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ON SUBFINITENESS OF GRADED LINEAR SERIES

Huayi Chen & Hideaki Ikoma

Abstract. — Hilbert’s 14th problem studies the finite generation property of
the intersection of an integral algebra of finite type with a subfield of the field
of fractions of the algebra. It has a negative answer due to the counterexample
of Nagata. We show that a subfinite version of Hilbert’s 14th problem has a
confirmative answer. We then establish a graded analogue of this result, which
permits to show that the subfiniteness of graded linear series does not depend
on the function field in which we consider it. Finally, we apply the subfiniteness
result to the study of geometric and arithmetic graded linear series.
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1. Introduction

Let k be a field and X be an integral projective scheme over Speck. If D is
a Cartier divisor on X, as a graded linear series of D, one refers to a graded
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sub-k-algebra of
⊕

n∈NH0(X,nD). The graded linear series are closely re-
lated to the positivity of the divisor and are objects of central interest in
the study of the geometry of the underlying polarised scheme (X,D). Clas-
sically the asymptotic behaviour of graded linear series of finite type is well
understood through the theory of Hilbert polynomials. Several results in bi-
rational algebraic geometry, such as Fujita’s approximation theorem [7, 26],
show that certain graded linear series, even though not of finite type, still have
a similar asymptotic behaviour as in the finite generation case. More recently,
Lazarsfeld-Mustaţă [13] and Kaveh-Khovanskii [11, 10] have proposed, after
ideas of Okounkov [22, 23], a method to encode the asymptotic behaviour of
dimensions of the homogeneous components of a given graded linear series into
a convex body (called the Newton-Okounkov body) in an Euclidean space.

Note that a graded linear series of a Cartier divisor is always a graded
subalgebra of a graded algebra of finite type. It is then quite natural to ask
if there is a nice birational geometry for algebras of subfinite type (namely
subalgebras of an algebra of finite type) over a field.

From the point of view of birational geometry, it is more convenient to
consider graded linear series of a finitely generated field extension K/k without
specifying a polarised model of K. In this framework, as a graded linear series
of K/k, we refer to a graded sub-k-algebra V

•
of the polynomial algebra K[T ]

such that V0 = k and that Vn is a finite dimensional vector space over k for
any n ∈ N. In [3], a new construction of Newton-Okounkov bodies has been
proposed by using ideas from Arakelov geometry, which only depends on a
choice of a tower of successive field extensions k = K0 ⊂ K1 ⊂ · · · ⊂ Kd = K
such that each extension Ki+1/Ki is transcendental and of transcendence
degree 1. The construction is valid for graded linear series of subfinite type
(namely contained in a graded linear series of finite type of K/k) whose field
of rational functions k(V

•
) coincides with K (see Definition 3.1). One may

expect that the same method applies to general graded linear series of subfinite
type V

•
by considering V

•
as a graded linear series of k(V

•
)/k. However, the

main obstruction to this strategy is that a priori the condition of subfiniteness
depends on the extension K/k with respect to which we consider the graded
linear series. This leads to the following subfiniteness problem: given a graded
linear series V

•
of K/k of subfinite type, does there exist a graded linear series

W
•

of finite type of the extension k(V
•
)/k which contains V

•
?

Note that the above problem is closely related to Hilbert’s fourteenth prob-
lem (1). In fact, given a graded linear series V

•
of K/k which is contained in

a graded linear series of finite type V ′
•
. The intersection of V ′

•
with k(V

•
)[T ]

1. Let k be a field and k(x1, . . . , xn) be the field of rational functions of n variables.
Hilbert’s fourteenth problem asked whether the intersection of a subfield of k(x1, . . . , xn)
and the polynomial algebra k[x1, . . . , xn] is finitely generated over k (as a k-algebra).
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gives a graded linear series of k(V
•
)/k containing V

•
, where k(V

•
) is the field

of rational functions of V
•
. Unfortunately the intersection is not necessarily a

k-algebra of finite type, as is shown by Nagata’s counterexamples [21, 20] to
Hilbert’s fourteenth problem.

Note that the above subfiniteness problem actually asks for a weaker con-
dition than the finite generation of the intersection of V ′

•
with k(V

•
)[T ]. It

suffices that the intersection is contained in a graded linear series of finite type
of k(V

•
). Similarly, we can consider the following subfinite version of Hilbert’s

fourteenth problem, which actually has a positive answer (see Theorem 2.6 and
Corollary 2.7 infra).

Theorem 1.1. — Let k be a field, R be an integral k-algebra of finite type and
K be the field of fractions of R. Let K ′ be an extension of k which is contained
in K. Then there exists a finitely generated sub-k-algebra R′ of K ′ containing
R ∩K ′, such that Frac(R′) = Frac(R ∩K ′).

The method of proof consists of an induction argument with respect to the
field extension K/k which permits to reduce the problem to the case where the
extension K/k is monogenerated. Similar method can be applied to the graded
case (but with more subtleties because of the grading structure), which leads
to the following result and gives a confirmative answer to the subfiniteness
problem of graded linear series. It shows that the subfiniteness of graded
linear series is an absolute condition, which does not depend on the choice of
field extension with respect to which the graded linear series is considered (see
Theorem 3.7 and Corollary 4.9 infra).

Theorem 1.2. — Let k be a field and K/k be a finitely generated field exten-
sion. Let V

•
be a graded linear series of K/k which is of subfinite type. Then

there exists a graded linear series of finite type W
•

of K/k such that V
•
⊂ W

•

and k(V
•
) = k(W

•
).

Recall that Hilbert’s fourteenth problem is reformulated in a geometric
setting by Zariski [27], see also [19] and the survey article [18]. Note that
Theorem 1.1 can be compared with the following result in [27].

Theorem 1.3 (Zariski). — Let k be a field, A an integrally closed k-algebra
of finite type, K := Frac(A), and K ′/k a subextension of K/k. There then
exist an integrally closed k-algebra B of finite type and an ideal I of B such
that the fraction field of B is k-isomorphic to the fraction field of A ∩K ′ and
that

A ∩K ′ =
⋃

n∈N

(B : In),

where (B : In) := {x ∈ Frac(B) : xIn ⊂ B} denotes the ideal quotient.
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Inspired by this result, we establish the following projective version of
Zariski’s theorem and deduce an alternative proof for Theorem 1.2 (see Corol-
lary 4.9 infra).

Theorem 1.4. — Let K/K ′/k be field extensions of finite type and W
•

a
graded linear series of K/k that is generated over k by the homogeneous el-
ements of degree 1. We assume that W1 contains 1 ∈ K and that the projective
spectrum P := Proj(W

•
) is a normal scheme. Let X be any integral nor-

mal projective k-scheme whose field of rational functions is k-isomorphic to
k(W

•
∩K ′[T ]). There then exists a Q-Weil divisor D on X such that

Wn ∩K ′ ⊂ H0(X,nD) ⊂ k(W
•
∩K ′[T ])

for every sufficiently positive n.

As an application of the above subfiniteness results, we establish a Fujita
approximation theorem for general graded linear series of subfinite type (see
Theorem 5.2 infra) and an upper bound for the Hilbert-Samuel function of
such graded linear series (see Theorem 5.4 infra). More precisely, we obtain
the following results.

Theorem 1.5. — Let K/k be a finitely generated field extension. For any
graded linear series V

•
of K/k of subfinite type, whose Kodaira-Iitaka dimen-

sion d is nonnegative, the limit

vol(V
•
) = lim

n∈N, Vn 6={0}, n→+∞

dimk(Vn)

nd/d!

exists in (0,+∞). Moreover, vol(V
•
) is equal to the supremum of vol(W

•
),

where W
•

runs over the set of all graded linear series of finite type contained
in V

•
having d as the Kodaira-Iitaka dimension. Finally, there exists a function

f : N → R+ such that

f(n) = vol(V
•
)
nd

d!
+O(nd−1)

and that dimk(Vn) 6 f(n) for any n ∈ N.

We also apply the above results to the study of graded linear series in the
arithmetic setting (see Theorem 5.7 infra).

The article is organised as follows. In the second section, we prove a
weaker form of Hilbert’s 14th problem as the subfiniteness result stated in
Theorem 1.1. In the third section, we prove a graded analogue of Theorem
1.1 in the setting of graded linear series. In the fourth section we consider
the subfiniteness problem in the geometric setting as a projective analogue
of Zariski’s result and establish Theorem 1.4. Finally in the fifth section, we
develop various applications.
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Notation and conventions. —

1. The field of fractions of an integral domain A is denoted by Frac(A).
2. Let K/k be an extension of fields. We denote by tr.degk(K) the transcen-

dence degree of K over k.
3. Let S be a scheme. For any i ∈ N, we denote by S(i) the set of points x

of S such that the local ring OS,x has i as its Krull dimension. If S is an
integral scheme, we denote by Rat(S) the field of rational functions on S.

4. Let k be a field and X be a projective normal scheme over Speck. As a
Weil divisor (resp. Q-Weil divisor) on X, one refers to an element

D =
∑

V ∈X(1)

nV V

in Z⊕X(1)
(resp. Q⊕X(1)

). The coefficient nV is referred to as the multiplicity
of D along V , and is denoted by multV (D). If all coefficients nV are
nonnegative, we say that D is effective, denoted by D > 0. If φ is a
nonzero rational function on X, we denote by (φ) the principal Weil divisor
associated with φ, namely

(φ) :=
∑

V ∈X(1)

ordV (φ)V.

The map (.) : Rat(X)× → Z⊕X(1)
is a group homomorphism and induces a

Q-linear map from Rat(X)× ⊗Z Q to Q⊕X(1)
which we denote by (.)Q. If

D is a Q-Weil divisor on S, we define

(1.1) H0(X,D) :=
{
φ ∈ Rat(S)× : D + (φ⊗ 1)Q > 0

}
∪ {0}

and

(1.2) R(D)
•
:=

⊕

n>0

H0(X,nD)T n.

Note that R(D)
•

is a graded sub-k-algebra of the polynomial algebra
Rat(X)[T ].

5. Let K be a field. As discrete valuation of K we refer to a valuation
ν : K → Q ∪ {+∞} such that ν(K×) is a monogenerated subgroup of
(Q,+). Given such a valuation ν, we denote by Oν := {f ∈ K : ν(f) > 0}
its valuation ring, mν the maximal ideal of Oν and κ(ν) := Oν/mν the
residue field. If Oν is equal to K, we say that the valuation ν is trivial
(note that in this case ν(a) = 0 for any a ∈ K×).

If K/k is a field extension, we call discrete valuation of K over k any
discrete valuation ν of K such that ν(a) = 0 for any a ∈ k×. In this case
κ(ν) is an extension of k and Oν is a k-algebra. Two discrete valuations
ν1 and ν2 of K over k are said to be equivalent if there exists an order-
preserving isomorphism ι : ν1(K

×) → ν2(K
×) such that ν2 = ι ◦ ν1.
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Let K ′/k be a subextension of K/k and let ν be a discrete valuation of
K over k which is nontrivial. Then the restriction of ν to K ′ is a discrete
valuation of K ′ over k. We define the ramification index of ν with respect
to K ′ as the unique integer e(K ′,ν) ∈ N satisfying

(1.3) ν(K ′×) = e(K ′, ν)ν(K×).

Note that e(K ′, ν) = 0 if and only if ν|K ′ is trivial.
6. Let k be a field and S be an integral separated k-scheme. Given a discrete

valuation ν of Rat(S) over k, we say that a point x of S is the centre of ν
in S if

(1.4) OS,x ⊂ Oν and mx = mν ∩ OS,x,

where mx denotes the maximal ideal of OS,x. By the valuative criterion
of separation, if the centre of ν in S exists, then it is unique. In the case
where the centre of ν in S exists, we denote it by cS(ν). If S is proper over
k, then by the valuative criterion of properness every discrete valuation of
Rat(S) over k has a centre in S.

A discrete valuation ν is trivial if and only if the centre of ν in S is the
generic point. Moreover, each regular point ξ ∈ S(1)∪S(0) defines a discrete
valuation ordξ : Rat(S) → Z ∪ {+∞} whose centre is ξ.

7. Let R
•
=

⊕
n∈NRn be a graded ring. We denote by Proj(R

•
) the projective

spectrum of R
•
. If M

•
is a graded R

•
-module, we denote by M̃

•
the quasi-

coherent OProj(R•)-module associated with M
•

(see [8, §II.2.5]). For any
m ∈ N, we let M(m)

•
be the N-graded R

•
-module such that M(m)n =

Mn+m for any n ∈ N, and let M>m be the N-graded sub-R
•
-module of

M
•

such that (M>m)n = {0} if n < m and (M>m)n = Mn if n > m. In

particular, one has M(m)
•
= M>m(m)

•
. The quasi-coherent sheaf R̃(m)

•

is denoted by OProj(R•)(m). Note that if R
•

is generated as an R0-algebra
by R1, then OProj(R•)(m) are invertible OProj(R•)-modules for all m ∈ N,
and one has canonical isomorphisms

OProj(R•)(m)⊗OProj(R•)
OProj(R•)(m

′) ∼= OProj(R•)(m+m′)

for all (m,m′) ∈ N2.
8. Let R

•
=

⊕
n∈NRn be a graded ring. We say that R

•
is essentially integral

if the ideal R>1 of R
•

does not vanish and if the product of two nonzero
homogeneous elements of positive degree of R

•
is nonzero. Note that

if R
•

is essentially integral then the scheme Proj(R
•
) is integral (see [8,

Proposition II.2.4.4])

Acknowledgement. — Huayi Chen would like to thank Beijing Interna-
tional Center for Mathematical Research for the support of visiting position
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2. A weak form of Hilbert’s fourteenth problem

Let k be a field, R be a finitely generated integral k-algebra and K be the
field of fractions of R. Clearly K is a finitely generated extension of k. Let
K ′ be a subextension of K/k, which is also a finitely generated extension (see
[2, Chapitre V, §14, n◦7, Corollaire 3]). We consider the intersection R ∩K ′

and ask the following question which could be considered as a weaker form of
Hilbert’s fourteenth problem: does there exist a finitely generated sub-k-algebra
R′ of K ′ containing R∩K ′ such that Frac(R′) = Frac(R∩K ′). In this section,
we give a confirmative answer to this question.

Definition 2.1. — Let k be a field and A be a k-algebra. We say that A is
of subfinite type if it is a sub-k-algebra of a k-algebra of finite type.

Lemma 2.2. — An injective homomorphism of rings A → B yields a domi-
nant morphism Spec(B) → Spec(A).

Proof. — Let p be a minimal prime ideal of A and S := A \ p. Since the
homomorphism of rings A → B is injective, also is the localised homomorphism
Ap → S−1B. Hence S−1B is nonzero. In particular, there exists a prime ideal
P of B such that P ∩ S = ∅, or equivalently, P ∩ A ⊂ p. Since P ∩ A is a
prime ideal of A and p is a minimal prime ideal of A, one has P ∩A = p.

Proposition 2.3. — Let k be a field and A be a k-algebra of subfinite type.
We assume that A is an integral domain. Then there exists a k-algebra of finite
type containing A, which is also an integral domain.

Proof. — Let B be a k-algebra of finite type such that A ⊂ B. By Lemma
2.2, one can find a prime ideal p of B such that p∩A = {0}. Therefore we can
consider A as a sub-k-algebra of B/p. Since B is a k-algebra of finite type,
also is B/p. The proposition is thus proved.

Lemma 2.4. — Let A be a k-algebra which is an integral domain, and K the
field of fractions of A. Let K ′/K be a finite extension of K generated by one
element α and B′ a sub-k-algebra of finite type of K ′ which contains A. Then
there exists a sub-k-algebra of finite type B of K which contains A.

Proof. — Let f ∈ K[T ] be the minimal polynomial of α over K, which
is assume to be monic. Let F1, . . . , Fn be polynomials in K[T ] such that
B′ = k[F1(α), . . . , Fn(α)]. Let S ⊂ K be the (finite) set of the coef-
ficients of the polynomials f , F1, . . . , Fn. We claim that A is contained
in k[S]. In fact, suppose that an element u of A is written in the form
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ϕ(F1(α), . . . , Fn(α)), where ϕ ∈ k[X1, . . . ,Xn], then by Euclidean division
the polynomial ϕ(F1, . . . , Fn) ∈ k[S][T ] can be written as fg + h, where g
and h are polynomials in k[S][T ] with deg(h) < deg(f). The decomposition
ϕ(F1, . . . , Fn) = fg+ h is also the Euclidean division of ϕ(F1, . . . , Fn) by f in
the polynomial ring K[T ]. By definition, ϕ(F1, . . . , Fn) − u is divisible by f
in K[T ]. Therefore, the polynomial h is actually constant and equals u, which
shows that u ∈ k[S].

Lemma 2.5. — Let A be a k-algebra which is an integral domain, and K
the field of fractions of A. Let K ′/K be a purely transcendental extension
of transcendence degree 1 and B′ a sub-k-algebra of finite type of K ′ which
contains A. Then there exists a sub-k-algebra of finite type B of K which
contains A.

Proof. — Let α ∈ K ′ be a transcendental element over K such that K ′ =
K(α). Assume that B′ = k[ϕ1(α), . . . , ϕn(α)], where each ϕi is a rational
function of the form Fi/Gi, where Fi and Gi are polynomials of one variable
with coefficients in K and Gi 6= 0. Let β be an element in the algebraic
closure of the field K such that Gi(β) 6= 0 in K ′(β) for any i ∈ {1, . . . , n}.

Then one has A ⊂ B̃ := k[ϕ1(β), . . . , ϕn(β)] ⊂ K(β). In fact, if an element
u of A can be written as P (ϕ1(α), . . . , ϕn(α)), where P is a polynomial with
coefficients in k, then, since α is transcendental over K(β), by considering α
as the variable of rational functions and by specifying its value by β, we obtain

that u = P (ϕ1(β), . . . , ϕn(β)). Finally, by applying Lemma 2.4 to A ⊂ B̃ and
the finite extension K(β)/K, we obtain that there exists a k-algebra of finite
type B ⊂ K such that A ⊂ B.

Theorem 2.6. — Let k be a field and A be a k-algebra of subfinite type. We
assume in addition that A is an integral domain and we denote by K the field
of fractions of A. Then there exists a sub-k-algebra of finite type B of K such
that A ⊂ B.

Proof. — By Proposition 2.3, there exists a k-algebra of finite type B′ which
is an integral domain containing A. Let K ′ be the field of fractions of B′, it
is a finitely generated extension of K. Therefore there exists a sequence of
extensions

K = K0 ( K1 ( . . . ( Kn = K ′

such that each extension Ki/Ki−1 is generated by one element, i ∈ {1, . . . , n}.
The extension Ki/Ki−1 is either generated by an algebraic element over Ki−1

or is purely transcendental of transcendence degree 1. By induction we obtain
that, for any i ∈ {0, . . . , n − 1}, there exists a sub-k-algebra of finite type Bi

of Ki such that Bi ⊃ A. The theorem is thus proved.
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Corollary 2.7. — Let k be a field, R be an integral k-algebra of finite type
and K be the field of fractions of R. Let K ′ be an extension of k which is
contained in K. Then there exists a finitely generated sub-k-algebra R′ of K ′

containing R ∩K ′, such that Frac(R′) = Frac(R ∩K ′).

Proof. — By definition, R ∩K ′ is an integral k-algebra of subfinite type. By
Theorem 2.6, there exists a sub-k-algebra of finite type R′ of Frac(R ∩ K ′)
such that R ∩ K ′ ⊂ R′. Clearly one has Frac(R′) = Frac(R ∩ K ′) since
R ∩K ′ ⊂ R′ ⊂ Frac(R ∩K ′). The assertion is thus proved.

3. Graded linear series and subfiniteness

Let k be a field and K/k be a finitely generated field extension. Let

K[T ] =
⊕

n∈N

KT n

be the graded ring of polynomials of one variable with coefficients in K.

Definition 3.1. — As a graded linear series of K/k we refer to a graded
sub-k-algebra

V
•
=

⊕

n∈N

VnT
n

of K[T ] such that V0 = k and that Vn is a finite dimensional k-vector subspace
of K for any n ∈ N>1.

Let V
•

and V ′
•

be two graded linear series of K/k. If Vn ⊂ V ′
n for any n ∈ N,

we say that V
•
is contained in V ′

•
, or V

•
contains V ′

•
, and denote it by V

•
⊂ V ′

•
.

Let V
•

be a graded linear series of K/k. If V
•

is finitely generated as a
k-algebra, we say that V

•
is of finite type. If V

•
is contained in a graded linear

series of finite type, we say that it is of subfinite type.
Let V

•
be a graded linear series of K/k. We denote by k(V

•
) the subextension

of K/k generated by elements of the form f/g, where f and g are nonzero
elements of K such that there exists n ∈ N>1 with {f, g} ⊂ Vn. The field
k(V

•
) is called the field of rational functions of V

•
.

Lemma 3.2. — Given any graded linear series V
•

of K/k, one has

k(Vn) = k(V
•
)

for every sufficiently positive integer n with Vn 6= {0}, where k(Vn) denotes the
subextension of K/k generated by the elements of the form f/g with {f, g} ⊂
Vn, g 6= 0.
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Proof. — First, we note that if ℓ ∈ N>1 is an index such that Vℓ contains a
nonzero element h, then k(Vm) ⊂ k(Vm+ℓn) for any m,n ∈ N>1. In fact, if
{f, g} ⊂ Vm and g 6= 0, then

f

g
=

fhn

ghn
and {fhn, ghn} ⊂ Vm+ℓn

for any n ∈ N>1.
By changing the grading of V

•
, we may assume without loss of generality

that {n ∈ N : Vn 6= {0}} generates Z as a Z-module. There exist integers
{n1, . . . , nr} ⊂ N>1 and nonzero elements {f1, . . . , fr, g1, . . . , gr} ⊂ K such
that {fi, gi} ⊂ Vni

for any i ∈ {1, . . . , r} and that k(V
•
) = k(f1/g1, . . . , fr/gr).

Set p := lcm(n1, . . . , nr). By the above observation, we can assume {fi, gi} ⊂
Vp for any i, and one has

k(V
•
) = k(f1/g1, . . . , fr/gr) = k(Vp).

Moreover, by the hypothesis that {n ∈ N : Vn 6= {0}} generates Z as a Z-
module, we can find a positive integer q such that p and q are coprime and
that k(Vp) = k(Vq) = k(V

•
).

To conclude the proof, it suffices to show that {pm + qn : m,n ∈ N}
contains every sufficiently positive integer. Since p and q are coprime, we can
fix x, y ∈ Z such that px− qy = 1. Moreover, we can assume that both x and
y are positive. For any r with 0 6 r < q and any n with n > (q − 1)y,

qn+ r = prx+ q(n− ry) ∈ {pm+ qn : m,n ∈ N}.

Hence {pm+qn : m,n ∈ N} contains every integer not less than q(q−1)y.

Remark 3.3. — Let V
•

be a graded linear series of K/k and f be a nonzero
element of K. We denote by V

•
(f) the graded linear series

⊕
n∈N fnVnT

n,
where fnVn := {fng : g ∈ Vn}, called the twist of V

•
by f . Note that the twist

does not change the field of rational functions: one has k(V
•
(f)) = k(V

•
) for

any f ∈ K \ {0}.

Proposition 3.4. — Let W
•

be a graded linear series of finite type of K/k.
Let n0 be an integer such that n0 > 1. There exist an integer r > 1 and a family
(fiT

ni)ri=1 of homogeneous elements in W
•

such that the following conditions
are fulfilled:

(1) for any i ∈ {1, . . . , r}, one has ni > n0;
(2) for any integer n > n0, the vector space Wn is generated by elements

of the form fa1
1 · · · far

r , where a1, . . . , ar are natural numbers such that
a1n1 + · · ·+ arnr = n.
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Proof. — Suppose that W
•

is generated by W1T ⊕ · · ·⊕WdT
d. We claim that

the graded linear series

k ⊕
⊕

n>n0

WnT
n

is generated by Wn0T
n0 ⊕ · · · ⊕W2n0+d−2T

2n0+d−2. Let n be an integer such
that n > 2n0 + d− 2. Since W

•
is generated by W1T ⊕ · · · ⊕WdT

d, we obtain
that

Wn =
∑

(a1,...,ad)∈Nd

a1+2a2+···+dad=n

W a1
1 · · ·W ad

d .

Let (a1, . . . , ad) be an element in Nd such that a1 +2a2 + · · ·+ dad = n. Since
n > 2n0 + d− 2, there exist an integer m > 1 and a family

{
(a

(i)
1 , . . . , a

(i)
d ) : i ∈ {1, . . . ,m}

}

of elements in Nd such that

∀ j ∈ {1, . . . , d}, a
(1)
j + · · ·+ a

(m)
j = aj ,

∀ i ∈ {1, . . . ,m− 1}, n0 6 a
(i)
1 + 2a

(i)
2 + · · ·+ da

(i)
d 6 n0 + d− 1,

and

n0 6 a
(m)
1 + 2a

(m)
2 + · · ·+ da

(m)
d 6 2n0 + d− 2.

Therefore

Wn =
∑

(bn0 ,...,b2n0+d−2)∈Nn0+d−1

n0bn0+···+(2n0+d−2)b2n0+d−2=n

W
bn0
n0 · · ·W

b2n0+d−2

2n0+d−2 ,

which concludes the claim (bj corresponds to the number of i ∈ {1, . . . ,m}

such that a
(i)
1 + 2a

(i)
2 + · · · + da

(i)
d = j). Finally it suffices to choose a fam-

ily of homogeneous elements in W
•

which forms a basis of Wn0T
n0 ⊕ · · · ⊕

W2n0+d−2T
2n0+d−2.

Lemma 3.5. — Let K/k′/k be extensions of fields. We assume that the ex-
tension K/k is finitely generated and the extension k′/k is finite. Let W ′

•
be a

graded linear series of finite type of K/k′ and let

W
•
= k ⊕

⊕

n∈N>1

W ′
nT

n.

Then W
•

is a graded linear series of finite type of K/k.

Proof. — Let (fiT
ni)ri=1 be a system of generators of W ′

•
. Let (θj)

m
j=1 be a

basis of k′ over k. We claim that W
•

is generated by

(3.1) (θjfiT
ni)(i,j)∈{1,...,r}×{1,...,m}.
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In fact, if ϕ is an element of W ′
n, then it can be written as
∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λaf
a1
1 · · · far

r ,

where the coefficients λa belong to k′. By writing λa as a linear combination
of (θj)

m
j=1, we obtain that ϕ lies in the graded linear series of K/k generated

by (3.1). The lemma is thus proved.

Definition 3.6. — Let V
•

be a graded linear series of K/k. We assume that
there exists n ∈ N>1 such that Vn 6= {0}. We define the Kodaira-Iitaka
dimension of V

•
as the transcendence degree of k(V

•
) over k. We refer the

readers to [10, §3] and [5, §2] for the definition of Kodaira-Iitaka dimension
in the setting of graded linear series of Cartier divisors or line bundles. If
Vn = {0} for any n ∈ N>1, then by convention the Kodaira-Iitaka dimension
of V

•
is defined to be −∞.

Theorem 3.7. — Let V
•

be a graded linear series of K/k. Assume that there
exists a graded linear series of finite type V ′

•
of K/k which contains V

•
. Then

there exists a graded linear series of finite type W
•

of K/k such that V
•
⊂ W

•

and k(V
•
) = k(W

•
).

Proof. — Step 1: reduction to the case where 1 ∈ V1 and k(V ′
1) = k(V ′

•
). Let

Θ := {n ∈ N>1 : Vn 6= {0}}. The assertion of the theorem is trivial when
Θ = ∅. In the following, we assume that Θ is not empty, and hence it is
a subsemigroup of N>1. Let a ∈ N>1 be a generator of the subgroup of Z
generated by Θ. As

⊕
n∈N V ′

anT
an is a k-algebra of finite type (see for example

[8, Lemme II.2.1.6.(iv)]), by changing the grading we can reduce the problem
to the case where a = 1. In particular, there exists an m ∈ N>1 such that
the vector spaces Vm and Vm+1 are both nonzero. We pick x ∈ Vm \ {0} and
y ∈ Vm+1 \ {0}. By replacing V

•
by the graded linear series generated by

V
•

and (y/x)T and replacing V ′
•

by the graded linear series generated by V ′
•

and (y/x)T (this procedure does not change the fields of rational functions),
we reduce the problem to the case where V1 6= {0}. Finally, by replacing V

•

by V
•
(f−1) and V ′

•
by V ′

•
(f−1) (see Remark 3.3 for the notation), where f is

a nonzero element of V1 (again this procedure does not change the fields of
fractions, see Remark 3.3), we reduce the problem to the case where 1 ∈ V1.
Moreover, by replacing V ′

•
by the graded linear series generated by V ′

•
and

α1T, . . . , αmT , where {α1, . . . , αm} is a system of generators of k(V ′
•
) over k,

we may assume that k(V ′
1) = k(V ′

•
).

Step 2: reduction to the simple extension case by induction. As explained in
the previous step, we can assume 1 ∈ V1 and k(V ′

1) = k(V ′
•
). Since k(V ′

•
)/k(V

•
)

is a finitely generated extension of fields (where V1 is assumed to contain 1),
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there exist successive extensions of fields

k(V
•
) = K0 ( K1 ( . . . ( Kb = k(V ′

•
)

such that each extension Ki/Ki−1 is generated by one element of V ′
1 .

Assume that the theorem has been proved for the case where k(V ′
•
)/k(V

•
)

is generated by one element in V ′
1 . Then by induction we can show that, for

any i ∈ {0, . . . , b}, there exists a graded linear series of finite type W (i)
•

, which

contains V
•

and such that k(W (i)
•

) = Ki. In fact, we can choose W (r)
•

= V ′
•
.

Assume that we have chosen a graded linear series of finite type W (i+1)
•

such

that W (i+1)
•

⊃ V
•

and k(W (i+1)
•

) = Ki+1, where i ∈ {0, . . . , b − 1}. Let V (i)
•

be the graded linear series generated by V
•

and a finite system of generators

of Ki/k in V ′
1 . The graded linear series V (i)

•
contains V

•
and Ki = k(V

(i)
1 ).

Without loss of generality we may assume that V (i)
•

⊂ W (i+1)
•

and that the

extension Ki+1/Ki is generated by one element α in W
(i+1)
1 , otherwise we just

replace W (i+1)
•

by the graded linear series generated by W (i+1)
•

, V
(i)
1 and a

generator of the extension Ki+1/Ki in V ′
1 . It is a graded linear series of finite

type which contains V
•

and has Ki+1 as its field of rational functions. If the
theorem has been proved for the simple extension case, then we obtain the
existence of a graded linear series of finite type W (i)

•
such that V

•
⊂ W

•
and

k(W (i)
•

) = Ki.

Note that the graded linear series W
•
= W (0)

•
satisfies the conditions V

•
⊂

W
•
and k(V

•
) = k(W

•
). Therefore, to prove the theorem it suffices to prove the

particular case where the extension k(V ′
•
)/k(V

•
) is generated by one element

in V ′
1 . Similarly, to prove the theorem under the supplementary condition that

the extension k(V ′
•
)/k(V

•
) is algebraic, it suffices to prove the particular case

where the extension k(V ′
•
)/k(V

•
) is generated by one element in V ′

1 which is
algebraic over k(V

•
).

Step 3: algebraic extension case. In this step, we prove the theorem under
the assumption that the extension k(V ′

•
)/k(V

•
) is algebraic. As explained in

the previous two steps, we may suppose without loss of generality that 1 ∈ V1,
k(V ′

1) = k(V ′
•
) and the extension k(V ′

•
)/k(V

•
) is generated by one element α

in V ′
1 which is algebraic over k(V

•
).

Let

G(X) := Xδ + ξ1X
δ−1 + · · ·+ ξδ ∈ k(V

•
)[X]

be the minimal polynomial of α over k(V
•
). By Proposition 3.4, there exist

an integer r ∈ N>1 and homogeneous elements (fiT
ni)ri=1 with ni > δ for any

i ∈ {1, . . . , r}, which generates the graded linear series

k ⊕
⊕

n>δ

V ′
nT

n.
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Since 1 ∈ Vn ⊂ V ′
n for any n ∈ N>1, for any i ∈ {1, . . . , r}, one has fi ∈ k(V ′

•
).

Moreover, since the extension k(V ′
•
)/k(V

•
) is generated by α (which is of degree

δ over k(V
•
)), there exist polynomials

Fi(X) := ηi,1X
δ−1 + · · ·+ ηi,δ ∈ k(V

•
)[X], i ∈ {1, . . . , r}

such that fi = Fi(α) for any i ∈ {1, . . . , r}. We introduce the following
polynomials in k(V

•
)[T, Y ]

G̃(T, Y ) = Y δ + (ξ1T )Y
δ−1 + · · ·+ ξδT

δ,

F̃i(T, Y ) = (ηi,1T
ni−δ+1)Y δ−1 + · · ·+ ηi,δT

ni .

Note that one has G̃(T, TX) = G(X)T δ and F̃ (T, TX) = Fi(X)T ni .
We let W

•
be the graded linear series generated by V1T ⊕ · · · ⊕ Vδ−1T

δ−1

and the elements ξ1T, . . . , ξδT
δ, ηi,1T

ni−δ+1, . . . , ηi,δT
ni (i ∈ {1, . . . , r}). It is a

graded linear series of finite type of K/k such that k(W
•
) ⊂ k(V

•
). It remains

to prove that W
•

contains V
•
. Clearly Vn ⊂ Wn for n ∈ {1, . . . , δ − 1}. Let

n ∈ N>δ and ϕ be an element in Vn ⊂ V ′
n. By definition ϕ can be written in

the form ∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λaf
a1
1 · · · far

r =
∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λaF1(α)
a1 · · ·Fr(α)

ar ,

where λa ∈ k. We consider the element

F̃ (T, Y ) =
∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λaF̃1(T, Y )a1 · · · F̃r(T, Y )ar ∈ k(V
•
)[T, Y ].

Viewed as a polynomial on Y with coefficients in k(V
•
)[T ], the coeffi-

cients of F̃ (T, Y ) can be written as the values of certain polynomials on
ηi,1T

ni−δ+1, . . . , ηi,δT
ni (i ∈ {1, . . . , r}). Note that one has

F̃ (T, TX) =
∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λaF1(X)a1 · · ·Fr(X)arT n.

Therefore F̃ (T, Tα)−ϕT n = 0 in k(V ′
•
)[T ]. Since G is the minimal polynomial

of α, an Euclidean division argument shows that ϕT n can be written as
a polynomial of ξ1T, . . . , ξδT

δ, ηi,1T
ni−δ+1, . . . , ηi,δT

ni (i ∈ {1, . . . , r}) with
coefficients in k. The theorem is thus proved in the particular case where
k(V ′

•
)/k(V

•
) is an algebraic extension.

Step 4: general case. In this step, we prove the theorem in the general case.
As explained in steps 1 and 2, we may assume that 1 ∈ V1, k(V

′
1) = k(V ′

•
) and

that the extension k(V ′
•
)/k(V

•
) is generated by one element α in V ′

1 which is
transcendental over k(V

•
) (the algebraic case has already been treated in Step

3).
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Since V ′
•

is of finite type, there exist an integer r > 1 and homogeneous
elements (fiT

ni)ri=1 which generate V ′
•

as a k-algebra. As k(V ′
•
)/k(V

•
) is

generated by α, there exists rational functions Pi/Qi (i ∈ {1, . . . , r}), where
{Pi, Qi} ⊂ k(V

•
)[X], Qi 6= 0, such that fi = Pi(α)/Qi(α).

Let θ be an element in the algebraic closure k of k, such that Qi(θ) 6= 0

for any i ∈ {1, . . . , r}. Let k̂ = k(θ) and K̂ = K(θ). Then K̂/K is a finite

extension of field, and K̂/k̂ is a purely transcendental extension generated by

α. Let V̂
•

and V̂ ′
•

be the graded sub-k̂-algebra of K̂[T ] generated by V
•

and

V ′
•

respectively. Then V̂ ′
•

is generated as a k̂-algebra by (fiT
ni)ri=1. We let

Ŵ
•

be the graded linear series of K̂/k̂ generated by T and elements of the
form (Pi(θ)/Qi(θ))T

ni , where i ∈ {1, . . . , r}. This is a graded linear series of

finite type. Note that Pi(θ)/Qi(θ) ∈ k̂(V̂
•
) for any i ∈ {1, . . . , r}. Therefore

k̂(Ŵ
•
) ⊂ k̂(V̂

•
).

Let n ∈ N>1 and ϕ be an element of V̂n ⊂ V̂ ′
n. By definition ϕ can be written

in the form

ϕ =
∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λaf
a1
1 · · · far

r ,

where the coefficients λa belong to k̂. As α is transcendental over k̂(V̂
•
), we

obtain that

ϕ =
∑

a=(a1,...,ar)∈Nr

a1n1+···+arnr=n

λa

r∏

i=1

(Pi(θ)

Qi(θ)

)ai
,

which shows that ϕ ∈ Wn. Therefore one has V̂
•
⊂ Ŵ

•
, which implies that

k̂(V̂
•
) = k̂(Ŵ

•
) since we have already seen that k̂(Ŵ

•
) ⊂ k̂(V̂

•
).

Let

W ′
•
:= k ⊕

⊕

n∈N>1

ŴnT
n.

Since Ŵ
•

is a graded linear series of finite type of K̂/k̂, by Lemma 3.5 we

obtain that W ′
•

is a graded linear series of K̂/k of finite type. Moreover,

one has V
•
⊂ W ′

•
and k(W ′

•
) ⊂ k̂(Ŵ

•
) = k̂(V̂

•
) is a finite extension of k(V

•
).

Therefore, by the algebraic extension case of the theorem proved in Step 3 we

obtain the existence of a graded linear series of finite type W
•
of K̂/k such that

V
•
⊂ W

•
and that k(V

•
) = k(W

•
). Moreover, the equality k(V

•
) = k(W

•
) and

the assumption 1 ∈ V1 ⊂ W1 imply that W
•

is a graded linear series of k(V
•
)/k

(and hence a graded linear series of K/k). The theorem is thus proved.
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4. A subfinite version of Zariski’s theorem

4.1. Preliminaries. — In this section, we collect several basic facts on the
valuations and on the graded rings, which we use to show Theorem 1.4.

4.1.1. — Basic notions of valuations and their centres are in Notation and
conventions 5 and 6.

Lemma 4.1. — Let π : X → X ′ be a dominant morphism of integral sepa-
rated k-schemes, K := Rat(X), K ′ := Rat(X ′), and ν a discrete valuation of
K over k. If the centre cX(ν) of ν in X exists, then π(cX(ν)) is the center of
ν|K ′ in X ′, namely π(cX(ν)) = cX′(ν|K ′).

Proof. — Since the morphism π is dominant, it induces an injective homomor-
phism of fields Rat(X ′) → Rat(X), which allows to consider K ′ as a subfield
of K. Recall that the centre cX(ν) is the unique point x ∈ X satisfying
OX,x ⊂ Oν and mx = mν ∩OX,x (see Notation and conventions 6). Note that

Oν|
K′

=
{
f ∈ K ′ : ν(f) > 0

}
= Oν ∩K ′, and mν|

K′
= mν ∩K ′.

Hence OX′,π(cX(ν)) ⊂ Oν|
K′

and mπ(cX(ν)) ⊂ mν|
K′

(which implies mπ(cX(ν)) =

mv|
K′

∩ OX′,π(cX(ν)) since mπ(cX(ν)) is a maximal ideal).

Lemma 4.2. — Let K/K ′ be a field extension of finite type. Then any dis-
crete valuation ν ′ of K ′ extends to at least one discrete valuation ν of K such
that the following diagram is commutative

K ′× ν′ //

��

Q

K×

ν

==
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

(see Notation and conventions 5).

Proof. — By induction it suffices to treat the case where the extension K/K ′

is generated by one element α. If α is transcendental over K ′, then K = K ′(α)
is canonically isomorphic to the field of rational function in one variable.
Therefore the valuation ν : K → Q ∪ {+∞} such that

ν(a0 + a1α+ · · ·+ anα
n) = min(ν ′(a0), . . . , ν

′(an))

for any a0 + a1X + · · · + anX
n ∈ K ′[X] is a valuation extending ν ′. The

valuations ν ′ and ν have the same image and hence ν is discrete.

Assume that α is algebraic over K ′. Let K̂ ′ be the completion of K ′ with
respect to ν ′, on which the valuation ν ′ extends in a unique way. We choose

an embedding of K in the algebraic closure K̂ ′a of K̂ ′ and let L be the subfield
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of K̂ ′a generated by K̂ ′ and K. Then L is a finite extension of K̂ ′, on which
there is a unique valuation ω extending ν ′ such that

∀x ∈ L, ω(x) :=
1

[K : K̂ ′]
ν ′(Norm

L/K̂ ′
(x)).

Let ν be the restriction of ω on K. It is a valuation extending ν ′. Moreover,
it is discrete since ν(K×) ⊂ 1

[K:K̂ ′]
ν ′(K ′×).

Lemma 4.3. — Let K/k be a field extension and let ν be any discrete valu-
ation of K over k. Let W

•
be a graded linear series of K/k of finite type and

let (fiT
di)ri=1 be a system of generators of W

•
over k. Set

(4.1) a := min

{
ν(f1)

d1
, . . . ,

ν(fr)

dr

}
.

Then Wn ⊂ {φ ∈ K : ν(φ) > na} for every n ∈ N.

Proof. — Any element in Wn can be written in the form
∑

d1n1+···+drnr=n

α(n1,...,nr)f
n1
1 · · · fnr

r

(α(n1,...,nr) ∈ k). Then

ν


 ∑

d1n1+···+drnr=n

α(n1,...,nr)f
n1
1 · · · fnr

r


 > min

{
r∑

i=1

niν(fi)

}
> an.

4.1.2. — Let R
•

be a graded ring which is generated as R0-algebra by a finite
family of elements in R1 and let P := Proj(R

•
). For each homogeneous element

a ∈ R>1, let

(4.2) (R
•
)(a) :=

{
f

ap
: p ∈ N, deg f = p deg a

}

be the degree 0 component of the localisation R
•
[1/a], and let DProj(R•)+(a) :=

Spec((R
•
)(a)) denote the affine open subscheme of Proj(R

•
) defined by the non-

vanishing of a.

Set OP (n) := R̃(n)
•
(see Notation and conventions 7). Given an s ∈ Rn, the

local sections s/1 ∈ H0(DP+(a),OP (n)) = (R(n)
•
)(a) for a ∈ R1 glue up to a

global section αn(s) ∈ H0(P,OP (n)). The following lemmas are well-known.

Lemma 4.4 ([8, Proposition II.2.7.3]). — Let M
•

be a finitely generated

graded R
•
-module. If M̃

•
= 0, then Mn = {0} for any sufficiently positive

integer n.
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Lemma 4.5. — Let R
•

be a graded ring and P = Proj(R
•
). If R

•
is essen-

tially integral and is generated as an R0-algebra by finitely many homogeneous
elements in R1, then the canonical homomorphism α

•
: R

•
→ R(OP (1))• :=⊕

n∈NH0(P,OP (n)) is injective and any element of R(OP (1))• is integral over
R

•
.

Proof. — Suppose that R
•

is generated as an R0-algebra by {a1, . . . , ar} ⊂
R1 \{0}, where a1, . . . , ar are all non zerodivisors in R>1 since R

•
is essentially

integral (see Notation and conventions 8). Given any p ∈ P , one can find an
ai such that ai /∈ p; hence (DP+(ai))i∈{1,...,r} covers P . Thus, a section in
R(OP (1))• can naturally be identified with an element in

(4.3)

r⋂

i=1

R
•
[1/ai],

where the intersection is taken in R
•
[1/(a1 . . . ar)]. In particular, α

•
is injective.

Given any homogeneous element u ∈ R(OP (1))•, one can find an e > 1 such
that aeiu ∈ R

•
for every i by (4.3). Since a1, . . . , ar generates R>1, one obtains

R>reu ⊂ R>re. Moreover, by induction,

R>reu
n ⊂ R>reu

n−1 ⊂ · · · ⊂ R>reu ⊂ R>re

for every n > 1. It implies that R
•
[u] ⊂ (1/a1)

reR
•
; hence u is integral over

R
•

(see for example [14, Theorem 9.1]).

Lemma 4.6. — We keep the notation of Lemma 4.5. Suppose that R
•

is a
Noetherian integral domain and is generated as an R0-algebra by finitely many
homogeneous elements in R1.

(1) If R
•
is an N -1 ring, then there exists an n0 > 0 such that αn is isomorphic

for every n > n0.
(2) If R

•
is an integrally closed domain, then αn is isomorphic for every n > 0.

Proof. — (1) Recall that an integral domain is called an N -1 ring if its integral
closure in its fraction field is a finite generated module over itself. Note
that the graded rings R

•
and R′

•
:= R(OP (1))• have the same homogeneous

fraction field, which is the field of rational functions of the scheme Proj(R
•
).

In particular, any homogeneous element of R′
•

belongs to the homogeneous
fraction field of R

•
, which is contained in the fraction field of R

•
. By Lemma

4.5 we obtain that R′
•

is contained in the integral closure of R
•

and hence is a
module of finite type over R

•
by the Noetherian and N -1 hypotheses.

We consider the exact sequence of OProj(R•)-modules:

0 // K̃er(α
•
) // R̃

•

α̃• // R̃′
•

// ˜Coker(α
•
) // 0.
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Since α̃
•

is isomorphic by [8, Proposition II.2.7.11], we have K̃er(α
•
) =

˜Coker(α
•
) = 0. Hence, by Lemma 4.4, we conclude.

(2) If R
•

is integrally closed, the above argument actually leads to R
•
= R′

•

since R′
•

is contained in the integral closure of R
•
.

4.2. Proof of Theorem 1.4. — Let X and X ′ be integral normal k-schemes
with a fixed inclusion Rat(X ′) ⊂ Rat(X). Each point ξ ∈ X(1) ∪X(0) (respec-

tively, ξ′ ∈ X ′(1)∪X ′(0)) defines the discrete valuation ordξ (respectively, ordξ′)
of Rat(X) (respectively, of Rat(X ′)) over k. We define two sets of points on
X and on X ′, respectively, as

(4.4) AX/X′ :=

{
ξ ∈ X(1) :

ordξ |Rat(X′) is not equivalent to any

of ordξ′ for ξ′ ∈ X ′(1) ∪X ′(0)

}

and

(4.5) BX/X′ :=

{
ξ′ ∈ X ′(1) :

ordξ′ is not equivalent to any

of ordξ |Rat(X′) for ξ ∈ X(1)

}
.

Lemma 4.7. — Let X and X ′ be integral normal k-schemes of finite type with
a fixed inclusion Rat(X ′) ⊂ Rat(X).

1. The sets AX/X′ and BX/X′ are both finite.
2. If the inclusion Rat(X ′) ⊂ Rat(X) is induced from a surjective and flat

morphism π : X → X ′, then both AX/X′ and BX/X′ are empty.

3. If X ′ is proper over k and the inclusion Rat(X ′) ⊂ Rat(X) is induced
from a proper birational morphism π : X → X ′, then BX/X′ = ∅ and
AX/X′ is the set of the exceptional divisors of π.

Proof. — 2: Let ξ ∈ X(1). Then by [9, Proposition IV.6.1.1] we have

dimOX′,π(ξ) = dimOX,ξ − dimOπ−1(π(ξ)),ξ = 0 or 1.

Hence π(ξ) ∈ X ′(1) ∪X ′(0) and ordξ |Rat(X′) is equivalent to ordπ(ξ) by Lemma
4.1.

Let ξ′ ∈ X ′(1). Given any irreducible component Z of π−1({ξ′}), the generic
point ξ of Z is mapped to ξ′ via π (see [9, Proposition IV.2.3.4]). Hence ordξ′
is equivalent to ordξ |K ′ .

1: The inclusion Rat(X ′) ⊂ Rat(X) yields a k-morphism π : U → X ′, where
U denotes a nonempty open subscheme of X. By the theorem of generic flatness
[9, Théorème IV.6.9.1], there exists a nonempty open subscheme U ′ ⊂ X ′ such
that

π̄ := π|π−1(U ′) : Ū := π−1(U ′) → U ′

is flat. Moreover, since π̄ is an open morphism (see [9, Théorème IV.2.4.6]), we
may assume that π̄ is surjective. By the assertion 1 above, AX/X′ (respectively,
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BX/X′) is contained in the set consisting of the generic points of the irreducible

components of X \ π−1(U ′) (respectively, X ′ \ U ′).
3: By the valuative criterion of properness, there exists an open subscheme

U ′ ⊂ X ′ such that codim(X ′ \ U ′,X ′) > 2 and the identification Rat(X ′) =
Rat(X) induces an open immersion U ′ → X. Hence BX/X′ = ∅ and AX/X′ is
contained in the exceptional locus of π. If ξ is a generic point of an irreducible
component of the exceptional locus of π, then π(ξ) = cX′(ordξ |Rat(X′)) by
Lemma 4.1 and dimOX′,π(ξ) is > 2. Hence ξ ∈ AX/X′ .

We restate Theorem 1.4 as follows.

Theorem 4.8. — Let K/K ′/k be field extensions of finite type and W
•

a
graded linear series of K/k that is generated over k by the homogeneous el-
ements of degree 1. We assume that W1 contains 1 ∈ K and that the projective
spectrum P := Proj(W

•
) is a normal scheme. Let X be any integral nor-

mal projective k-scheme whose field of rational functions is k-isomorphic to
k(W

•
∩K ′[T ]).

1. There then exists a Q-Weil divisor D on X such that

Wn ∩K ′ ⊂ H0(X,nD) ⊂ k(W
•
∩K ′[T ])

for every sufficiently positive n.
2. If AP/X = ∅, then there exists a Q-Weil divisor D on X such that

Wn ∩K ′ = H0(X,nD) ⊂ k(W
•
∩K ′[T ])

for every sufficiently positive n.

Proof. — Without loss of generality, we may assume that K = k(W
•
) and

K ′ = Rat(X). In particular, K naturally identifies with the field of rational
functions on P . First, we give a valuation-theoretic interpretation of the
required statement. Let H be the effective Cartier divisor on P defined by
the image of 1 via W1 → H0(P,OP (1)). By Lemma 4.6(1), one has

Wn = {φ ∈ K : nH + (φ) > 0}(4.6)

=
{
φ ∈ K : ordξ(φ) > −nmultξ(H), ∀ ξ ∈ P (1)

}

for every n ≫ 0. Therefore,

(4.7) Wn ∩K ′ =
{
φ ∈ K ′ : ordξ |K ′(φ) > −nmultξ(H), ∀ ξ ∈ P (1)

}

for n ≫ 0.
Next, for each ξ′ ∈ X(1), we define a nonnegative rational number aξ′ as

follows. If ξ′ /∈ BP/X , then we fix an arbitrary point ξ ∈ P (1) such that
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ordξ |Rat(X) is equivalent to ordξ′ . Let eξ denote the ramification index of ordξ
with respect to K/K ′ (see Notation and conventions 5). We then set

aξ′ := e−1
ξ multξ(H).

Otherwise, we fix an arbitrary discrete valuation νξ′ of K extending ordξ′ ,
whose existence is assured by Lemma 4.2, and set

aξ′ := −min{0, νξ′(f1), . . . , νξ′(fr)},

where {f1T, . . . , frT} denotes a system of generators of W
•

as a k-algebra. We

define D :=
∑

ξ′∈X(1) aξ′{ξ′}. By the finiteness of BP/X proved in Lemma 4.7,
D is well-defined as a Q-Weil divisor on X. Moreover, D is effective and we
have Wn ∩K ′ ⊂ H0(X,nD) for every n ≫ 0 by (4.7) and Lemma 4.3.

Lastly, we consider the case where AP/X = ∅. Given a ξ′ ∈ X(1), we define
a nonnegative rational number bξ′ as follows. If ξ′ /∈ BP/X , then we set

bξ′ := min

{
e−1
ξ multξ(H) :

ξ ∈ P (1), eξ 6= 0, and ordξ |Rat(X) is
equivalent to ordξ′

}
.

Otherwise, we fix a discrete valuation νξ′ extending ordξ′ , and set

bξ′ := −min{0, νξ′(f1), . . . , νξ′(fr)}

in the same way as above. If we set D′ :=
∑

ξ′∈X(1) bξ′{ξ′}, then, since

AP/X = ∅,

Wn ∩K ′ =
{
φ ∈ Rat(X) : ordξ′(φ) > −nbξ′, ∀ ξ′ ∈ X(1) \BP/X

}

⊃ H0(X,nD′)

for every n ≫ 0. The reverse inclusion follows from the same argument as
above.

In the following, we give an alternative proof for Theorem 1.2 by using the
projective version of Zariski’s result (Theorem 1.4).

Corollary 4.9. — Let K/k be a finitely generated field extension and K ′/k
a subextension of K/k. Let V

•
be a graded linear series of K ′/k. If V

•
is

contained in a graded linear series W
•

of K/k and of finite type over k, then
V

•
is contained a graded linear series W ′

•
of K ′/k and of finite type over k.

Proof. — We divide the proof into three steps.
Step 1: In this step, we make several reductions of the theorem. By the same

arguments as in the step 1 of Theorem 3.7, we can assume that V1 contains 1.

Claim 4.10. — By enlarging K if necessary, we can assume that W
•

is gen-
erated by W1 over k.
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Proof of Claim 4.10. — Let f1T
d1 , . . . , frT

dr ∈ W>1 be homogeneous genera-
tors of W

•
over k. Let T1, . . . , Tr be variables with deg Ti = 1 for every i. One

can find a homogeneous prime ideal p of W
•
[T1, . . . , Tr] such that p contains

I := (T d1
1 − f1T

d1 , . . . , T dr
r − frT

dr)

and such that p ∩ V
•
= {0}. In fact, let W ′

•
:= W

•
[T1, . . . , Tr]/I and let a be

a homogeneous element of degree > 1. Since the morphism Spec
(
(W ′

•
)(a)

)
→

Spec
(
(V

•
)(a)

)
is dominant (Lemma 2.2), there exists a homogeneous prime

ideal p ∈ Proj(W ′
•
) such that p ∩ V

•
= {0}. We set U

•
:= W ′

•
/p. Then U

•
is a

graded linear series of k(U
•
)/k, W

•
→ U

•
is injective, and U

•
is generated by

U1 = W1 +W0T1 + · · ·+W0Tr.

In particular, we can assume that P := Proj(W
•
) is a projective scheme over

k and that OP (1) := W̃ (1)
•

is an invertible sheaf on P .

Step 2: Let u : P̂ → P be a normalisation and H the Cartier divisor defined

by the image of 1 via V1 → H0(P̂ , u∗OP (1)). We choose a very ample divisor

Ĥ such that Ĥ −H is effective and such that R(Ĥ)
•

is generated by R(Ĥ)1T

over R(Ĥ)0.
Note that the graded k-algebra

Ŵ
•
:= k ⊕

⊕

n>1

H0(P̂ , nĤ)T n

is a graded linear series of K/k and of finite type over k (Lemma 3.5) and that

Proj(Ŵ
•
) is isomorphic to P̂ over k.

Applying Theorem 1.4 to Ŵ
•

and K ′/k, we can find an integral normal
projective k-scheme X, an effective Q-divisor D on X, and an integer n0 > 1

such that Rat(X) ⊂ K ′ and such that Vn ⊂ R(Ĥ)n ∩ K ′ ⊂ H0(X,nD) for
every n with n > n0.

Step 3: Let D̂ be a very ample divisor on X such that D̂ − D is effective

and such that R(D̂)
•

is finitely generated over k. Let W ′
•

be the graded linear
series generated by a basis of ⊕

n<n0

VnT
n

over k and by finite number of generators of R(D̂)
•

over k. Then W ′
n contains

Vn for every n > 0 and W ′
•

is finitely generated over k.

As a consequence of Theorem 1.4, we can give an estimate of the following
type for graded linear series of subfinite type (see also [12, Corollary 2.1.38]
and Theorem 5.2 infra).

Corollary 4.11. — Let K/k be a finitely generated field extension and V
•

a
graded linear series of K/k and of subfinite type. Let d be the Kodaira-Iitaka
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dimension of V
•
. If d is nonnegative, then there exist an integral normal pro-

jective k-scheme X and Q-Cartier divisors D,D′ on X such that the rational
function field of X is k-isomorphic to k(V

•
), that both D and D′ have Kodaira-

Iitaka dimension d, and that

H0(X,nD′) ⊂ Vn ⊂ H0(X,nD) ⊂ k(V
•
)

for every sufficiently positive n with Vn 6= {0}.

Proof. — The existence of D results from the same arguments as in Corollary
4.9. Thus, it suffices to show the existence of D′ having the prescribed proper-
ties. By changing the grading of V

•
, we may assume that {n ∈ N : Vn 6= {0}}

generates Z as a Z-module. Choose any sufficiently positive integer p0 such
that k(Vp0) = k(V

•
) (see Lemma 3.2). Let W

•
be the sub-k-algebra of V

•

generated by Vp0 , and set

W ′
•
:=

⊕

n∈N

Wp0n.

Let P := Proj(W ′
•
) and OP (1) := W̃ ′

•
(1). By Lemma 4.6, W ′

n =

H0(P,OP (n)) ⊂ Vp0n for every n ≫ 1. Let ν : P̂ → P be a normalisa-
tion. Let p be any sufficiently positive integer divisible by p0. Then one can

find an ample divisor A on P̂ such that

H0(P̂ , nA) = H0(P, ν∗(OP̂
(nA))) ⊂ H0(P,OP (pn/p0)) ⊂ Vpn

for every positive integer n (see [4, Démonstration de Proposition 3.6]).
Repeating the same arguments, one can choose an integral normal projective

k-scheme X, two big Cartier divisors A,A′ on X, and two coprime positive
integers p, p′ such that

H0(X,nA) ⊂ Vpn and H0(X,nA′) ⊂ Vp′n

for any positive integer n. Moreover, one can choose an ample Q-Cartier divisor
D′ on X and two coprime positive integers q, q′ such that qq′D′ is integral, that
q (resp. q′) is divisible by p (resp. p′), and that

H0(X, qnD′) ⊂ H0(X, (qn/p)A) ⊂ Vqn

and

H0(X, q′nD′) ⊂ H0(X, (q′n/p′)A) ⊂ Vq′n

hold for every integer n ∈ N>1.
Since

H0(X, qnD′)⊗k H
0(X, q′n′D′) → H0(X, (qn + q′n′)D′)

is surjective for any sufficiently positive integers n, n′ (see for example [12,
Example 1.2.22], which is valid over fields of arbitrary characteristics), we
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have H0(X,nD′) ⊂ Vn for every sufficiently positive n (recall the arguments
in Lemma 3.2).

Corollary 4.12 (Fujita [6, Appendix]). — Let X be an integral normal pro-
jective k-scheme and D an effective Cartier divisor on X. If the Kodaira-Iitaka
dimension of D is 1, then the section ring R(D)

•
is finitely generated.

Proof. — Let K := Rat(X) and let C be the smooth projective k-curve with
rational function field k-isomorphic to K ′ := k(R(D)

•
). The inclusion K ′ ⊂ K

defines a rational map X 99K C and, by taking a suitable blow-up µ : X̂ → X,

one obtains a flat morphism π : X̂ → C. If we set

E :=
∑

ξ′∈C(1)

min
{
e−1
ξ multξ(µ

∗D) : ξ ∈ X̂(1), ξ 7→ ξ′, eξ 6= 0
}
ξ′,

then H0(C,nE) = H0(X̂, nµ∗D) = H0(X,nD) for every n ≫ 0. Hence the
result is reduced to the classic case of curves.

Remark 4.13. — 1. If X is a surface, Zariski [28] completely classified the
cases where R(D)

•
is finitely generated [28, Theorem 10.6 and Proposi-

tion 11.5]. Later, Fujita [6] generalised the case where the Kodaira-Iitaka
dimension is one to the form of Theorem 4.12 by using the Iitaka fibra-
tions.

2. For a nef and big Cartier divisor D on X, R(D)
•

is finitely generated if
and only if D is semiample (see [12, Theorem 2.3.15]).

4.3. Nagata’s counterexamples. — Let N and r be positive integers such
that N > r and let X1, . . . ,XN and Y1, . . . , YN denotes variables. Firstly, we
consider the affine case as in [20, 15, 16, 17]. Set

W
•
:= C[X1, Y1, . . . ,XN , YN ] =

⊕

n∈N

C[X1, Y1, . . . ,XN , YN ]n,

where C[X1, Y1, . . . ,XN , YN ]n denotes the C-vector space of the homogeneous
polynomials of degree n, and let

K := Frac(W
•
) = C(X1, Y1, . . . ,XN , YN ).

We take linearly independent linear forms

L1(T1, . . . , TN ) = a1,1T1 + · · ·+ a1,NTN ,

...

Lr(T1, . . . , TN ) = ar,1T1 + · · ·+ ar,NTN .

For simplicity, we set a1,1 = · · · = a1,N = 1 and assume

(4.8) det(ai,j) 16i6r
N−r+16j6N

6= 0.
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We set

Z0 := X1 · · ·XN ,

Z1 := Z0L1

(
Y1

X1
, . . . ,

YN

XN

)
,

...

Zr := Z0Lr

(
Y1

X1
, . . . ,

YN

XN

)
,

and set
K ′ := C(Z0, Z1, . . . , Zr).

Note that one can find linear forms M1, . . . ,Mr such that

XN =
Z0

X1 · · ·XN−1
,(4.9)

YN−r+1 = XN−r+1M1

(
Y1

X1
, . . . ,

YN−r

XN−r
,
Z1

Z0
, . . . ,

Zr

Z0

)
,

...

YN =
Z0

X1 · · ·XN−1
Mr

(
Y1

X1
, . . . ,

YN−r

XN−r
,
Z1

Z0
, . . . ,

Zr

Z0

)
,

and that K = K ′(X1, . . . ,XN−1, Y1, . . . , YN−r). Nagata [20] has proved that,
if N = 13, r = 3, and L1, . . . , Lr are sufficiently general, then W

•
∩K ′ is not of

finite type over C. Later, Mukai obtained similar results for N = 9 and r = 3
(see [16, section 2.5]). Each Wn ∩ K ′ is nonzero if and only if N divides n,
and each F ∈ WNn ∩K ′ can be written in the form

F = Zm
0 f(Z1, Z2, Z3),

where m is an integer and f ∈ H0(P2,OP2(n −m)). In view of the following
lemma, we know that the fraction field of W

•
∩K ′ coincides with K ′ and that

W
•
∩K ′ is contained in C[Z0, Z1/Z0, Z2/Z0, Z3/Z0].

Lemma 4.14 ([16, Lemma 2.45]). — Let d > 1 be any integer. For f ∈
H0(P2,OP2(d)) and for each i ∈ {1, 2, . . . , N}, we have

ord{Xi=0} |K ′(Zm
0 f(Z1, Z2, Z3)) = m+ ordai

(f(Z1, Z2, Z3)),

where ai := (a1,i : . . . : ar,i) for i ∈ {1, 2, . . . , N}.

Next, we are going to consider a projective variant of Nagata’s counterex-
ample. Let T denote another invariant. We define a graded linear series of
K/C as

Ŵ
•
:=

⊕

n∈N

C[X1, Y1, . . . ,XN , YN ]6nT
n,
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where C[X1, Y1, . . . ,XN , YN ]6n denotes the C-vector space of the polynomials

of degree 6 n. Note that, for each n, F (X1, Y1, . . . ,XN , YN ) ∈ Ŵn ∩K ′ if and

only if F (X1, Y1, . . . ,XN , YN ) ∈ W6n ∩K ′. Let P := Proj(Ŵ
•
) and

(4.10) X := Proj
(
C[TN , Z0T

N , Z1T
N , Z2T

N , Z3T
N ]

)
.

Let H := {TN = 0} and D0 := {Z0 = 0}. Then we have

ŴNn ∩K ′ ⊂ H0(X,nH + nND0)

and H0(X,nH+nND0) is the C-vector space generated by {Z−m
0 f(Z1, Z2, Z3) :

f ∈ H0(P2,OP2(m+ n)), −n 6 m 6 nN}.

Claim 4.15. — We have

AP/X ⊂
N⋃

i=1

{Xi = 0} and BP/X ⊂ D0.

Proof. — Note that ord{TN=0} = (1/N) ord{T=0} |K ′ . Since

C[X1, . . . ,XN , Y1, . . . , YN ][1/Z0]

= C[Z0, Z1, Z2, Z3][1/Z0][X1, . . . ,XN , Y1, . . . , YN−3]/(X1 · · ·XN/Z0 − 1),

Spec(C[X1, . . . ,XN , Y1, . . . , YN ][1/Z0]) is a relative global complete intersec-
tion and, hence, is flat over Spec(C[Z0, Z1, Z2, Z3][1/Z0]). Thus we con-
clude.

Example 4.16. — If r = 2, N > 2, and a2,1, . . . , a2,N are mutually distinct,

then Ŵ
•
∩K ′[T ] is finitely generated by T , Z0T

N , Z1T
N , Z2T

N , and

(a2,1Z1 − Z2) · · · (a2,NZ1 − Z2)

Z0
TN(N−1).

Remark 4.17. — In [15, 17], Mukai considered the subfield

K ′′ := C(X1, . . . ,XN , Z1, . . . , Zr)

and studied the finite generation of Ŵ
•
∩K ′′[T ]. In this case, we consider the

weighted projective space

Proj(C[T,X1T, . . . ,XNT,Z1T
N , . . . , ZrT

N ]).

Let Di (respectively, H) be the hypersurface defined by XiT for
i ∈ {1, 2, . . . , N} (respectively, T ). One then has

Ŵ
•
∩K ′′[T ] ⊂ R(D1 + · · ·+DN +H)

•
.
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5. Applications

In this section, we apply the subfinite criterion (Theorem 1.2) to the study
of Fujita approximation for general subfinite graded linear series. Throughout
the section, we let k be a field and K/k be a finitely generated field extension.

Definition 5.1. — Let V
•

be a graded linear series of K/k and d be its
Kodaira-Iitaka dimension (see Definition 3.6). If d 6= −∞, we define the volume
of V

•
as

(5.1) vol(V
•
) := lim sup

n→+∞

dimk(Vn)

nd/d!
.

A priori this invariant takes value in [0,+∞]. We will see below that, if in
addition the graded linear series V

•
is of subfinite type, then its volume is

always a positive real number.
We say that a graded linear series V

•
satisfies the Fujita approximation

property if
sup

W•⊂V•

W• of finite type
dim(W•)=dim(V•)

vol(W
•
) = vol(V

•
),

where W
•

runs over the set of all graded linear series of finite type which are
contained in V

•
and such that W

•
has the same Kodaira-Iitaka dimension as

V
•
.

The purpose of the section is to establish the following approximation result.

Theorem 5.2. — Any graded linear series V
•

of K/k which is of subfinite
type and has nonnegative Kodaira-Iitaka dimension d satisfies the Fujita ap-
proximation property. Moreover, one has

vol(V
•
) = lim

n∈N(V•), n→+∞

dimk(Vn)

nd/d!
∈ (0,+∞),

where N(V
•
) = {n ∈ N : Vn 6= {0}}.

Proof. — By changing the grading we may assume without loss of generality
that Vn 6= {0} for sufficiently positive integer n. Let K ′ be the homogeneous
fraction field k(V

•
). Note that K ′/k is a subextension of K/k and hence is

finitely generated. Moreover, by Theorem 1.2, we obtain that V
•

viewed as
a graded linear series of K ′/k is of subfinite type. Therefore, the assertions
follow from [3, Theorem 1.1] (by definition V

•
is birational if we consider it as

a graded linear series of K ′).

Remark 5.3. — In the case where the field K admits a valuation of one-
dimensional leaves in a totally ordered abelian group of finite type (this is
the case notably when k is an algebraically closed field), we recover a result
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of Kaveh and Khovanskii [10, Corollary 3.11 (2)]. Note that the existence of
a valuation of one-dimensional leaves on V

•
implies that V

•
is geometrically

integral since such a valuation induces by extension of scalars a valuation of
one-dimensional leaves on V

•
⊗kk

′ for any extension of fields k′/k. In particular,
for any pair of homogeneous elements x and y of V

•
⊗k k

′, the valuation of xy
is equal to the sum of the valuations of x and y, which implies that V

•
⊗k k

′ is
an integral domain.

By combining the results of [4] and the subfiniteness result (Theorem 1.2),
we obtain the following upper bound for the Hilbert-Samuel function of general
graded linear series of subfinite type.

Theorem 5.4. — Let V
•

be a graded linear series of K/k and d its Kodaira-
Iitaka dimension. There then exists a function f : N → R+ such that

f(n) = vol(V
•
)
nd

d!
+O(nd−1), n → +∞

and

∀n ∈ N, dimk(Vn) 6 f(n).

Remark 5.5. — The result [3, Theorem 1.1] actually provides more geomet-
ric information about the graded linear series of subfinite type. Let K/k be a
finitely generated transcendental field extension and let d be the transcendence
degree of K/k. We fix a flag

k = K0 ⊂ K1 ⊂ . . . ⊂ Kd = K

of subfields of K containing k such that each extension Ki/Ki−1 is transcen-
dental and has transcendence degree 1. Let A(K/k) be the set of all graded
linear series of subfinite type V

•
of K/k such that k(V

•
) = k. Then there has

been constructed in [3] a map ∆ from A(K/k) to the set of convex bodies in
Rd which satisfies the following conditions.

(a) If V
•

and V ′
•

are two graded linear series in A(K/k) such that V
•
⊂ V ′

•
,

then one has ∆(V
•
) ⊂ ∆(V ′

•
).

(b) If V
•

and W
•

are two graded linear series in A(K/k), then

∆(V
•
·W

•
) ⊃ ∆(V

•
) + ∆(W

•
) := {x+ y : x ∈ ∆(V

•
), y ∈ ∆(W

•
)},

where V
•
· W

•
denotes the graded linear series whose n-th homogeneous

component is the k-vector space generated by {fg : f ∈ Vn, g ∈ Wn}.
(c) For any graded linear series V

•
in A(K/k), the volume of V

•
identifies with

the Lebesgue measure of ∆(V
•
) multiplied by d!.

This allows us to construct the arithmetic analogue of Newton-Okounkov
bodies for general arithmetic graded linear series of subfinite type, using the
ideas of [1].
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In what follows, we assume that k is a number field. We denote by Mk

the set of all places of k. For each v ∈ Mk, let |.|v be an absolute value on k
which extends either the usual absolute value or certain p-adic absolute value
(so that |p|v = p−1) on Q.

As adelic vector bundle on Speck, we refer to the data V = (V, (‖.‖v)v∈Mk
)

of a finite dimensional vector space V over k and a family of norms ‖.‖v over
V ⊗k kv such that there exists a basis (ei)

r
i=1 of V over k and a finite subset S

of Mk satisfying the following condition:

∀ v ∈ Mk \ S, ∀ (λ1, . . . , λr) ∈ krv, ‖λ1e1 + · · ·+ λrer‖v = max
i∈{1,...,r}

|λi|v.

Given an adelic vector bundle V on Spec k, for any nonzero element s ∈ V , we
define the Arakelov degree of s as

d̂eg(s) := −
∑

v∈Mk

[kv : Qv] ln ‖s‖v.

By the product formula

∀ a ∈ k×,
∑

v∈Mk

[kv : Qv] ln |a|v = 0

we obtain that
∀ a ∈ k×, d̂eg(as) = d̂eg(s).

Moreover, the Arakelov degree of V is defined as

−
∑

v∈Mk

ln ‖η‖v,det,

where η is a nonzero element of det(V ), and

‖η‖v,det = inf{‖x1‖v · · · ‖xr‖v : η = x1 ∧ · · · ∧ xr}.

Again by the product formula we obtain that the definition does not depend
on the choice of η ∈ det(V ) \ {0}.

Let V be an adelic vector bundle of rank r on Speck. For any t ∈ R, let

F t(V ) = Vectk({s ∈ V \ {0} : d̂eg(s) > t}).

This is a decreasing R-filtration on V , called the R-filtration by minima. Note
that for any i ∈ {1, . . . , r}, the number

λi(V ) = sup{t ∈ R : rkk(F
t(V )) > i}

coincides with the minus logarithmic version of the i-th minima in the sense
of Roy and Thunder [24, 25]. For any s ∈ V , we let

λ(s) := sup{t ∈ R : s ∈ F t(V )}.

In the following, we let K/k be a finitely generated field extension of
the number field k. Let V

•
be a graded linear series of subfinite type of
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K/k. For each n ∈ N, we equip Vn with a structure of adelic vector bun-
dle (Vn, (‖.‖n,v)v∈Mk

) on Spec k such that, for any v ∈ Mk,

(5.2) ∀ (n,m) ∈ N2, ∀ (sn, sm) ∈ Vn × Vm, ‖sn · sm‖v 6 ‖sn‖v · ‖sm‖v.

We assume in addition that

λmax(V •
) := lim sup

n→+∞

λ1(V n)

n
< +∞.

This condition implies that V
•

has a nonnegative Kodaira-Iitaka dimension.
For any t ∈ R, let

V t
•
:=

⊕

n∈N

Fnt(Vn).

It is a graded linear series of K/k. By definition one has V t
n = {0} if n ∈ N>1

and t > λmax(V •
).

Proposition 5.6. — For any t < λmax(V •
), one has k(V

•
) = k(V t

•
).

Proof. — Clearly one has k(V
•
) ⊃ k(V t

•
). It suffices to prove the converse

inclusion. Let n > 1 be an integer and f , g be nonzero elements in Vn. Since
t < λmax(V•

) there exist m ∈ N>1 and s ∈ Vm such that λ(s) > mt. Thus for
sufficiently positive integer ℓ one has λ(sℓf) > (ℓm+n)t and λ(sℓg) > (ℓm+n)t.
Therefore {sℓf, sℓg} ⊂ V t

ℓm+n, which implies f/g ∈ k(V t
•
).

The above proposition allows us to consider V t
•

as a birational graded linear
series of k(V

•
)/k and to construct its Newton-Okounkov body as reminded in

Remark 5.5. We define the concave transform of V
•

as the function GV •

on

∆(V
•
) sending x ∈ ∆(V

•
) to

sup{t < λmax(V •
) : x ∈ ∆(V t

•
)}.

By the condition (b) in Remark 5.5, the function GV •

is concave.

The following result generalises [1, Theorem 2.8] to the case of subfinite
adelically normed graded linear series.

Theorem 5.7. — Let K/k be a finitely generated extension of a number field
k, and V

•
=

⊕
n∈N V n a graded linear series of subfinite type of K/k of

Kodaira-Iitaka dimension d > 0, equipped with structures of adelic vector
bundles on Speck, which satisfy the submultiplicativity condition (5.2) and
the condition λmax(V •

) < +∞. Then the sequence of measures

1

rkk(Vn)

rkk(Vn)∑

i=1

δλi(Vn)/n, n ∈ N(V
•
) = {m ∈ N : Vm 6= {0}}
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converges weakly to a Boreal probability measure on R, which is the image of
the uniform measure

1

vol(∆(V
•
))
1l∆(V•)(x) dx

by the concave transform GV •

.

Proof. — For any t < λmax(V •
), the graded linear series V t

•
has the same

homogeneous fraction field as V
•

(see Proposition 5.6). Hence we can construct
a decreasing family (∆(V t

•
))t<λmax(V •)

of convex bodies contained in ∆(V
•
), as

described in Remark 5.5. Moreover, if t1 and t2 are two real numbers which are
< λmax(V •

). Then by the same method as in [1, §1.3], we obtain the desired
result.
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