituted benzenes with OPLS potential functions[END_REF][START_REF] Ota | Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: Relative free energy of binding of trypsin to benzamidine and benzylamine Proteins: Structure, Function[END_REF][START_REF] Miyamoto | Absolute and Relative Binding Free-Energy Calculations of the Interaction of Biotin and Its Analogs with Streptavidin Using Molecular-Dynamics Free-Energy Perturbation Approaches[END_REF][START_REF] Reddy | Calculation of relative binding free energy differences for fructose 1, 6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach[END_REF][START_REF] Reddy | Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-perturbation approach[END_REF] where a pair of ligands are simulated as a common core of atoms connected to a set of atoms sufficient to describe both desired molecules. This dummy atom approach has been used to calculate a number of molecular properties, including binding free energies [START_REF] Ota | Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: Relative free energy of binding of trypsin to benzamidine and benzylamine Proteins: Structure, Function[END_REF][START_REF] Miyamoto | Absolute and Relative Binding Free-Energy Calculations of the Interaction of Biotin and Its Analogs with Streptavidin Using Molecular-Dynamics Free-Energy Perturbation Approaches[END_REF][START_REF] Reddy | Calculation of relative binding free energy differences for fructose 1, 6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach[END_REF][START_REF] Reddy | Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-perturbation approach[END_REF][START_REF] Reddy | Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach[END_REF] Previous work with the AMOEBA force fields on CPUs have accurately calculated the relative binding free energies of ligands to trypsin using a single topology approach [START_REF] Jiao | Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential[END_REF][START_REF] Jiao | Trypsin-Ligand Binding Free Energies from Explicit and Implicit Solvent Simulations with Polarizable Potential[END_REF][START_REF] Jiao | Calculation of protein-ligand binding free energy by using a polarizable potential[END_REF] . The weakness of this scheme is that it is not general; it is more suitable for pairs of molecules with significant chemical similarity. A different approach is that of dual topology free energy calculation, where two ligands are always present in the binding pocket. Relative complexation free energy is calculated via a path starting in a state with fully ligand 1-environmental interaction, and ending at a state of fully ligand 2-environmental interaction. Dual topology free energy calculations have been possible in CHARMM since the late 80's [START_REF] Fleischman | Thermodynamics of Aqueous Solvation -Solution Properties of Alcohols and Alkanes[END_REF] and have more recently been implemented in AMBER [START_REF] Salomon-Ferrer | An overview of the Amber biomolecular simulation package Wires[END_REF] .

However, this dual topology scheme is more difficult to implement in a polarizable force field due to the complexity of the electrostatics making it difficult to selectively "scale" the polarization between two ligands. By utilizing a pathway where only one ligand is charged during any perturbation step, we were able to avoid this complication.

Currently, the ability to perform GPU based platform alchemical simulations, particularly for polarizable force fields, has been limited. In this work, we created Tinker-OpenMM, an OpenMM implementation of AMOEBA that enables alchemical free energy calculations on GPUs, while also adding the capability to perform dual topology simulations to both the Tinker [START_REF] Ponder | TINKER molecular modeling package[END_REF] and OpenMM [START_REF] Eastman | OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation[END_REF][START_REF] Eastman | Rapid Development of High Performance Algorithms for Molecular Dynamics bioRxiv[END_REF] platforms. We then proceed to test the GPU based free energy calculations for hydration free energies of aromatic systems [START_REF] Zhang | Polarizable Multipole-Based Force Field for Aromatic Molecules and nucleobases[END_REF] , absolute and relative binding free energies of the sampl4 host-guest systems [START_REF] Muddana | The SAMPL4 host-guest blind prediction challenge: an overview[END_REF] .

IMPLEMENTATION DETAILS Tinker-OpenMM interface:

Tinker-OpenMM is built using an interface to pass tinker coordinates and parameters to OpenMM. Tinker reads in the input key and coordinate files, and passes the relevant variables in to a C++ script. This script then uses the OpenMM C API to create the relevant OpenMM parameters and forces, and initiates GPU Molecular Dynamics simulation. Coordinate saving is then managed by occasionally transferring atomic coordinates and velocities from the GPU to main system memory. Tinker then saves these outputs in tinker coordinate and velocity files, enabling post-processing by Tinker commands(eg. BAR). This interface was originally created by Mark Friedrichs, Lee-Ping Wang, Kailong Mao, and Chao Lu.

Absolute binding free energy:

In this work, we employ double-decoupling and alchemical perturbation to compute free energy of binding. First, the electrostatic interactions between the ligand and its environment (water or protein/water) are scaled from 0 to 100% in a series of simulations. With no electrostatic interaction between ligand and surroundings, a series of simulations are run where the (softcore) vdW interactions between ligand and environment are scaled. The path utilized for absolute complexation simulations is shown in Figure 1. This process is also repeated in an aqueous environment to account for hydration free energy.

After running these simulations, the Bennett Acceptance Ratio (BAR) method is used to calculate the free energy difference between each pair of neighboring states. Since energy is a state function, we can calculate the total complexation energy as the sum of many small perturbations in ligand-environmental interaction strengths. The binding energy is calculated as the complexation free energy, minus the hydration free energy, with the addition of several corrections explained below.

When conducting alchemical perturbation, it is necessary to denote which atoms belong to the ligand. In the simulation system, the ligand atom indices are identified by using the ligand keyword in the key file (e.g. "ligand -1 14" denotes that atoms 1 through 14 belong to a ligand).

Alteration of the electrostatic interactions between the ligand and its environment is accomplished via the scaling of the electrostatic parameters passed from the Tinker interface to OpenMM. The atomic charge, dipole, quadrupole, and polarizability of all ligand atoms are each multiplied by the current simulation electrostatic lambda value (between 0 and 1), which is denoted by the ele-lambda keyword. This results in no electrostatic interaction between the ligand and its environment when ele-lambda=0, and full interaction strength when ele-lambda=1. This methodology also "turns off" the intra-ligand electrostatic interactions. When calculating hydration free energy, the intra-ligand/solute electrostatic contributions are added back by "growing" the electrostatic parameters for ligand alone (in gas phase). However, when calculating binding free energy, this contribution is exactly canceled by an equal omission in the ligand-solvent interaction.

When conducting alchemical perturbation simulations, the change in energy and structure that results from each perturbation needs to be relatively small. To avoid the numerical instability of the standard vdW function when the ligand-environment interaction approaches zero, a softcore buffered -2 (1)

Here εij is the well depth, and ρij represents the current interatomic distance divided by rmin, the interatomic distance that results in the lowest vdW energy. In order to use this softcore vdW force, we need to assign the appropriate value of the lambda parameter 𝜆 . In this implementation, each ligand atom is assigned a lambda value equal to the vdW-lambda keyword value in the simulation input key file. Each non-ligand atom is assigned a lambda value of 1. When calculating a pairwise vdW interaction, it is necessary to have a set of combining rules to convert two atomic vdW lambdas into a combined, 𝜆 . For a pair of atom i and j, 𝜆 is determined as the lesser of 𝜆 and 𝜆 . If the two lambda values are identical (as is the case in an intra-ligand or water-water interaction), 𝜆 = 1.

In order to ensure that the ligand stays in the binding pocket even when intramolecular interactions are weak, a distance restraint (𝑘(𝑟 -𝑟 ) ) is applied between the centers of mass of the ligand and the center of the binding pocket. The bias introduced by the restraint is corrected for at the start and end of our thermodynamic path. The restraint correction at the end of simulation where no intermolecular interaction between ligand and environment is given by 92

Δ𝐺 = 𝑅𝑇𝑙𝑛 𝐶 (2) 
Here C 0 represents standard state concentration (1 mol/L). In this work, we use a force constant (k) of 15 kcal/mol/Å 2 , and this correction amounts to 6.25 kcal/mol.

In order to remove the ligand restraint from the system with full ligand-protein interaction, we repeat the simulation but with the restraint off. The free energy difference between the two simulations is then calculated using BAR. Alternatively, one could also gradually turn off the restraint while the interaction strength between ligand and protein increases so that no additional correction is needed.

Dual-topology based relative free energy:

Relative binding free energy can potentially be calculated more reliably as it avoids simulation of the non-ligand bound form of the protein. In this implementation of the calculation of relative binding free energies, we take a thermodynamic path where we first reduce ligand 1's electrostatic parameters to zero magnitude. We then proceed to reduce the vdW interactions between ligand 1 and environment, while simultaneously increasing the vdW interactions between ligand 2 and environment.

Finally, we increase ligand 2's electrostatic parameters from zero to full. The path we used to calculate relative complexation energy (ligand binding to receptor in water) is shown in Figure 2. Since the two ligands are never charged at the same perturbation step, ligand 1 and 2 never interact with each other (the vdW interactions are also turned off via the soft-core formula), which requires minimal changes to the electrostatic force in the existing OpenMM code.

In order to run the simulations in our thermodynamic path, we require independent (ligand1 and ligand2) keywords to denote the indices of ligand 1 and ligand 2, respectively. The electrostatic perturbation segments of our path require that we independently control the electrostatic interaction of ligand 1 and ligand2. This is accomplished by having two electrostatic lambda keywords (ele-lambda1 and ele-lambda2, respectively). The charge, dipole, quadrupole and polarizability of each ligand is multiplied by the appropriate ele-lambda variable.

When perturbing the vdW force, we need to assign each ligand atom the correct lambda value.

The vdW-lambda of all ligand 1 atoms is equal to the value specified by the vdW-lambda keyword, and vdW-lambda of all ligand 2 atoms is equal to 1 minus vdW-lambda. Therefore, changing the vdwlambda keyword from 1.0 to 0.0 results in removing all ligand1-environment interactions while setting all ligand2 atoms to full vdW interaction with the environment.

When conducting relative binding simulations or BAR energy calculations, we need to ensure that the two ligands do not interact via the vdW force. Therefore, we need a way for our vdW force and energy calculations kernels to know which ligand each atom belongs to. This is accomplished by adding an internal variable to the vdW force used to designate which ligand (if any) an atom belongs to. This variable is equal to 0 for environmental (non-ligand) atoms, 1 for ligand 1, and 2 for ligand 2.

Each pairwise vdW interaction is checked to ensure that ligand1-ligand2 interactions are omitted.

The relative binding free energy is calculated as the relative complexation energy minus the relative hydration energy. Note that if one uses the same force constant for ligand-receptor restraint for all simulations, the restraint correction discussed above is identical for both ligands and drops out in the relative binding free energy.

METHODS

Simulation setup:

Prior to all simulation, the system energy was minimized to 1 kcal/mol/Å in order to avoid close atomic contacts. All simulations were run under OpenMM mixed precision mode. Ewald cutoff was set 

Molecular dynamics:

Perturbation steps for absolute binding and solvation simulations were conducted with a stepwise reduction of the ele-lambda keyword, followed by a stepwise reduction of the vdw-lambda keyword at 0 ele-lambda. MD used a RESPA integrator, and a BUSSI thermostat. Information on what perturbation steps were used is included in the Supplementary Materials.

Relative binding and solvation simulations were conducting starting with the ele-lambda1 and vdw-lambda keywords at 1.0, and the ele-lambda2 keyword at 0.0. In a series of simulations, the ele-lambda1 keyword is then gradually reduced to 0.0. This is followed by simulations with a stepwise reduction of vdw-lambda1 to 0.0, then a stepwise increase of ele-lambda2 to 1.0.

All CPU simulations were conducted using Tinker dynamic.x for 1ns with a 2fs time step and snapshots saved every 1ps. Each GPU perturbation simulation was conducted using dynamic_omm for 5ns, with a 2fs time-step and snapshots saved every 2ps (except for relative free energy simulations, which had snapshots saved every 1ps). All simulations were conducted at 298K.

Bennett Acceptance Ratio

Bar was computed using Tinker's BAR program. This program iterates between the two equations below until convergence:

𝑒 = 〈 ( ( ))〉 〈 ( ( ))〉 𝐶 = 𝛥𝐹 𝑓(𝑥) = (3)
For all CPU based trajectories, BAR used frames 400 to 1000 for calculation, with the initial 400ps equilibration discarded. For absolute free energy trajectories generated on the GPU, BAR used frames 1 to 2500(0-5ns) for calculation. For the relative free energy trajectories generated on the GPU, BAR used frames 1 to 5000(0-5ns) due to more frequently saved snapshots.

Hydration of aromatic compounds:

Parameters for the aromatic molecules were previously generated. [START_REF] Zhang | Polarizable Multipole-Based Force Field for Aromatic Molecules and nucleobases[END_REF] Structures of the 10 compounds are shown in Figure 3. Initial simulation systems were generated by solvating each ligand in water boxes using the Tinker commands solvate and crystal. Initial structures for relative HFE simulations were generated by concatenating ligand 2's coordinates to the solvated ligand 1 pose.

In order to calculate the absolute hydration free energy, it is necessary to correct for the contribution of intramolecular electrostatics as we scale the solute electrostatic parameters in "disappearing" or "growing" the solute molecule. The intra-solute electrostatic energy was calculated by running simulations on CPU (this same value was used for both the CPU and GPU simulations).

Each molecule was simulated alone in a non-periodic system at ele-lambda values of 0, 0.1, … and 1.0.

Simulations were run for 1ns using a time step of 0.1 fs, with structures saved every 0.5 ps at constant volume of 40.0 Å with temperature at 298K. The intra-solute electrostatic energy was then calculated using BAR.

Sampl4 binding simulations:

Parameters and starting poses for 12 molecules of the sampl4 dataset were generated as described previously [START_REF] Bell | Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field[END_REF] . Structures of the sampl4 ligands utilized in this study are shown in Figure 4.

Relative binding poses were generated as in the relative aromatic simulations.

The final absolute binding energy was calculated as ΔG of complexation (from no interaction to full interaction) -ΔG of solvation (from no interaction to full interaction) + ΔG of going from no restraint to full restraint at 0 interaction lambda + ΔG of removing the restraint at full interaction energy. The latest version of Tinker is available at https://github.com/jayponder/tinker. Tinker-OpenMM is available at https://github.com/pren/tinker-openmm. Note that Tinker only works using the modified Tinker-OpenMM, not the main OpenMM release.

RESULTS

Force agreement:

Correct simulation of molecular systems requires an accurate calculation of both force and energy. However, since energy is only utilized by Tinker in the BAR process, and isn't used during OpenMM molecular dynamics, we focused our initial analysis of Tinker-OpenMM on agreement of OpenMM forces with those of Tinker. To ensure that lambda was working in the Tinker-OpenMM implementation, we tested molecule 1 of the sampl4 dataset bound to the host at a range of lambda values, and compared the resulting static forces to those of Tinker. The Tinker-OpenMM platform was able to closely match that of Tinker for all tested lambda values, with a root mean squared error of approximately 8.6*10 -4 kcal/mol/Å, and a maximal atomic force deviation of approximately 4.7*10 -3 kcal/mol/Å (Table 1). These degrees of deviation are negligible when considering that the RMS force is 31 kcal/mol/ Å. The force deviation is partially due to the single precision used in GPU force evaluation.

Computational efficiency:

In order to test the speed and scalability of the Tinker-OpenMM platform, we ran 1000 steps of MD on sampl4 molecule 1 (6417 atoms), and the bench7 test case distributed with Tinker (a protein system of 23,558 atoms). For both test systems, the NVidia GTX1070 and GTX 970 were approximately 66-fold and 40-fold faster than an 8 core CPU simulation, respectively (Table 2). A single CPU core is approximately 200-fold slower than simulation on a GTX1070 due to the poor core scalability of Tinker utilizing OpenMP. The GPU platform shows better than linear scaling with respect to system size, with a 3.7-fold increase in particle number resulting in a 2.4-fold or 2.5-fold decrease in speed on the GTX1070 and GTX970 platforms, respectively. This better then linear scaling is likely a result of the smaller sampl4 systems being unable to saturate GPU core utilization, as verified by profiling GPU core utilization during simulations. The change of the vdW force to the softcore 14-7 force resulted in no observable difference in speed compared to the kernel used in OpenMM. This was confirmed by running simulations using a version of Tinker-OpenMM that had been modified to utilize a standard, non-softcore 14-7 vdW force without the presence of the lambda parameter in the codebase.

In order to test the cost of utilization of relative vdW, tests were run on bench7 with the relative VDW activated by using two waters (atoms 9000-9002 and 9003-9005) as "ligands" for the alchemical dual topology process. Both of these waters had their ele-lambda values set at 0.0, with a utilized vdWlambda of 1.0. This allowed for the activation of dual topology kernels without introducing extra costs.

This system was minimized, and a speed test was run as above. This resulted in a speed of 4.68 ns/day on a GTX 970, an approximately 2.5% speed reduction when compared to the absolute simulations. This small cost is only present when doing relative free energy calculations; when no ligand2 parameter is set, the cheaper absolute vdW kernel is used for force and energy calculation. Tinker-OpenMM defaults to a utilizing a "mixed" precision mode in all calculations. This mixed precision mode uses 32-bit floating point calculation for all forces, and integrates using 64-bit floating point precision. Due to the poor double floating point calculation of the consumer GeForce line of graphics cards, the use of double precision for both integration and force calculation results in an 18.1-fold reduction in performance on a GTX 970.

GPU/CPU absolute free energy agreement:

As a test of the ability of the Tinker-OpenMM platform to reproduce the results of the Tinker CPU implementation, we performed hydration free energy calculation on a dataset of 10 aromatic compounds, as well as binding free energies on 12 ligands of the sampl4 dataset (9). Both the solvation (Figure 5) and sampl4 datasets (Figure 6) show agreement within the uncertainty of BAR, with R 2 values of (0.9924) and (0.9987), respectively. This, along with the static force calculations provides strong evidence that the GPU and CPU implementations of the AMOEBA force field produce comparable results. The fact that a high degree of agreement is possible despite the fact that the GPU simulations were run for 5 times longer (5ns vs 1ns at each perturbation step) is an indication that the tested systems converge relatively rapidly.

GPU/CPU relative free energy agreement:

We then proceeded to test the capability of the dual-topology based relative free energy platform by computing the relative solvation values for the aromatic dataset. For all tested aromatic pairs, the relative hydration free energy values computed from the dual-topology approach and the absolute HFE showed an agreement within 0.3 kcal/mol, with an R 2 value of 0.999 (Table 3). The observed deviation is likely a result of random, non-systematic statistical error.

We then proceeded to test the capability of the dual-topology based relative free energy platform by computing the relative solvation values for the aromatic dataset. For all tested aromatic pairs, the relative hydration free energy values computed from the dual-topology approach and the absolute HFE showed an agreement within 0.3 kcal/mol, with an R 2 value of 0.999 (Table 3). The observed deviation is likely a result of random, non-systematic statistical error.

Finally, we tested the relative binding prediction of two pairs of sampl4 compounds. The first set of compounds, mol05 and mol06 share similar scaffolds, and show agreement in both complexation and solvation to within the uncertainty of BAR.

The relative binding between molecules 9 and 10 constitutes a more challenging case that cannot be handled using the dummy atom based approach due to the lack of a shared scaffold. In addition, this dissimilarity between the ligands may theoretically make convergence more difficult in the intermediate vdW transitions. Nonetheless, the relative binding platform was still able to agree with the absolute platform to within 0.3 kcal/mol, demonstrating the advantage of dual-topology platform.

DISCUSSION AND CONCLUSIONS

This work reports a GPU implementation of alchemical free energy simulation for polarizable force field AMOEBA. The enhanced speed of GPU over CPU will be valuable for applications such as lead optimization. We have shown that the Tinker-OpenMM GPU platform is capable of reproducing the results of Tinker CPU platform, with an approximately 200-fold improvement in computational performance over what is possible on a single CPU core. This usage of GPU computation greatly improved sampling, which should allow for accounting for slow dynamics such as induced fit effects and other local changes in protein structure. Therefore, we expect the better sampling afforded by the GPU based platform will potentially lead to improved accuracy in ligand binding free energy prediction.

In addition to raw performance, one of the biggest challenges facing the free energy calculation field is the application of techniques to improve sampling of flexible systems to enable convergence with lesser simulation times. One methodology to achieve this increase in sampling efficiency is the calculation of relative binding free energies. Unlike previously utilized dummy atom based approaches [START_REF] Jorgensen | Monte Carlo simulations of the hydration of substituted benzenes with OPLS potential functions[END_REF][START_REF] Ota | Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: Relative free energy of binding of trypsin to benzamidine and benzylamine Proteins: Structure, Function[END_REF][START_REF] Miyamoto | Absolute and Relative Binding Free-Energy Calculations of the Interaction of Biotin and Its Analogs with Streptavidin Using Molecular-Dynamics Free-Energy Perturbation Approaches[END_REF][START_REF] Reddy | Calculation of relative binding free energy differences for fructose 1, 6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach[END_REF][START_REF] Reddy | Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-perturbation approach[END_REF] , the framework presented here is general and doesn't require a shared set of atoms to be utilized effectively. A special path has been designed to avoid unstable ligand-ligand polarization in the dualtopology approach. We expect that for flexible protein systems, the dual-topology approach will be more efficient and reduce the time needed for convergence in comparison with absolute free energy approaches. 
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 1 Figure 1: Thermodynamic path used to calculate the absolute complexation energy of a ligand using a
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 2 Figure 2: Path used to determine the relative complexation interaction energy of two ligands using a
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 3 Figure 3: Structures of the 12 sampl4 molecules utilized in this study.
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 4 Figure 4: Structures of the 10 aromatic compounds used in this study.
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 5 Figure 5: Comparison between the sampl4 binding free energies of 12 sampl4 compounds computed by
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 6 Figure 6: Comparison between the calculated solvation free energies for the 10 molecule aromatic

Table 2 :

 2 Performance of Tinker-OpenMM on Nvidia GTX1070 and GTX970 GPUs without the relative binding calculations compared to Tinker CPU running on 8 OpenMP threads (4X of single CPU speed). Values are in nanoseconds/day

	1/1	8.58 4		4.69
	1/0.5	8.59		4.66
	1/0.0	8.58		4.71
	0.5/0.0	8.58		4.72
	0.0/0.0	8.58		4.72
		GTX1070	GTX970	CPU
	atoms)	20.0	12.2	0.3
	bench7(23558 atoms)	8.3	4.8	0.16

Table 3 :

 3 Comparison between the Tinker-OpenMM absolute and relative platform calculation of the solvation energy between pairs of aromatic compounds. Values are in kcal/mol.

		Relative from Dual-	Difference by
		Topology	Absolute
	Aniline/Benzene	4.2±0.1	4.0±0.1
	Adenine/Pyrrole	11.4±0.1	11.3±0.1
	Aniline/Adenine	-10.2±0.1	-10.2±0.1
	Benzene/3-Methylimidizole	-9.0±0.1	-8.7±0.1
	3-Methylpytidine/pyridine	-0.1±0.1	0.0±0.1

Table 4 :

 4 Comparison between the Tinker-OpenMM absolute and relative platform calculations of the relative binding free energy between pairs of sampl4 compounds. Values are in kcal/mol.

		mol05-mol06	mol09-mol10
		Relative from	Relative from	Relative	Relative from
		absolute	dual topology	from	dual topology
		GPU		absolute	
				GPU	
	Complexation	44.3±0.1	44.3±0.1	-56.3±0.1	-56.0±0.1
	energy				
	solvation energy	47.3±0.1	47.3±0.1	-68.0±0.1	-68.0±0.1
	total ΔΔG	-2.9±0.1	-2.9±0.1	10.4±0.2	10.7±0.1
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