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Abstract

The Straightness is a measure designed to characterize a pair of vertices in a spatial graph. It is
defined as the ratio of the Euclidean distance to the graph distance between these vertices. It is often
used as an average, for instance to describe the accessibility of a single vertex relatively to all the other
vertices in the graph, or even to summarize the graph as a whole. In some cases, one needs to process
the Straightness between not only vertices, but also any other points constituting the graph of interest.
Suppose for instance that our graph represents a road network and we do not want to limit ourselves
to crossroad-to-crossroad itineraries, but allow any street number to be a starting point or destination.
In this situation, the standard approach consists in: 1) discretizing the graph edges, 2) processing the
vertex-to-vertex Straightness considering the additional vertices resulting from this discretization, and
3) performing the appropriate average on the obtained values. However, this discrete approximation can
be computationally expensive on large graphs, and its precision has not been clearly assessed. In this
article, we adopt a continuous approach to average the Straightness over the edges of spatial graphs.
This allows us to derive 5 distinct measures able to characterize precisely the accessibility of the whole
graph, as well as individual vertices and edges. Our method is generic and could be applied to other
measures designed for spatial graphs. We perform an experimental evaluation of our continuous average
Straightness measures, and show how they behave differently from the traditional vertex-to-vertex ones.
Moreover, we also study their discrete approximations, and show that our approach is globally less
demanding in terms of both processing time and memory usage. Our R source code is publicly available
under an open source license.

Keywords: Spatial graph, Straightness, Centrality measure, Graph characterization.

Cite as: V. Labatut. Continuous Average Straightness in Spatial Graphs, Journal of Complex Networks,
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1 Introduction

In a spatial graph, vertices (and consequently edges) hold a position in a metric space (Barthélemy 2011).
Such graphs allow modeling a variety of real-world systems in which spatial constraints affect the topology,
and are particularly popular in quantitative geography. For instance, a spatial graph can be used to model
the road transportation system of a city, the edges and vertices representing the streets and crossroads,
respectively.

When characterizing a spatial graph, it can be interesting, or even necessary, to use this additional
spatial information: a number of specific measures have been developed for this purpose (Barthélemy
2011). In this article, we focus on the Straightness (Porta et al. 2006; Vragović et al. 2005), which
characterizes a pair of vertices. It corresponds to the ratio of the graph to the Euclidean distances between
the vertices. In other words, it compares the distance obtained when following the shortest path over the
graph edges, to the distance as the crow flies. It quantifies how efficient the graph is in providing the most
direct path from one vertex to the other. The Straightness gets close to zero if the path is very tortuous,
and it can reach one if it is completely straight. Sometimes, its reciprocal is used instead, under the names
Circuity (O’Sullivan and Morrall 1996), Directness (though indirectness would be more relevant) (Hess
1997), Tortuosity (Kansal and Torquato 2001), Route Factor (Gastner and Newman 2006) and Detour
Index (Louf et al. 2013).
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The Straightness and its reciprocal are used in various ways in the literature. Besides the description of
a given pair of vertices, they are also averaged to characterize a single vertex (Porta et al. 2006), a subgraph
(Kansal and Torquato 2001) or the whole graph (Gastner and Newman 2006; Kansal and Torquato 2001;
Louf et al. 2013; Vragović et al. 2005). For a single vertex, authors consider the mean value for all pairs
containing the vertex of interest. For a (sub)graph, they average over all pairs of vertices in the (sub)graph.
Alternatively, on large graphs, authors average only over a subset of the vertex pairs (Hess 1997; Levinson
and El-Geneidy 2009), primarily to limit the computational cost, but also to focus on certain parts of the
graphs (e.g. daily home-office journeys in (Levinson and El-Geneidy 2009)).

It is important to notice that the relevance of such a discrete average implicitly relies on the assumption
that the only considered journeys go from one vertex to another. This is appropriate, for example, for graphs
representing subway transportation systems: travelers can only go from one station (i.e. vertex) to another,
they cannot get off or on the train anywhere else. However, there are also situations in which the journey
could start or end anywhere on an edge, and not necessarily exactly on a vertex. This is for instance the
case, on a road network, when the travelers use a personal car or simply walk: they can stop and start
anywhere on a street (i.e. an edge), not necessarily at a crossroad (i.e. a vertex). In this case, averaging
over pairs of vertices is likely to constitute a very rough approximation of the actual mean Straightness (or
Tortuosity). Moreover, on a large network, this processing can be computationally expensive. Working on
only a subset of the vertex pairs can solve this problem, but it will increase the imprecision of the already
approximate computed value.

In this paper, to solve both precision and computational cost problems, we adopt a continuous approach,
by considering all the points constituting the graph instead of just its vertices. We let a journey start
and end not only on any vertex, but also on any point lying on an edge. Instead of processing the
average Straightness through a sum over pairs of vertices, we integrate the measure over the concerned
edges. In other words, we propose a different way of averaging the Straightness, while keeping the same
definition of the Straightness itself. The continuous nature of our approach leads to a significantly lower
computational cost, compared to a discrete approximation. Our method allows the classic uses of the
average Straightness, as a vertex accessibility measure or to characterize a (sub)graph, and we additionally
derive a new accessibility measure for individual edges.

The rest of this document is organized as follows. In Section 2, we introduce the required definitions
and notations, and give the sketch of the method we use to derive the continuous average Straightness. In
Sections 3 and 4, we derive 5 variants of the continuous average Straightness. In Section 5, we compute
their algorithmic complexity, and describe some discrete approximations. Section 6 is dedicated to the
empirical validation of our measures. This includes a performance study, comparing their processing time
and memory usage to those of the discrete approximations, and an analysis of their behavior on artificial
graphs and real-world road networks. Finally, we conclude with some possible extensions in Section 7.

2 Definitions, Notations and Proof Sketch

We consider an undirected graph G = (V,E), where V is the set of vertices and E ⊂ V 2 is the set of
undirected edges. This graph is spatial, so each vertex v ∈ V is characterized by a position (xv,yv) in the
Euclidean plane. Several distinct vertices can coincide, i.e. hold the same position. An undirected edge is
a straight segment connecting two vertices u,v ∈ V , and is denoted as a pair of lexicographically ordered
vertices: (u,v) ∈ E.

We define the set of the graph points P as the set of all points constituting the graph. It includes the
vertices (V ⊂ P) as well as all the points lying on the edges. Each point p∈ P has a spatial position (xp,yp).
If the point is a vertex, it can lie on zero to several edges (as an end-vertex), depending on its degree. If it
is not a vertex, it lies on exactly one edge. Note that several distinct non-vertex points can coincide (hold
the same spatial position) in case of intersecting edges (vertices can also coincide, as mentioned earlier).

A path between two points is, in general, a sequence of adjacent segments starting from one point and
leading to the other. When the path origin and destination are both vertices, as represented in solid red on
the left graph of Figure 1, each segment corresponds to an edge. However, if the origin (resp. destination)
is not a vertex, then the first (resp. last) segment is only a portion of edge, connecting the point to one
of the end-vertices of its edge, as shown on the center and right graphs of Figure 1.
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We express the spatial distance between two points p1 and p2 through two distinct measures. The first
is the classic Euclidean distance, noted dE(p1, p2), and represented in dashed red in Figure 1. Based on this
distance, we can define the length of an edge (u,v), which is the Euclidean distance dE(u,v) between its
end-vertices. The length of a path is the sum of the lengths of its constituting segments. The shortest path
between two points corresponds to the path of minimal length. The second measure is the weighted graph
distance, or graph distance for short, noted dG(p1, p2). It is the length of the shortest path connecting
p1 and p2 on the graph. Note that, since this is an Euclidean space, dE(p1, p2) ≤ dG(p1, p2). Figure 1
shows three shortest paths, in solid red, whose length thus corresponds to the graph distance between the
concerned points.
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Figure 1: Representation of the Euclidean (dashed) and graph (solid) distances (in red) for three cases:
between two vertices v1 and v3 (left), between a vertex v1 and a non-vertex point p1 (center) and between
two non-vertex points p1 and p2 (right).

Based on both distances, we can define the Straightness measure. We present here a generalized version
of this measure, in the sense it is defined for a pair of points (and not the traditional pair of vertices).

Definition 1 (Straightness). The Straightness S(p1, p2) between two points p1 and p2 ∈ P is the ratio of
their Euclidean to their graph distances:

S(p1, p2) =


0 if dG(p1, p2) = +∞,

1 if p1 = p2,
dE(p1, p2)

dG(p1, p2)
otherwise.

(1)

Since dE(p1, p2)≤ dG(p1, p2), the maximal Straightness value is 1, which occurs when both distances
are equal, i.e. when the shortest path on the graph between p1 and p2 is a straight line. On the contrary,
it tends towards 0 when this path includes more and more detours. The ratio is not defined when p1 = p2:
by convention, we set it to 1 since both distances are equal (to zero). When the points are not connected
in the graph, the graph distance is conventionally dG(p1, p2) = +∞, and we set the Straightness to zero.

As mentioned in the introduction, the approach we present in this article consists in averaging a spatial
measure through integration over edges instead of summation over vertices. We perform this integration by
considering a point p moving along the considered edge. For this purpose, we need to express the position
of the point not in terms of its absolute coordinates (xp,yp), but rather with respect to its edge, using the
notion of relative position.

Definition 2 (Relative position). The position of a point p ∈ P relatively to its edge (u,v) ∈ E is :

`p = dE(p,u), (2)

i.e. its Euclidean distance to the first end-vertex of its edge.

The first end-vertex refers to the fact our edges are lexicographically ordered pairs of vertices. The
notation `p can be ambiguous if p is a vertex, since it could then lie on several edges. However, in this
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Figure 2: Representation of the relative position `p of a point p (left), and of the break-even point q and
break-even distance λp of an edge(u,v) for a point p (right). The blue and red paths have the same length.

case the context will allow to determine the concerned edge. The left-hand graph in Figure 2 illustrates
the notion of relative position.

The general idea is then to reformulate the spatial measure as a function of the relative position of the
concerned points, which allows integrating the measure over the edges containing these points. This generic
approach could be applied to any measure, provided its reformulation is integrable. The Straightness is the
ratio of the Euclidean to the graph distances between two points (cf. Definition 1), so in our case we need
to reformulate both distances in terms of relative positions. For the graph distance, this in turn requires
introducing the notions of break-even point and break-even distance.

Definition 3 (Break-even point and break-even distance). Consider a point p ∈ P and an edge (u,v) ∈ E,
such that p is either not lying on (u,v), or is one of its end-vertices u or v. The break-even point of (u,v)
for p is the point q lying on (u,v) at an Euclidean distance λp from u, and such that:

dG(p,u)+λp = dG(p,v)+dE(u,v)−λp. (3)

We call λp, which corresponds to the position of q relatively to its edge (i.e. λp = `q), the break-even
distance. Note that it is possible for the break-even point to be u or v (i.e. one of the end-vertices of the
edge).

The right-hand graph in Figure 2 illustrates the notions of break-even point and break-even distance.
By definition, the length of the shortest path between p and the break-even point q is the same whether
we consider the paths going through u (represented in red) or v (in blue). The relative position `p should
not be confused with the break-even distance λp: the former is expressed relatively to the edge containing
the considered point p, whereas for the latter it is necessarily a different edge.

Note that many measures are based on the notion of distance, for instance the closeness centrality is
the reciprocal of the average graph distance between a vertex of interest and the other vertices in the graph
(Bavelas 1950). Their reformulation would therefore also require using the notions of break-even point and
distances, which is why we presented them in this general section.

To conclude this part, we will now give the sketch of our method to derive the continuous average
Straightness. In Section 3, we leverage the previous definitions to reformulate the Straightness in terms
of relative positions of the concerned vertices. For this purpose, we first consider the Euclidean distance
and the graph distance, then proceed with the Straightness between two points, resulting in Theorem 10,
the main result of that section. If one would like to adapt our method in order to process the continuous
average of some other measure, one should replace this step by the reformulation of the targeted measure.
In the likely event of a distance-based measure, it is possible to take advantage of our reformulations of
the Euclidean (Lemma 4) and/or graph (Lemma 8) distances.

In Section 4, we explain how 5 different continuous average variants can be derived based on the
reformulation obtained at the previous step. We start by focusing on the average Straightness between
a point and an edge (or, more precisely: all the points lying on this edge), which can be obtained by
integrating the Straightness over the edge of interest (Definition 12). From this result, it is straightforward
to get the average Straightness between a point and the rest of the graph (i.e. all its edges), which can be

4 / 25



V. Labatut – Continuous Average Straightness in Spatial Graphs

considered as a vertex accessibility measure (Definition 13). Then, we consider the average Straightness
between two edges (or rather, between all their constituting points), which requires integrating twice:
once over each one of the considered edges (Definition 15). Based on this result, we can get the average
Straightness between an edge and the rest of the graph (i.e. all its edges), which can be interpreted as an
edge accessibility measure (Definition 16). Finally, by considering all pairs of edges in the graph, we get the
average Straightness between all pairs of points constituting a graph, which can be used to characterize
the whole graph (Definition 17). In this article, we focus on the Straightness, however the second step
described in this Section 4 is quite generic and could be applied to any measure reformulated in terms of
relative positions beforehand, resulting in the corresponding 5 continuous average variants.

3 Reformulation of the Straightness

In this section, we start by expressing the Euclidean and graph distances with respect to the relative positions
of the considered points. We then take advantage of these results to reformulate the Straightness, also in
relative terms.

We first express the Euclidean distance between two points p1 and p2 in terms of their relative positions
`p1 and `p2 .

Lemma 4 (Euclidean distance between two points). Let p1 ∈ P be a point lying on an edge (u1,v1) ∈ E
at a distance `p1 from u1, and p2 ∈ P be a point lying on an edge (u2,v2) ∈ E at a distance `p2 from u2.

The Euclidean distance between p1 and p2 can be written in terms of `p1 and `p2 , as:

dE(p1, p2) =

((
xu2 +

`p2

dE(u2,v2)
(xv2− xu2)− xu1−

`p1

dE(u1,v1)
(xv1− xu1)

)2

+
(

yu2 +
`p2

dE(u2,v2)
(yv2− yu2)− yu1−

`p1

dE(u1,v1)
(yv1− yu1)

)2
)1/2

.

(4)

Proof of Lemma 4. By definition, dE(p1, p2) = ((xp2− xp1)
2 +((yp2− yp1)

2)1/2. Now, let p ∈ P be a point
lying on an edge (u,v) ∈ E, at a distance `p from u. This point p divides the edge into two parts such that
their lengths are in the ratio `p : (dE(u,v)− `p). By the section formula, the coordinates of p are therefore
xp = xu + `p/dE(u,v)(xv− xu) and yp = yu + `p/dE(u,v)(yv− yu). Replacing for p1 and p2 in the original
expression of dE(p1, p2) yields Lemma 4.

Expressing the graph distance in terms of relative positions is not as straightforward. Unlike the
Euclidean distance, it depends on the graph structure, since it involves the notion of shortest path. It
consequently requires to consider 4 possible cases: the shortest path between p1 and p2 can go through u1
and u2, u1 and v2, v1 and u2, or v1 and v2. In the following, we will first consider a simpler case involving
a vertex and a non-vertex point, before dealing with a pair of non-vertex points.

Lemma 5 (Break-even distance for a vertex). Let r ∈V be a vertex and (u,v) ∈ E an edge such that r 6= v
and r 6= u.

The break-even distance of (u,v) for the vertex r, noted λr is:

λr =
dG(r,v)−dG(r,u)+dE(u,v)

2
. (5)

Note that since r, u and v are all vertices, all three distances appearing in the numerator are obtained
directly and do not need further processing (all the vertex-to-vertex distances are supposedly known).

Proof of Lemma 5. Equation (5) comes directly from Definition 3.

Lemma 6 (Graph distance between a vertex and a point). Let r ∈V be a vertex, (u,v) ∈ E an edge, p ∈ P
a point lying on (u,v) at a distance `p from u, and λr the break-even distance of (u,v) for r.

The graph distance between the vertex r and the point p can be written as:

dG(r, p) =

{
dG(r,u)+ `p, if `p ≤ λr

dG(r,v)+dE(u,v)− `p, otherwise.
(6)
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As a consequence of this Lemma: if `p ≤ λr, the shortest path between r and p goes through u, whereas
if `p ≥ λr, it goes through v, as illustrated in Figure 3.

r

u

v

r

u

v

qp

λr
`p

r

u

v

r

u

v

q

p

λr

`p

Figure 3: The two possible cases for the graph distance between a vertex r and a non-vertex point p: in
the left graph, the shortest path (represented in red) goes through u (`p ≤ λr), whereas in the right graph,
it goes through v (`p > λr). Point q is the break-even point of (u,v) for r.

Proof of Lemma 6. If `p ≤ λr, then

dG(r,u)+ `p ≤ dG(r,u)+λr, (7)

and
dG(r,v)+dE(u,v)− `p ≥ dG(r,v)+dE(u,v)−λr. (8)

According to Definition 3 (Break-even point and distance), the right-hand sides in Equations (7) and (8)
are equal, so we get:

dG(r,u)+ `p ≤ dG(r,v)+dE(u,v)− `p. (9)

This means the shortest path between r and p going through u is shorter than the one going through v.
Its length should therefore be considered as the graph distance, as stated by Lemma 6.

If `p > λr, we proceed symmetrically: the inequalities are reversed in both Equations (7) and (8), and
therefore in Equation (9) too, meaning the shortest path goes through v and not u. Its length should thus
be considered as the graph distance, as stated by Lemma 6.

Using the previous results, we can now express the break-even distance for any point (including non-
vertices) in terms of relative positions.

Lemma 7 (Break-even distance for a point). Let p1 ∈ P be a point lying on an edge (u1,v1) ∈ E, at a
distance `p1 from u1, and (u2,v2) ∈ E be a distinct edge (though they can have one common end-vertex).
Let the break-even distances of (u1,v1) for u2 and v2 be λu2 and λv2 , respectively.

The break-even distance λp1 of (u2,v2) for p1 is:

λp1 =



λ
(1)
p1 =

dG(u1,v2)−dG(u1,u2)+dE(u2,v2)

2
, if `p1 ≤ λu2 ,λv2 ,

λ
(2)
p1 =

dG(v1,v2)−dG(u1,u2)+dE(u1,v1)+dE(u2,v2)−2`p1

2
, if λv2 < `p1 ≤ λu2 ,

λ
(3)
p1 =

dG(u1,v2)−dG(v1,u2)−dE(u1,v1)+dE(u2,v2)+2`p1

2
, if λu2 < `p1 ≤ λv2 ,

λ
(4)
p1 =

dG(v1,v2)−dG(v1,u2)+dE(u2,v2)

2
, if `p1 > λu2 ,λv2 .

(10)

In the first case (`p1 ≤ λu2 ,λv2), both shortest paths between p1 on one side and u2 and v2 on the other
side, go through u1. On the contrary, they both go through v1 in the fourth case (`p1 > λu2 ,λv2). In the
second case (λv2 < `p1 ≤ λu2), the shortest path goes through u1 for u2, and through v1 for v2. For the
third case (λu2 < `p1 ≤ λv2), it is the opposite: it goes through v1 for u2 and through u1 for v2.
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Proof of Lemma 7. Since u2 and v2 are both vertices, the break-even distances λu2 and λv2 can be obtained
using Lemma 5. However, p1 is not a vertex, which is why some additional processing is required for λp1 .

From Definition 3, we get:

λp1 =
dG(p1,v2)−dG(p1,u2)+dE(u2,v2)

2
. (11)

We use Lemma 6 to develop dG(p1,v1) and dG(p1,u2):

dG(p1,u2) =

{
dG(u1,u2)+ `p1 , if `p1 ≤ λu2 ,

dG(v1,u2)+dE(u1,v1)− `p1 , otherwise.
(12)

dG(p1,v2) =

{
dG(u1,v2)+ `p1 , if `p1 ≤ λv2 ,

dG(v1,v2)+dE(u1,v1)− `p1 , otherwise.
(13)

Replacing in Equation (11) yields the expression given in Lemma 7.

We now use the previous results to identify the shortest path between two points in general, and process
their graph distance.

Lemma 8 (Graph distance between two points). Let p1 ∈ P be a point lying on an edge (u1,v1) ∈ E, at a
distance `p1 from u1, and p2 ∈ P be a point lying on an edge (u2,v2) ∈ E, at a distance `p2 from u2. Let
the break-even distances of (u1,v1) for u2 and v2 be λu2 and λv2 , respectively. Let the break-even distance

of (u2,v2) for p1 be λp1 , and λ
(i)
p1 denote the value associated to the ith case of Lemma 7.

The graph distance dG(p1, p2) between p1 and p2 is defined as follows:
• If p1 and p2 lie on the same edge, then their graph distance is simply equal to their Euclidean

distance: dG(p1, p2) = dE(p1, p2).
• Otherwise, if they lie on distinct edges, we must distinguish 4 cases:

dG(p1, p2) =



`p1 +dG(u1,u2)+ `p2 , if `p1 ≤ λu2 ,λv2 ∧ `p2 ≤ λ
(1)
p1

∨ λv2 < `p1 ≤ λu2 ∧ `p2 ≤ λ
(2)
p1 ,

`p1 +dG(u1,v2)+dE(u2,v2)− `p2 , if `p1 ≤ λu2 ,λv2 ∧ `p2 > λ
(1)
p1

∨ λu2 < `p1 ≤ λv2 ∧ `p2 > λ
(3)
p1 ,

dE(u1,v1)− `p1 +dG(v1,u2)+ `p2 , if λu2 < `p1 ≤ λv2 ∧ `p2 ≤ λ
(3)
p1

∨ `p1 > λu2 ,λv2 ∧ `p2 ≤ λ
(4)
p1 ,

dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)− `p2 , if λv2 < `p1 ≤ λu2 ∧ `p2 > λ
(2)
p1

∨ `p1 > λu2 ,λv2 ∧ `p2 > λ
(4)
p1 .

(14)

The particular case (both points on the same edge) occurs if (u1,v1) = (u2,v2) (i.e. the edges are
actually the same), or if the edges have a common end-vertex and this end-vertex is either p1 or p2.

Figure 4 illustrates the different possible situations described by the general case (i.e. two distinct
edges), which includes 4 possible expressions. In the first expression, the shortest path between p1 and p2
goes through u1 and u2 (graphs a and d in the Figure) ; in the second, it goes through u1 and v2 (graphs
e and f ) ; in the third, through v1 and u2 (graphs b and c) ; and in the fourth through v1 and v2 (graphs
g and h).

In the general case, and for a fixed p1, dG(p1, p2) is a piecewise linear function of `p2 . Note that fixing
p1 amounts to fixing λp1 , which makes the function 2-pieced. Moreover, by definition of the break-even
point (cf. Definition 3), this function is continuous since both pieces are equal when `p2 = λp1 .

Proof of Lemma 8. We focus on the general situation, in which the edges are distinct, since the other one
is trivial. This proof is two-fold: we must first identify which vertex of (u1,v1) is on the shortest path
between p1 and p2, and then which vertex of (u2,v2) is.

We start with the first part, i.e. edge (u1,v1). From Lemma 7, we know that if `p1 ≤ λu2 (resp. λv2),
the shortest path between p1 and u2 (resp. v2) passes through u1, otherwise it passes through v1.
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Figure 4: The different possible situations for the general case of Lemma 8, describing the graph distance
between two non-vertex points p1 and p2. The shortest path is represented in gray.

Let us now switch to the second part, i.e. edge (u2,v2). The principle of this proof is similar to that of
Lemma 6, except we must additionally take into account the value of `p1 relatively to λu2 and λv2 .

Let us first suppose that `p2 ≤ λp1 . We can state:
`p1 +dG(u1,u2)+ `p2 ≤ `p1 +dG(u1,u2)+λp1 ,

dE(u1,v1)− `p1 +dG(v1,u2)+ `p2 ≤ dE(u1,v1)− `p1 +dG(v1,u2)+λp1 ,

`p1 +dG(u1,v2)+dE(u2,v2)− `p2 ≥ `p1 +dG(u1,v2)+dE(u2,v2)−λp1 ,

dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)− `p2 ≥ dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)−λp1 .

(15)

(16)

(17)

(18)

According to Definition 3, we have:

dG(p1,u2)+λp1 = dG(p1,v2)+dE(u2,v2)−λp1 (19)

By replacing Equations (12) and (13) in Equations (19), we get:
`p1 +dG(u1,u2)+λp1 = `p1 +dG(u1,v2)+dE(u2,v2)−λp1 , if `p1 ≤ λu2 ,λv2

`p1 +dG(u1,u2)+λp1 = dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)−λp1 , if λv2 < `p1 ≤ λu2

dE(u1,v1)− `p1 +dG(v1,u2)+λp1 = `p1 +dG(u1,v2)+dE(u2,v2)−λp1 , if λu2 < `p1 ≤ λv2

dE(u1,v1)− `p1 +dG(v1,u2)+λp1 = dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)−λp1 , if `p1 > λu2 ,λv2 .

(20)

Notice that when `p1 ≤ λu2 ,λv2 , the right-hand sides of Equations (15) and (17) are equal. When λv2 <
`p1 ≤ λu2 , the same remark can be made for Equations (15) and (18) ; when λu2 < `p1 ≤ λv2 for Equations
(16) and (17), and when `p1 > λu2 ,λv2 for Equations (16) and (18). Consequently, we get the following
system:

`p1 +dG(u1,u2)+ `p2 ≤ `p1 +dG(u1,v2)+dE(u2,v2)− `p2 , if `p1 ≤ λu2 ,λv2

`p1 +dG(u1,u2)+ `p2 ≤ dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)− `p2 , if λv2 < `p1 ≤ λu2

dE(u1,v1)− `p1 +dG(v1,u2)+ `p2 ≤ `p1 +dG(u1,v2)+dE(u2,v2)− `p2 , if λu2 < `p1 ≤ λv2

dE(u1,v1)− `p1 +dG(v1,u2)+ `p2 ≤ dE(u1,v1)− `p1 +dG(v1,v2)+dE(u2,v2)− `p2 , if `p1 > λu2 ,λv2 .

(21)

This means the shortest path between p1 and p2 always go through u2 when `p2 ≤ λp1 . So, from the first
part of the proof, we can deduce only λu2 is relevant regarding the shortest path: if `p1 ≤ λu2 it goes through
u1, otherwise it goes through v1. In these cases, the lengths of these paths should thus be considered as
the graph distances, as stated in Lemma 8 (first and third cases, respectively).

If `p2 < λp1 , we can proceed symmetrically, like we did for Lemma 6, by reversing the inequalities in
Equations (15)–(18), and consequently in Equation 21. This means that in this case, the shortest path
always go through v2. Therefore, only λv2 is relevant regarding the shortest path: if `p1 ≤ λv2 it goes through
u1, otherwise it goes through v1. In these cases, the lengths of these paths should thus be considered as
the graph distances, as stated in Lemma 8 (second and fourth cases).
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We now have the necessary tools to express the Straightness in terms of relative positions of p1 and
p2. However, before doing so, we define a group of auxiliary functions aiming at making later equations
more compact and easier to read.

Definition 9 (Auxiliary functions). Let us define the generic auxiliary function f (`p1 , `p2 ;α,β ,γ) as:

f (`p1 , `p2 ;α,β ,γ) =
dE(p1, p2)

α +β`p1 + γ`p2

(22)

where α, β and γ are parameters of the function.
We additionally define the following 4 auxiliary functions, which are all parameterized instances of f :

fu1u2(`p1 , `p2) = f (`p1 , `p2 ;dG(u1,u2),1,1), (23)

fu1v2(`p1 , `p2) = f (`p1 , `p2 ;dG(u1,v2)+dE(u2,v2),1,−1), (24)

fv1u2(`p1 , `p2) = f (`p1 , `p2 ;dE(u1,v1)+dG(v1,u2),−1,1), (25)

fv1v2(`p1 , `p2) = f (`p1 , `p2 ;dE(u1,v1)+dG(v1,v2)+dE(u2,v2),−1,−1). (26)

Note that dE(p1, p2), the numerator of f , contains only absolute coordinates of vertices and relative
positions of non-vertex points, i.e. no absolute coordinates of non-vertex points (cf. Lemma 4).

Theorem 10 (Straightness between two points). Let p1 ∈ P be a point lying on an edge (u1,v1) ∈ E, at a
distance `p1 from u1, and p2 ∈ P be a point lying on an edge (u2,v2) ∈ E, at a distance `p2 from u2.

The Straightness S(p1, p2) between p1 and p2 is defined as follows:
• If dG(p1, p2) = +∞, then S(p1, p2) = 0.
• If p1 and p2 lie on the same edge, then S(p1, p2) = 1.
• Otherwise, in the general case:

S(p1, p2) =


fu1u2(`p1 , `p2), if (`p1 ≤ λu2 ,λv2 ∧ `p2 ≤ λ

(1)
p1 )∨ (λv2 < `p1 ≤ λu2 ∧ `p2 ≤ λ

(2)
p1 ),

fu1v2(`p1 , `p2), if (`p1 ≤ λu2 ,λv2 ∧ `p2 > λ
(1)
p1 )∨ (λu2 < `p1 ≤ λv2 ∧ `p2 > λ

(3)
p1 ),

fv1u2(`p1 , `p2), if (λu2 < `p1 ≤ λv2 ∧ `p2 ≤ λ
(3)
p1 )∨ (`p1 > λu2 ,λv2 ∧ `p2 ≤ λ

(4)
p1 ),

fv1v2(`p1 , `p2), if (λv2 < `p1 ≤ λu2 ∧ `p2 > λ
(2)
p1 )∨ (`p1 > λu2 ,λv2 ∧ `p2 > λ

(4)
p1 ).

(27)

Proof of Theorem 10. Let us first consider the particular cases. If p1 and p2 are disconnected, the Straig-
htness is 0 by definition (see Definition 1). If p1 and p2 lie on the same edge, we get dG(p1, p2) = dE(p1, p2)
by Lemma 8, so S(p1, p2) = 1. Note that this case subsumes p1 = p2 from Definition 1.

We finally focus on the general case. Using Lemmas 4 and 8 to replace dE and dG in Definition 1 yields
Theorem 10.

4 Derivation of the Continuous Average Straightness

In this section, we derive several continuous versions of the average Straightness. We take advantage of
the reformulation of the Straightness we proposed in the previous section to average it through integration
instead of summation. We present 5 variants of the continuous average Straightness: the first two ones
allow to characterize a point of interest (Subsection 4.1), the next two ones focus on edges instead and
the last one on the whole graph (Subsection 4.2).

4.1 Average Straightness Relatively to a Point

In this section, we focus on measures expressed relatively to a point of interest. We first process the
vertex-to-edge total Straightness before deriving two different average values.

Lemma 11 (Total Straightness between a point and an edge). Let p1 ∈ P be a point lying on an edge
(u1,v1) ∈ E at a distance `p1 of u1, and (u2,v2) ∈ E be an edge.

The total Straightness Ŝu2v2(p1) between p1 and (u2,v2) is:
• If p1 lies on (u2,v2), then Ŝu2v2(p1) = dE(u2,v2).
• If there is no path between p1 and (u2,v2), then Ŝu2v2(p1) = 0.
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• Otherwise, in the general case:

Ŝu2v2(p1) =



∫
λ
(1)
p1

0
fu1u2(`p1 , `p2)d`p2 +

∫ dE (u2,v2)

λ
(1)
p1

fu1v2(`p1 , `p2)d`p2 , if `p1 ≤ λu2 ,λv2 ,∫
λ
(2)
p1

0
fu1u2(`p1 , `p2)d`p2 +

∫ dE (u2,v2)

λ
(2)
p1

fv1v2(`p1 , `p2)d`p2 , if λv2 < `p1 ≤ λu2 ,∫
λ
(3)
p1

0
fv1u2(`p1 , `p2)d`p2 +

∫ dE (u2,v2)

λ
(3)
p1

fu1v2(`p1 , `p2)d`p2 , if λu2 < `p1 ≤ λv2 ,∫
λ
(4)
p1

0
fv1u2(`p1 , `p2)d`p2 +

∫ dE (u2,v2)

λ
(4)
p1

fv1v2(`p1 , `p2)d`p2 , if `p1 > λu2 ,λv2 .

(28)

Proof of Lemma 11. The definition of the total Straightness Ŝu2v2(p1) between a point p1 ∈ P and an edge
(u2,v2) ∈ E is:

Ŝu2v2(p1) =
∫ dE (u2,v2)

0
f (`p1 , `p2)d`p2 , (29)

where p2 is the point used to integrate over (u2,v2) and `p2 is its distance to u2.
We first consider the two particular cases. According to Theorem 10, if p1 lies on (u2,v2), then

S(p1, p2) = 1 for any p2 on (u2, p2). Consequently, Ŝu2v2(p1) = dE(u2,v2). By the same Lemma, if p1 and
(u2,v2) are not connected by any path, then S(p1, p2) = 0 for any p2 on (u2, p2). Thus, Ŝu2v2(p1) = 0.

We now focus on the general case. Let the break-even distance of (u2,v2) for p1 be λp1 . We first
consider the integrability of S(p1, p2) in this case. Suppose that p1 is fixed whereas p2 lies somewhere
on the edge (u2,v2). Then, S(p1, p2) is piecewise (with two pieces) for `p2 ∈ [0,dE(u2,v2)]. This is due
to it being the ratio of the Euclidean distance to the graph distance, which as mentioned before, is itself
two-pieced. Moreover, S(p1, p2) is continuous on the same interval, since it is the ratio of two continuous
functions, whose denominator cannot be zero (dG(p1, p2) = 0 is handled by the second specific case in
Theorem 10, i.e. p1 and p2 lying on the same edge). The Straightness is therefore a continuous piecewise
function on [0,dE(u2,v2)], so it can be integrated, as the sum of the integrals of its pieces:

Ŝu2v2(p1) =
∫

λp1

0
S(p1, p2)d`p2 +

∫ dE (u2,v2)

λp1

S(p1, p2)d`p2 . (30)

Let the break-even distances of (u1,v1) for u2 and v2 be λu2 and λv2 , respectively, and λ
(i)
p1 denote the

value associated to the ith case of Lemma 7. Theorem 10 tells us that the exact expression of λp1 depends
on the relative values of λu2 , λv2 and `p1 . This leads to the following 4 cases:

Ŝu2v2(p1) =



∫
λ
(1)
p1

0
S(p1, p2)d`p2 +

∫ dE (u2,v2)

λ
(1)
p1

S(p1, p2)d`p2 , if `p1 ≤ λu2 ,λv2 ,∫
λ
(2)
p1

0
S(p1, p2)d`p2 +

∫ dE (u2,v2)

λ
(2)
p1

S(p1, p2)d`p2 , if λv2 < `p1 ≤ λu2 ,∫
λ
(3)
p1

0
S(p1, p2)d`p2 +

∫ dE (u2,v2)

λ
(3)
p1

S(p1, p2)d`p2 , if λu2 < `p1 ≤ λv2 ,∫
λ
(4)
p1

0
S(p1, p2)d`p2 +

∫ dE (u2,v2)

λ
(4)
p1

S(p1, p2)d`p2 , if `p1 > λu2 ,λv2 .

(31)

Finally, S(p1, p2) also depends on λu2 , λv2 and `p1 . Replacing the S(p1, p2) terms in Equation (31) by
the appropriate instances of the auxiliary function f from Theorem 10 yields the expression given in Lemma
11.

Based on the total values from Lemma 11, we can define the average Straightness between a point of
interest and all the points constituting some edge, as well as all the points constituting the graph.

Definition 12 (Average Straightness between a point and an edge). The continuous average Straightness
between a vertex p ∈ P and all the points constituting an edge (u,v) ∈ E is:

Suv(p) =
Ŝuv(p)

dE(u,v)
. (32)
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As illustrated later in the experimental evaluation (Subsection 6.2), this particular average value is
convenient to characterize the accessibility of an edge from one point of the graph.

Definition 13 (Average Straightness between a point and the graph). The continuous average Straightness
between a vertex p ∈ P and all the points constituting the graph G is:

SG(p) =
∑(u,v)∈E Ŝuv(p)

∑(u,v)∈E dE(u,v)
. (33)

This average value is particularly interesting, because it can be used as some kind of vertex centrality
measure, representing how accessible the considered vertex is from the rest of a the graph.

4.2 Average Straightness Relatively to an Edge

In this section, we focus on average measures expressed relatively to an edge of interest. Like before, we
first process the total Straightness, this time between two edges, before deriving several distinct average
values.

Lemma 14 (Total Straightness between two edges). Let (u1,v1) ∈ E and (u2,v2) ∈ E be two edges.
The total Straightness Ŝu2v2(u1,v1) between (u1,v1) and (u2,v2) is:
• If (u1,v1) = (u2,v2), then Ŝu2v2(u1,v1) = dE(u1,v1)

2/2.
• If there is no path between (u1,v1) and (u2,v2), then Ŝu2v2(u1,v1) = 0.
• Otherwise, in the general case:

Ŝu2v2(u1,v1) =
∫

λu2

0
Ŝu2v2(p1)d`p1 +

∫
λv2

λu2

Ŝu2v2(p1)d`p1 +
∫ dE (p1)

λv2

Ŝu2v2(p1)d`p1 , if λu2 ≤ λv2 ,∫
λv2

0
Ŝu2v2(p1)d`p1 +

∫
λu2

λv2

Ŝu2v2(p1)d`p1 +
∫ dE (p1)

λu2

Ŝu2v2(p1)d`p1 , if λu2 > λv2 .

(34)

Being a double integration of the point-to-point Straightness over both considered edges, Ŝu2v2(u1,v1)
is symmetric with respect to these edges, i.e. Ŝu2v2(u1,v1) = Ŝu1v1(u2,v2).

Proof of Lemma 14. The definition of the total Straightness Ŝu2v2(u1,v1) between two edges (u1,v1) and
(u2,v2) is:

Ŝu2v2(u1,v1) =
∫ dE (u1,v1)

0
Ŝu2v2(p1)d`p1 , (35)

where p1 is the point used to integrate over (u1,v1) and `p1 is its distance to u1.
We first consider the two particular cases. According to Lemma 11, if (u1,v1)= (u2,v2), then Ŝu2v2(p1)=

dE(u2,v2) for any p1 on (u1, p1). Consequently, the integral amounts to dE(u1,v1) · dE(u2,v2). However,
each pair of vertices is accounted for twice, since (u1,v1) and (u2,v2) are the same edge. For this reason,
we take only half this product and get Ŝu2v2(u1,v1) = dE(u1,v1) ·dE(u2,v2)/2 = dE(u1,v1)

2/2. By the same
Lemma, if p1 and (u2,v2) are not connected by any path, then Su2,v2(p1) = 0 for any p1 on (u1, p1). Thus,
Ŝu2v2(u1,v1) = 0, too.

We now focus on the general case. Let λu2 and λv2 be the break-even distances of (u1,v1) for u2 and v2,
respectively. From Lemma 11, we know that Su2v2(p1) is a three-part piecewise function. It can therefore
be integrated as the sum of the integrals of its three pieces. Moreover, Lemma 11 also tells us it can take
two different forms, depending on how λu2 compares to λv2 (i.e. either λu2 ≤ λv2 or λu2 > λv2). This leads
to the expression given in Lemma 14.

Definition 15 (Average Straightness between two edges). The continuous average Straightness between all
the points constituting an edge (u1,v1)∈ E on one side, and all the points constituting an edge (u2,v2)∈ E
on the other side, is:

Su2v2(u1,v1) =


Ŝu2v2(u1,v1)

dE(u1,v1)2/2
= 1, if (u1,v1) = (u2,v2),

Ŝu2v2(u1,v1)

dE(u1,v1)dE(u2,v2)
, otherwise.

(36)
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When we consider the straightness between an edge and itself, the division by 2 prevents from counting
each pair of points twice. Note that like Ŝu2v2(u1,v1), the measure Su2v2(u1,v1) is symmetric relatively to
the concerned edges, i.e. Su2v2(u1,v1) = Su1v1(u2,v2). As illustrated later in Subsection 6.2, Su2v2(u1,v1) can
be used to characterize the mutual accessibility of the considered edges.

Definition 16 (Average Straightness between an edge and the graph). The continuous average Straightness
between an edge (u1,v1) ∈ E and all the points constituting the graph G is:

SG(u1,v1) =

∑
(u2,v2)∈E

Ŝu2v2(u1,v1)

∑
(u2,v2)∈E

dE(u2,v2)dE(u1,v1)−dE(u1,v1)
2/2

. (37)

Like with Definition 13, this average Straightness can be used as a centrality measure, but this time to
describe edges in place of vertices. The value SG(u1,v1) represents the accessibility of the edge from the
points constituting the whole graph.

Note that Equation (37) includes the points constituting the edge of interest itself (i.e. the Straightness
between the edge and itself). If one wants to ignore them, one should use the following expression instead:

SG(u1,v1) =

∑
(u2,v2)6=(u1,v1)

Ŝu2v2(u1,v1)

∑
(u2,v2)6=(u1,v1)

dE(u2,v2)dE(u1,v1)
. (38)

Definition 17 (Average Straightness for the whole graph). The continuous average Straightness between
all pairs of points constituting the graph G is:

SG(G) =

∑
(u1,v1)∈E

∑
(u2,v2)≥(u1,v1)

Ŝu2v2(u1,v1)

∑
(u1,v1)∈E

∑
(u2,v2)≥(u1,v1)

dE(u2,v2)dE(u1,v1)− ∑
(u1,v1)∈E

dE(u1,v1)
2/2

, (39)

where ≥ corresponds to the lexicographical order between edges.

Again, we include in Equation (39) the paths between points located on the same edge. If one wants
to ignore them, one should use instead:

SG(G) =

∑
(u1,v1)∈E

∑
(u2,v2)>(u1,v1)

Ŝu2v2(u1,v1)

∑
(u1,v1)∈E

∑
(u2,v2)>(u1,v1)

dE(u2,v2)dE(u1,v1)
, (40)

where > corresponds to the lexicographical order between edges.

5 Algorithmic Complexity and Discrete Approximations

To summarize the previous section: we introduced 5 distinct continuous average Straightness measures,
allowing to characterize various elements of a spatial graph (vertices, edges and the whole graph). As a
reminder, they are described in Table 1 (top 5 rows).

In this section, we first derive the algorithmic complexity of these 5 variants. Then, we describe how
the two traditional approaches for averaging the Straightness can be considered as discrete approximations
of SG(u) (average Straightness between a vertex u and the graph G) and SG(G) (average Straightness over
the whole graph), and discuss their complexity.

We implemented all our variants of the continuous average Straightness, as well as both discrete
approximations, using the R language, and based on the R version of the igraph library (Csardi and Nepusz
2006). The interest of this library is that it offers an easy access to graph-related operations through its
R interface, while providing fast computations thanks to its underlying C implementation. Note that our
source code is publicly available online1.

1https://github.com/CompNet/SpatialMeasures
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5.1 Continuous Average Straightness

Straightness of a Point Let us first consider the simplest of the 5 variants: Suv(p), i.e. the average
Straightness between a point p and an edge (u,v). Processing Suv(p) requires both the Euclidean and
graph distances between the point p and u and v, the two end-vertices of the edge, as well as the Euclidean
distance between u and v (i.e. the edge length). The Euclidean distances can be obtained in constant
time. However, processing the graph distances is computationally more demanding. The igraph library uses
Dijkstra’s algorithm for this purpose, and the implementation it proposes runs in O(m logm+n) according
to its documentation, where n and m are the numbers of vertices and edges in the graph, respectively. The
next step is to integrate the auxiliary function f (Definition 9) over the edge, which can be done in constant
time. Moreover, we used Wolfram Mathematica to process the closed form of F , its antiderivative, and
implemented it as an R function in order to speed up the calculations, so this step is very short in practice.
The total time complexity is therefore of O(m logm+ n) for this measure, while the space complexity is
O(m+ n), i.e. the memory required to represent the graph. It is interesting to remark that if the graph
is sparse (i.e. m = O(n)), which (by Euler’s Formula) is the case of planar graphs, then these expressions
become O(n logn) and O(n), respectively.

When processing SG(p), the average Straightness between a point p and the whole graph G, we can
repeat roughly the same process over all edges. So, for a graph containing m edges, we get a time
complexity of O(m(m logm+ n)) = O(m2 logm+mn) (or O(n2 logn) for a sparse graph), while the space
complexity stays O(m+n). However, it is worth noticing that, with this approach, some of the distances
will be processed several times (since a vertex can be attached to several distinct edges), and as we already
mentioned, this has a high computational cost. So, instead of processing the graph distances between
p and the end-vertices on-demand, i.e. at each of the m iterations, an alternative approach consists in
computing them separately, and once and for all. This can also be done using Dijkstra’s algorithm, resulting
in a time complexity of O((m logm+n)+m) = O(m logm+n) (or O(n logn) for a sparse graph). The space
complexity is the same, although in practice this method requires more memory, since we need to store all
n distance values. Our implementation proposes both these versions, since the slower one allows handling
large graphs, for which the faster one takes too much memory. As we will see, the same choice can be
made for all the other average Straightness variants involving loops over vertices or edges.

Straightness of an Edge We now focus on Su2v2(u1,v1), the average Straightness between two edges
(u1,v1) and (u2,v2). We need the Euclidean and graph distances between their end-vertices: like before,
this step has a time complexity of O(m logm+n). Because we must now average over two edges, function
f has to be integrated twice. As mentioned before, we already have the closed form of F , its antiderivative.
However, we were not able to obtain the antiderivative of F itself, which is why we used a numerical approach
to perform this integration, through the default R integrate function. Note that, from the computational
complexity perspective, this numerical integration is still considered to be performed in constant time, but
in practice it takes significantly longer. In total, we have a time complexity of O(m logm+ n) for this
measure (the same than for Suv(p), although it actually takes longer to process) and a space complexity of
O(m+n). If the graph is sparse, we respectively get O(n logn) and O(n) instead.

When processing SG(u,v), the average Straightness between an edge (u,v) and the graph G, we roughly
repeat the same process for all m edges. So, its time complexity is O(m(m logm+n)) = O(m2 logm+mn)
(or O(n2 logn) if the graph is sparse), i.e. it is similar to that of SG(p). The space complexity is also
similar, i.e. O(m+n). Like before, if we have enough memory to process the graph distances separately,
the time complexity can be reduced to O(m logm+ n) (or O(n logn) for sparse graphs). This approach
requires storing all 2n additional values, but this does not increase the asymptotic space complexity.

Straightness of the Graph Finally, processing SG(G), the average Straightness over the whole graph G,
is also a similar process, except this time the sum is performed over O(m2) pairs of edges. This results in
a time complexity of O(m2(m logm+n)) = O(m3 logm+m2n) (or O(n3 logn) for sparse graphs). The space
complexity stays the same, i.e. O(m+n) in general, and O(n) for sparse graphs. Like before, we can speed
things up by computing separately the vertex-to-vertex distances. However, this time we need to consider
O(n2) pairs of vertices. The igraph libray can process them in O(mn), according to its documentation,
leading to a total time complexity of O(m2+mn) (or O(n2) for a sparse graph). Memory-wise, igraph needs
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a n×n matrix to store all the distance values, resulting in a total space complexity of O(m+n2) (or O(n2)
for sparse graphs). The first 5 rows of Table 1 summarize these calculations for sparse graphs.

Table 1: Summary of the considered measures: the 5 variants of continuous average Straightness proposed
in Section 4, and the 2 discrete approximations described in Section 5.2. The algorithmic complexity of
certain measures is described by two expressions: the second corresponds to the case where the graph
distances are processed separately (as explained in the text, this speeds up the calculations but requires
more memory). All expressions describe the complexity for sparse graphs (the general case is described in
the text).
Measure Description Complexity

Time Space

Suv(p) Continuous average Straightness between a point
p and an edge (u,v) (Definition 12).

O(n logn) O(n)

SG(p) Continuous average Straightness between a point
p and the graph G (Definition 13).

O(n2 logn)
O(n logn)

O(n)
O(n)

Su2v2(u1,v1) Continuous average Straightness between two ed-
ges (u1,v1) and (u2,v2) (Definition 15).

O(n logn) O(n)

SG(u,v) Continuous average Straightness between an edge
(u,v) and the graph G (Definition 16).

O(n2 logn)
O(n logn)

O(n)
O(n)

SG(G) Continuous average Straightness over all pairs of
points constituting the graph G (Definition 17).

O(n3 logn)
O(n2)

O(n)
O(n2)

σθ (u) Discrete approximation of SG(p) (Section 5.2). O(θ 2n2 logθn)
O(θn logθn)

O(θn)
O(θn)

σθ (G) Discrete approximation of SG(G) (Section 5.2). O(θ 3n3 logθn)
O(θ 2n2)

O(θn)
O(θ 2n2)

5.2 Discrete Approximations

As explained in the introduction, by comparison with the continuous point-to-point approach that we
propose in this article, the traditional approach consists in averaging vertex-to-vertex Straightness values,
either by fixing one vertex u and considering all the others in the graph G (which allows characterizing this
vertex), or by considering all pairs of vertices in the graph or a subgraph (which allows characterizing the
graph or subgraph). For convenience, we note these measures σ(u) and σ(G), respectively. They can be
considered as very rough approximations of SG(u) and SG(G), respectively, in which a vertex is used as a
proxy for the whole edge to which it is attached. However, note that the three other average measures
which we introduced have no counterparts in previous works.

Approximation Method Josselin et al. (2016) proposed a method allowing to obtain more reliable
approximations than σ(u) and σ(G). We use it in the experimental part of this article (Section 6.1). This
method is based on the discretization of the original edges. First, additional 2-degree vertices are added
on the graph edges, in a way such that no remaining edge is longer than some predefined parameter ε.
This amounts to splitting the edges into shorter pieces, resulting in a modified graph G′ = (V ′,E ′) (with
V ⊆V ′). Second, the classic vertex-to-vertex average Straightness values σ(u) and σ(G′) are processed on
this modified graph. For the former, one fixes a vertex u ∈V in the original graph G, averages over V ′ in
the modified graph G′ and gets an approximation of SG(u). For the latter, one averages over all pairs of
vertices in V ′ and obtains an approximation of SG(G).

The smaller the ε value and the better the approximation, but this also has an effect on the processing
time and memory usage, since there are more and more additional vertices and edges to handle. In
the following, instead of using ε to characterize the discretization, we prefer to use the average edge
segmentation, noted θ , which corresponds to the average number of times the original edges are split. For
instance, a value of θ = 4 means an edge of the original graph G is split in 4 segments, in average, in the
modified graph G′. We note σθ (u) and σθ (G) the discrete approximations of SG(u) and SG(G) obtained
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with an average edge segmentation of θ , respectively. According to this notation, we have σ0(u) = σ(u)
and σ0(G) = σ(G), respectively. In the rest of this section, we derive the algorithmic complexity of these
measures by first considering separately the discretization process and the computation of σ(u) and σ(G′)
on the resulting modified graph, before combining them to get the total expressions.

Complexity of the Discretization Process The process of discretizing the graph edges requires to split
each edge into θ smaller parts. For this purpose, the first step is to build a new graph containing only the
original vertices (without any edge). Then, the second step would be to iteratively process each original
edge, inserting new vertices at the splitting points and adding the corresponding new edges to connect
them.

However, with the igraph library, the asymptotic complexity of inserting new objects in the graph does
not depend on the number of inserted objects, be it vertices or edges. Inserting one or several new vertices
runs in O(n), whereas for new edges it is O(m+n), according to the official documentation. So, instead of
inserting new vertices and edges at each iteration, it is faster to iteratively build the lists of new vertices
and edges for the whole graph, and insert them all simultaneously, once all the original edges have been
processed. This way, the time complexity of the whole discretization process is O(m+ n+(m+ n))) =
O(m+n). The graph G′ resulting from the discretization contains n′ = n+(θ −1)m vertices and m′ = θm
edges, so we have n′ = O(n+ θm) and m′ = O(θm). The discretization process requires to represent
simultaneously the original (G) and modified (G′) graphs, as well as the lists of new vertices and edges, so
its space complexity is O((n+m)+((n+θm)+θm)) = O(n+θm).

Complexity of the Averaging Process Processing the Straightness between two vertices requires com-
puting both the graph and Euclidean distances between them. As explained before, the former can be
handled in constant time, whereas the latter has a O(m logm+ n) time complexity in igraph. Proces-
sing σ(u), the discrete average Straightness between a fixed vertex u and all the other vertices in the
original graph G, consists in repeating the same process n times, so we get a total time complexity of
O(n(m logm+ n)) = O(mn logm+ n2). The space complexity is O(m+ n), which corresponds to the me-
mory required to represent the graph. Like for the continuous average measures, if the available memory
is large enough, one can process all the necessary distances separately, using Dijkstra’s algorithm. This
leads to a total time complexity of O((m logm+n)+n) = O(m logm+n). Memory-wise, we need to store
n distance values, in addition to the graph, so the memory usage increases in practice, but the asymptotic
space complexity stays O(m+n).

For σ(G), the discrete average Straightness over the whole graph, the average must be processed over
O(n2) pairs of vertices, resulting in a time complexity of O(n2(m logm+n)) = O(mn2 logm+n3), while the
space complexity is O(m+ n). If there is enough memory to process all vertex-to-vertex graph distances
separately, the time complexity can be decreased to O((m logm+ n)+ n2) = O(m logm+ n2) whereas the
space complexity increases to O(m+n2).

Total Complexity Based on our previous calculations, we can now derive the total complexity of σθ (u)
and σθ (G): we add the cost of the discretization process to that of the processing of σ(u) or σ(G′) on
the modified graph G′. For σθ (u), we get a time complexity of O((m+ n)+ (m′n′ logm′+ n′2)) = O((n+
θm)θm logθm+ n2) and a space complexity of O((θm+ n)+ (m′+ n′)) = O(θm+ n). When considering
sparse graphs, these expressions can be simplified to O(θ 2n2 logθn) and O(θn), respectively. If the distances
are processed separately, the time complexity becomes O((m+n)+(m′ logm′+n′)) = O(θm logθm+n) (or
O(θn logθn) for sparse graphs), whereas the space complexity stays the same.

For σθ (G), the time complexity is O((m+ n) + (m′n′2 logm′+ n′3)) = O((θmn2 + θ 3m3) logθm+ n3)
and the space complexity is O((m+ n)+ (m′+ n′)) = O(θm+ n). When considering sparse graphs, these
expressions can be simplified to O(θ 3n3 logθn) and O(θn), respectively. If the distances are processed
separately, the time complexity decreases to O((m+ n)+ (m′ logm′+ n′2)) = O(θ 2m2 + n2) and the space
complexity increases to O((m+n)+ (m′+n′2)) = O(θ 2m2 +n2). For sparse graphs, we can simplify both
these expressions to O(θ 2n2). The last 2 rows of Table 1 summarize the main complexity results for these
discrete approximations, on sparse graphs.
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5.3 Comparison and Practical Considerations

In this subsection, we compare the complexities of the continuous average Straightness measures SG(p)
and SG(G), with those of their respective discrete approximations σθ (u) and σθ (G). We then discuss some
important practical computational aspects which do not appear when only considering the asymptotic
complexity.

Complexity Comparison We first consider the average Straightness for a fixed vertex. With the method
consisting in computing the distances on-demand, we have a time complexity of O(m2 logm+mn) for SG(u)
vs. O((n+θm)θm logθm+ n2) for σθ (u). The latter can be rewritten as O(θ 2m2 logθm+(θm logθm+
n)n), and the discrete approximation has therefore a larger time complexity. When processing the distances
separately, we have O(m logm + n) vs. O(θm logθm + n), so the conclusion is the same. The space
complexities are O(m+n) vs. O(θm+n), independently from the way we handle the distances, so again,
the continuous approach has a lower complexity.

We now switch to the average Straightness for the whole graph. When processing the distances on-
demand, the time complexity is O(m3 logm+m2n) for SG(G) vs. O((θmn2 +θ 3m3) logθm+n3) for σθ (G).
Unlike before, these expressions cannot be compared directly. We will consider instead separately the three
cases corresponding to the possible orders of magnitude of m: O(1) (quasi-empty graph), O(n) (sparse
graph) and O(n2) (dense graph). In the first case, the time complexity of SG(G) simplifies to O(n) whereas
that of σθ (G) contains a n3 term. In the second case, we obtain O(n3 logn) vs. O(θ 3n3 logθn) (cf. Table
1). In the third case, it is O(n6 logn2) vs. O(θ 3n6 logθn2). Therefore, in all cases the complexity is lower
for the continuous average. Memory-wise, we have O(m+n) for SG(G) vs. O(θm+n) for σθ (G), so the
space complexity is also lower for the continuous average.

When processing the distances separately, the time complexities are O(m2+mn) for SG(G) vs. O(θ 2m2+
n2) for σθ (G). By using the same approach as before (based on the three possible orders of magnitude of
m), we conclude the time complexity of the continuous average is lower. For the space complexity, we have
O(m+n2) vs. O(θ 2m2 +n2), so the complexity is also lower here for the continuous average. In the end,
the asymptotic complexities of the continuous average measures are always lower than for their discrete
approximations, be it in terms of processing time or memory usage.

Memory usage It is important to notice that, for all considered measures (including the 5 continuous
variants and 2 discrete approximations), the most costly step in terms of both computational time and
memory usage, is the processing and storage of the graph distances. In comparison, the computation of
the average Straightness itself is negligible. As explained before, we can speed up the overall processing
by computing the graph distances separately, i.e. before iterating over the concerned vertices or edges.
However, this requires to store all these data, which in turn can raise a memory problem. The need to use
this extra space does not necessarily affect the asymptotic space complexity, but in practice the memory
usage still increases significantly.

For instance, storing all the vertex-to-vertex distances for a 100,000 vertices graph requires approxima-
tely 75 GB of RAM on a standard programming environment. And this is in addition to the memory already
used to represent the graph itself. Processing distances on-demand allows saving a lot of memory, at the
price of some extra processing, since the same distances will be processed several times when iterating over
the vertices or edges. The difference is that the memory restriction is a hard limit, whereas one can always
decide to let the program run longer. So in practice, memory usage, and not processing time, quickly
becomes the limitation preventing from handling large graphs.

6 Empirical Validation

In this section, we study experimentally our 5 variants of the continuous average Straightness. First, in
Subsection 6.1, we compare the performance of our continuous average variants with that of their discrete
counterparts, in terms of computational time, memory usage and precision. Second, in Subsection 6.2 we
describe their behavior on a collection variety of graphs, and highlight how it differ from the traditional
vertex-to-vertex average Straightness. We summarize and discuss our main findings in Subsection 6.3.
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6.1 Performance Study

We first empirically evaluate the performance of our continuous approach in terms of computational time
and memory usage, and compare it to its discrete approximations. Our study is conducted on artificially
generated networks.

Methods We randomly generate spatial graphs using the following method. First, we draw n vertices
uniformly distributed over a predefined square. The exact dimension of this square is unimportant, since the
Straightness is a ratio of distances. Second, we connect these vertices using two alternative methods: on
the one hand, Delaunay’s triangulation (Delaunay 1934) to obtain a planar graph, and on the other hand,
the Erdős-Rényi model (Erdős and Rényi 1959) to get a non-planar one. We do not observe any noticeable
difference between the performances obtained on both types of graphs. Moreover, the Straightness is
generally used to characterize physical networks modeled by planar graphs, such as road networks. For
these reasons, in the rest of this section we only present the detailed results obtained for the planar graphs.

To get representative results, we generate 10 instances of graphs for n = 10, 25, 50 and 100. We
observe a similar behavior for all the considered graph sizes n, so in the rest of this section we only
show the n = 50 plots. For each generated graph, we compute two variants of the average continuous
Straightness: SG(u), which characterizes an individual vertex u by its average Straightness with the rest
of the points constituting the graph G (Definition 13), and SG(G), which characterizes the whole graph
by the average Straightness between all pairs of its constituting points (Definition 17). We also process
their respective discrete approximations σθ (u) and σθ (G) using an increasing average edge segmentation
θ . In other words, we compute vertex-to-vertex Straightness with an increasing number of vertices. This
includes σ(u) and σ(G), the discrete average processed on the original graph (i.e. we start with θ = 0 then
increase θ). As explained in Section 5, we have proposed two approaches to process each one of these four
measures: one is time-efficient, the other is memory-efficient. In this part of our experiments, we used only
the fastest method, since the size of the graphs allows it.

Figure 5: Comparison of the Straightness obtained through the discrete approximation (blue) and the
continuous average (red), on random planar graphs. The values are displayed for a given vertex (SG(u) and
σθ (u), left) and a given graph (SG(G) and σθ (G), right), as functions of the average edge segmentation
θ .

Quality of Approximation Figure 5 compares the continuous average Straightness (in red) and its
discrete approximation (in blue) for a single vertex (SG(u) and σθ (u), left plot) and a single graph instance
(SG(G) and σθ (G), right plot). These values are plotted as functions of the average edge segmentation
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θ . Of course, only the discrete approximations depend on this parameter, so the continuous averages take
the form of straight lines. Remark that both x axes use a logarithmic scale, which is also the case for the
other plots presented in this section. This explains why the values obtained for θ = 0 are separated from
the rest of the data.

We selected these two specific plots because they are very representative of the other vertices and
graphs generated during this experiment. As mentioned before, we ran the same experiments 10 times, so
we could have represented all of them on the same plots. However, doing so is not illustrative at all, since
we can get very different Straightness values from one run to the other, due to the stochastic nature of
our graph generation process. This is why we first focus on a specific vertex and a specific graph in this
figure, whereas the results for all 10 runs are presented under a different form later, in Figure 6.

Our first observation is that, when averaged over only the original vertices (i.e. for an average edge
segmentation of θ = 0), σ(u) and σ(G) are poor approximations of SG(u) and SG(G). As explained before,
these values are separated from the others on the plots, due to the logarithmic scale. They generally reach
very high Straightness values (close to 1), as illustrated by the examples of Figure 5. The approximation
gets better when we start discretizing the edges: the values quickly decrease. However, they drop to
the point where they underestimate the continuous average. Then, they get asymptotically closer to it
when the average edge segmentation increases, i.e. when the edges are split into smaller and smaller
pieces. Incidentally, this is a good empirical validation of our implementation of the continuous average
Straightness, since there seems to be convergence.

Figure 6: Difference between the discrete approximation and the continuous Straightness, on random
planar graphs. The displayed values correspond to individual vertices (σθ (u)− SG(u), left) and whole
graphs (σθ (G)−SG(G), right), for all 10 runs, as functions of the average edge segmentation θ .

Figure 6 shows the results obtained for all 10 runs (and not a single vertex or graph like before), but
under a slightly different form. The x axis has the same meaning as in Figure 5, but the y axis now
represents the difference between the discrete approximation and the continuous average Straightness. All
vertices are represented in the left plot by their corresponding σθ (u)−SG(u) values, and all graphs in the
right one by their σθ (G)−SG(G) values. In both plots, the dashed line materializes a zero difference.

Both plots confirm the trend observed on the individual vertex and graph plots from Figure 5. Intuitively,
when considering Figure 6, the discrete approximation seems to become fairly close to the continuous
average when the edges are split in 40–50 pieces or more. However, it seems difficult to generalize this
threshold, because Figure 6 shows a considerable variance among the considered vertices and graphs, even
though they were generated using the same procedure and parameters. This difference could be even
stronger with graphs of completely different origins. To summarize, the discrete approximation is unreliable
for low average segmentation values, and it is hard to determine an ideal threshold for which it becomes a

18 / 25



V. Labatut – Continuous Average Straightness in Spatial Graphs

good approximation of the continuous average.

Figure 7: Comparison of the processing times required by the continuous average Straightness (red) and its
discrete approximation (blue), on random planar graphs. The displayed values represent individual vertices
(left) and whole graphs (right), as functions of the average edge segmentation θ , for all 10 runs.

Computational Time Figure 7 displays the computational times measured when processing the results
shown in Figure 6: individual vertices on the left, whole graphs on the right, all 10 runs at once. Like
before, the red lines represent the continuous average Straightness whereas the blue dots are the discrete
approximations. The times are expressed in seconds, and were obtained using a plain desktop Intel i5 3Ghz
8GB machine running Ubuntu 16.10. When dealing with individual vertices (SG(u) and σθ (u), left plot),
processing the continuous average is generally much faster. The discrete approximation is actually faster
when dealing with the original graph, and when the discretization is very rough, but as mentioned before,
this leads to very poor estimations of the continuous average. When reaching the previously established
intuitive threshold of a 40–50 average edge segmentation, the processing times are already much higher
for the discrete approximation.

The results are not as favorable to the continuous average when considering the whole graph (SG(G)
and σθ (G), right plot). As explained in Section 5.1, this is due to the fact the auxiliary function f (from
Definition 9) is integrated analytically to get SG(u), whereas we need to use a numerical, slower approach
when computing SG(G). Consequently, the processing times reached by the discrete averages are com-
parable to those of the continuous ones when reaching the 40–50 threshold. However, additional results
obtained on real-world road networks using this threshold (cf. Table 2) show that, in more realistic situa-
tions, the processing time of the discrete approximation increases much faster. Moreover, the processing
time of the continuous average Straightness could be made shorter by taking advantage of a faster tool to
perform the numerical integration, rather than the default R function we used in this experiment.

Memory Usage Figure 8 displays the memory usage, expressed in MB, for the same data than Figures 6
and 7: all 10 runs at once, individual vertices on the left plot and whole graphs on the right one, continuous
average Straightness in red and discrete approximations in blue. Each plot presents three discontinuities for
the discrete approximation, which we suppose to be caused by the garbage collector of the R environment:
it is automatically triggered, and the user has no control over it.

The comparison is clearly in favor of the continuous average Straightness, both for single vertices and
whole graphs. Its memory usage is much lower than that of the discrete approximation, long before the
40–50 average segmentation limit we previously identified. This is an important point, since the discrete
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Figure 8: Comparison of the memory used when processing the continuous average Straightness (red) and
its discrete approximation (blue), on random planar graphs, for all 10 runs. The layout is similar to that of
Figure 7.

approximation could quickly become intractable in practice on a computer with insufficient memory. This
is mainly due to the large number of vertices and edges introduced by the edge discretization process
described in Section 5.2.

6.2 Behavior of the Measures

We now study how the various versions of the average Straightness behave over regular graphs, before
switching to non-regular and random graphs, and finally real-world road networks.

S(v1,vi) Sv1v2(vi) Sviv j (v1)

Figure 9: Straightness obtained on a square regular graph, represented through a color gradient. In the
left graph, each vertex vi ∈V is colored depending on S(v1,vi), the vertex-to-vertex Straightness between
this vertex vi and the fixed vertex v1 (bottom-left vertex in the graph). The center graph displays Sv1v2(vi),
the continuous average Straightness between vi and the fixed edge (v1,v2) in a similar fashion. In the
right graph, each edge (vi,v j) ∈ E is colored depending on Sviv j(v1), the continuous average Straightness
between the fixed vertex v1 and this edge (vi,v j). The fixed vertices and edge are represented in purple.

Figure 9 displays some results obtained for square grids, using a color gradient to represent the Straig-
htness of vertices and edges. The left graph displays S(v1,vi), i.e. the traditional Straightness between
two vertices (so, not an average value). Notice that the first vertex is fixed to v1, which is located at the
bottom-left corner of the graph and represented in purple. So, the color of a given vertex vi corresponds to
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its Straightness with v1, as traditionally defined (Definition 1). The center and right graphs show Sv1v2(vi)
and Sviv j(v1), respectively, i.e. they both represent the continuous average Straightness between a vertex
and an edge, but under two different forms. In the former, the edge is fixed to (v1,v2) (represented in
purple) and each vertex is colored depending to its average Straightness with this edge. In the latter, the
vertex is fixed to v1 (also in purple) and each edge is colored depending on its average Straightness with
v1.

The left graph illustrates the behavior of the traditional Straightness on such a grid: the vertices
located on the same column or row as v1 have a maximal Straightness, whereas it gets lower and lower
when getting closer to the diagonal. This is due to the fact there is no diagonal edges in this graph (only
vertical and horizontal ones), so being on the diagonal means making more detours. As expected, the
continuous average Straightness exhibit a similar behavior. For the center graph, which focuses on edge
(v1,v2), the difference is that the orientation of the edges affects the obtained values. For instance, v16
gets a lower value than in the left graph, whereas v17 gets a higher value. This is because v1, v2 and v16 are
not collinear, so going from a point on (v1,v2) to a point on (v1,v16) is not a straight path (unlike going
from v1 to v16, which is the path considered in the left graph). For the right graph, the difference with the
traditional Straightness (left graph) is more visible: it shows the average Straightness of edges, instead of
vertices. There is not much difference, in terms of color distribution, with the left graph, due to the regular
nature of the graph. However, we will see later that this remark does not necessarily apply in general: the
continuous average Straightness of an edge is not necessary similar to those of its end-vertices.

Figure 9 also allows highlighting an important property of the Straightness: it tends to increase with
the Euclidean distance to the vertex/edge of interest. Indeed, when considering vertices farther and farther
from the vertex/edge of interest, for the ratio defining the Straightness (Definition 1) to be constant, the
detour caused when following the graph edges must grow proportionally to the Euclidean distance, which
is often not the case (it grows slower). This is visible on the figure: in the center graph for instance, v30 is
located one hop away from the row containing the edge of interest (v1,v2), but its Straithgness is higher
than that of v17 which is also located one hop from the row (but much closer from the edge of interest, in
terms of Euclidean distance).

SG(vi,v j) SG(vi,v j) SG(vi,v j)

Figure 10: Straightness obtained on two types of non-regular graphs: heterogeneous (left and center) and
radio-concentric (right). The color gradient corresponds to SG(vi,v j), the continuous average Straightness
between each edge and the rest of the graph.

Of course, this property is present in the original, vertex-to-vertex, Straightness (as shown by the left
graph of Figure 9). But since we consider averages over whole edges in the measures we propose, this
distance effect is coupled to another factor: the length of the considered edges. A long edge is more likely
to get a low Straightness (and vice versa), since reaching its most inner points requires a longer detour.
This does not appear on the regular graphs presented in the previous figures, because their edges are all
of relatively similar lengths. However, it shows in the non-regular graphs appearing in Figure 10, e.g.
edge (v9,v12) in the left graph. This is not to say that only long edges have low Straightness though, as
illustrated by edge (v17,v18) in the same graph, nor that all long edges necessarily have low Straightness,
e.g. the peripheral spires in the radioconcentric graph (right graph).

Figures 11 and 12 focus on the left and right graphs from Figure 10, respectively. In both of them, The
left and center graphs display σ(vi) and SG(vi), the classic vertex-to-vertex average Straightness and the
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σ(vi) SG(vi)

Figure 11: Focus on the left graph of Figure 10. The color gradient corresponds to σ(vi), the vertex-to-
vertex average Straightness (left), and SG(vi), the continuous average Straightness (center) between each
vertex and the rest of the graph. The right plot represents the changes in vertex ranking when comparing
σ(vi) and SG(vi). Each bar corresponds to a specific vertex, and they are ordered in terms of decreasing
σ(vi). The bar height displays how the vertex rank changes when considering SG(vi) instead of σ(vi).

continuous average Straightness between each vertex and the rest of the graph, respectively. Two points
are worth mentioning. First, the continuous average Straightness of and edge and its attached vertices
are not necessarily similar. This was not obvious based on Figure 9, but is much clearer when considering
the heterogeneous graphs. For instance, in the left graph of Figure 10, we can see that SG(v9,v12), the
continuous average Straightness between edge (v9,v12) and the rest of the graph, is under 0.7. In the
center graph of Figure 11, the values observed for SG(v9) and SG(v12), the continuous average Straightness
between these vertices and the rest of the graph, is clearly higher, reaching approximately 0.9.

σ(vi) SG(vi)

Figure 12: Focus on the right graph of Figure 10. The layout and color code are similar to those of Figure
11.

Second, we observe that the values obtained with σ(vi) are generally larger, which is consistent with
what we previously noticed during the performance study (Figure 5), but was not obvious on Figure 9.
However, the continuous average is not just a monotic function of its discrete counterpart. For instance,
in Figure 11, σ(v15) > σ(v3), but SG(v15) < SG(v3). In Figure 12, the vertex with the highest average
Straightness is the center when considering σ(vi), but the peripheral vertices reach a higher value than
the center with SG(vi). This is due to the previous observation, regarding the fact the continuous average
Straightness is affected by the edge length. In the case of the radioconcentric graph, the peripheral vertices
have the best access to a number of peripheral spires (in addition to certain radii), which happen to be
the longest edges in the graph.

This aspect is studied further through the right plots in Figures 11 and 12, which both display the
changes in vertex ranks when switching from σ(vi) to SG(vi). Each bar represents a vertex, and the
vertices are horizontally sorted by decreasing σ(vi), i.e. the top (resp. bottom) vertex in terms of σ(vi) is
located on the left (resp. right) side of the plot. The y axis corresponds to the rank changes undergone
by the vertices when considering SG(vi) instead of σ(vi). For a given vertex vi, a negative value means
it is better ranked when considering σ(vi) than SG(vi), whereas a positive value means the opposite. On
the heterogeneous graph from Figure 11, one can see that the most extreme vertices in terms of σ(vi) are
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ranked similarly in terms of SG(vi), but that there are important changes from most other vertices. On the
radioconcentric graph from Figure 12, it appears that the vertices best ranked according to σ(vi) (left-side
bars), i.e. the most central vertices, are the worst ranked in terms of SG(vi) (largely negative values). On
the contrary, the worst ranked vertices according to σ(vi) (right-side bars) get better ranks with SG(vi)
(positive values).

Table 2: Main topological properties of the considered real-world road networks, and corresponding pro-
cessing times. These are indicated for both SG(u), the continuous average Straightness between a vertex
and the rest of the graph, and σθ (u), its discrete approximation. For both measures, the first specified
value is an average over a 25-vertex sample, and the second one (between parenthesis) is the associated
standard deviation. Both are expressed in seconds.
City Vertex count Edge count Density Processing time

n m For σθ (u) For SG(u)
Abidjan 2577 2908 8.76 ·10−4 490.12 (0.02) 4.00 (0.08)
Karlskrona 2619 2999 8.75 ·10−4 672.36 (0.02) 4.11 (0.06)
Soustons 6803 7351 3.18 ·10−4 3889.20 (0.10) 18.13 (0.10)
Maastricht 9539 10929 2.40 ·10−4 7379.10 (0.08) 35.84 (0.18)
Trois-Rivières 12001 14014 1.95 ·10−4 11504.23 (0.12) 55.54 (0.26)
Alice Springs 17011 17790 1.23 ·10−4 16765.85 (0.17) 93.38 (0.56)
Sfax 17152 19702 1.34 ·10−4 21122.19 (0.14) 131.18 (0.42)
Avignon 19481 21898 1.15 ·10−4 25438.31 (0.20) 136.30 (0.77)
Liverpool 28739 33424 8.09 ·10−5 52773.02 (0.20) 313.55 (3.32)
Ljubljana 30854 34684 7.29 ·10−5 60572.10 (0.31) 369.35 (26.91)
Lisbon 35231 40853 6.58 ·10−5 79702.34 (0.44) 495.99 (9.46)
Dakar 36561 45041 6.74 ·10−5 98568.74 (0.40) 530.90 (7.62)
Hong Kong 46145 49559 4.65 ·10−5 111724.71 (0.36) 790.45 (8.67)

Finally, we processed the continuous average Straightness of a selection of 13 real-world road networks
of various sizes and shapes. These were obtained using the OpenStreetMap website2. The processing
times are much larger than for the artificially generated networks considered before, due to the size of
the real-world networks. Table 2 describes the networks (numbers of vertices n and edges m, and edge
density), and gives the processing times for SG(u), the continuous average Straightness between a vertex
and the rest of the graph, and σθ (u), its discrete approximation. We used θ = 50, as this is the threshold
empirically identified as appropriate to get a reliable estimation (cf. Subsection 6.1). These measures were
processed for a sample of 25 vertices in each network, and the table therefore displays average values and
standard deviations. The durations increase much faster for the discrete approximation. With regards to
the obtained Straightness values, the difference between σθ (u) and SG(u) is smaller than 103, in average.

As an example, Figure 13 displays a part of the city of Avignon, France. It represents Suv(r) the
continuous average Straightness between a vertex of interest r and each edge of the graph. Vertices are
not represented because this would prevent clearly distinguishing the edges color. The right-hand plot is a
zoom-in of the left-hand part, focusing on the city center. The fixed vertex corresponds to the city hall,
and is represented in purple. The color distribution shows that most of the city can be accessed efficiently
when starting from this point, due to its radial structure. However, there are exceptions, which can be
explained.

There are two small yellow patches in the eastern part. Both are located near the city bypass, but not
directly connected to it, which explains their low accessibility (Straightness). Moreover, the bottom one
neighbors a seemingly empty zone, which is actually a freight train station. The fact that there is no road
crossing the railroad in this zone also explains the observed low Straightness. The larger yellow patch on
the southwestern part is not very well connected due to a similar reason, except this time the empty zone
corresponds to the hight-speed train station (TGV). The lower accessibility in this area is also caused by
the presence of an industrial activity sector, a water treatment plant and a recycling plant. On the western
side, the accessibility is also globally lower, because the Rhône river splits the urban area in two along a

2https://www.openstreetmap.org
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Figure 13: Straightness obtained for the city of Avignon, France: whole city (left) and city center (right).
The color gradient corresponds to Suv(r), the average Straightness between a fixed vertex corresponding to
the city hall (represented in purple) and each edge of the graph.

southwest to northeast axis. The blue parts correspond to a large, non-urbanized river island, which is
only lightly connected to the road network. Finally, there are also traces of low Straightness in the city
center, very near to the town hall. This is due to the distance effect we observed before when discussing
the Straightness properties: on close destinations, it is more likely for the graph shortest path to be much
longer than the distance as the crow flies, much more so than for distant destinations. This is particularly
true for the center of Avignon, which is a medieval area with very convoluted streets, as illustrated by the
right-hand plot of Figure 13.

6.3 Final Observations

Let us now summarize the main findings of this experimental section. As mentioned in the introduction,
there is a conceptual interest to the computation of a continuous average of the Straightness, by opposition
to the traditional vertex-based discrete approach, because it allows taking into account any itineraries, and
not only the vertex-to-vertex ones. The question is to know whether this changes anything in practice.

The first conclusion of our experiments is that, indeed, both approaches lead to different values in
practice, as illustrated on random graphs (Figures 5 and 11), regular graphs (Figure 9) and non-regular
graphs (Figure 12). Moreover, if the continuous values seem to generally be smaller than the vertex-to-
vertex average, we also showed that this was not true in general (Figures 5, 6, 11 and 12). In fact, when
sorting vertices in terms of average Straightness, using our continuous approach can lead to largely different
rankings compared to the traditional approach, as illustrated by Figures 11 and 12.

So in other terms, the discrete and continuous average Straightness values behave differently. We
described how these differences can be explained by the fact the continuous average Straightness is affected
by the length of the considered edges. We also have shown the relevance of our continuous approach when
applied to real-world road networks (Figure 13).

The second conclusion of our experiments is that it is not worth using the discrete approach to approx-
imate the continuous average Straightness. Reaching a good approximation level requires performing a
very fine discretization of the edges, which in turn strongly increases both the processing time and memory
usage (Figures 7 and 8, and Table 2).

7 Conclusion

In this article, we derived 5 different versions of the average Straightness for spatial graphs, based on a
continuous approach, by contrast with the discrete (vertex-to-vertex) method traditionally adopted in the
literature. We then validated them experimentally on a wide variety of graphs, and showed that they are

24 / 25



V. Labatut – Continuous Average Straightness in Spatial Graphs

qualitatively different from their discrete counterparts, in the sense they allow to describe the graphs in
a different way. Moreover, we also showed that using a discrete approach to approximate the continuous
average Straightness is not efficient, since it requires more resources (both time and memory) to obtain a
similar precision.

We think this work could be extended mainly in two ways. First, the computational performance could
be improved for some of the proposed measures, either by selecting a faster tool to perform the numerical
integration, or more straightforwardly by calculating a closed form of the anti-derivative of F (itself the
anti-derivative of the auxiliary function f from Definition 9). However F is itself a convoluted function,
and state-of-the-art automatic tools cannot handle it as of now.

Second, and more importantly, the method we proposed is generic and could be applied to any measure
defined for spatial graphs: we focused on the Straightness here only because we needed this specific measure
for a larger project. In particular, in Section 3 we have expressed both the Euclidean and graph distances
under a form suitable for integration, so processing the continuous average of any distance-based measure
(for instance the spatial closeness centrality, or the tortuosity measure) would require performing only the
extra steps from Section 4. Of course, depending on the considered measure, these steps might also raise
problems of their own, e.g. regarding the integrability of the measure.
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