
HAL Id: hal-01571241
https://hal.science/hal-01571241

Submitted on 1 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Difference methods for differential inclusions: a survey
Asen Dontchev, Frank Lempio

To cite this version:
Asen Dontchev, Frank Lempio. Difference methods for differential inclusions: a survey. SIAM Review,
1992, 34 (2), pp.263-294. �10.1137/1034050�. �hal-01571241�

https://hal.science/hal-01571241
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


DIFFERENCE METHODS FOR DIFFERENTIAL INCLUSIONS: A SURVEY* 

ASEN DONTCHEVt AND FRANK LEMPIO+ 

Abstract. The main objective of this survey is to study convergence properties of difference methods 
applied to differential inclusions. It presents, in a unified way, a number of results scattered in the literature 
and provides also an introduction to the topic. 

Convergence proofs for the classical Euler method and for a class of multistep methods are outlined. It 
is shown how numerical methods for stiff differential equations can be adapted to differential inclusions with 
additional monotonicity properties. Together with suitable localization procedures, this approach results in 
higher-order methods. 

Convergence properties of difference methods with selection strategies are investigated, especially strate
gies forcing convergence to solutions with additional smoothness properties. 

The error of the Euler method, represented by the Hausdorff distance between the set of approximate 
solutions and the set of exact solutions is estimated. First- and second-order approximations to the reachable 
sets are presented. 

Key words. differential inclusions, difference methods 

1. Introduction. In this survey we consider the following initial value problem for 
ordinary differential inclusions. 

INITIAL VALUE PROBLEM 1.1. Let I = [t0 , T] be a finite inte1Val, Yo E lRn, and F be 
a map from I x ~n into the set of all subsets of~n. 

Find an absolutely continuous function y( ·) on I such that 

(1) y (to) = Yo and iJ ( t) E F ( t, y ( t)) for almost all t E I, 

where iJ ( ·) is the derivative of y ( · ). 
Just to give some motivation for studying differential inclusions, we briefly mention 

several applications where differential inclusions naturally occur. 
A first motivation originates from differential equations with single-valued, discon

tinuous right-hand sides 

y(t) = f(t,y(t)). 

To get a sound notion of a solution, following [24], this problem has to be restated in the 
form 

y(t) E n n cl (conv (f(t, {z ERn: liz- y(t)ll < 8} \ N))) 
8>0 ~-t(N)=O 

for almost all t E I, where J-l denotes Lebesgue measure on JRn. Hence we arrive at a 
differential inclusion. Differential inclusions of this type occur in a variety of applica
tions, e.g., in oscillating systems with combined dry and viscous damping [55], [2], [67], 
[51], especially in vehicle dynamics for the description of locking phases during brake 
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maneuvers (62], in elasto-plasticity (8], [15], variable structure systems [70], and elec
trical circuits [54], [19]. Moreover, the method of lines for nonlinear evolution equa
tions with discontinuities, respectively, for evolutionary variational inequalities results 
in whole families of differential equations with discontinuous right-hand sides, cf., e.g., 
[56], [14], [6]. In §§3 and 4 we use Example 3.3, cf. [55], [67], describing forced vibrations 
with viscous and dry damping, as model problem for numerical tests. 

A second motivation is given by differential inclusions of the following type 

iJ(t) E -otp(y(t) ), 

where tp : Rn ----+ R is a convex potential function with subdifferential /J<p. Such inclu
sions have an important property: their equilibrium solutions minimize <p. Moreover, if 
<p achieves a minimum at all, then for every initial value y0 E Rn, the corresponding solu
tion y( t) as t ----+ oo converges to a minimizer of tp. Hence, there is an interesting connec
tion between differential inclusions and subgradient methods for convex optimization 
problems, cf. [3], [4], [52]. 

A third motivation, naturally, is given by optimal control problems. Disregarding for 
the moment any objective function and the special structure of controls, the differential 
inclusions (1) could be obtained from a control system 

y(t) = j(t, y(t), u(t)) 

with feasible controls 

u(t) E U(t, y(t)) 

for almost all t E J, where f is single-valued and U(t, x) c JRm for all t E I and x ERn, 
just by taking 

F(t, x) = {j(t, x, z) : z E U(t, x)}. 

In §5, Example 5.3, we describe a special differential inclusion of this type, which was 
originally used in [34] for the numerical test of several selection strategies. Such are
duction of an optimal control problem to a differential inclusion is especially appropriate 
when we consider Mayer's problem, which can be regarded as minimizing a given objec
tive function on the reachable set at timeT of initial value problem (1). Furthermore, 
taking the full structure of control functions and even more general objective functions 
into account, the necessary optimality conditions can be analysed in terms of bound
ary value problems for differential inclusions, cf. [17] and [18], Chapter 3, where a nice 
example of a nonsmooth problem in resource economics is presented, and (59], [60], 
where simplicial fixed point algorithms for set-valued operators are investigated and 
used for the computation of optimal fishing strategies. Control systems with unknown 
but bounded disturbances can be described by differential inclusions; this observation is 
used in [36] for control synthesis of uncertain systems. 

A number of other motivations and applications of differential inclusions can be 
found in [7] and in the books [4], [16], [18], [26], [27], [53], and their references. 

The main objective of this survey is the study of difference methods for differential 
inclusions, which are motivated by difference methods for differential equations with 
single-valued right-hand sides. 

Let X be the set of solutions to (1). As a rule, the set X consists of more than one 
element, that is we have a bundle of trajectories. Consequently, there are various closely 
connected approaches of approximating solutions y(·) EX. 
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The first approach uses a finite difference scheme together with suitable selection 
procedures resulting in a sequence of grid functions 

( 
N N N) 

"lo '"11 ' · · · '"'N (N EN'), 

say, on a uniform grid 

N N tN T to < t1 < ... < N = 

with stepsize 

T- to N N h= =t. -t. 1 N J J -
(j = 1, · · ·, N) , 

where, as usual, N' denotes a subsequence of N converging to infinity. 
Naturally, the question arises whether at least a subsequence of the sequence 

( 'f]N (.)) N EN' 

of, say, piecewise linear continuous interpolants of the grid functions converges to a 
solution y( ·) E X of (1 ). For linear multistep methods this question is investigated in §3, 
following the results of K. Taubert [66], [68]. 

Next, the closely connected question arises of how fast this subsequence converges, 
i.e., which order of convergence could be attained by a special sequence of difference 
approximations. This question is addressed to in §4. Stimulated by a paper of C. M. El
liott [23] on first-order convergence for a special class of methods A. Kastner-Maresch 
succeeded in adapting convergence proofs for numerical methods for stiff differential 
equations to differential inclusions satisfying a uniform one-sided Lipschitz condition; 
compare [32], [33]. This results in higher-order convergence on suitable subintervals 
of I, together with appropriate localization procedures in higher-order methods. Since 
the one-sided Lipschitz condition implies uniqueness of the solution of (1), only spe
cial classes of problems can be treated in this way, e.g., differential inclusions with addi
tional monotonicity properties. At least for differential equations with single-valued dis
continuous right-hand sides transformation algorithms like those proposed by D. Stew
art [64], [65] lead to higher-order convergence under special assumptions. 

Moreover, the question is interesting, of whether the limit function y(·) E X has 
additional desirable properties. This question is treated in §5 for general differential 
inclusions, where convergence properties of difference methods with selection strategies 
are investigated forcing convergence to solutions with additional smoothness properties. 
We present algorithms and discuss the convergence of selections with minimal norm, 
minimal variation, and with respect to a given reference trajectory. 

The second approach consists in approximating the whole solution set X of (1). 
It exploits the fact that a difference scheme virtually describes a difference inclusion for 
each stepsize h if no special selection procedure is used. As a r;esult, for each h we obtain 
a set Xh of, say, piecewise linear continuous functions, approximating X. Apparently, 
as a definition of convergence of the method we can use an appropriate concept for 
convergence of sets Xh to X ash -t 0. The error can be measured by a suitably defined 
distance between the sets Xh and X. 

As an introductory example, in §2 we consider the classical Euler method. Following 
the first approach we prove directly that ifF is compact convex valued upper semicon
tinuous and with linear growth, then 

(2) limsupXh C X in C(It, 
h--+0 
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where lim sup is in the usual (Kuratowski) sense, i.e., 

limsupXh = {! E C(It: liminfdist(f,Xh) = o}' 
h~o h~o 

and C(I)n is endowed with the supremum norm. 
If, moreover, F is continuous and integrably Lipschitz in x on bounded sets, then a 

partial result in the spirit of the second approach can be proved: every solution "'N ( ·) E 

Xh of the difference inclusion with sufficiently small stepsize contains in its €-neighbour
hood in C ( J) n a solution y( ·) E X of the differential inclusion (1 ). 

We consider again Euler method in §6 and show that if F is Lipschitz in both t and 
x, then we have 

where haus( ·, ·) denotes Hausdorff distance. 
The set of solutions X may be approximated not only as a set of functions. Some

times it may be important to describe the values of all solutions at certain points. Thus 
we arrive at the problem of approximating the reachable sets. 

Lett be a point in I. The "reachable set at the timet" of (1) is defined as 

R(t) = {x ERn: x = y(t) for some y(·) EX}. 

That is, R(t) is the set of all points x that are ends oftrajectories of (1) on [to, t]. Section 
7 shows that a sequence of sets can be determined from the Euler scheme, which is 
Hausdorff convergent to R(t) ash---+ 0, uniformly in t E J. This follows from an older 
result due to A. I. Panasyuk and V. I. Panasyuk [50], concerning the so-called funnel 
equation. Error estimates obtained by M.S. Nikol'skiy [46]-[48] are discussed as well. 

Section 8 presents some recent results due to V. M. Veliov, who found second-order 
approximations related to Runge-Kutta schemes, for both the trajectory bundle and the 
reachable sets. 

All computer tests were made on the VAX cluster of the Computer Center of the 
University of Bayreuth, consisting of a DEC VAX 8600 and 6310. In this survey the 
numerical results are visualized by computer plots. For a more detailed presentation of 
these results compare [34] and [32]. 

2. Euler method. By far the simplest difference method for solving Initial Value 
Problem 1.1 is the classical Euler method which we present in the following as an intro
ductory example. 

EULER METHOD 2.1. For N EN' C N choose a grid 

to < fi < · · · < t N = T 

with stepsize 

T -to 
h = N = t1 - t1_1 (j = 1, · · ·, N) . 

Let 'flo = y0, and for j = 0, · · ·, N -1 compute "li+l from 

(3) 
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Where necessary, we use the exponent N to emphasize the dependence on N. Only 
to avoid technical difficulties, we work with an equidistant grid. 

As a solution of the difference inclusion (3) for a given stepsize h, it is convenient to 
consider any continuous and piecewise linear function 

such that 

N 1 
1] (t) = 'f}j + h (t- tj )('fJj+l - 'f}j) J.- 0 · · · N -1) 

- ' ' ' 

where ('fJo, · · ·, 'fJN) is any grid function satisfying (3). Let Xh be the set of all solutions 
of (3) for given h. 

The following theorem is present explicitely or implicitely in many works, in various 
forms, see, e.g., J.-P. Aubin and A. Cellina [4, Lemma 1, p. 99], F. H. Clarke [18, Thm. 
3.1.7, p. 118], or A. F. Filippov (26, Thm.1, p. 77]. Its proof uses the idea of the classical 
Peano theorem to prove existence of solutions to differential equations. 

THEOREM 2.2. Suppose that the set-valued map F satisfies the conditions: 
(i) F is nonempty compact and convex valued upper semicontinuous in I x Rn. 
(ii) There exist constants k and a, such that 

llz11 < kllxll +a 

whenever z E F(t, x), x E lRn, t E I. 
Then every sequence (17N(·))NEN' with 'fJN(·) E Xhfor N E N' has a subsequence 

which converges as N--+ oo, uniformly in I, to some solution of the problem (1). In other 
words, (2) is fulfilled. 

Proof. By (ii) we have 

(4) II77J+Iil < (1 + kh) II77J II + ha. 

This implies 

j 

1117J+III < (1 + kh)i+liiYoll + L(l + kh)iah (j = 0, 1, · · · ,N -1). 
i=O 

Hence 

(5) lim sup sup ll'fJN (t) II < oo. 
N-.oo tEl 

By definition, the derivative i]N exists a. e. in I, and, moreover, 

for tj < t < tJ+l· 
Conditions (ii) and (5) imply that 

(6) lim sup esssup lliJN (t)ll < oo. 
N-+oo tEl 
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By Arzela's theorem, TJN ( ·) has a subsequence uniformly convergent to some function 
y(·), moreover, 

r,N (·)--+ z(·) weakly in L00 (I)"" 

for some further subsequence. It is easy to observe that for all t E I 

y(t) =Yo+ lt z(s)ds, 
to 

i.e., y(-) is absolutely continuous and y(t) = z(t) for almost every t E I. 
Fix t > 0. From (6) 

sup max II11N(t)- TJN(ti)ll ~ 0 ash~ 0, 
O:$iSN -1 tiStSti+1 

then by (i) there exists N 1 such that for N > N 1 

(7) i]N (t) E F(t, 1JN (t)) + tB for a.e. t E I, 

where B is the unit ball. Pick some q E R"" and let ~be a measurable subset of I. Then 
from (7) 

where* denotes transposition and supp is the support function. By (i) the map t 1---4 

supp(q, F(t, ryN (t))) is upper semi-continuous, and from (ii) and (5) it is bounded above 
by a constant, independent of N. Then, for N--+ oo for the corresponding subsequence, 
the dominated convergence theorem yields 

i q*y(r) dr < i [supp(q, F(r, y(r))) + tllqll] dr. 

Since ~ and t are arbitrary and F is convex valued, this means that y( ·) is a solution 
of (1). D 

Under some more conditions we are able to prove that every solution ryN ( ·) of the 
discretized inclusion (3) with sufficiently small stepsize contains in its €-neighbourhood in 
C(I)n a solution of (1). For that purpose we need the following basic result ofthe theory 
of differential inclusions, often referred to as Gronwall-Filippov-Wai:ewski theorem; see 
A. F. Filippov [25] or J.-P. Aubin and A. Cellina [4, Thm. 2.4.1, p. 120], for a more general 
formulation. 

THEOREM 2.3 (Gronwall-Filippov-Wai:ewski). Let y : I --+ JRn be an absolutely 
continuous function with f) ( t0 ) = y0, f3 be a positive constant, and 

Q = {(t, x) E I X Rn : llx- y(t)ll < /3}. 

Let F: Q:::} Rn be nonempty closed valued and continuous and satisfy 

haus(F(t,x),F(t,z)) < k(t)llx- zll 

for all (t, x) and (t, z)from Q with k(·) E L1(J). 
Assume, moreover, that 

dist(y(t), F(t, y(t))) < p(t) for almost all t E I, 
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for some p( ·) E L1 (I) such that 

Wl = 1.: exp [J.' k(r)dr] p(s)ds < (3 (t E I). 

Then there exists a solution y ( ·) to the initial value problem ( 1) such that 

lly(t)- y(t)ll < e(t) 

for all t E I. 
THEOREM 2.4. Suppose that the conditions of Theorem 2.2 hold and, moreover, that 

F is continuous on I x lRn and Lipschitz in x on bounded sets in IRn with integrable in I 
Lipschitz constant. Then for every ~ > 0 there exists N 1 such that for every N > N 1 and for 
every solution 1JN ( ·) of the discrete inclusion (3) there exists a solution y( ·) of the problem 
( 1) such that 

mruc II11N (t) - y(t) II < t. 
tEl 

Proof. Let € > 0. As in the proof of Theorem 2.2 we show that the set Xh of the 
discrete trajectories is bounded in C(J)n and, moreover, that there exists N 1 such that 

for all N > Nb for al117N ( ·) E Xh and for all t with tJ < t < tJ+b j = 0, 1, · · · , N - 1. 
Hence for all N > N1 every solution 1JN (-) E Xh will satisfy (7). Applying Gronwall
Filippov-Wazewski theorem we obtain that there exists a solution y( ·) of (1) in the €-tube 
around 1JN (·). 0 

In §6, slightly strengthening the assumptions, we obtain an () (h) estimate for the 
Hausdorff distance between the sets Xh and the set of solutions X of (1). 

3. Convergent multistep methods. Beginning in 1973 K. Taubert investigated con
vergence properties of multistep methods for differential equations with discontinuous 
right-hand sides, later on he carried over his results to initial value problems for dif
ferential inclusions; compare [66], [68]. These methods are typically of the following 
form, where we deliberately suppress possible generalizations to multistage multistep 
methods. 

LINEAR MULTISTEP METHOD 3.1. Let 

with ar # 0, laol + lbol > 0, 

h= _T_t_o 
N 

Let there be given starting values 

1]j E }Rn 

and corresponding starting selections 

(i = 0, .. ·, r) 

(N EN' c N). 

(j = 0, .. ·, r- 1) 

(j = 0, · · ·, r- 1), 
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computed, e.g., by a linear f-step method with f < r or by a 1-step method~ 
For j = r, · · · , N compute T/j from 

These methods are implicit in case br =f. 0. Generally, the solution of the inclusion 

is not unique. Then it would be selected randomly or by a suitable optimization crite
rion. It can be obtained for example as the result of running appropriate phases of a 
constrained optimization algorithm, see, e.g., [61 ]. Typically, convergence results of the 
following form can be proven. 

CONVERGENCE THEOREM 3.2. Let the following assumptions be satisfied: 
(i) F is nonempty closed and convex valued. 
(ii) F is bounded and upper semicontinuous in I x lRn. 
(iii) The strong root condition is satisfied, i.e., all zeros>.. of the polynomial 

have absolute value I >..I < 1 except the simple zero >.. = 1. 
(iv) The method is consistent, i.e., 

r r r 

L,:ai=O, L,:iai=Lbi . 
i=O i=O i=O 

(v) The coefficients bi are nonnegative ( i = 0, · · · , r ). 
(vi) The starting values satisfy 

(j = 0, .. ·, r- 2) 

for all N EN' with a constant M, which is independent of the stepsize h = (T- t 0 )jN. 
(vii) The approximations of the initial value y0 satisfy lim N _. oo TJC' = y0 . 

NEN' 

Then the sequence 

of piecewise linear continuous interpolants of the grid functions 

( N N N) TJo , T/1 , · · · , TIN 

contains a subsequence which converges uniformly to a solution of the initial value problem 
(1). 

Assumptions (i) and (ii) are Peano-type conditions, therefore no better convergence 
properties could be expected. Assumption (iii) is equivalent to inverse stability of the 
difference method with respect to the Spijker norm, compare [63, p. 81 and pp. 203-210]. 
This implies, that the family ('TIN ( ·)) N EN' is uniformly Lipschitz continuous, which is the 
basis of the convergence proof. 
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Condition (v) is needed for certain operations in the calculus of sets. It restricts the 
class of feasible methods decisively. The proof could be extended to discrete Sobolev 
spaces; compare the papers [45], [44]. 

For the special selection of coefficients 

r=1: ao=-1, 

a1 = 1, 

we get again the Euler method. 

bo = 1, 

bt = 0, 

The following selections of coefficients were tested in [31]: 

r = 2: ao = 0, bo = 0.5, 

a 1 = -1, bl = 0.5, 

a2 = 1, b2 = 0, 

respectively, 

r = 3: ao = -0.81, b 725 
0 = 1200' 

a1 = -0.99, b 488 
1 = 1200' 

a2 = 0.8, b 3119 
2 = 1200' 

a3 = 1, b3 = 0, 

respectively, 

r = 4: ao = 0, b0 = 0.1, 

at= 0, bt = 0.4, 

a2 = 0, b2 = 0.1, 

a3 = -1, b3 = 0.4, 

a4 = 1, b4 = 0. 

All these methods are consistent and strongly stable. The 3-step method would be con
sistent of order 3 for single-valued, sufficiently smooth right-hand sides, nevertheless it 
behaves badly for differential inclusions due to "almost instability." The program code 
together with some extensions to multistage multistep methods is contained in [1]. We 
conclude this section with the following simple differential equation with discontinuous 
right-hand side describing forced vibrations with viscous and Coulomb damping, cf. [55], 
[67]. 

Example 3.3. Find a function z( ·) on I = [0, T] with absolutely continuous derivative 
such that 

(8) z(t) + z(t) + 0.2z(t) + 4sgn(z(t)) = 2cos7rt 

for almost all t E I and 

z(O) = 3, z(O) = 4. 
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Naturally, this initial value problem for a second-order ordinary differential equa
tion has to be reformulated as the following initial value problem for a first-order differ
ential inclusion. 

Find an absolutely continuous function y( ·) : I ---+ JR2 such that 

YI ( t) Y2 ( t) ' 
iJ2(t) E -y1(t)- 0.2y2(t)- 4Sgn(y2(t)) + 2cos7rt 

for almost all t E I= [0, T] and 

YI(O) = 3, Y2(0) = 4, 

where the Sgn-function 

-1 (x2 < 0), 

[-1, 1] (x2 = 0), 

1 (x2 > 0), 

is the set-valued analogue of the usual sign function used in (8) in order to guarantee the 
existence of a generalized solution in the sense of Filippov. This generalized solution 
could be approximated with one of the above methods. The Euler method with fine 
stepsize gives some insight into the structure of the solution; compare the plots of the 
solution z(·) and its derivative i(·) in Fig. 1 and the phase portrait shown in Fig. 2. 

~----------------, 

It) 

~~----~----~----~--~ o.o 2.0 4.0 s.o 8.0 

FIG. 1. Solution z( ·) and its derivative i( · ). 

Subintervals, where the solution is in fact a generalized one, are most interesting. 
The plot in Fig. 3 of the approximation of the derivative i( ·) by Euler method with step
size h = 0.005 shows the typical oscillations to be expected on these nonclassical inter
vals. 

The computer tests show that it is not worthwhile to look for highly consistent stan
dard methods; compare the approximation of z ( ·) in Fig. 4 by the classical Runge-Kutta 
method with the same stepsize h = 0.005. 

This additional effort pays only on subintervals where the right-hand side is single
valued and smooth. 
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2.3 2.8 3.3 3.8 

FIG. 2. Phase porlrait of z( · ). 
0 
d,-------------------------~ 

., 
0 
0 

0 
0 
0 

8 
0 
I 

g 

Y~------~--------~------~ 
00 2.25 2.50 2.75 

4.3 

FIG. 3. Approximation of i:(·) by Euler method with h = 0.005. 

2.00 2.25 2.50 2.75 

FIG. 4. Approximation of z(·) by Runge-Kutta method with h = 0.005. 
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4. One-sided Lipschitz condition and monotonicity. We could get the impression 
that it may be hard to prove order of convergence results for general differential inclu
sions, if they really hold at all. Hence, we have to restrict our analysis to differential 
inclusions with special right-hand sides. In [41], [42] order of convergence results were 
proved for differential equations with discontinuous right-hand side, but there it is only 
allowed that the exact solution crosses directly the discontinuity manifolds; compare in 
this connection the recent work of R. Model [ 43]. D. Stewart has defended his Ph.D. the
sis on the same problem class in 1990; compare [64]. His main objective is a skilful, but 
complex transformation of discontinuous right-hand sides into smooth ones on suitably 
selected submanifolds. This transformation will really pay if the auxiliary complemen
tarity problems occuring in this connection can be analysed easily and if the resulting 
transformed classical differential equations are not stiff. In the following we analyse 
the class of right-hand sides which satisfy a uniform one-sided Lipschitz condition. On 
the one hand, this class is more general, since set-valued right-hand sides are admitted. 
On the other hand, it is more special, since the one-sided Lipschitz condition implies 
uniqueness of the solution of problem ( 1 ). Stimulated by a paper of C. M. Elliott [23] on 
first -order convergence for a special class of methods, A. Kastner-Maresch succeeded to 
adapt convergence proofs for numerical methods for stiff differential equations to this 
type of differential inclusions; compare [32] and [33]. In principle, in the following we 
could investigate the class of general linear methods; compare [13]. But for simplicity of 
presentation we restrict ourselves to the class of implicit s-stage Runge-Kutta methods. 

IMPLICIT s-STAGE RUNGE-KUTTA METHOD 4.1. Let there be given the scheme of 
coefficients 

b1 b8 

with nonnegative bi (i = 1, · · · ,s), a stepsize h = (T- t 0 )/N with N E N', and an 
approximation TJo of the initial value y0• 

For j = 0, · · · , N -1 solve the implicit system of inclusions 
8 

r;p. T}j + h 2:: ap.v cjv , 
v=l 

(jv E F (tj + Cvh, fjv) 

and compute the next approximation 
8 

(J-l, v = 1' ... ' s) 

TJj+l = 7}j + h L bv (jv· 
v=l 

Without further assumptions, we cannot expect reasonable convergence properties 
even for single-valued right-hand sides. Moreover, according to the well-known proceed
ing for stiff differential equations, we need a one-sided Lipschitz condition for set-valued 
maps. Therefore, we restrict ourselves to the following class of maps. 

DEFINITION 4.2. Let !Rn be equipped with the scalar product (·I·) and the corre
sponding induced norm II ·II· A set-valued mapping 

F : J X Rn ==:} Rn 
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satisfies a one-sided Lipschitz condition with (one-sided) Lipschitz constant Lp if 

{(I- (21xi- x2) < LF!Ixi- x2!12 

holds for all XI, x2 E JRn and all (I E F(t, xi), (2 E F(t, x2) uniformly for all t E I. 
An important subclass of all right-hand sides satisfying a one-sided Lipschitz condi

tion consists of set-valued mappings F : I x JR.n => Rn possessing a decomposition 

(9) F(t, x) = f(t, x)- (3(x) 

with a single-valued function f : I x Rn -+ Rn with (one-sided) Lipschitz constant L 1 
and a monotone set-valued mapping (3 : Rn =;.. JR.n. For example, the subdifferential 81.p 
of a convex functional <p : JR.n -+ 1R. defines a monotone mapping on JR.n. In [23] special 
right-hand sides of the type (9) were treated by a special class of methods. In fact, not 
this decomposition, but the validity of a one-sided Lipschitz condition is the basis for 
convergence and order of convergence proofs following proof structures for stiff differ
ential equations, compare the books [20], [13] and the journal articles [12], [29], [28], [9], 
[10], especially the survey of K. Burrage [11 ]. For consistency proofs only smoothness 
properties of the solution of the differential inclusion are needed, not smoothness prop
erties of the right-hand side as in the classical approach. For proofs of stability properties 
like C-stability, BS-stability, BSI-stability the fact is exploited that the above one-sided 
Lipschitz condition holds uniformly with respect to the selections. 

A typical convergence result due to A. Kastner-Maresch [32] reads as the following. 
THEOREM 4.3. Let the following assumptions be satisfied: 
(i) Let F be upper semicontinuous on I x JR.n and satisfy a one-sided Lipschitz condition. 
(ii) The (necessarily unique) solution of initial value problem (1) is piecewise (J.t + 1)-

times continuously differentiable with J.l > 1. 
(iii) The simplifying conditions B(J..t), i.e., 

and C(J.L), i.e., 

(k = 1, ... 'J..t), 

(k- 1 • • • II.' i = 1 • • • s) 
- ' ',..,, ' ' ' 

hold. 
(iv) The method is BS-stable and C-stable. 
( v) The initial approximations TJf/ of Yo satisfy 

!ITJ~- Yo !I = O(h). 

Then the order of convergence is equal to one. 
Crucial for the proof is the fact that the first derivative of the exact solution has 

only finitely many jump discontinuities because each of these discontinuities contributes 
a term of order one to the global discretization error. Hence, on intervals where the 
solution is smooth, we get higher-order convergence if the initial error is of higher-order 
as well. 

COROLLARY 4.4. Let in Theorem 4.3 the exact solution be (J..t + 1 )-times continuously 
differentiable on the whole interval I, and the initial approximations satisfy 

11"1~- Yo !I= 0 (h~-'). 
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Then the order of convergence is equal to J.L 
This corollary serves as a basis for more or less sophisticated algorithms with built

in localization procedures for detecting possible discontinuities of the derivative of the 
exact solution. In practice, we have to localize numerically manifolds where the right
hand side is discontinuous. In principle, localization procedures in [41], [42], or [64] 
could be used, but they must be adapted to the above situation. 

Especially, the implicit midpoint rule was tested numerically, which could be written 
as the following Runge-Kutta method 

1 
fj 'r}j + h 2(j, 

(; E F(t;+~h,tj), 
'llj+l 'r}j + h (j' 

with Butcher-array 

or in more condensed form, 

'U+t E 1); + hF (t; + ~ h, ~ (1/; + 1/;+tl) . 
For this method the simplifying conditions B(l), B(2), and C(l) (see Theorem 4.3) hold. 
Hence the order of this method is equal to one if the solution is piecewise 2-times con
tinuously differentiable; compare [23]. The order 2 can be proved on subintervals where 
the solution is 3-times continuously differentiable and the initial error is of order 2; here 
we have to exploit results in [35]. Together with a suitable localization procedure, we get 
the order 2 on the whole interval. 

Applying, e.g., the implicit midpoint rule with stepsize h = 0.005 and localization 
procedure to Example 3.3 yields the result plotted in Fig. 5. 

Naturally, the numerical effort is somewhat higher than for classical Runge-Kutta 
method with the same stepsize. But the results are much better; compare Fig. 4. Even 
with stepsize h = 0.001, the classical Runge-Kutta method would yield worse results 
than implicit midpoint rule with stepsize h = 0.005; compare Fig. 6. 

In fact, for such a fine stepsize h = 0.001 the classical Runge-Kutta method needs 
more CPU-time and function evaluations than the implicit midpoint rule for h = 0.005, 
i.e., the higher-order of convergence of the implicit method at last beats the explicit 
method. 

5. Selection strategies. Contrary to the differential inclusions treated in §4, gen
eral differential inclusions normally have a whole bundle of solutions. Hopefully, the 
qualitative properties of the approximated solution could be improved by more elab
orate selection strategies, as compared with the random selection of Linear Multistep 
Method 3.1. 

ALGORITHM 5.1 (selection with minimal norm). Choose a fixed element z E lRn and 
minimize for j = r, · · · , N 
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FIG. 5. Approximation of i( ·)by implicit midpoint rnle with h = 0.005. 
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FIG. 6. Approximation of i( ·) by Runge-Kutta method with h = 0.001. 

For z = O!Rn, in each step we get the selection with minimal norm. In any case, 
the explicit difference method (br = 0) for the differential inclusion can be regarded as 
linear multistep method for the differential equation 

y(t) = f (t, y(t)) 

with 

f(t,x) = prF(t,x)(z) 
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where pr F( t,x) ( z) is the projection of z onto F( t, x). Hence, the properties off ( t, x) de
termine the properties of the algorithm. The calculation of starting values 'f}o, · · ·, 'T/r-1 

and starting selections ( 0 , · · · , (r-1 has to be adjusted accordingly. Convergence is proved 
by Convergence Theorem 3.2. Using arguments in [25] we get the following. 

THEOREM 5.2. In addition to the assumptions in Convergence Theorem 3.2, let F be 
Hausdorff continuous on I x lRn and br = 0. Then the sequence 

of piecewise linear continuous interpolants of the grid functions corresponding to minimal 
norm selections contains a subsequence which converges uniformly to a continuously differ
entiable solution of the differential inclusion. 

The following test problem from [34] is treated numerically as an example for the 
various selection strategies of this section. 

Example 5.3. Find an absolutely continuous function y : I --+ JR2 such that 

-y2(t) + O.lyl(t)(9- Y1(t)2
- Y2(t) 2

) + [-1, 1), 

YI(t) + 0.1y2(t)(9- YI(t)2 - Y2(t?) + [-1, 1] 

for almost all t E I = [0, T] and 

YI(0)=5, Y2(0) = 0. 

To avoid all technical difficulties with the calculation of starting values, we apply 
Euler method. Note that no order of convergence result is available; therefore, the use of 
real multistep methods is justified anyway only on subintervals where the right-hand side 
degenerates to a single-valued function which is sufficiently smooth. The approximate 
solution for the selection with minimal norm is plotted in Fig. 7 with stepsize h = 0.005. 
The phase portrait is given in Fig. 8; the chosen selections are plotted in Fig. 9. 

0 0 
IIi ... 

It) 0 
t-i <4 

0 0 
0 d 

I('J 0 
t-i N 
I I 

0 0 
IIi ... 
I I o.o 3.0 6.0 9.0 12.0 0.0 3.0 6.0 9.0 12.0 

FIG. 7. Approximate solution TJN (·)for selection with minimal norm. 

In the following selection strategy we choose selections which have minimal varia
tion in a certain sense, cf. the proof of Theorem 2 on page 115 in [4]. 

ALGORITHM 5.4 (selection with minimal variation). For j = r, · · ·, N minimize 

IJvj-1 - vi II, 
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FIG. 8. Phase portrait of TJN (·)for selection with minimal norm. 
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FIG. 9. Selection ( N (·)for selection with minimal norm. 

subject to 

r 

Vj E L bi F (tj-r+i, 'f/j-r+i) · 
i=O 

I 
I 

J 
I 

I 

' ' I 

9.0 12.0 

If, in addition to the assumptions in the Convergence Theorem 3.2, the set-valued 
mapping F is Lipschitz continuous in I x JRn; then a similar argument as in the proof of 
Theorem 3.2 applies to the selections Vj, and we get for explicit methods (br = 0). 

THEOREM 5.5. In addition to the assumptions in Convergence Theorem 3.2, let F be 
Lipschitz continuous on I x JRn, br = 0, and the starting selections satisfy 

llvf-n - vJ' II < h M (j = 0, · .. , r - 2) 

for all N EN'. 
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Then the sequence 

of piecewise linear continuous interpolants of the grid functions and selections contains a 
subsequence which converges uniformly to a pair (y, v ), where y is a solution of the differ
ential inclusion with Lipschitz continuous derivative v. 

The approximate solution of Example 5.3 for the selection with minimal variation, 
computed by Euler method with stepsize h = 0.005, is plotted in Fig. 10, the phase 
portrait given in Fig. 11, the according selections with minimal variation in Fig. 12. 
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FIG. 10. Approximate solution rJN (·)for selection with minimal variation. 
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FIG. 11. Phase porta it of rJN ( ·) for selection with minimal variation. 

12.0 

We get a further selection strategy by comparing the approximations at each grid 
point with a reference trajectory. 

ALGORITHM 5.6 (selection with respect to reference trajectory). Choose a Lipschitz 
continuous reference trajectory 
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FIG. 12. Selection vN (·)for selection with minimal variation. 

For j = r, · · · , N, minimize 

subject to 

l r r 

h 2..:.:: ai T/j-r+i = 2..:.:: bi (j-r+i , 
i=O i=O 

(j-r+i E F (tj-r+i' 'f/j-r+i) (i=O,···,r). 

9.0 12.0 

For this selection strategy with reference trajectory y(t) _ OR2, the Euler method 
with stepsize h = 0.005 gives the approximate solution of Example 5.3 plotted in Fig. 13, 
with phase portrait in Fig. 14. 
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Flo. 13. Approximate solution TIN (·)for selection with respect to reference trajectory. 

Most interesting is the comparison of the chosen selections; compare Fig. 15 with 
the results of the other selection strategies. 

Contrary to the selections with minimal norm, cf. Fig. 9, and the selections with 
minimal variation, cf. Fig. 12, the selections with respect to reference trajectory now 
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FIG. 14. Phase portrait of TIN (·)for selection with respect to reference trajectory. 
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FIG. 15. Selection ( N (·)for selection with respect to reference trajectory. 

indicate jump discontinuities of the derivatives of the solution, related to the bang-bang 
principle in optimal control. Accordingly, no smoothness properties can be expected 
for the approximated solution, but an error estimate for this selection strategy will be 
obtained in the next section. 

At any rate, it would be worthwile to extend the above qualitative results byes
timations of the order of convergence, eventually by exploiting concepts of numerical 
methods for optimal control problems with nonstandard objective functions. 

6. Error estimates. We are interested in estimating the distance between the sets 
of solutions of Initial Value Problem 1.1 and of the discrete inclusions (3), respectively, 
in a reasonable sense, by the stepsize h. 

The first result in this direction probably is due to B. N. Pshenichny [53], who proved 
the following. 

THEOREM 6.1 ([53]). Let F : Rn ~ IRn be a compact convex valued mapping andy 
be a solution of 
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y(t) E F(y(t)) for a.e. t E I, y(to) =YO· 

Suppose that there exists£ > 0 such that F is Lipschitz in the set {x E lRn : llx- y(t)ll < 
E for some t E I}. Then there exist c and N 1 such that for all N > N1 there exists a solution 
'fJN ( ·) of the discretized inclusion 

(10) Tli+1 E 'r/j + hF(Tij), j = 0, 1, · · ·, N -1, TJo =Yo 

such that 

In the proof, B. N. Pshenichny used the following construction of the discrete tra
jectory TJN (·): Let TJf: = y0 and define TJJ'+1 as the projection of y (ti+d on the set 
rJf + hF ( 1Jf). Then from (10), from the inclusion 

and from the choice of TJf-t-1 , using the Lipschitz continuity ofF, we obtain for some a1 

and a2 that 

for j = 0, 1, · · ·, N -1. This implies the desired estimate. 
The construction of B. N. Pshenichny is extended in [22] in the following way: Let 

f) : I ---+ Rn be a Lipschitz function. We obtain TJN ( ·) by the following procedure: 

(11) TJf/ =Yo, TJf-n is the projection of y(ti+l) 

on the set TJ;' + hF(tj, TJJ'), j = 0, 1, · · ·, N -1. 

Combining the result of B. N. Pshenichny with Gronwall-Filippov-Wazewski theorem, 
we obtain that 

(12) m.ax IITJ.f -fj(tj)ll <c(llii(to)-Yoii+1T dist(y(t),F(t,fj(t))) dt+h) 
05.J5.N to 

for some c independent of h. 
This estimate was obtained in [22] by a direct proof. More precisely, the following 

theorem is proved. 
THEOREM 6.2 ([22]). Suppose that the map F : I x Rn ===? Rn satisfies the following 

conditions. 
F is nonempty compact and convex valued; there exist k and a such that II f II < k llx II+ a 

whenever f E F(t, x), t E I, x E Rn; F is Lipschitz in x on bounded sets unifonnly in 
t; F is of bounded variation in t unifonnly in x on bounded sets, i.e., for any bounded set 
U C Jltn 
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Then there exists a constant c such that if "'N ( ·) is obtained by (11 ), then for all N (12) is 
fulfilled. 

In particular, if y is a solution of Initial Value Problem 1.1 then "'N ( ·) provides a 
first-order approximation to fi. The procedure (11) can be regarded as a "reference 
trajectory" strategy which can be used for numerical calculations; compare the plots in 
Fig. 13, 14, and 15. Some additional numerical examples are contained in [22]. 

Let "'N ( ·) be a piecewise linear function that solves (3). IfF is Lipschitz in both x 
and t then 

i]N (t) E F(t, "'N (t)) + hkB for a.e. t E (to, T] 

for some k and for all N EN'. Then one can apply Gronwall-Filippov-Wazewski theo
rem, obtaining that there exists a solution fiN of Initial Value Problem 1.1 such that 

(13) 

In fact, to obtain (13) it is sufficient to assume the conditions of Theorem 6.2. Namely, 
we have 

THEOREM 6.3 ([22]). On the conditions of Theorem 6.2 

haus(X, Xh) = O(h) in C(I)n. 

In [22] an averaged modulus of smoothness for set-valued maps is introduced and 
its properties are investigated. This helps to weaken the requirements for the map F . 

Sometimes it may be convenient to use an approximation of the set-valued map F 
in (10), e.g., by polygons. Let "'N (·)satisfy 

J·-o 1 ... N-1 
- '' ' ' "'o = Yo, 

where 

haus (Pj, F(ryj)) = O(h), j = 0, 1, · · ·, N- 1. 

Then on the assumptions of Theorem 6.2, using the same argument as above, we obtain 
first-order convergence of this approximation. 

In (34], Theorem 6.2 is extended for the Algorithm 5.6 (selection with respect to 
reference trajectory), using Linear Multistep Method 3.1. 

THEOREM 6.4. Assume that in addition to the assumptions in Convergence Theorem 
3.2, br = 0, and the following conditions hold: 

(i) F is Lipschitz in x E JRn uniformly in t E I and of bounded variation in t E I 
uniformly in x on bounded sets. 

(ii) the coefficients ai are nonnegative except the single coefficient a0; or alternatively, 
exactly two of the coefficients ai ( i = 0, 1, · · · , r) are nonzero. 

(iii) The approximations of the initial value y0 satisfy 

ll"'<f - Yoll = O(h). 

Then there exists a constant c such that for all sufficiently small h, if "'N ( ·) is obtained by 
Algorithm 5.6, then (12) holds. 
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7. Convergence of reachable sets. Analogous to the reachable set of the differential 
inclusion (1), we can introduce a reachable set of its discrete approximation. Consider 
the Euler scheme (3) and let i be a fixed number from the set {0, 1, · · ·, N}. Then the 
reachable set, associated with (3) at the time ti, will be 

THEOREM 7.1. Let F be a compact convex and nonempty valued map that is continu
ous in both t and x in I x Rn and let the reachable set R(t) of Initial Value Problem 1.1 be 
contained in a bounded set K in Rn for all t E I. Let F be Lipschitz in a neighbourhood of 
K with respect to x unifonnly in t E I. Then 

as N---+ oo. 

max haus (Rf, R(ti)) ~ 0 
OSiSN 

The proof of this theorem can be easily obtained from [50], for a more recent pre
sentation see [49]. First we need some notation. 

DEFINITION 7.2 ([50]). The closed valued and continuous map R : I ===> Rn with 
R(to) = y0 is an R-solution of Initial Value Problem 1.1 if and only if 

(14) ~ haus (R(t +h), U (x + hF(t, x))) ~ 0 
xER(t) 

ash ---+ 0 uniformly in t E /. 

THEOREM 7.3 ([50]). On the conditions of Theorem 7.1 there exists a unique R-solution 
of Initial Value Problem 1.1 whose value at any t E I is the reachable set R( t) of Initial Value 
Problem 1.1. 

The relation (14) is known as funnel equation. The integral funnel (solution cone) 
of Initial Value Problem 1.1 is the union of the graphs of all solutions of Initial Value 
Problem 1.1. The reachable set R(t) is the value at t of the map, the graph of which is 
the integral funnel. 

In [69] extensions of Theorem 7.3 for inclusions with right-hand side satisfying Cara
theodory conditions are obtained. A funnel equation to a linear differential inclusion 
with phase constraints is found in [38]. 

Let us prove Theorem 7.1. From (14) we have 

(15) haus ( R{", R( t1)) :::; hrp( h) 

and 

(16) haus (R(t2), U (x + hF(t1,x))) < hcp(h), 
xER(tt) 

where cp(h) ---+ 0 ash---+ 0 uniformly in t E /.If k is the Lipschitz constant ofF, it is easy 
to see from (15) that 

(17) haus ( U (x + hF(t1, x)), U (x + hF(t1, x))) < (1 + kh)hcp(h). 
xERf" xER(ti) 

23



Combining (16) and (17) we have 

haus (Rf, R(t2)) < (1 + kh)h<p(h) + h<p(h). 

Proceeding in the same manner by induction we get 

i 

haus (Rf, R(ti)) < L(l + kh)i-Jlh<p(h) 
Jl=l 

< <p(h)(T- to)ek(T-to) 

fori = 1, · · ·, N, which completes the proof of Theorem 7.1. 
Consider now the Initial Value Problem 1.1 with F independent of t. Then Euler 

approximation to the attainable set can be rewritten as 

R'( (I+ hF)yo, 

Rf U (x + hF(x)) =(I+ hF)2 y0 , 

xERf 

Rf (I+ hF)iYo, 

where the power of (I+ hF) is that of composition of set-valued maps. Then RIJ will 
converge to R(T) if and only if 

( 
T- to )N 

R(T) = J~ I+ N F Yo· 

More precisely, the following result is obtained in [74]. 
THEOREM 7.4 ([74]). Let G c Rn be open and F : Rn =::::? Rn be a map with 

nonempty compact values on G locally Lipschitz on G. Fix y0 E G. Let 

T =sup {r: cl ( U R(t)) is compact}. 
to9:::;T 

(i) For t0 < T < T 

( 
T- to )N 

li:~~ I+ N F Yo c cl (R(T)). 

(ii) If, in addition, F is assumed to have convex values, then for all T > 0, 

R(T) C ~~~ (J + T; to F) N Yo· 

On the assumptions of Theorem 6.2 we obtain that the Euler scheme provides an 
O(h) estimate for the reachable set and the integral funnel. We note that the one-sided 
estimate (13) was observed (on slightly different conditions) independently in [22] and 
by M. S. Nikol'skiy [ 47] whose primary purpose was to estimate the Euler approximation 
to the reachable set. However, to obtain an approximation of a solution of Initial Value 
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Problem 1.1 by a solution of (3), he uses a procedure different from the projection strat
egy, giving an estimate of order CJ( v'ii) only. The paper [46] contains a similar result for 
a control system. In [ 48] the following modification of Euler scheme is proposed: 

E~ {yo}, U = a1B, 

Eft_1 = U (x + hr(x)coF(x) + ah2 B), i=Ol···N-l ' ' ' ' 
xEEfnU 

where the right-hand side F, independent of t, satisfies a growth condition and is lo
cally Lipschitz and the function r and the constants a, a 1 are chosen in such a way that 
cl(R(T)) c E}$ n U. Then from (13) an estimate of order O(h) follows for the distance 
between E}J n U and R(T). For an extension, see (57]. 

8. Higher-order approximations to reachable sets. Generally speaking, a differen
tial inclusion may have many "bad" solutions, e.g., nonsmooth and fast changing ones, 
to which it is unlikely to obtain higher-order approximations. Nevertheless, V. M. Veliov 
recently proposed in a series of papers [71 ]-[73] certain second-order approximations 
resulting from Runge-Kutta schemes, both for the trajectory bundle and the reachable 
sets. 

To be specific, consider the simplest linear differential inclusion 

(18) y(t) E Ay(t) + U for a.e. t E I, y(to) = Yo, 

where A is a nxn-matrix, U is a compact and convex set in ntn. An absolutely continuous 
function y is a solution of (18) if and only if there exists an integrable n-vector function 
u with u(t) E U for almost every t E I such that 

(19) y(t) = Ay(t) + u(t) for a.e. t E I. 

It is clear that by applying a higher-order scheme to the equation (19), we could hardly 
expect higher-order accuracy since the function u may be discontinuous. However, a 
higher-order approximation 1JN toy may exist, being a solution of a discrete time in
clusion resulting from the scheme, that corresponds possibly to another selection of the 
right-hand side of (18). 

Let Nand k be integers, h = (T- t0 )/N, A~ be nxn-matrices and UJv be sets in 
JR.n. By a discrete approximation (of higher-order) to (18), we mean the following: 

(20) 'f/~1 E A~11f + UJv, i = 0, 1, .. ·, N -1, 11~ =Yo· 

Suppose that A~, Ut satisfy for N EN', 

(21) exp(Ah) 

(22) fo' cxp(As)Uds UfV + 0 (h•+I) . 

(i) Let 1JN = ( 11~, · · · , 11~) be a solution of (20). Then, from (21) and (22), 

l
ti+l 

rJft-1 E A~r,[" + ut c eA(ti+l-tdrJf + ti eA(tH1-s)Uds + 0 (hk+l) 

fori= 0, 1, · · ·, N -1. Hence there exists a measurable function uf' with uf' (t) E U for 
almost every t E I, such that if yfl solves 

yf" (t) Ayfl (t) + uf (t) for a.e. t E [ti , ti+l], 

yf (ti) = ryf, 
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then 

y[" (ti+t) = 'TJ~l + 0 (hk+l) . 

Let uN be defined on I as uN (t) = uf (t) fort E [ti, ti+1), i = 0, 1, .. ·, N -1. If yN is a 
solution of 

AyN (t) + uN (t) for a.e. t E I 

Yo, 

then it is easy to see that 

(23) 

(ii) Now let y be a solution of (18). Then 

1
ti+l 

y(ti+t) E eAhy(ti) + t, eA(t-;+ 1 -s)Uds 

c Aty(ti) + ut + O(hk+t ). 

Let ry{j = y0 • We determine ryf'!t. 1 on the basis of ryf as projection of y(ti+1 ) on the set 
Atryf + U~. Then from 

it follows that 

which yields 

(24) 

Thus, under the conditions (21) and (22), the Hausdorff distance between the sets of 
solutions of (18) and (20), in the sense of (23) and (24), is of order O(hk). 

The condition (21) will hold if we take 

It turns out that the condition (22) is much more restrictive. It obviously holds for k = 1 
(Euler scheme); moreover, we have always 

provided that 

(25) 
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This means that (24) is satisfied, i.e., every solution of (18) can be approximated of 
order O(hk) by a solution of (20). The converse case needs, however, more conditions. 

It follows from [73] that for k = 2 (25) implies (22) on the condition that U is a 
strongly convex set, i.e., there exists a constant J.1, > 0 such that u1 , u 2 E U implies 

The proof of this is based on the observation that for strongly convex U the extremal 
(boundary) controls are equi-Lipschitz. This means that if U is strongly convex, then the 
scheme 

gives O(h2
) approximation to the set of trajectories, and hence to the reachable set as 

well. 
In [73] V. M. Veliov considers the following more general problem: 

(27) y(t) E F(t, y(t)) for a.e. t E I, y(to) E Ro 

approximated by 

(28) 77~ 1 E 77{" + 0.5h { z + F (ti+l, 17{" + hz) : z E F(ti, 17{")}, 1]~ E Ro 

fori= 0, 1, · · ·, N -1. This approximation is a generalization (but not the only possible 
one) of Euler scheme; it corresponds to the classical Euler-Cauchy method. 

The map F is defined on the compact and convex set~ x S c JRn+l and satisfies 
the following conditions: 

(a) F is compact valued and there exists J.1, > 0 such that F(t, x) is strongly convex 
foreveryt E ~andx E S. Thesupportfunctionr(l,t,x) = supp(l,F(t,x))isdifferen
tiable with respect to t and x, 8-r I ax is Lipschitz in the set ( l' t, X) E .c X ~ X s' 8-r I at 
is Lipschitz in (l, t) E .C x ~uniformly in x E S, where .C = {l E Rn : 0.5 < IIlii < 2}; 
the set R0 is compact, I c int(~), and all trajectories of (27) stay in int(S). 

(b) The function y( t, x, l) defined as 

(29) l*y(t, x, l) = supp(l, F(t, x)) 

is Lipschitz in t E ~ uniformly in ( l, x) E £ x S. 
THEOREM 8.1 ([73]). On the condition (a) there exist constants c and N 1 such that if 

N > N1 then 
(i) For every solution y of (27) there is a discrete solution 1JN = ( 1J/i, · · ·, 17~) of (28) 

such that 

(30) 

(ii) For every solution 1JN of (28) there exists a solution y of (27) such that (30) holds. 
If in addition (b) is satisfied, then h 312 in ( 30) can be replaced by h 2• 

In [73] it is also shown that if the map F is 

F(t,x) = f(t,x) + g(t,x)U 
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then the conditions (a) and (b) will be fulfilled if U is strongly convex, f and g are suffi
ciently smooth and g( t, x) is invertible for each t E ~, x E S. In this case the discrete 
inclusion (28) can be equivalently written as 

ryf'!t- 1 Eryf +0.5h{t.p(ti,TJf,u)+<p(ti+t,TJf +h<p(ti,TJf,u)) :uE U}, 

where <p(t,x,u) = f(t,x) + g(t,x)u. For fixed u E U this is exactly the second-order 
Euler-Cauchy scheme for right-hand side <p(t, x, u). Another second-order approxima
tion for the trajectory bundle without strong convexity of the right-hand side is obtained 
in [72] for the inclusion 

r 

y(t) E f(t,y(t)) + l::Yi(t,y(t))[O, 1], y(to) E Ro. 
i=I 

It turns out that for linear control systems it is possible to obtain second-order ap
proximations to the reachable set having, in the same time, only first-order convergence 
of the solutions, in general. Consider the differential inclusion 

(31) y(t) E A(t)y(t) + B(t)U for a.e. t E I, y(to) E Xo, 

where A(t) and B(t) are nxn and nxr matrices, U c lRr, on the following assumption: 
(c) A and B are differentiable and their derivatives are Lipschitz continuous, and 

X 0 and U are convex and compact. 
Let R(T) be the reachable set of (31) at the timeT. Introducing an uniform grid in 

I, for each N we define the set X% recurrently by the equation 

(32) i = 0 1 · · · N-1 ' ' ' ' xr: = Xo, 

where 

A[" I+ 0.5h(A(ti) + A(tH1 )) + 0.5h2 A(tH1)
2

, 

Bf 0.5h(B(ti) + B(ti+t)) + 0.5h2 A(ti+t)B(ti+t) · 

Observe that if B = I and A, B are constant, from (32) we obtain the scheme (26). 
THEOREM 8.2 ([71 ]). Under the condition (c) there exists a constant c such that for 

every N EN', 

hans (X%, R(T)) < ch2
. 

In contrast to the strongly convex case (Theorem 8.1), the proof uses essentially an 
effect of nonaccumulation of e"ors at each step. Namely, the error at each step may be 
tJ(h2 ) while the global error is tJ(h2 ) as well. Furthermore, it is shown by an example 
in [72] that approximation order for the solution set may be only O(h). 

The paper [71] contains also a negative result showing that approximations better 
than of ser.:ond-order cannot be obtained by means of a scheme of the type (32). More 
precisely, consider the inclusion (31) with constant A and B, n = 2, r = 1, X 0 a single
ton, and U a nondegenerate segment. Let X% be obtained by the following recurrent 
formula 

q 

xi~l = P(h;A,B)xr + LQj(h;A,B)U, 
j=l 
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where q is a fixed integer, P and Q are arbitrary matrices, h = (T- t 0 )jN. 
THEOREM 8.3 ([71 ]). For any controllable pair (A, B) (i.e., rank[B, ABJ = 2), there 

is a constant c > 0 such that 

haus (X%, R(T)) > ch2 

for all N E N'. 
The proof uses the observation that R(T) is strongly convex and X~ is a convex 

polygon. On the other hand, a strongly convex set cannot be approximated by a polygon 
with order higher than 2. 

Concerning numerical approximations to reachable sets, various approaches can be 
found in the literature. A common idea in this field is to use sets of simple structure as 
polyhedrons [27], [30], or ellipsoids [16], [37]. A different approach, based on a time
scale decomposition of the reachable set, is presented in [21 ]. 

9. Concluding remarks. In this survey we concentrated on difference methods for 
initial value problems, especially on error estimates and order of convergence results. 
Concluding, we want to summarize typical difficulties, influencing the numerical perfor
mance of these algorithms decisively, and some directions of future research. 

In connection with implicit methods for problems satisfying a one-sided Lipschitz 
condition, originally formulated for classical stiff differential equations, efficient local
ization procedures have to be developed for detecting possible discontinuities of deriva
tives of the solution. Moreover, implicit discrete inclusions have to be solved at any grid 
point. Therefore, to reduce the complexity of these inclusions, it would be very desir
able to find diagonally implicit general linear methods with the necessary consistency 
and stability properties. For differential equations with discontinuous right-hand sides, 
D. Stewart's transformation method [64], [65] would avoid at least the solution of im
plicit inclusions as long as the resulting transformed differential equations are not stiff. 
Without piecewise transformation to smooth right-hand sides, higher-order convergence 
of explicit difference methods for discontinuous ordinary differential equations cannot 
be expected. At most first-order convergence for special problem classes and special 
explicit methods can be proved [ 40]. 

Concerning selection strategies for general differential inclusions, naturally the re
lation to numerical methods for optimal control problems should be investigated fur
ther. Especially, for nonstandard selection strategies and corresponding nonstandard 
objective functions, it seems to be hard to prove order of convergence results. Imposing 
additional state constraints immediately leads to the question of viability of solutions; 
compare in this connection, e.g., [58]. 

Approximating the whole solution set of a general differential inclusion by the whole 
solution set of a difference inclusion until now led only to order of convergence results 
for special explicit methods. These results should be incorporated into the framework 
of general discretization theories. This would require at least a calculus of higher-order 
local approximations of set-valued mappings, an actual and interesting field of research. 
Naturally, this will result in efficient numerical algorithms only if the set of all solutions of 
the difference inclusions can be approximated of any prescribed order by simpler sets, 
e.g., by ellipsoids or simplicial complexes. This is an actual field of research as well, 
stimulated by the results of A. B. Kurzhansky and his group for special control systems. 

Numerical methods for boundary value problems for differential inclusions are much 
less developed than desirable. Naturally, good methods for initial value problems make 
it worthwhile to attack boundary value problems by shooting methods. The additional 
difficulty with differential inclusions is that the finite-dimensional systems of equations to 
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be solved have very poor qualitative properties, especially for differential inclusions re
sulting from differential equations with discontinuous right-hand sides. Hence, efficient 
algorithms are needed for the solution of nonsmooth systems of equations. There are 
some other approaches to the direct solution of boundary value problems for differential 
inclusions, e.g., by simplicial fixed point algorithms, cf. [59], [60], or by difference meth
ods, cf. [44]. But until now only convergence results, no order of convergence results 
are available. 

Above all, more computer tests are necessary to get more insight into the algorithms 
and into the underlying problems. We are convinced that additional numerical experi
ments together with a sound mathematical analysis of the results will give the right in
spiration for new algorithms and new ideas. 
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