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Abstract

We report on results concerning a partially aggregated Stock Flow Consistent (SFC) macro-economic model
in the stationary state where the sectors of banks and firms are aggregated, the sector of households is dis-
aggregated, and the probability density function (pdf) of the wealth of households is exogenous, constrained
by econometric data. It is shown that the equality part of the constraint can be reduced to a single constant-
sum equation, which relates this problem to the study of continuous mass transport problems, and to the
sum of iid random variables. Existing results can thus be applied, and provide marginal probabilities, and
the location of the critical point before condensation occurs. Various numerical experiments are performed
using Monte Carlo sampling of the hit-and-run type, using wealth and income data for France.

Keywords: economics, physics and society, constraint satisfaction, monte carlo, random network, finance,
mass transport, condensation

While the neoclassical standpoint on macroeconomics has adapted in response to growing criticism in
the aftermath of the subprime crisis [1], it still relies on intensely debated hypotheses, for example rational
expectations, utility functions, or representative agents, that form the building blocks of Dynamic Stochastic
General Equilibrium (DSGE).

Other modelling approaches include “the Agent Based (. . . ) approach, which conceives the economy
as a complex adaptive system populated by heterogeneous locally interacting agents, and the Stock Flow
Consistent framework (. . . ), which provides a comprehensive and fully integrated representation of the real
and financial sides of the economy through the adoption of rigorous accounting rules based on the quadruple
entry principle developped by Copeland” [2].

SFC macroeconomic models, that date back to the 1950’s, enforce local conservation of money in a holistic
perspective. They usually stand at the aggregate level, and cover a large scope of economic phenomena [3].
Thanks to quadruple-entry bookkeeping, they are able to guarantee that real and financial transactions,
involving many agents belonging to different sectors, stay balanced [4, 2.6].

Agent Based Models (ABM), on the other hand, adopt a bottom-up perspective, and are able to recover
stylized facts, starting from low-level discrete-time dynamical description. Most of the time, closed form
solutions are not available for ABM (though recent works anchored in statistical physics started to fill that
gap [5, 6]).

The link between SFC and microeconomic models started to be explored during the 1970’s [7] and is now
an active research topic. Agent Based Models that enforce SFC rules (SFC-AB) have been studied over the
last years in the post-keynesian community. They rely on economic models, multi-agent programming, and
a critical phase of calibration [2]. Little theoretical results exist to explain the behavior of such systems.

In this article, we look for a tradeoff between the complexity of the model, and the availability of
theoretical results. Our interest goes to increasing the number of agents, with linear behaviors, in a stationary
state. What can be said at the population level, that is concerning the distribution of the different variables
?

To answer this question, we first look at theoretical properties available for SFC models: mathematically,
SFC can be formalized as a system of difference equations. Depending on the nature of transactions flows,
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an analytic expression can be found for the stationary state (if any) and for time-dependent transients [4] of
aggregated models. In [8], the stationary state of a particular, fully-disaggregated SFC model with random
connectivity, was seen as a Constraint Satisfaction Problem (CSP), with solutions lying inside a random
convex polytope. Marginal pdf of money stocks and flows were numerically estimated, and the effect of
various flow knockouts was evaluated in the case of a BMW model [4, 7] which describes an economy where
private banks create money through loans.

In the present article another stand is taken: while the accounting constraints are maintained, the
marginal pdf of several variables is considered exogenous, that is constrained so as to respect empirically
observed data. The marginal pdf of the other variables still is an unknown that we seek to approximate.
This approach differs from recent SFC-AB works e.g. [2] where an initial uniform distribution is supposed.

We thus report on the following original results: in the case of a partially aggregated SFC model of
the BMW type where banks and firms are represented by one agent respectively, the set of accounting
identities that define the SFC model can be reduced to a constant sum over individual wealth Mi, the
distribution of which is constrained by a weight function f(m). The properties of the sum

∑
Mi are

discussed, using previous investigations by [9, 10, 11] that concluded to the existence of a phase transition
leading to condensation. The marginal single site pdf of all variables are deduced, for various usual weight
functions. Furthermore a simple Monte Carlo sampling algorithm is available, and allows to simulate the
behavior of a simple economy.

Section 1 depicts the SFC model, the distributional constraints imposed, and the simplified constant
sum problem obtained after gaussian elimination ; section 2 discusses how the latter is related to continuous
mass transport studies in the statistical physics litterature. Numerical simulations and results are examined
in section 3. Section 4 and 5 conclude.

1. Partially aggregated SFC model with constrained pdf

In this section, the elements of the BMW model are briefly exposed: the balance sheet, the transaction
matrix that define the flows of money occurring between an origin and a destination, and the behavioral
equations that specify the flows. Notations follow Godley and Lavoie [4] and are explained in Tab. 2, more
detail concerning accounting conventions can be found in Appendix. Tab. 1 represents a balance sheet, that
is the summary of assets, liabilities, and capital of all agents, at a fixed time such as the end of the year.
The particular model is a partially aggregated BMW model, with private money, no state nor central bank,
where agents are grouped by sector (firms, banks, households). More detail can be found in [4, 7], and a
fully disaggregated version is discussed in [8]. It follows from this simplified setup that the stock of capital
K, the stock of loans L, and the sum of deposits

∑
Mi are equal.

Households Firms Banks
∑

1 2 3 1 1
Money deposits M1 -M1 0

M2 -M2 0
M3 -M3 0

Loans -L1 L1 0
Fixed capital K1 K1

Balance (net worth) -Vh1 -Vh2 -Vh3 -
∑
i Vhi∑

0 0 0 0 0 0

Table 1: Example of balance sheet of the BMW model with many households, one bank and one firm: nw = 3, nf = 1, nb = 1.
Mi, Lj ,Kk are the individual money deposits, loans, and tangible capital. Vhi is the net worth of individual households.

During the period (say a year) that separates two balance sheets, many transactions occur such as con-
sumption, investment, wage, depreciation, interest (on loans and deposits). The transactions corresponding
to the partially aggregated BMW model are summarized in Tab. A.4, and explained in a detailed way in
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the Appendix. The balance sheet at time t + 1 is the result of applying these transactions to the balance
sheet at time t.

Finally, the behavioral equations are :

AF = δKt−1 (1)

Cd,i = α0,i + α1Y Di + α2Mt−1,i (2)

Id = γ(κYt−1 −Kt−1) +AF (3)

Eq.(1) states that the depreciation of tangible capital is proportional to its past stock K−1, eq.(2) is
the consumption demand Cd,i of household i ∈ [1, nw] which is a mixture of an autonomous term, of the
disposable income Y Di and of the wealth accumulated by households Mt−1,i at the previous time step.
Lastly, eq.(3) sets a target investment level, that depends both on amortization and on some target capital
kYt−1, where Yt is the is the total production at time t, defined as the sum of consumption supply Cs and
investment supply Is.

In the steady-state regime considered in this article, the term κYt−1 −Kt−1 vanishes as well as changes
in deposits and loans :

∆Mi = 0 (4)

∆L = 0 (5)

Id = AF = δK−1 (6)

Notations are gathered in Table 2. The subscripts d and s stand for demand and supply, i represents
quantities related to individual households, t stands for the time instant.

Variable Label
money deposit M
capital K
loans to firms L
investment I
interest on loans IL
wage bill WB
depreciation allowance AF
interest on workers deposits ID
consumption of workers C

Table 2: Labels associated with the different monetary variables, after [4]. The subscripts d and s stand for demand and supply,
i represents quantities related to individual households, t stands for the time instant.

1.1. Properties of the partially aggregated model

In the steady-state unidimensional case, Godley and Lavoie find that
∑
M = kY and Y = α0

(1−α1)(1−δk)−kα2
.
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Let A′ be the augmented matrix of the system Ax = b. In the case nw = 2, with α0,1 = α0,2 = α0:

A′ =



1 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0
−1 0 r −1 0 1 0 0 0 1 1 0 0 0
0 −δ 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 1 0 r 0 0
0 0 0 0 0 0 0 0 −1 0 1 0 r 0
0 0 0 0 0 0 0 −1 0 α1 0 rα1 + α2 0 α0

0 0 0 0 0 0 0 0 −1 0 α1 0 rα1 + α2 α0

0 0 0 0 1 0 −1 0 0 0 0 0 0 0
0 −δ 0 0 0 0 1 0 0 0 0 0 0 0
−k 1 0 −k 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 −1 −1 0



(7)

The reduced row echelon form (rref) of A′ is:

A′rref =



1 0 0 0 0 0 0 0 0 0 0 0 0 −2δkα0+2α0

−δkα1+δk+kα2+α1−1
0 1 0 0 0 0 0 0 0 0 0 0 0 2kα0

−δkα1+δk+kα2+α1−1
0 0 1 0 0 0 0 0 0 0 0 0 0 −2kα0

δkα1−δk−kα2−α1+1

0 0 0 1 0 0 0 0 0 0 0 0 0 2δkα0

−δkα1+δk+kα2+α1−1
0 0 0 0 1 0 0 0 0 0 0 0 0 2δkα0

−δkα1+δk+kα2+α1−1
0 0 0 0 0 1 0 0 0 0 0 0 0 2δkα0

−δkα1+δk+kα2+α1−1
0 0 0 0 0 0 1 0 0 0 0 0 0 2δkα0

−δkα1+δk+kα2+α1−1
0 0 0 0 0 0 0 1 0 0 0 0 α2

−α1+1
δkα0α1−δkα0+kα0α2−α0α1+α0

δkα2
1−2δkα1−kα1α2+δk−α2

1+kα2+2α1−1
0 0 0 0 0 0 0 0 1 0 0 0 −α2

−α1+1
−α0

−α1+1

0 0 0 0 0 0 0 0 0 1 0 0 rα1−r+α2

−α1+1
2rkα0α1+δkα0α1−2rkα0−δkα0+kα0α2−α0α1+α0

δkα2
1−2δkα1−kα1α2+δk−α2

1+kα2+2α1−1
0 0 0 0 0 0 0 0 0 0 1 0 −rα1+r−α2

−α1+1
−α0

−α1+1

0 0 0 0 0 0 0 0 0 0 0 1 1 −2kα0

δkα1−δk−kα2−α1+1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


(8)

The last non-trivial row M1 + M2 = 2kα0

(1−α1)(1−δk)−kα2
is a constant sum equation that generalizes the

unidimensional case, and has one degree of freedom. Using the rref, all unknown variables can be computed
when M1 and M2 are known. In the general case nw > 2, gaussian elimination gives the following result1 :

N∑
i

Mi =
kNα0

(1− α1)(1− δk)− kα2
(9)

The dimension of the solution space of eq.(9) is nw − 1. This relation holds in the particular case
nb = nf = 1, but is unlikely to remain valid when the model is completely disaggregated, that is when nf
and nb are greater than one.

Finally, from the system of equations in eq.(8), one can get the following relation, which will be useful
below, between wealth and income for a given agent:

(1− α1)WBs,i + (r(1− α1)− α2)Mi = α0,i (10)

1this can be checked using a computer algebra system, see https://gitlab.com/hazaa/sfc_proba
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1.2. Modelling the distribution of wealth and income

The distribution of wealth and income display several regularities, as many authors have shown since the
19th century. Economists such as V. Pareto have studied the distribution of wealth, and found a good fit to
a power law among the richest. Statisticians, and more recently, physicists became interested in the topic.
It it now well accepted that the bulk of the distribution of wealth and income fits a Gamma or log-normal
law. The findings of Pareto concerning the tail of the distribution, were confirmed and refined by many
subsequent studies. For incomes, various empirical estimations found a paretian tail x−γ with an exponent
γ ∈ [1.5, 4] across time and countries [12, p.25].

In the case of France, income and wealth data are not available publicly at the level of individuals or
households. Recent empirical works by economists and statisticians take advantage of tax tabulations to
estimate the percentiles of the distribution of wealth among the population [13].

Fig. 1(a) shows the empirical cumulative distribution function (cdf) of french income in 2010 provided
by the World Inequality Database (see Appendix B), as well as a gamma distribution with adequate param-
eters. Fig. 1(a) shows the cdf of french wealth the same year, and a lognormal fit. Fig. 1(b,d) show the
corresponding probability density functions (pdf).
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Figure 1: (a) empirical cdf of fiscal annual income in France in the year 2010 represented by +, and in plain line the cdf of
a Gamma variable with shape parameter a = 1.46 and scale parameter 1/λ = 1.55 104; (b) pdf of the Gamma distribution;
(c) empirical cdf of wealth in France in the year 2010 represented by +, and in plain line the cdf of a lognormal variable with
shape parameter a = 1.72 and scale parameter 4.64 104; (d) pdf of the lognormal distribution.

Many nonparametric and parametric models of income and wealth have been discussed in the litterature
[12]. We compared several among them: a piecewise constant bulk with a Pareto tail [14], a nonparametric
method [13], a monotone polynomial interpolation in the log domain [15], and parametric models as shown
in Fig 1. For simplicity, the distribution of income is modelled by a single Gamma distribution on the full
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range covered by empirical data, and wealth by a lognormal distribution. The fit of the income model to
the empirical cdf is rather good, and sufficient for our needs in this article in the case of wealth.

In sec. 3, the topic of drawing random samples from a multivariate distribution, with identically dis-
tributed components, given additional linear constraints, is discussed.

2. Analogy with continuous mass transport and sum or random variables models

Since some of the results obtained for mass transport models may be of interest to the problem in sec.
1.1, let us summarize a few of them. The total mass, replaced by money, is constant and the number of sites
is replaced by the number of economic agents. As pointed out in [9, 10] the problems of mass transport and
sum of random iid variables in the large deviation regime can be mapped.

Dynamical models of mass transport on a lattice have been the subject of many works: it was observed
that when the mass density increases above some critical threshold, a condensed steady-state could appear
under some distributional conditions. Condensation means that a finite fraction of the total mass can
concentrate on a single site. The analogy between mass transport and macroeconomic modelling was noticed
already in [11].

To explain this phenomenon, it was first remarked that for some dynamical models (such as the ZRP),
a factorized steady-state exists and can be computed. In that case, examined in [16, 9], the steady-state
probability and the partition function write:

P ({ml}) = Z(M,L)−1
L∏
l=1

f(ml)δ
( L∑
l=1

ml −M
)

(11)

Z(M,L) =

L∏
l=1

[ ∫ ∞
0

dmlf(ml)
]
δ
( L∑
l=1

ml −M
)

(12)

where f(ml) is the single-site weight, M is the total mass, L the number of sites, and δ
(∑L

l=1ml −M
)

embodies the constant sum constraint. When f(ml) is normalised, Z(M,L) in eq.(12) is the probability
that a sum of L random variables with pdf f(ml) sum to M . The single-site weight f(ml) can be related to
the distribution of wealth or income in sec. 1.2, and to p(m), the single-site marginal probability. p(m) is
an unknown, that can differ from f(m), because it takes into account the fixed total amount of money:

p(m) =

∫
dm2 . . . dmLP (m,m2, . . .mL)δ

( L∑
l=2

ml +m−M
)

(13)

The properties of the partition function eq.(12), the value of the condensation threshold, the size of the
condensate and the value of p(m) were examined in great detail in [9] and further extended to the presence
of two constraints [17, 18].

In the thermodynamic limit L,M → +∞ with M/L finite, three cases are examined in [9]: f(m)
decreases faster than the exponential, slower than m−2, or slower than the exponential but faster than m−2.

For example, when f(m) is a paretian distributions 1/m−γ with γ ∈]2, 3], the typical outcome is not
condensed, but a phase transition exists, governed by the mean value 〈f〉 of f(m). If 〈f〉 is smaller than the
average density M/L, condensation occurs: a single site will contain the excess mass. If 〈f〉 > M/L, the
system is in the fluid phase. In the limit case 〈f〉 = M/L, the system is in the critical state. Condensation
does not correspond to an observed phenomenon in available data, and will not be considered here, thus we
suppose that 〈f〉 ≥M/L. Nevertheless we must keep in mind that at the critical value 〈f〉 = M/L or in its
neighborhood, sampling algorithms can fail because of the phase transition.

If γ belongs to the interval [1, 2], f(m) has a very broad tail. The variables Mi experience large fluctu-

ations, and the sum
∑N
i=1Mi has condensed typical outcomes [17]. The theoretical analysis of Z(M,L) in

[9, 7.2] shows that no phase transition occur, however a pseudocondensate -i.e. a bump in the tail of p(m)-
emerges.
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The expression of the marginal probability p(m) is another interesting result. While f(m) is known, p(m)

is unknown a priori, because it results from incorporating the constant-sum constraint δ
(∑L

l=1ml −M
)

in the sampling process. In [9] several expressions of p(m) are reviewed. In the grand-canonical ensemble
approximation that neglects the global interaction between the particles, p(m) = f(m)e−µm, where µ is the
negative of the chemical potential. A similar form is found in [17, §3.1] with the Density Functional Method.
µ must be found so that:

ρ = M/L =

∫ +∞

0

mf(m)e−µmdm/

∫ +∞

0

f(m)e−µmdm (14)

Such a value doesn’t exists for all densities M/L when f(m) decreases slower than the exponential but faster
than m−2, which gives rise to the aforementionned phase transition. Let us examine the consequences in the
cases covered in this article. If the weight function f is a gamma distribution, that has an exponential tail,
then eq.(14) always has a solution. For example if 〈f〉 = M/L, then µ = 0 is a solution, and f(m) = p(m).

If the weight function f is a lognormal distribution -i.e. with a subexponential tail- such that 〈f〉 > M/L,
then eq.(14) still has a solution.

In the canonical ensemble, more detailed closed form expressions were reported in [9].

3. Numerical experiments

In this section the methods employed and results observed in several experimental settings are discussed:
in sec. 3.1, the different flavors of the hit-and-run sampler are compared. In sec. 3.2 the the theoretical
marginals values of wealth and income for the partially agregated BMW model are examined and compared
to sampled values.

3.1. Sampling methods

In this section we present briefly the algorithms used to simulate the terms of the sum
∑
Xi = cst, where

(Xi) are iid random variables, the distribution of which are constrained by the weight functions f(m). The
parameters of functions f(m) are fit to empirical data, whether income or wealth, as seen in sec. 1.2.

In order to compute all the variables in the economic model in sec.1 knowing these samples, one can
simply use the different relations in the echelon form of eq.(8).

The Hit-and-run (HR) sampler is a standard Monte-Carlo algorithm that can be used in this case. If f
is uniform, it can be proved to converge to a uniform distribution, with a zero rejection rate [19]. The HR
sampler was extended to the non-uniform case, with the drawback of losing this last property. The issue of
decreasing the rejection rate to accelerate sampling is still an open problem [20]. Convergence is guaranteed
in O∗(d4) for a large class of target distributions in dimension d, provided that the HR implementation uses
the Hypersphere Direction (HD) scheme to update the direction during the random walk inside the polytope
given by linear constraints. Since HR is a Monte-Carlo algorithm, successive samples are correlated. One
solution to mitigate this problem is to keep only a fraction of the generated samples, thanks to a thinning
factor [21].

Coordinate Direction (CD) is another way to update the direction, simpler to implement because it
doesn’t require any change of basis. It can be modified to converge quicker than HD, as shown in [22].
However, on the opposite of HD, its convergence is not guaranteed [19, p.724].

Several works in the field of metabolic networks research use HR, to sample feasible metabolic flows in a
uniform [23, 24] or possibly non-uniform way [25]. SFC macro models were also studied with this algorithm
in [8].

3.2. Numerical results

With the equation eq.(10) that links wealth to income for each agent, one can compute the cdf of WBs,i
from the distribution of Mi that was modelled in sec. 1.2 and fit to wealth data. The obtained cdf can be
compared with the direct fit of WBs,i to WID income data. If the parameters of the BMW model depicted

7



in section 1 are unknown, then can then be estimated, by minimizing the distance betweend the two cdf. If
they are known from previous studies, the procedure serves as a consistency check. An illustration is shown
in Fig.2(a), and provides the set of parameters presented in Tab. 3. r, δ, k are provided by the litterature.
α0, α1, α2 are the free parameters that need to be estimated. Let us emphasize the necessity to rescale all
the variables because of the full determination of

∑
M given the set of parameters, as seen in eq.(9).
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Figure 2: (a) Comparison between the direct fit of WBs to WID income data, and the cdf of WBs derived from the direct fit
of Mi to WID wealth data (b) histogram of HR-HD wealth samples in dimension d = 100. Plain line is the weight function f
corresponding to a lognormal distribution with shape σ = 1.72. Scaling is such that 〈f〉 = M/L. Thinning factor is 1000.

Parameter Value
α0 0.001
α1 0.75
α2 0.02
r 0.03
δ 0.1
k 5.5

Table 3: Values of parameters used in Fig. 2(a).

Fig.2(b) represents the histogram of wealth samples generated by a HR-HD sampler, that approximates
p(m). One can notice that p(m) is close to the weight distribution f(m), which is expected as mentionned
in sec. 3.1, except in the region of the tail, because of the finiteness of the sample.

As was recalled in sec. 3.1, there is no general proof of convergence for HR-CD, that would be available
for a large class of distributions. We found some examples where HR-CD failed to sample correctly the
distribution of weights f(m) with very broad tails, even though we stayed in the typical fluctuation regime

〈f〉 ≥ M/L: first a monotone polynomial fit m → 1
m

∑N
i=0 βi log(m)i, used to model the wealth; then a

lognormal distribution with shape parameter σ = 1.72. This failure is not mitigated using the acceleration
method in [22]. It calls for some improvement on the algorithms currently used (HR-HD), because of the
high rejection rate due to sampling a high-dimensional distribution.

4. Discussion

In this paper a partially aggregated SFC model was studied. This is a restriction to more general
problems, such as disaggregated models, and also random topology models, where the connectivity is not
fixed. The partially aggregated model is useful as a limit case, because some additive results can be obtained,
as was seen above. However it adds restriction on the type of distribution considered. For example, one
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may want to decouple the distributions of wealth and income. This can still be achieved with the partially
aggregated model, for example considering α0,i as random variables, rather than fixed constants.

Furthermore, one may question the usefulness of sampling as a tool to study the marginal distributions
of variables in the model, since closed form expressions of the cdf can be obtained. Once again, the partially
aggregated model is a limit case. In the case of fully disaggregated models, it is not likely that a simple
equation will relate WBs,i and Mi. Some constant quantities might appear though, as in the case of
metabolic networks [26].

5. Conclusion

In this article the problem of finding the marginal probabilities of the variables in a steady-state partially
aggregated SFC macroeconomic model is addressed, with distributional constraints imposed on individual
wealth variables. This last feature can be thought of as expressing the fact that the distribution of wealth
or income are exogenous, as the result of an evolving balance of power between capital and workforce. This
improves over [8] where an SFC model was seen as a Constraint Satisfaction Problem, but without a priori
constraint on distributions.

The following results are reported:

• using standard algebra, we find that the linear system of equations that forms part of the problem is
underdetermined and amounts to a constant sum equation.

• we recall relevant results from the theory of mass transport, that give an approximation of the marginal
probabilities, given the weight distributions. Since condensation is not a admissible outcome for the
system state, we deduce some constraint on the parameters of the weight distribution.

• we fit empirical wealth data to a classical distribution, and compute the corresponding cdf for income.
The latter is compared to an direct empirical fit of income data, which allows us to estimate some free
parameters.

• finally, sampled solutions to the initial problem are shown, with various hit-and-run algorithms.

This last result can be used by practitionners in the SFC community that are interested in distributional
phenomena, and can be compared with the results obtained using time-averaged SFC/ABM models.

In future work we will compare the limit results obtained here in the case of a partially aggregate model
to more general settings. First an extension to disaggregated models will be examined. Thanks to recent
developments in the analysis of metabolic networks we hope to overcome the curse of dimensionality; which
will be compared to accelerations of hit-and-run algorithms such as [20]. An extension to random network,
following [27, 28, 29], will also be addressed.

Furthemore in this article, we limited our scope to BMW models, that form just a part of SFC models.
More models, that fall in the category of linear dynamical systems, will be analyzed, and more empirical
data will be included.

Lastly, the dynamical behavior may be of interest, for example steadily growing economies, or stability
properties [30], that are related to the occurrence of crises.

Appendix A. Transaction matrix for the BMW model

Tab. A.4 sums up the different transactions in the modelled economy. Firms and banks are each
represented by a single agent. The number of households is set to nw = 3 in this example but can take any
strictly positive value.
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Households Production Firms Banks
∑

Current Capital Current Capital
1 2 3 1 1 1 1

Consumption -Cd1 Cs1 0
-Cd2 Cs2 0

-Cd3 Cs3 0
Investment Is1 -Id1 0

Is2 -Id2 0
Wage WBs1 -WBd1 0

WBs2 -WBd2 0
WBs3 -WBd3 0

Depreciation -AF1 AF1 0
Interest on loans -IL1 IL1 0
Interest on deposits ID1 -ID1 0

ID2 -ID2 0
ID3 -ID3 0

Change in loans ∆L1 -∆L1 0
Change in deposits -∆M1 ∆M1 0

-∆M2 ∆M2 0
-∆M3 ∆M3 0∑

0 0 0 0 0 0 0 0

Table A.4: Transaction matrix of the BMW model with many households, on firm and one bank: agents nw = 3, nf = 1,
nb = 1. Households must buy goods from the only available firm. The firm is buying capital goods from itself. In the stationay
case, ∆L = ∆M = 0.

Appendix B. Econometric data

Econometric data in sec. 1.2 are taken from the World Inequality Database http://wid.world. Tab.
B.5 extracts some corresponding information among the documentation supplied by the authors. For both
variables “the base unit is the individual (rather than the household) but resources are split equally within
couples. The population is comprised of individuals over age 20”.

Variable Name Year Description Unit Ref. Code
Net personal wealth 2012 Net personal wealth threshold value at a given

percentile. Net personal wealth is the to-
tal value of non-financial and financial assets
(housing, land, deposits, bonds, equities, etc.)
held by households, minus their debts.

EUR constant 2015 [31] thweal992j

Fiscal income 2012 Fiscal income threshold value at a given per-
centile. Fiscal income is defined as the sum
of all income items reported on income tax
returns, before any deduction. It includes
labour income, capital income and mixed in-
come.

EUR constant 2015 [31] tfiinc992j

Table B.5: Extract of the WID documentation.
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