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1 Introduction

The reader should see [K] for the standard descriptive set theoretic notation and material used in

this paper. All our relations will be binary. The motivation for this work goes back to the following

so called G0-dichotomy, essentially proved in [K-S-T].

Theorem 1.1 (Kechris, Solecki, Todorčević) There is a Borel relation G0 on 2ω such that, for any

Polish space X and any analytic relation A on X, exactly one of the following holds:

(a) there is c :X→ω Borel such that c(x) 6=c(y) if (x, y)∈A (a countable Borel coloring of A),

(b) there is f :2ω→X continuous such that G0⊆(f×f)−1(A).

This result had a lot of developments since. For instance, Miller developed some techniques to

recover many dichotomy results of descriptive set theory, without using effective descriptive set theory

(see [M]). He replaces it with some versions of Theorem 1.1. In particular, he can prove Theorem 1.1

without effective descriptive set theory. In [L1], the author derives from Theorem 1.1 a dichotomy

result characterizing when two disjoint analytic sets can be separated by a countable union of Borel

rectangles. In order to state it, we give some notation that will also be useful to state our main results.

Notation. Let, for ε∈2 :={0, 1}, Xε, Yε be Polish spaces, and Aε, Bε be disjoint analytic subsets of

Xε×Yε. We set

(X0, Y0, A0, B0) ≤ (X1, Y1, A1, B1) ⇔

∃f :X0→X1 ∃g :Y0→Y1 continuous with A0⊆(f×g)−1(A1) and B0⊆(f×g)−1(B1).

If X is a set, then the diagonal of X is ∆(X) :={(x, x) | x∈X}.

Theorem 1.2 Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of X×Y . Exactly one

of the following holds:

(a) the set A can be separated from B by a countable union of Borel rectangles,

(b)
(

2ω, 2ω,∆(2ω),G0

)

≤ (X,Y,A,B).

It is easy to check that Theorem 1.1 is also an easy consequence of Theorem 1.2. This means that

the study of the countable Borel colorings is highly related to the study of countable unions of Borel

rectangles. It is natural to ask for level by level versions of these two results, with respect to the Borel

hierarchy. This work was initiated in [L-Z], where the authors prove the following.

Theorem 1.3 (Lecomte, Zelený) Let ξ∈{1, 2, 3}. Then we can find a zero-dimensional Polish space

X, and an analytic relation A on X such that for any (zero-dimensional if ξ=1) Polish space X, and

for any relation A on X, exactly one of the following holds:

(a) there is a countable ∆
0
ξ-measurable coloring of A,

(b) there is f :X→X continuous such that A⊆(f×f)−1(A).

In [L-Z], the authors note that the study of countable ∆
0
ξ-measurable colorings is highly related

to the study of countable unions of Σ0
ξ rectangles, since the existence of a countable ∆

0
ξ-measurable

coloring of a relation A on a (zero-dimensional if ξ=1) Polish space X is equivalent to the fact that

∆(X) can be separated from A by a countable union of Σ0
ξ rectangles, by the generalized reduction

property for the class Σ0
ξ (see 22.16 in [K]). In this direction, they prove the following.
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Theorem 1.4 (Lecomte, Zelený) Let ξ ∈ {1, 2}. Then we can find zero-dimensional Polish spaces

X,Y, and disjoint analytic subsets A,B of X×Y such that for any Polish spaces X,Y , and for any

pair A,B of disjoint analytic subsets of X×Y , exactly one of the following holds:

(a) the set A can be separated from B by a (Σ0
ξ×Σ

0
ξ)σ set,

(b) (X,Y,A,B) ≤ (X,Y,A,B).

In fact, we can think of a number of related problems of this kind. We can study

- the finite or bounded finite Borel colorings,

- the separation of disjoint analytic sets by a finite or bounded finite union of Borel rectangles,

- the finite, bounded finite, or infinite Borel colorings of bounded complexity,

- the separation of disjoint analytic sets by a finite, bounded finite or infinite union of Borel rectangles

of bounded complexity...

This last question has been studied in [Za] in the case of one rectangle. In [Za], the author

characterizes when two disjoint analytic sets can be separated by a Σ
0
1 (or Π0

ξ when ξ≤2) rectangle.

Louveau suggested that it could be very interesting to study the non-symmetric version of the problem

to understand it better (we can also make this remark for countable unions of rectangles, which is

another motivation for Theorem 1.5 to come). Zamora noticed that the problems of the separation of

analytic sets by a Π0
1×Π

0
2 set and by a (Σ0

1×Σ
0
2)σ set are very much related (he derives a dichotomy

for the rectangles from a dichotomy for the countable unions of rectangles). His technique cannot

be extended to higher levels since it uses countability. However, the relation just mentioned is much

stronger than in [Za], as we will see. The main results in this paper generalize these two Zamora

results, and are, hopefully, steps towards the generalization of Theorem 1.4, and then Theorem 1.3.

The first one is about countable unions of rectangles of the form Σ
0
1×Σ

0
ξ .

Theorem 1.5 Let ξ≥1 be a countable ordinal. Then there are zero-dimensional Polish spaces X,Y,

and disjoint analytic subsets A,B of X×Y such that for any Polish spaces X,Y , and for any pair

A,B of disjoint analytic subsets of X×Y , exactly one of the following holds:

(a) the set A can be separated from B by a (Σ0
1×Σ

0
ξ)σ set,

(b) (X,Y,A,B) ≤ (X,Y,A,B).

The second one is about rectangles of the form Π
0
1×Π

0
ξ .

Theorem 1.6 Let ξ≥1 be a countable ordinal. Then there are zero-dimensional Polish spaces X,Y,

and disjoint analytic subsets A,B of X×Y such that for any Polish spaces X,Y , and for any pair

A,B of disjoint analytic subsets of X×Y , exactly one of the following holds:

(a) the set A can be separated from B by a Π
0
1×Π

0
ξ set,

(b) (X,Y,A,B) ≤ (X,Y,A,B).

One of our key tools to prove these two results is the representation theorem for Borel sets by

Debs and Saint Raymond. A classical result of Lusin-Souslin asserts that any Borel subset B of a

Polish space is the bijective continuous image of a closed subset of the Baire space (see 13.7 in [K]).

There is a level by level version of this result due to Kuratowski: the Baire class of the inverse map

of the bijection is essentially equal to the Borel rank of B (see Theorem 1 in [Ku]).
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The representation theorem for Borel sets by Debs and Saint Raymond refines this Kuratowski

result (see Theorem I-6.6 in [D-SR]). We will state it and recall the material needed to state it in the

next section. Initially, the representation theorem had three applications in [D-SR]: a theorem about

continuous liftings, another one about compact covering maps, and a new proof (involving games

as in the original paper) of the Louveau-Saint Raymond dichotomy characterizing when two disjoint

analytic sets can be separated by a Σ
0
ξ (or Π0

ξ) set (see page 433 in [Lo-SR]). In [L3] and [L4], the

representation theorem is used to prove a dichotomy about potential Wadge classes. Its proof provides

another new proof of the Louveau-Saint Raymond theorem which does not involve games.

A very remarkable phenomenon happens in the present paper. In the applications just mentioned,

the representation theorem was used only inside the proofs. Here, the representation theorem is used

not only in the proofs of Theorems 1.5 and 1.6, but also to define the minimal objects X,Y,A,B.

We believe that the minimal objects cannot be that simple for higher levels. Moreover, Theorem 1.4

provides an extension of Theorem 1.5 to countable unions of Σ0
2 rectangles. It is possible to prove

such an extension using the representation theorem. However, we could not prove further extensions,

leaving the general case of countable unions of rectangles of the form Σ
0
η×Σ

0
ξ , or just Σ0

ξ×Σ
0
ξ , open

for future work.

The organization of the paper is as follows. In Section 2, we recall the material about represen-

tation needed here, as well as some lemmas from [L3], and we give some effective facts needed to

prove our main results. We prove Theorem 1.5 in Section 3, and Theorem 1.6 in Section 4.

2 Preliminaries

2.1 Representation of Borel sets

The following definition can be found in [D-SR].

Definition 2.1.1 (Debs-Saint Raymond) A partial order relation R on 2<ω is a tree relation if, for

s∈2<ω,

(a) ∅ R s,

(b) the set PR(s) := {t∈ 2<ω | t R s} is finite and linearly ordered by R (hR(s) will denote the

number of strict R-predecessors of s, so that hR(s)=Card
(

PR(s)
)

−1).

• Let R be a tree relation. An R-branch is a ⊆-maximal subset of 2<ω linearly ordered by R. We

denote by [R] the set of all infinite R-branches.

We equip (2<ω)ω with the product of the discrete topology on 2<ω. If R is a tree relation, then the

space [R]⊆ (2<ω)ω is equipped with the topology induced by that of (2<ω)ω , and is a Polish space.

A basic clopen set is of the form NR
s :=

{

γ∈ [R] | γ
(

hR(s)
)

=s
}

, where s∈2<ω.

• Let R, S be tree relations with R⊆S. The canonical map Π:[R]→ [S] is defined by

Π(γ) := the unique S-branch containing γ.

The canonical map is continuous.
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• Let S be a tree relation. We say that R⊆S is distinguished in S if

∀s, t, u∈2<ω
s S t S u

s R u







⇒ s R t.

• Let η<ω1. A family (Rρ)ρ≤η of tree relations is a resolution family if

(a) Rρ+1 is a distinguished subtree of Rρ, for each ρ<η.

(b) Rλ=
⋂

ρ<λ Rρ, for each limit ordinal λ≤η.

The representation theorem of Borel sets is as follows in the successor case (see Theorems I-6.6

and I-3.8 in [D-SR]).

Theorem 2.1.2 (Debs-Saint Raymond) Let η be a countable ordinal, and P ∈Π
0
η+1([⊆]). Then there

is a resolution family (Rρ)ρ≤η such that

(a) R0=⊆,

(b) the canonical map Π:[Rη ]→ [R0] is a continuous bijection with Σ
0
η+1-measurable inverse,

(c) the set Π−1(P ) is a closed subset of [Rη].

For the limit case, we need some more definition that can be found in [D-SR].

Definition 2.1.3 (Debs-Saint Raymond) Let ξ be an infinite limit countable ordinal. We say that a

resolution family (Rρ)ρ≤ξ with R0=⊆ is uniform if

∀k∈ω ∃ξk<ξ ∀s, t∈2<ω
(

min
(

hRξ(s), hRξ (t)
)

≤k ∧ s Rξk t
)

⇒ s Rξ t.

We may (and will) assume that ξk≥1.

The representation theorem of Borel sets is as follows in the limit case (see Theorems I-6.6 and

I-4.1 in [D-SR]).

Theorem 2.1.4 (Debs-Saint Raymond) Let ξ be an infinite limit countable ordinal, and P ∈Π
0
ξ([⊆]).

Then there is a uniform resolution family (Rρ)ρ≤ξ such that

(a) R0=⊆,

(b) the canonical map Π:[Rξ ]→ [R0] is a continuous bijection with Σ
0
ξ-measurable inverse,

(c) the set Π−1(P ) is a closed subset of [Rξ].

We will use the following extension of the property of distinction (see Lemma 2.3.2 in [L3]).

Lemma 2.1.5 Let η < ω1, (Rρ)ρ≤η be a resolution family, and ρ < η. Assume that s, t, u ∈ 2<ω,

s R0 t Rρ u and s Rρ+1 u. Then s Rρ+1 t.

Notation. Let η<ω1, (Rρ)ρ≤η be a resolution family with R0=⊆, s∈2<ω, and ρ≤η. We define

sρ :=

{

∅ if s=∅,

s|max{l< |s| | s|l Rρ s} if s 6=∅.

We enumerate {sρ | ρ≤η} by {sξi | 1≤ i≤n}, where n≥1 is a natural number and ξ1<...<ξn=η.

We can write sξn $sξn−1$ ...$sξ2 $sξ1⊆s. By Lemma 2.1.5, sξi+1 Rξi+1 sξi if 1≤ i<n.
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We will also use the following lemma (see Lemma 2.3.3 in [L3]).

Lemma 2.1.6 Let η <ω1, (Rρ)ρ≤η be a resolution family with R0=⊆, s∈ 2<ω\{∅} and 1≤ i<n.

Then we may assume that sξi+1$sξi .

Notation. The map h : 2ω → [⊆], for which h(α) is the strictly ⊆-increasing sequence of all initial

segments of α, is a homeomorphism.

2.2 Topologies

The reader should see [Mo] for the basic notions of effective descriptive set theory.

Notation. Let S be a recursively presented Polish space.

(1) The Gandy-Harrington topology on S is generated by Σ
1
1(S) and denoted ΣS . Recall the

following facts about ΣS (see [L2]).

- ΣS is finer than the initial topology of S.

- We set ΩS := {s∈S | ωs
1=ωCK

1 }. Then ΩS is Σ 1
1 (S) and dense in (S,ΣS).

- W ∩ ΩS is a clopen subset of (ΩS ,ΣS) for each W ∈Σ
1
1 (S).

- (ΩS,ΣS) is a zero-dimensional Polish space. So we fix a complete compatible metric on (ΩS ,ΣS).

(2) We call T1 the usual topology on S, and Tη is the topology generated by the Σ
1
1 ∩Π

0
<η subsets of

S if 2≤η<ωCK
1 (see Definition 1.5 in [Lo]).

The next result is essentially Lemma 2.2.2 and the claim in the proof of Theorem 2.4.1 in [L3].

Lemma 2.2.1 Let S be a recursively presented Polish space, and 1≤η<ωCK
1 .

(a) (Louveau) Fix A∈Σ
1
1 (S). Then A

Tη
is Π0

η, Σ 1
1 , and Σ

0
1(Tη+1).

(b) Let p≥1 be a natural number, 1≤η1<η2<. . .<ηp≤η, S1, . . ., Sp∈Σ
1
1 (S), and O∈Σ

0
1 (S).

Assume that Si⊆Si+1
Tηi+1

if 1≤ i<p. Then Sp ∩
⋂

1≤i<p Si
Tηi ∩O is T1-dense in S1

T1 ∩O.

(c) Let (Rρ)ρ≤η be a resolution family with R0 =⊆, s∈ 2<ω \{∅}, Ssρ ∈Σ
1
1 (S) (for 1≤ ρ≤ η),

E∈Σ
1
1 (S), and O∈Σ

0
1 (S). We assume that Ssη ⊆E

Tη+1
and St⊆Su

Tρ
if u Rρ t$s and 1≤ρ≤η.

Then Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩O and E ∩

⋂

1≤ρ≤η Ssρ
Tρ ∩O are T1-dense in Ss1

T1 ∩O.

Proof. (a) See Lemma 1.7 in [Lo].

(b) Let D be a Σ
0
1 subset of S meeting S1

T1 ∩ O. Then S1 ∩ D ∩ O 6= ∅, which proves the desired

property for p=1. Then we argue inductively on p. So assume that the property is proved for p. Note

that Sp⊆Sp+1
Tηp+1

, and Sp ∩
⋂

1≤i<p Si
Tηi ∩D ∩O 6=∅, by induction assumption. Thus

Sp+1
Tηp+1 ∩

⋂

1≤i≤p

Si
Tηi ∩D ∩O 6=∅.

As
⋂

1≤i≤p Si
Tηi ∩D ∩O is Tηp+1-open, Sp+1 ∩

⋂

1≤i≤p Si
Tηi ∩D ∩O 6=∅.
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(c) We use the notation before Lemma 2.1.6. We enumerate {ξi | ξi ≥ 1} in an increasing way by

{ηi | 1 ≤ i ≤ p}, which means that we forget ξ1 if it is 0. As η ≥ 1, p ≥ 1. Note that we may

assume that sηi+1 $ sηi if 1 ≤ i < p, by Lemma 2.1.6. We set Si := Ssηi , for 1 ≤ i ≤ p. Note

that Si ⊆ Si+1
Tηi+1

if 1 ≤ i < p since sηi+1 Rηi+1 sηi . Thus Ssη ∩
⋂

1≤ξi<η Ssξi
Tξi ∩ O and

E ∩
⋂

1≤ξi≤η Ssξi
Tξi ∩O are T1-dense in Ss1

T1 ∩O, by (b) and since sη1 =s1. But if 1≤ρ≤η, then

there is 1≤ i≤ n with sρ = sξi . And ρ≤ ξi since sξi+1 $ sξi if 1≤ i < n. Thus we are done since

Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ

=Ssη ∩
⋂

1≤ξi<η Ssξi
Tξi and

⋂

1≤ρ≤η Ssρ
Tρ

=
⋂

1≤ξi≤η Ssξi
Tξi . �

2.3 Some general effective facts

Lemma 2.3.1 Let 1≤ η, ξ <ωCK
1 , X,Y be recursively presented Polish spaces, A∈Σ

1
1 (X) ∩Σ

0
η,

B∈Σ
1
1 (Y )∩Σ

0
ξ , and C∈Σ

1
1 (X×Y ) disjoint from A×B. Then there are A′∈∆

1
1∩Σ

0
η, B′∈∆

1
1∩Σ

0
ξ

such that A′×B′ separates A×B from C . This also holds for the multiplicative classes.

Proof. We argue as in the proof of Lemma 2.2 in [L-Z]. �

Theorem 2.3.2 Let 1 ≤ η, ξ < ωCK
1 , X,Y be recursively presented Polish spaces, and A,B be

disjoint Σ 1
1 subsets of X×Y . We assume that A is separable from B by a (Σ0

η×Σ
0
ξ)σ set. Then A is

separable from B by a ∆
1
1 ∩

(

(∆1
1 ∩Σ

0
η)×(∆1

1 ∩Σ
0
ξ)
)

σ
set.

Proof. We argue as in the proof of Theorem 2.3 in [L-Z]. �

The next result is similar to Theorem 2.5 in [L-Z].

Theorem 2.3.3 Let 1 ≤ η, ξ < ωCK
1 , X,Y be recursively presented Polish spaces, and A,B be

disjoint Σ 1
1 subsets of X×Y . The following are equivalent:

(a) the set A cannot be separated from B by a (Σ0
η×Σ

0
ξ)σ set.

(b) the set A cannot be separated from B by a ∆
1
1 ∩ (Σ0

η×Σ
0
ξ)σ set.

(c) the set A cannot be separated from B by a Σ
0
1(Tη×Tξ) set.

(d) A ∩B
Tη×Tξ 6=∅.

Proof. Theorem 2.3.2 implies that (a) is indeed equivalent to (b), and actually to the fact that A cannot

be separated from B by a ∆
1
1 ∩

(

(∆1
1 ∩Σ

0
η)×(∆1

1 ∩Σ
0
ξ)
)

σ
set. By Theorem 1.A in [Lo], a ∆

1
1 ∩Σ

0
ξ

set is a countable union of ∆1
1 ∩Π

0
<ξ sets, and thus Tξ-open, if ξ≥2. Therefore (c) implies (a), and

the converse is clear. It is also clear that (c) and (d) are equivalent. �

The following result is Lemma 3.3 in [Za], and is a consequence of Theorem 2.3.3.

Theorem 2.3.4 Let 1 ≤ ξ, η < ωCK
1 , X,Y be recursively presented Polish spaces, and A,B be

disjoint Σ 1
1 subsets of X×Y . The following are equivalent:

(a) The set A cannot be separated from B by a Π
0
η×Π

0
ξ set.

(b) B ∩ (projX [A]
Tη
×projY [A]

Tξ
) 6=∅.
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3 Countable unions of Σ0
1×Σ

0
ξ sets

Let Q∈Π
0
ξ(2

ω)\Σ0
ξ . Then P :=h[Q]∈Π

0
ξ([⊆])\Σ0

ξ since h is a homeomorphism.

(A) The successor case

Assume that ξ = η+1 is a countable ordinal. Theorem 2.1.2 gives a resolution family (Rρ)ρ≤η.

We set X :=[Rη], Y :=[⊆], A :={(β, α)∈X×Y | Π(β)=α∈P} and

B :={(β, α)∈X×Y | Π(β)=α /∈P}.

Note that X and Y are zero-dimensional Polish spaces, A is a closed subset of X×Y, and B is a

difference of two closed subsets of X×Y, and disjoint from A.

Lemma 3.1 The set A is not separable from B by a (Σ0
1×Σ

0
ξ)σ subset of X×Y.

Proof. We argue by contradiction, which gives a sequence (On)n∈ω of Σ
0
1 subsets of [Rη] and a

sequence (Sn)n∈ω of Σ
0
ξ subsets of [⊆] such that A ⊆

⋃

n∈ω On×Sn ⊆ ¬B. This implies that

P =
⋃

n∈ω Π[On] ∩ Sn. As Π−1 is Σ
0
ξ-measurable, Π[On] ∈Σ

0
ξ([⊆]) and P ∈Σ

0
ξ([⊆]), which is

absurd. �

Proof of Theorem 1.5. The exactly part comes from Lemma 3.1. Assume that (a) does not hold. In

order to simplify the notation, we will asume that ξ <ωCK
1 , X and Y are recursively presented and

A,B are Σ
1
1 , so that N := A ∩ B

T1×Tξ
is a nonempty (by Theorem 2.3.3) Σ 1

1 (as in the proof of

Lemma 2.2.1.(a)) subset of X×Y .

We set I := {s∈ 2<ω | NRη

s ∩ Π−1(P ) 6= ∅}. As B is not empty, we may assume that P 6= ∅. In

particular, ∅∈I . We construct, for s∈2<ω,

- xs∈X and Xs∈Σ
0
1 (X),

- ys∈Y and Ys∈Σ
0
1 (Y ),

- Ss∈Σ
1
1 (X×Y ).

We want these objects to satisfy the following conditions:

(1)







Xt⊆Xs if s Rη t ∧ s 6= t

Yt⊆Ys if s R0 t ∧ s 6= t
St⊆Ss if s Rη t ∧ (s, t∈I ∨ s, t /∈I)

(2) xs∈Xs ∧ ys∈Ys ∧ (xs, ys)∈Ss⊆(Xs×Ys) ∩ΩX×Y

(3) diam(Xs), diam(Ys), diamGH(Ss)≤2−|s|

(4) Ss⊆

{

N if s∈I
B if s /∈I

(5) projY [St]⊆projY [Ss]
Tρ

if s Rρ t ∧ 1≤ρ≤η

8



Assume that this is done. Let β∈X. Note that β(k) Rη β(k+1) for each k∈ω. By (1),

Xβ(k+1)⊆Xβ(k).

Thus (Xβ(k))k∈ω is a decreasing sequence of nonempty closed subsets of X with vanishing diameters.

We define {f(β)} :=
⋂

k∈ω Xβ(k)=
⋂

k∈ω Xβ(k), so that f(β)= limk→∞ xβ(k) and f is continuous.

Now let α∈Y. By (1), Yα(k+1)⊆Yα(k). Thus (Yα(k))k∈ω is a decreasing sequence of nonempty

closed subsets of Y with vanishing diameters. We define {g(α)} :=
⋂

k∈ω Yα(k)=
⋂

k∈ω Yα(k), so

that g(α)= limk→∞ yα(k) and g :Y→Y is continuous.

Let (β, α) ∈ A. Note that β(k) ∈ I for each k ∈ ω. By (1)-(4), (Sβ(k))k∈ω is a decreas-

ing sequence of nonempty clopen subsets of N ∩ ΩX×Y with vanishing GH-diameters. We set

{F (β)} :=
⋂

k∈ω Sβ(k). Note that (xβ(k), yβ(k)) converge to F (β) for ΣX2 , and thus Σ
2
X . So their

limit is
(

f(β), g(α)
)

, which is therefore in N⊆A, showing that A⊆(f×g)−1(A).

Let (β, α)∈B. As Π−1(P ) is a closed subset of [Rη], there is k0∈ω such that β(k) /∈I if k≥k0.

By (1)-(4), (Sβ(k))k≥k0 is a decreasing sequence of nonempty clopen subsets of B ∩ ΩX×Y with

vanishing GH-diameters, and we define {G(β)} :=
⋂

k≥k0
Sβ(k). Note that (xβ(k), yβ(k)) converge

to G(β). So their limit is
(

f(β), g(α)
)

, which is therefore in B, showing that B⊆(f×g)−1(B).

Let us prove that the construction is possible. Let (x∅, y∅) ∈N ∩ ΩX×Y , and X∅, Y∅ ∈Σ
0
1 with

diameter at most 1 such that (x∅, y∅) ∈X∅×Y∅, as well as S∅ ∈ Σ
1
1 (X×Y ) with GH-diameter at

most 1 and (x∅, y∅)∈ S∅ ⊆N ∩ (X∅×Y∅) ∩ ΩX×Y . Assume that our objects satisfying (1)-(5) are

constructed up to the length l, which is the case for l=0. So let s∈2l+1.

Claim The set projY [Ssη ] ∩
⋂

1≤ρ<η projY [Ssρ ]
Tρ

∩ Ys0 is T1-dense in projY [Ss1 ] ∩ Ys0 if η≥1.

Indeed, we apply Lemma 2.2.1.(c) to E :=Y and O :=Ys0 . ⋄

Note that s1⊆s0$s and s1 R1 s0, so that projY [Ss0 ]⊆projY [Ss1 ]. Thus ys0 ∈projY [Ss1 ] ∩ Ys0 .

This shows that I :=projY [Ssη ] ∩
⋂

1≤ρ<η projY [Ssρ ]
Tρ

∩ Ys0 is not empty, even if η=0.

Case 1 s /∈I

1.1 If sη /∈ I , then we choose ys ∈ I , xs ∈ Xsη with (xs, ys) ∈ Ssη , Xs, Ys ∈ Σ
0
1 with diameter at

most 2−l−1 such that (xs, ys) ∈ Xs×Ys ⊆ Xs×Ys ⊆ Xsη ×Ys0, and also Ss ∈ Σ
1
1 (X×Y ) with

GH-diameter at most 2−l−1 such that (xs, ys)∈Ss⊆Ssη ∩
(

Xs×(
⋂

1≤ρ<η projY [Ssρ ]
Tρ

∩ Ys)
)

. If

s Rη t and s 6= t, then s R0 tη Rη t, so that s Rη tη, by Lemma 2.1.5. This implies that Xt⊆Xs and

projY [Stη ]⊆projY [Ss]
Tη

. Thus projY [St]⊆projY [Ss]
Tη

. If moreover s /∈I , then tη /∈I since s Rη tη.

Thus Stη ⊆Ss and St⊆Ss. Similarly, Yt⊆Ys if s R0 t and s 6= t (this is simpler). If 1≤ρ<η, s Rρ t

and s 6= t, then s Rρ tρ, projY [Stρ ]⊆projY [Ss]
Tρ

and projY [St]⊆projY [Ss]
Tρ

.

1.2 If sη∈I , then we choose y∈I , and x∈Xsη with (x, y)∈Ssη . Note that

(x, y)∈B
T1×Tξ ∩

(

Xsη×(
⋂

1≤ρ≤η

projY [Ssρ ]
Tρ

∩ Ys0)
)

.
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This gives (xs, ys)∈B∩
(

Xsη×(
⋂

1≤ρ≤η projY [Ssρ ]
Tρ

∩Ys0)
)

∩ΩX×Y . We choose Xs, Ys∈Σ
0
1

with diameter at most 2−l−1 such that (xs, ys)∈Xs×Ys⊆Xs×Ys⊆Xsη×Ys0 , and Ss∈Σ
1
1 (X×Y ) with

GH-diameter at most 2−l−1 such that (xs, ys)∈Ss⊆B∩
(

Xs×(
⋂

1≤ρ≤η projY [Ssρ ]
Tρ
∩Ys)

)

∩ΩX×Y .

As above, we check that these objects are as required.

Case 2 s∈I

Note that sη∈I . We argue as in 1.1. �

(B) The limit case

Assume that ξ is an infinite limit ordinal. We indicate the differences with the successor case.

Theorem 2.1.4 gives a uniform resolution family (Rρ)ρ≤ξ . We set X :=[Rξ], Y :=[⊆],

A :={(γ, β)∈X×Y | Π(γ)=β∈P},

and B :={(γ, β)∈X×Y | Π(γ)=β /∈P}.

Proof of Theorem 1.5. This time, I := {s∈ 2<ω | NRξ

s ∩ Π−1(P ) 6= ∅}. If s∈ 2<ω, then we set, as

in the proof of Theorem 2.4.4 in [L3], ξ(s) :=max{ξh
Rξ (t)+1 | t⊆ s}. Note that ξ(t)≤ ξ(s) if t⊆ s.

Conditions (1) and (5) become

(1′)







Xt⊆Xs if s Rξ t ∧ s 6= t

Yt⊆Ys if s R0 t ∧ s 6= t
St⊆Ss if s Rξ t ∧ (s, t∈I ∨ s, t /∈I)

(5′) projY [St]⊆projY [Ss]
Tρ

if s Rρ t ∧ 1≤ρ≤ξ(s)

The next claim and the remark after it were already present in the proof of Theorem 2.4.4 in [L3].

Claim 1 Assume that sρ 6=sξ. Then ρ+1≤ξ(sρ+1).

We argue by contradiction. We get ρ+1>ρ≥ξ(sρ+1)≥ξh
Rξ (sξ)+1=ξh

Rξ (s). As sρ Rρ s, sρ Rξ s

and sρ=sξ, which is absurd. ⋄

Note that ξn−1<ξn−1+1≤ξ(sξn−1+1)≤ξ(s). Thus sξ(s)=sξ.

Claim 2 The set projY [Ssξ ] ∩
⋂

1≤ρ<ξ(s) projY [Ssρ ]
Tρ

∩ Ys0 is T1-dense in projY [Ss1 ]
T1

∩ Ys0 .

We conclude as in the successor case, using the facts that ξk≥1 and ξ(.) is increasing. �

4 Π
0
1×Π

0
ξ sets

We consider P as in Section 3.

(A) The successor case

Assume that ξ = η+1 is a countable ordinal. Theorem 2.1.2 gives a resolution family (Rρ)ρ≤η.

We set X :=[Rη]⊕Π−1(¬P ), Y :=[⊆]⊕Π−1(¬P ),

A :=
{(

(0, β), (1, γ)
)

∈X×Y | β=γ
}

∪
{(

(1, γ), (0, α)
)

∈X×Y | Π(γ)=α
}

and B :=
{(

(0, β), (0, α)
)

∈X×Y | Π(β)=α∈P
}

. Note that X and Y are zero-dimensional Polish

spaces, A is a closed subset of X×Y, and B is a closed subset of X×Y disjoint from A.
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Lemma 4.1 The set A is not separable from B by a Π
0
1×Π

0
ξ subset of X×Y.

Proof. Let C ∈ Π
0
1(X) and S ∈ Π

0
ξ(Y) with A ⊆ C×S. Note that C ∩ ({0}× [Rη ]) = {0}×C ′

for some C ′ ∈ Π
0
1([R

η ]). Similarly, S ∩ ({0}× [⊆]) = {0}×S′ for some S′ ∈ Π
0
ξ([⊆]). Let

α ∈ [⊆]\P , and β := γ := Π−1(α). Then
(

(0, β), (1, γ)
)

∈ A, so that β ∈ C ′ and α ∈ Π[C ′].
Similarly,

(

(1, γ), (0, α)
)

∈A, so that α∈S′. This shows that [⊆]\P ⊆Π[C ′] ∩ S′. As P /∈Σ
0
ξ([⊆]),

there is α∈Π[C ′] ∩ S′ ∩ P , and
(

(0, β), (0, α)
)

∈B ∩ (C×S) if β :=Π−1(α). �

Proof of Theorem 1.6. The exactly part comes from Lemma 4.1. Assume that (a) does not hold.

In order to simplify the notation, we will assume that ξ < ωCK
1 , X and Y are recursively presented

and A,B are Σ
1
1 , so that N :=B ∩ (projX [A]×projY [A]

Tξ
) is a nonempty Σ

1
1 subset of X×Y , by

Theorem 2.3.4.

We set I := {s∈ 2<ω | NRη

s ∩ Π−1(P ) 6= ∅}. As A is not empty, we may assume that P 6= ∅. In

particular, ∅∈I . We define, for t∈2<ω, tc∈2 by tc :=χ¬I(t). We construct

- xε,s∈X and Xε,s∈Σ
0
1 (X) when (ε, s)∈({0}×2<ω) ∪

(

{1}×(¬I)
)

,

- yε,s∈Y and Yε,s∈Σ
0
1 (Y ) when (ε, s)∈({0}×2<ω) ∪

(

{1}×(¬I)
)

,

- Sε,ε′,s∈Σ
1
1 (X×Y ) when (ε, ε′, s)∈22×2<ω, (ε 6=ε′ ∧ s /∈I) or (ε=ε′=0 ∧ s∈I).

We want these objects to satisfy the following conditions:

(1)















Xε,t⊆Xε,s if s Rη t ∧ s 6= t

Y0,t⊆Y0,s if s R0 t ∧ s 6= t

Y1,t⊆Y1,s if s Rη t ∧ s 6= t
Sε,ε′,t⊆Sε,ε′,s if s Rη t

(2) xε,s∈Xε,s ∧ yε,s∈Yε,s ∧ (xε,s, yε′,s)∈Sε,ε′,s⊆(Xε,s×Yε′,s) ∩ ΩX×Y

(3) diam(Xε,s), diam(Yε,s), diamGH(Sε,ε′,s)≤2−|s|

(4) Sε,ε′,s⊆

{

N if s∈I
A if s /∈I

(5) projY [Stc,0,t]⊆projY [Ssc,0,s]
Tρ

if s Rρ t ∧ 1≤ρ≤η

Assume that this is done. Let (0, γ) ∈ X. Note that γ(k) Rη γ(k+1) for each k ∈ ω. By (1),

X0,γ(k+1) ⊆X0,γ(k). Thus (X0,γ(k))k∈ω is a decreasing sequence of nonempty closed subsets of X

with vanishing diameters. We define {f(0, γ)} :=
⋂

k∈ω X0,γ(k)=
⋂

k∈ω X0,γ(k), so that

f(0, γ)= limk→∞ x0,γ(k)

and f is continuous on {0}× [Rη ]. Now let (1, γ) ∈ X. Note that moreover that there is kγ ∈ ω
minimal such that γ(k) /∈I if k≥ kγ . We define f(1, γ) similarly, using (X1,γ(k))k≥kγ . Note that f

is continuous on {1}×Π−1(¬P) since kγ′ =kγ if γ′∈NRη

γ(kγ)
.
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Now let (0, α) ∈Y. By (1), Y0,α(k+1) ⊆ Y0,α(k). Thus (Y0,α(k))k∈ω is a decreasing sequence of

nonempty closed subsets of Y with vanishing diameters. We define

{g(0, α)} :=
⋂

k∈ω

Y0,α(k)=
⋂

k∈ω

Y0,α(k),

so that g(0, α)= limk→∞ y0,α(k). We define g(1, γ) like f(1, γ), so that g :Y→Y is continuous.

Assume that
(

(0, γ), (1, γ)
)

∈ A. As Π−1(P ) is a closed subset of [Rη], there is k0 ∈ ω such

that γ(k) /∈ I if k ≥ k0. By (1)-(4), (S0,1,γ(k))k≥k0 is a decreasing sequence of nonempty clopen

subsets of A ∩ ΩX×Y with vanishing GH-diameters. We set {F (γ)} :=
⋂

k≥k0
S0,1,γ(k). Note that

(x0,γ(k), y1,γ(k)) converge to F (γ) for ΣX2 , and thus Σ 2
X . So their limit is

(

f(0, γ), g(1, γ)
)

, which

is therefore in A. If now
(

(1, γ), (0, α)
)

∈A, then we argue similarly, showing that A⊆(f×g)−1(A).

Let
(

(0, γ), (0, α)
)

∈ B. Note that γ(k) ∈ I for each k ∈ ω. By (1)-(4), (S0,0,γ(k))k∈ω is a

decreasing sequence of nonempty clopen subsets of N ∩ΩX×Y with vanishing GH-diameters, and

we define {G(γ)} :=
⋂

k∈ω S0,0,γ(k). Note that (x0,γ(k), y0,γ(k)) converge to G(γ). So their limit is
(

f(0, γ), g(0, α)
)

, which is therefore in N⊆B, showing that B⊆(f×g)−1(B).

Let us prove that the construction is possible. Let (x0,∅, y0,∅)∈N ∩ ΩX×Y , and X0,∅, Y0,∅ ∈Σ
0
1

with diameter at most 1 such that (x0,∅, y0,∅)∈X0,∅×Y0,∅, as well as S0,0,∅ ∈Σ
1
1 (X×Y ) with GH-

diameter at most 1 and (x0,∅, y0,∅) ∈ S0,0,∅ ⊆N ∩ (X0,∅×Y0,∅) ∩ ΩX×Y . Assume that our objects

satisfying (1)-(5) are constructed up to the length l, which is the case for l=0. So let s∈2l+1.

Claim The set projY [Ss
η
c ,0,sη

]∩
⋂

1≤ρ<η projY [Ss
ρ
c ,0,sρ

]
Tρ
∩Y0,s0 is T1-dense in projY [Ss1c ,0,s

1]∩Y0,s0

if η≥1.

As in the proof of Theorem 1.5, we infer that

I :=projY [Ss
η
c ,0,sη ] ∩

⋂

1≤ρ<η

projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s0

is not empty.

Case 1 s /∈I

1.1 sη /∈I

Note that sηc = 1. We choose y0,s ∈ I , x1,s ∈ X1,sη with (x1,s, y0,s) ∈ S1,0,sη , X1,s, Y0,s ∈ Σ
0
1

with diameter at most 2−l−1 such that (x1,s, y0,s)∈X1,s×Y0,s⊆X1,s×Y0,s⊆X1,sη×Y0,s0 , and also

S1,0,s∈Σ
1
1 (X×Y ) with GH-diameter at most 2−l−1 such that

(x1,s, y0,s)∈S1,0,s⊆S1,0,sη ∩
(

X1,s×(
⋂

1≤ρ<η

projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s)

)

.

As in the proof of Theorem 1.5, we check that these objects are as required. We also set

(x0,s, y1,s) :=(x0,sη , y1,sη),

choose X0,s, Y1,s∈Σ
0
1 with diameter at most 2−l−1 such that

(x0,s, y1,s)∈X0,s×Y1,s⊆X0,s×Y1,s⊆X0,sη×Y1,sη ,

and also S0,1,s∈Σ
1
1 (X×Y ) with GH-diameter at most 2−l−1 such that

(x0,s, y1,s)∈S0,1,s⊆S0,1,sη ∩ (X0,s×Y1,s).
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1.2 sη∈I

We choose y∈I , and x∈X with (x, y)∈S0,0,sη . Note that

y∈projY [A]
Tξ

∩
⋂

1≤ρ≤η

projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s0 .

This gives y′∈projY [A] ∩
⋂

1≤ρ≤η projY [Ss
ρ
c ,0,sρ

]
Tρ

∩ Y0,s0 , x′∈X with

(x′, y′)∈A ∩
(

X×(
⋂

1≤ρ≤η

projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s0)

)

,

and also (x1,s, y0,s)∈A ∩
(

X×(
⋂

1≤ρ≤η projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s0)

)

∩ΩX×Y . We choose X1,s, Y0,s

in Σ
0
1 with diameter at most 2−l−1 such that (x1,s, y0,s)∈X1,s×Y0,s⊆X1,s×Y0,s⊆X×Y0,s0 , and

S1,0,s∈Σ
1
1 (X×Y ) with GH-diameter at most 2−l−1 such that

(x1,s, y0,s)∈S1,0,s⊆A ∩
(

X1,s×(
⋂

1≤ρ≤η

projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s)

)

∩ ΩX×Y .

As above, we check that these objects are as required.

Note also that (x0,sη , y0,sη) ∈ S0,0,sη , so that x0,sη ∈ projX [A] ∩ X0,sη . This gives a point x′ of

projX [A]∩X0,sη , and y′∈Y with (x′, y′)∈A∩(X0,sη×Y ), and (x0,s, y1,s)∈A∩(X0,sη×Y )∩ΩX×Y .

We choose X0,s, Y1,s∈Σ
0
1 with diameter at most 2−l−1 such that

(x0,s, y1,s)∈X0,s×Y1,s⊆X0,s×Y1,s⊆X0,sη×Y ,

and S0,1,s∈Σ
1
1 (X×Y ) with GH-diameter at most 2−l−1 such that

(x0,s, y1,s)∈S0,1,s⊆A ∩ (X0,s×Y0,s) ∩ΩX×Y .

As above, we check that these objects are as required.

Case 2 s∈I

Note that sη∈I . We argue as in the first part of 1.1 to construct x0,s, y0,s, X0,s, Y0,s and S0,0,s.�

(B) The limit case

Assume that ξ is an infinite limit ordinal. We indicate the differences with the successor case.

Theorem 2.1.4 gives a uniform resolution family (Rρ)ρ≤ξ . We set X :=[Rξ]⊕Π−1(¬P ),

Y :=[⊆]⊕Π−1(¬P ),

A :=
{(

(0, β), (1, γ)
)

∈X×Y | β=γ
}

∪
{(

(1, γ), (0, α)
)

∈X×Y | Π(γ)=α
}

and

B :=
{(

(0, β), (0, α)
)

∈X×Y | Π(β)=α∈P
}

.
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Proof of Theorem 1.6. Condition (1) becomes

(1′)















Xε,t⊆Xε,s if s Rξ t ∧ s 6= t

Y0,t⊆Y0,s if s R0 t ∧ s 6= t

Y1,t⊆Y1,s if s Rξ t ∧ s 6= t
Sε,ε′,t⊆Sε,ε′,s if s Rξ t

Claim 2 The set projY [Ss
ξ
c ,0,sξ

] ∩
⋂

1≤ρ<ξ(s) projY [Ss
ρ
c ,0,sρ]

Tρ
∩ Y0,s0 is T1-dense in

projY [Ss1c ,0,s
1 ]
T1

∩ Y0,s0 .

We conclude as in the successor case. �
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