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Unified Media Programming: An Algebraic Approach

Simon Archipoff
UMR CNRS LaBRI, University of Bordeaux
France

Simon.Archipoff@labri.fr
Abstract

In this paper, we aim at defining a simple and sound mathematical
framework for describing temporal media programming language
semantics. It occurs that semigroup theory offers various concepts
that are especially well suited for this purpose.

As a result, a fairly general programming scheme can be defined
in order to specify, compose and render both spatial media objects
(e.g. 3D drawings) and timed media objects (e.g. Animation or Mu-
sic). Each of these constructs is specified in Haskell via an adequate
type class definition and an associated uniform data type construct.

A simple monoid based semantics model of the turtle command
language of Logo is detailed and extended throughout the paper.
This allows for providing step by step introductions and usage
examples of the algebraic concepts and constructs our proposal is
based on.

Keywords temporal animation, 3D programming, model based
programming language

1 Introduction

In this paper, we develop a semantics model for the synthesis of
temporal media as defined by Hudak [7] such as animations, as
illustrated in this paper, but also applicable to music, as illustrated
in former work [2] or in Euterpea [8].

Spatio-temporal modeling. Focusing our attention on the syn-
thesis of temporal media, programs can handle the time dimension
quite in the same way drawing programs handle space dimension.
It is only at the rendering stage, that is, when executing a program,
that the time dimension specifically differs from space dimensions.

More precisely, when executing a temporal media program, in
other words, when rendering a defined temporal media, time flow
is irreversible, i.e. a figure that has been displayed on the screen
cannot be “undisplayed”. However, at the programming stage, that
is, when specifying a temporal media program, nothing prevents
a programmer/designer from going back and forth along the time
dimension. A temporal media program is out-of-time while its
execution is in-time [10]. This means that, when defining temporal
media, both space and time dimensions can be treated similarly.

It follows that any programming construct that allows for draw-
ing a picture, say on the two dimensional space defined by the
screen, can also be used for defining the transformation of that
picture along the time dimension when defining an animation. This
simple observation and a careful study of the underlying semantics
of a typical drawing programming language: Logo’s turtle com-
mand, leads us to the definition of a kind of unified model for
temporal media synthesis programming.

Semantics driven DSL definition. Aiming at defining a domain
specific language (DSL) for temporal media programming, our ap-
proach is governed by semantics.
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More precisely, we develop a semantic model for temporal media
from which syntax can be derived. Our syntax will essentially
reflect the way temporal media can be transformed and combined.
It follows that, at the present stage, it remains mostly implicit. What
does matter throughout our presentation is semantics.

Then one may ask what is the mathematical framework we
use for our semantic model. Our answer is, somehow paradoxi-
cally, Haskell programs, that is, pieces of Haskell syntax! There is
(essentially) no need for distinguishing program’s syntax from pro-
gram’s semantics: every (pure) Haskell function (implicitly) denotes
a unique (mathematical) function.

Incidentally, purity also forces all semantical dependencies to be
made explicit; there is no possible “magic semantic trick” hidden in
a side effect. However, despite such a complete and explicit semantic
model definition, a simple application programming interface (API)
can still be achieved. All the semantical dependencies that can
uniformly (and automatically) be realized can be hidden into higher
order programming constructs: mostly monoids, but also monads.

The program constructs we propose throughout this paper are
essentially based on combining, by means of a single uniform asso-
ciative binary operator, various pieces of programs that both act
on space (or time) dimensions and produce media values.

Main contribution. We first show, as announced above, that spa-
tial and temporal dimensions semantics can indeed be treated
(mostly) in the same way. For this purpose, we develop an original
algebraic semantics for temporal media programming languages.

Our semantic model is based on semigroup theoretical concepts
such as semigroup actions over a set, semi-direct products, inverse
semigroups and their extension to semigroups with local units
(called resettable semigroup in the present paper).

Though well-known in semigroup theory, these concepts are yet
quite unknown in programming language theory' despite the fact
they perfectly fit, as shown below, our needs.

Structure of the paper. We start our presentation by examining
the semantics of Logo’s turtle programs in which commands for
movement and drawing produce line graphics either on screen or
with a small robot called a turtle. The language [..] enable [..] "body-
syntonic reasoning", where students can understand, predict and rea-
son about the turtle’s motion by imagining what they would do if
they were the turtle.”.

After reviewing a basic (equivalent) syntax for turtle programs,
we show that their semantics can be described by means of a monoid.
This semantic monoid is shown to be an inverse monoid [15] with
elements reflecting both the moves and the drawings performed by
the turtle.

The algebra theoretic concepts that support our semantic models
are detailed throughout. Then we show, in the remainder of the text,
how these concepts are applicable for lifting Logo’s turtle program

!with noticeable exceptions as detailed at the end of the paper
2From Logo article on Wikipedia


https://en.wikipedia.org/wiki/Logo_(programming_language)

to time and additional space dimensions, i.e. for animation and
3D drawings. Little incursions into monads also provide a rather
comfortable syntax with do notation and timely rendering of media
programs within the IO monad.

Notations. Most examples, formulas and programs are given using
Haskell syntax. In particular, as in most functional programming
language, we write f x for the application of the function f to
the argument x. Also, our paper makes intensive use of the notion
of semigroups: sets equipped with a associative binary operator.
The semigroup binary operator is denoted by ¢. We also use the
notion of monoids: semigroups with a neutral element, denoted by
mempty, with the binary operator possibly denoted by mappend
when used as a function, and the concatenation of monoid elements
in a list denoted by mconcat.

2 The Turtle Example

Our approach can be illustrated in a fairly simple way by analyzing
the semantics of basic logo programs that allow for defining pictures
by commanding turtle movements. These programs are, from now
on, called turtle programs.

It is an easy observation that turtle programs act both on the
space of possible pen positions and the figures that are drawn.
Together, positions and figures form the states that are eventually
transformed by programs.

Actions on positions are called moves, actions on figures are
called drawings. Together they form the turtle program semantic
model we aim at defining.

It occurs that this simple drawing language offers a deep insight
into the mathematically well structured semantics we propose for
temporal media programming language.

2.1 Program Syntax

Turtle programs are defined by means of series of basic actions.
Up to a minor technical change from the original definition®, basic
actions are defined by

data BasicAction d = TogglePen | Turn d | Walk d

which respectively allows for flipping up or down the pen’s head
(TogglePen), pivoting by the specified angles (Turn) or moving for-
ward by the specified distance (Walk). Turtle programs are then
defined as lists of basic actions.

type Program d = [ BasicAction d]

Example. With angles defined in degree and provided we start
with the pen down, the series of actions Walk 1, Turn 90, Walk 1,
Turn 90, Walk 1, Turn 90, Walk 1, Turn 90, draws a triangle
with unitary length borders as depicted in Figure 1 where a fi-
nal TogglePen action has also been performed. In this figure, each
move has been grouped with its following turn.

Remark. For the sake of simplicity, we use the same type d as
both the type distance in a walk or the type angle in a turn. Later in
the text, the same type d is even used as the type of time duration.

3We replace both PenDown and PenUp (irreversible) commands of Logo by a single
(reversible) TogglePen command. This is just a technical point since PenUp and Pen-
Down command can also be turned into reversible commands provided their history
is recorded in Turtle states.
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Figure 1. The turtle square.

Of course, distinguishing all these types would certainly lead to a
more constrained hence a safer type system.

2.2 Moves, Drawings and Semantics Types

Defined by lists of basic actions, turtle’s programs form a monoid
where sequential composition of program is modeled by list con-
catenation. Aiming at defining a compositional semantic model for
these programs, we thus look for a semantic monoid.

The turtle performs, both at the same time, moves when changing
positions, and drawings when creating new figures. They both
constitute the elements of our semantics.

Formally, a turtle position is defined as a triple composed of a
boolean (true when the pen is in drawing position, false otherwise),
a 2D vector (the pen coordinates in the plane), and an angle (the
turtle orientation). Moves are defined as position transformations.

type Position d = (Bool, V3 d, d)

type Move d = Position d — Position d

A figure is defined by a set of drawn segments, that is, a set of pairs of
points. Since the turtle never reads a picture, but, instead, produces
a picture from a given position, drawings also take positions as
input.

type Figure d = Set (Vo d, V2 d)

type Drawing d = Position d — Figure d

Program states are defined as pairs of positions and figures, and,
program semantics as pairs of moves and drawings.

type State d = (Position d, Figure d)
type Semantics d = (Move d, Drawing d)

Clearly, the type Semantics d that is given above is not a functional
type as one could expect. However, turning a program semantics
into a program that draw figures, or into a function over states that
compute a new state can be done as follows.

runS :: Semantics d — Position p — Figure d
runS (_,d) p=dp

applys :: Semantics d — State d — State d
applyS (m.d) (p.f) = (mp.f & d p)

with figures forming an idempotent and commutative monoid with
union as product and empty set as neutral element.
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Producing a figure from a given position, as done by function
runS, just amounts to applying the drawing function specified by
the second component of the semantic model.

Applying a semantics to a program state, as done by function
applys, is a little more tricky. The output position is computed by
applying the move part of the semantics m to the input position
p. The output figure is computed by merging the input figures f
with the new figure computed by applying the drawing part of the
semantics d to the input position p.

Remark. We aim at making the control structures, the functional
dependencies and the algebraic properties of the underlying se-
mantics explicit: a much less obvious task. The generalization of
these constructions, presented below, may look uselessly (or even
pedantically) theoretical. However, it has a merit: as we shall see, it
generalizes to a fairly wide range of temporal media programs.

2.3 Moves, Drawings and Semantic Monoids

As already mentioned, we are looking for a semantic monoid. It
occurs that the types above lead to the definition of three monoids
instead of one. The third one, the program semantic monoid, is
obtained by combining uniformly the first two, the moves and the
drawings monoids.

First, we observe that both moves and drawings form monoids®.
instance Monoid (Move d) where

mempty = id

mappend = flip (o)
instance Monoid (Drawing d) where

mempty = const mempty

mappend dy dp =\p > di pO da p

With the help of the above monoids, program semantics, that is,
pairs of moves and drawings, should be sequentially combined as
follows:

combine :: Semantics d — Semantics d — Semantics d
combine (my, d1) (mg, dz) = (my & my,dy O (dy 0o my))

On the move side, the sequential application of two turtle programs
combines the moves defined by these programs. On the drawing
side, the above expression says that, from a given input position p,
a first figure d; p is drawn by the first program, moving the turtle
to a position my p from which a second figure dy (m; p) is drawn.
This is, indeed, the expected sequential composition of semantics
we seek for.

The function combine turns the type Semantics d into a monoid

by

instance Monoid (Semantics d) where
mempty = (id, const mempty)
mappend = combine

Then, one can check that, for every turtle semantics s and s;, we
have

applyS (s1 © s2) == (applyS sz) o (applysS s1)

4Many instances defined in this pages clash with Haskell Prelude instances or even one
on another. In our real implementation newtype embeddings are used. However, for
the sake of clarity, they have been omitted throughout, as well as have been omitted
most type constraints.

This follows from the similarities one can observe between our
definition of the applyS and the combine functions.

2.4 Basic Moves and Drawings Implementation

So far, we have defined types and combinators for composing se-
mantics of turtle programs. These types are based on the decom-
position of our semantic values into moves and drawings. It thus
remains to explicit the moves and drawings associated to basic
actions in order to recover a complete turtle semantic model.
Basic moves semantics is defined as follows.

moveA :: BasicAction d — Move d
moveA TogglePen (b,v,a) = (= b, v, a)
moveA (Turn d) (b, v,a) = (b,v,a+ d)
moveA (Walk d) (b, v, a) = (b,v+ w,a)
where w = (V, (d * cos ra) (d * sin ra))
ra =2 x* pi* a/360

The move semantics associated to every program, that is, list of
basic actions, is then defined by:

move :: Program d — Move d
move prog = mconcat (map moveA prog)

As expected, the semantics of a sequential composition of programs
is mapped to the (flipped) composition of their semantics. Basic
drawing semantics is defined similarly.

drawA :: BasicAction d — Drawing d

drawA (Walk d) (False, _,_) = mempty

drawA (Walk d) p@(True, v, _) = insert (v, nv) mempty
where (_, nv, _) = moveA (Walk d) p

drawA _ _ = mempty

The drawing semantics of program is defined as the second projec-
tion of the complete semantics of programs.

draw :: Program d — Drawing d

draw prog = snd (sem prog)

semA :: BasicAction d — Semantics d
semA prog = (moveA prog, drawA prog)

sem :: Program d — Semantics d
sem prog = mconcat (map semA prog)

Observe that drawing semantics is slightly more complex to define
than move semantics because it depends on positions which may
be altered by moves. Nevertheless, this corresponds to a fairly well
known construction in algebra called semi-direct product that is
detailed below.

This semantics is compositional in the sense that, for all program
pland p2, we have

sem memply == mempty
sem (p1 O p2) == sem pl O sem p2

Indeed, the function sem is the unique monoid morphism from
the (free) monoid of turtle programs into turtle semantics that is
induced by (moveA, drawA) on elementary actions.



2.5 Remarks on Basic Turtle Moves

At first sight, one may think that a turtle move essentially traverses
the 2D space defined by the (x,y)-coordinates of every position.
However, the capacity to turn says that the turtle can also act on
the space itself: namely its underlying 2D basis.

Indeed, by combining basic turtle walks and turns, one can define
any isometric and orientation preserving transformation of the
underlying 2D space, that is, the transformations generated by
arbitrary translations and rotations.

Extended with additional basic moves, turtle semantics captures
arbitrary isometries (adding reflexion across, say, the x-axis), ar-
bitrary affine bijections (adding reflexion and non zero contrac-
tion/walking speed along the x-axis) or even arbitrary affine trans-
form (also adding projection of the entire 2D space into a line by
means of zero scaling along the x-axis).

This observation plays a key role when extending turtle moves
to additional space or time dimensions.

3 Monoid Semantics Revisited
We have seen above that monoids (or even just semigroups) play a
central role in the definition of the turtle semantics. Moreover, most
semantics definitions are generic. Functions move, draw and sem
are uniformly defined in terms of basic actions (BasicAction d) and
their move and drawing semantics (functions moveA and drawA).
This suggests that the turtle semantics relies on some general
structures that are worth being made explicit. In this section, we
study more in depth the generic constructions that have been (yet
implicitly) applied and the rather rich mathematical properties
these constructions satisfy.

3.1 Semi-direct Product

We first observe that the turtle semantic monoid is a fairly standard
construction known in semigroup theory as the semi-direct product
of two monoids.

This notion is defined via what algebraists call an action of a
monoid over a set.

class (Monoid m) = MonoidAction m a where
act:m—a—a

with the requirement that properties should hold for all a, m; and

my of adequate types.
act mempty a == a (1)
act my (act my a) == act (m; O my) a 2)

The associated notion of semi-direct product of monoids is defined
by:

instance (MonoidAction m a, Monoid a) = Monoid (m, a)
where
mempty = (mempty, mempty)
mappend (m1, a1) (mg, az) =
(my © my, a1 O act my ap)

Back to the turtle semantics, we simply put:

instance MonoidAction (Move d) (Drawing d) where
actmd=dom
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The generic monoid instance given above applies to Semantics d,
turning it into a monoid and we have combine == ().

3.2 Inverse Monoid

So far, we haven’t used the fact that (turtle) moves are reversible.
It turns out that those properties open the way to a transforma-
tion of turtle program, called inverseP that have, up to semantic
equivalence, fairly interesting properties.

inverseP :: Program d — Program d
inverseP p = map (invA) (reverse p)
where invA TogglePen = TogglePen
invA (Turn d) = Turn (—d)
invA (Walk d) = Walk (—d)

Then, one can check that, for every program p, programs p and
p < inverseP p & p have the same semantics, as well as programs
inverseP p and inverseP p & p < inverseP p. In semigroup theory,
inverseP p is called the semigroup inverse of p. This leads us to the
definition of the class of inverse semigroups.

class Semigroup m = InverseSemigroup m where
inverse:: m — m
norder :: (Eq m) = m — m — Bool
norder mn = m == (m < inverse m & n)

with the requirement that the following properties should hold for
arbitrary elements a and b of the semigroup m.

adinverseada == a 3)

inverse a & a > inverse a == inverse a 4)

which states, following inverse semigroup theory [15], that inverse a
is the semigroup inverse of a, and

a < inverse a

Ob o inverseb == b inverse b

Oa O inverse a (5)

which states that elements of the form a ¢ inverse a commute.

Then, inverse semigroup theory ensures that idempotents’, nec-
essarily of the form a ¢ inverse a, commute and that inverse are
uniquely defined, i.e. inverse a is the unique element b such that
both properties a & b <G a==aand b ® a & b == bhold.

As another derivative of inverse semigroup theory, the relation
norder is a partial order relation known as the natural order [17].
The word natural refers in semigroup theory to the fact it is uni-
formly defined over all inverse semigroups.

Then we can show that turtle programs form, up to semantic
equivalence, an inverse monoid:

instance InverseSemigroup (Program d) where
inverse = inverseP

with properties (3)-(5) valid up-to semantic equivalence. From the
semantics side, given

(m,d)y=semp and (m’,d") = sem (inverse p)

5The elements b such that b & b ==
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for some turtle program p, one can check that we have
mom==id==mom’ and d ==dom’

This confirms that, as already mentioned, the moves induced by
Turtle programs are in fact bijections, or, stated differently, the
moves induced by turtle programs form a group.

Then, it is a known fact in semigroup theory (see [15], Section
7.1) that a sufficient condition for the semi-direct product (m, a) of
a monoid m by a monoid a to produce an inverse semigroup is that
m is in fact a group and a is a lattice with product as meet. This is
the case for (the subtype of bijective) moves and drawings induced
by turtle programs. This fact concludes the proof that the program
monoid is, up to semantic equivalence, an inverse monoid.

3.3 Resettable Monoid

The inverse semigroup detailed above also induces an additional
program transformation, called the reset operation, that is also of
interest. It is definable even in the case of non reversible moves,
and, as we shall see, it behaves like a fork operator hence allowing
concurrent evaluation.

More precisely, we define the function resetP over turtle pro-
grams by

resetP :: Program d — Program d
resetP p = p & inverse p

When executing the program p & inverse p, the turtle performs the
actions specified by p, producing some figure, and then it executes
the inverse of these actions in the reverse order, reproducing the
same exact figure while moving back to the starting position. In
other words, the program resetP p describes a double drawing of
the figure defined by p; a forward drawing with p and a backward
drawing with inverse p.

At the semantic level, such a redundancy can be avoided as
follows. Given the semantics

(m,d) = sem p

of the program p, that says that the turtle should move following
m while drawing following d, one can check that we have

(mempty, d) == sem (resetP p)

In other words, the program resetP p can also be read as: from any
given initial position, send a copy of the current turtle to perform
the expected drawing and disappear upon termination while the
initial turtle stays in that position waiting for further instructions.

This says at least two things. First, the reset function acts over a
program p as a sort of fork operation that allows parallel evaluation.
Second, implementing the reset directly at the semantic level is
more efficient and can be defined even in the case of non reversible
moves.

Generalizing these observations leads us to the definition of
resettable semigroups.

class (Semigroup m) = ResettableSemigroup m where

reset::m—> m

with the requirement that the properties should hold for arbitrary
elements a and b of the semigroup m.

resetada == a 6)
reset a O reset a == reset a (7)
reset a O reset b == reset b O reset a 3)
reset bOa==a = reset b reset a == reset a 9)

In semigroup theory, resettable semigroups are known as left semi-
adequate semigroups (see [5] and the related works mentioned at
the end). Property (6) says that reset a is a left local unit of a.
Properties (7) and (8) say that these left local units are idempotent
and commute henceforth form a semi-lattice with product as meet.
Property (9) says that reset a is the least left local unit of a in this
semi-lattice. From these properties, one can also prove that the
property reset o reset == reset is satisfied. In other words, the reset
function is a projection.

Indeed, let a be some monoid element, let e = reset a and let
¢’ = reset e. It remains to prove that e == ¢’. By property (6) we
have ¢’ & e == e. This implies that e < ¢’ in the semi-lattice of
local units. But since e is idempotent, we have e ¢ e = e hence, by
property (9) ¢’ < e. Together, this implies that e == ¢’.

Of course, every monoid can be turned into an instance of
ResettableSemigroup by taking reset = const mempty. However,
this instance is of very little interest. Incidentally, we do not require
m to be a monoid as shown by the premises Semigroup m of the
class definition. In the absence of a neutral element, existence of a
reset is by no mean a trivial property.

Inverse semigroups are particular cases of resettable semigroups
thanks to the following (non trivial) instance:

instance InverseSemigroup m = ResettableSemigroup m
where
reset m = m < inverse m
and, as already observed above, over semi-direct product, one may
prefer the following and more efficient instance.

instance (SemigroupAction m a, Semigroup a) =
ResettableSemigroup (m, a)
where
reset (—, a) = (mempty, a)

Applied to turtle semantics, this can be made explicit by:

instance ResettableSemigroup (Semantics d) where
reset (—, d) = (mempty, d)

Of course, there is no syntactic way to reset efficiently a turtle
program. But, as already noticed, thanks to our uniform semantics,
this is really just a matter of syntax. We can add a basic action
Reset (Program d) that takes an entire program as argument and
whose semantics is defined by moveA (Reset _) = mempty and
drawA (Reset p) = draw p.

Also, we do not use here the fact that the set of moves induced
by turtle programs are reversible. This means that we may even
add irreversible basic move commands such as WalkToPosition v,
a command that is irreversible, without losing the possibility to
perform a reset.



4 Induced Monad Semantics

So far, our turtle programming language is essentially based on
lists over some parametrized alphabets (basic actions) with mathe-
matically rich but not (yet) clearly usable properties. For instance,
conditionals, loops and variable bindings are missing for drawing
complex figures. Also, effectively drawing figures necessitates IO
actions. These leads us to embed the turtle semantics into monads.

4.1 Drawing Monad Semantics

Embedded in Haskell, our proposal inherits all the programming
framework proposed by Haskell. However, combining Haskell func-
tions and turtle programs may not be that convenient. The monoid
product syntax (<¢) does not sound much like programming at all.

Also, the above discussion about the reset function and possible
extension to non reversible moves suggests that our programs
should be defined directly at the turtle semantics level as pairs of
moves and drawings with potential unnecessarily heavy turtle state
transfer.

The monad approach (and the do notation) offers a clean and
efficient approach for this purpose. It occurs that Haskell GHC
Prelude even offers an easy way to embed a monoid into a monad.

The following instance, recalled below for the sake of reasonable
self completeness, can relevantly be used:

instance Functor ((,) a) where
fmap f (x,y) = (x.f y)
instance Monoid a = Applicative ((,) a) where
pure x = (mempty, x)
(u, f) < * > (v,x) = (u ‘mappend’ v, f x)
instance Monoid a = Monad ((,) a) where
(u, a) >= k = case k a of (v, b) = (u ‘mappend’ v, b)
with >= the bind operator of monads. Our turtle semantics is then
embedded into a monad by defining:

type MSemantics d a = (Semantics d, a)

This allows for (re)defining basic moves as monadic actions:
nop = load mempty

toggle = load [ TogglePen]

walk d = load [ Walk d]
turn d = load [ Turn d]

with the loading and running function defined by:

load :: Program d — MSemantics d ()
load p = (sem p, ())

runM :: MSemantics d a — Figure a
runM ((_, d), ) = d (True,0,0)

Then, turtle programs inherit from monad do notation.

Example. The following program draws a triangle.

prog = do { walk 1; turn 120; walk 1; turn 120; walk 1}
triangle = runM prog

Simon Archipoff and David Janin

4.2 Drawing I0-monad Semantics

Viewing figures on the screen necessitates an additional function
render :: Figure d — IO () which code, depending on the chosen
graphical library, is not detailed here.

It follows that turtle semantics can instead be seen as an IO action
that takes a position as input and actually produces a drawing while
also sending back the new current position. The type of moves over
a space type s can thus be described by:

type IOSemantics s a = s — 10 (s, a)
with the Monad instance

instance Monad (IOSemantics s) where
return a s = return (s, a)

(=)mfs=do
(ns,a) < ms
(f a) ns

Then, thanks to the render function, one can lift turtle monoid
semantics into IO semantics by:

liftS :: Semantics d — I0Semantics (Position d) ()
liftS (m,d) p = do

render (d p)

return (m p, ())

or turtle monad semantics into IO semantics by:

liftM :: MSemantics d a — [OSemantics (Position d) a
LiftM ((m, d), a) p = do
render (d p)

return (m p, a)

Various equalities could be written down in order to validate all
these definitions. For instance, one can check that we have

liftM (load p) == liftS (sem p)

for all turtle program p. The important point is that the monoid, the
monad or the IO monad approaches essentially define equivalent
semantics.

Remark. Command by command rendering may be useful in
programming context such as live coding. However, for proper
2D or even 3D rendering of complex pictures, it may be worth
accumulating in the underlying state all drawing commands so
that, ultimately, after evaluating an entire program, features that
are context dependent, such as face covering in 3D drawings, can
be computed and rendered correctly.

5 Time Extension

So far, our turtle is capable of performing figures in a two dimen-
sional space, henceforth performing 2D drawings. We aim now at
extending our turtle with time in order to define 2D animation. All
the algebraic tools developed so far can be used for this purpose.
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5.1 Animation

At the semantics level, extending our turtle to the time dimension
is rather easy. We just define the type:

type Animation d = d — Semantics d

The meaning of an element a :: Animation d is the following: the
move performed and the image drawn at some time stamp ¢ is given
defined by a t. In other words, we can define the function

runA :: Animation d — d — Position d — Figure d
runA at=runS(at)p

that simply draws the figure specified by the animation at every
instant.

Since Semantics d is known to be a monoid, animations can also
be turned into a monoid by letting

instance Monoid (Animation d) where
mempty = const mempty
mappend aj az =\t — (a1 t) O (az t)

Just given as a reminder as this is a particular instance of the generic
monoid instance of the monoids of functions into a monoid.

Example. Every figure f can simply be embedded into an ani-
mation by defining liftA f = const (id, const f), that is, the turtle
programming displaying the figure f at every instant and from any
position. Then we have

liftA (i © f2) == liftA fi O liftA fo
Observe that, with arbitrary animations and turtle moves, the
monoid composition of two animation defined above is non trivial.
It is not a mere superposition of two animations.

Remark. The figure produced by (a; ¢ az) t at every instant ¢,
is not in general the superposition of the two figures produced by
a1 tand ay t. The space position from which the drawing induced
by ay t is performed is indeed defined by the position where the
turtle stops when drawing a; t.

It turns out that composing two animations from the same posi-
tion necessitates a reset that can be defined by

instance ResettableSemigroup (Animation d) where
reset a =\t — reset (a t)

that inherits from the ResetableSemigroup instance of the type
Semantics d. The timed superposition of two animations a; and a
at the same instant and position can then be defined by reset a; ¢ az.

5.2 Temporal Moves

In terms of semantics, the animation type defined above already al-
lows for defining any 2D animation. However, in terms of temporal
programming, one may be in need of uniformly defined functions
that allows to start, stop or run an animation from, to or between
two specified timestamps. One may also wish to modify the speed
of a given animation. Even more importantly, one may feel the
need to combine animations over time.

This observation leads us to the definition of the temporal moves
type and its associated monoid instance:

type TMoves d = d — Maybe d

instance Monoid (TMoves d) where
mempty = Just
mappend f g =\t — case (f t) of
Justty - gt
Nothing — Nothing

that generalizes the flipped function composition.

Remark. The usage of the type Maybe d as codomain may look a
bit awkward at first sight. However, this turns out to be the most
elegant way to “block” passing time while preserving the property
that an instant has zero duration. Indeed, when blocking time, no
instant value will be given.

Examples. First examples of timed moves are delay functions of
the form \t — Just (¢ + d) for some constant value d. In other
words, this function allows for modeling the fact that a turtle move
may last d unit of time.

The (monoid) composition of delays \t — Just (t + di) and
\t — Just (t+do) equals delay \t — Fust (t+ di + d2). As expected,
this reflects the fact that the two delay values have been summed.

Many other examples of timed moves can be defined such as,
for instance, the time stretch \t — Just (d = t) that amounts to
compressing (when d < 1) or stretching (when d > 1) the time
dimension by some (generally strictly positive) constant.

However, in the absence of “visible” effect of these timed moves
over animations makes these examples a bit abstract. The real power
of timed moves appears when associated with animations as shown

right below.

5.3 Temporal Semantics Extension

The temporal extension of the turtle semantics type is obtained by
pairing timed moves and animations.

type TExtension d = (TMoves d, Animation d)
The monoid of timed moves acts over animations by

instance MonoidAction (TMoves d) (Animation d) where
act d a =\t — case (d t) of
Justty > aty
Nothing — mempty

where, in the case time is stopped by a temporal move, the animation
no longer produces any figure but the empty one.

Then, following the definition of semi-direct product construc-
tion, we have:

instance Monoid (TExtension d) where
mempty = (mempty, mempty)
mappend (di, a1) (dz, az) = (d1 © da, a1 O act di ap)

all these instances given just as a reminder. Reset is extended to
timed semantics (and the underlying animations) by the following
instance:

instance ResetableSemigroup (TExtension d)
where reset (_, a) = (Just, reset a)



which amounts to superpose two (embedded) animations at the
same time and position. One can check that we have

reset (di,a1) © (do, az) == (d, reset a; © ag)

for all time moves d; and dy and all animations a; and ay.
Running a timed semantics from a given instant ¢ and a given
space position p can be defined by the function

runTS :: TExtension d — d — Position d — Figure d
runTS (_,a) tp=runAatp

which explicits the fact that the temporal move d in the timed
semantics (d, a) only affects the animations that will be combined
to the right of the animation (d, a). This generalizes to the time
dimension the fact that spatial move performed by a given 2D turtle
program p affects the drawings performed by programs combined
to the right of p as illustrated by the following examples.

Every animation a can simply be embedded into a timed seman-
tics by defining

LliftTS :: Animation d — TExtension d
LiftTS a = (Just, a)

Then we have
LftTS (a1 © az) == liftTS a1 © liftTS ay
for all animation a; and ay.

Examples. As a first application example, delaying an animation
a by d units of time can be defined by delay d ¢ liftTS a with
delay d = (\t —> Just (d + t), mempty).

As another application example, stretching an animation by
a non-zero factor f can be defined by stretch f O liftTS a with
stretch f = (\t — Fust (f = t), mempty).

Gathering these timed semantics elements that only act on the
time dimension eventually leads us to the definition of the following
class type.

5.4 Timed Monoid Class Type
The class type TimedMonoid is defined by:

class (Monoid m) = TimedMonoid m d | m — d where
LiftTM =: (d — Just d) > m
delay::d - m
delay d = liftTM (Fust o (d+))
stretch::d — m
stretch d = liftTM (Just o (dx))
start::m —> m
stop::m—m
play:d—>d—->m—-m
play t1 to m = start (delay (t; — t2)
< stop (delay (t, — t1) © m))

In the class type defined above, the method liftTM method shall
lift any time transformation into the timed monoid m in such a
way that the derived methods delay and stretch behave as already
illustrated in the examples above.
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Methods start and stop shall start or stop a timed process at a
given (fixed) time origin, say, the zero instant. The derived method
play then plays a timed element from the instant #; to the instant
to.

Timed moves form an instance of timed monoid:

instance TimedMonoid (TMove d) d where
liftTM = id
start d t = if (t < 0) then Nothing else d t
stop d t = if (¢t > 0) then Nothing else d t

The timed monoid instance of timed semantic extension follows
from the above as it uniformly derives from the timed monoid

instance of timed moves®.

instance TimedMonoid (TExtension d) d where
liftTM d = (d, mempty)
start (d, a) = (d, act (start mempty) a)
stop (d, a) = (d, act (stop mempty) a)

Example. Running the timed semantics play 0 d (liftTS f) will
display the figure f from the instant 0 to the instant d, inclusive,
performing no drawings when outside this interval.

Remark. It can be shown that the monoid of timed semantics gen-
erated by delays, non-zero stretches, starts and stops, and arbitrary
lifts of animation is not an inverse monoid.

It could be turned into one by propagating time cuts induced by
start and stop. However, such a propagation of time cuts does not
seem to be desirable. On the contrary, the product of timed seman-
tics computes instead some kind timed envelope of the combined
animation much like in the way spatial envelopes are computed in
Diagrams [19].

Example. There is the notion if partial identities over d that can
be defined as function p :: d — Just d such that if p t = Just t’
for some t :: d then ¢ = ¢/, i.e. seen as a partial function, a partial
identity is essentially defined by its domain.

Then, as an example of implicit computation of temporal en-
velopes, one can check that for any partial identities di, da, for
all animation ay, az, we have (dy, a1) ¢ (do, a2) == (d, a1 ¢ az)
where d is the partial identity (uniquely) defined by the union of
the domain of d; and d,.

6 Space Extension

So far, our turtle is spatio-temporal. It performs timed 2D figures
made of curves. Now we aim at extending its space to perform
3D figures made of surfaces. Again, most of the algebraic tools
developed above are reusable for this purpose.

6.1 Extruding 3D Turtle

There are many possibilities for defining a 3D drawing language.
Following the idea that drawings should be achieved by means of
combining turtle pen position and moves one possibility is to define
3D surface by mean of extrusion: a well known 3D technique that

The ScopedTypeVariables option, necessary to remove any ambiguity on the type of
mempty has been omitted in this instance.
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aims to create 3D surfaces by moving in the space some varying
2D curve.

More precisely, in the 2D case, we observe that figures are drawn
by “extruding” turtle positions that defines points (when pen is
down) into segments. Extending turtle positions to 3D space with
basic 2D curves as possible turtle pen shapes eventually leads us to
the desired programming language.

As preliminary code, we define 3D affine transform by

type Affine3D d = (M33 d, V3 d)

instance Monoid (Affine3D d) where
mempty = (V3 (V3100) (V3010) (V300 1),0)
mappend (my, v1) (mz, v2) = (mq ! mg, v + my % vp)

Then, limiting our example to circle shapes with a given radius, tur-
tle pen shape, basic 3D actions and 3D turtle programs are defined

by

data Penshape d = Empty | Circle d

data BasicAction3D d =
Pen (Penshape d) |
Transform (Affine3D d)

type Program3D d = [BasicAction3D d]

3D turtle moves are defined by arbitrary affine transformation of the
underlying 3D space (command Tranform). Extrusion is performed
between two successive non empty Pen command, separated by one
or more Transform command that are implicitly combined. This
allows for defining complex movements by composition of sim-
pler ones, realizing the extrusion only when the resulting complex
movement is defined.

Example. As program examples, we define

circle :: d — Program3D d
circle d = [ Pen (Circle d)]
shift :: (d, d, d) — Program3D d
shift (x1, x2, x3) = [ Transform (0, V3 x1 x2 x3)]
cylinder :: d — Program3D d
cylinder r | = circle 0 & circle r &
shift (0,0, 1) O circle r & circle 0

Then, as it shall become clear with the extrusion semantics detailed
below, the expression cylinder r [ indeed specifies a cylinder with
radius r and length 1 along the z-axis.

6.2 3D Position and Scene

Three dimensional positions and figures, called Scene, are defined
by

type Position3D d = (Penshape d, Affine3D d, Affine3D d)
initialPosition3D = (Empty, mempty, mempty)

type Scene d = Set (V3 d, V3 d, V3 d)

where a position describes the last pen shape, its associated affine
transform and the current affine transform, and a scene describes a

set of triangles. Again, scenes inherit from the monoid structure of
sets with union as product and empty set as neutral element.

6.3 3D Moves, Drawings and Semantics Types

Three dimensional moves, drawings are defined much like in the
2D case:

type Move3D d = Position3D d — Position3D d
instance Monoid (Move3D d) where
mempty = id
mappend = flip (o)
type Drawing3D d = Position3D d — Scene d
instance Monoid (Drawing3D d) where
mempty = const mempty
mappend dy dy = \p — (d1 p <O d2 p)

with a similar semigroup action and derived semi-direct product
for semantics, defined by:

instance SemigroupAction (Move3D d) (Drawing3D d)
where
actmd=dom
type Semantics3D d = (Move3D d, Drawing3D d)

instance Monoid (Semantics3D d) where
mempty = (mempty, mempty)
mappend (my, di) (mg, d2) = (mg & mp, di & act my dz)

6.4 Running 3D Turtle

As for running is concerned, we define the move and drawing
semantics for 3D turtle basic actions and programs by:

move3DA :: BasicAction3D d — Move3D d
move3DA (Pen ps) =

\ (o = aff) = (ps. aff . aff)
move3DA (Transform aff) =

\ (ps. p, aff0) = (ps. p, aff0 & aff)
move3D :: Program3D d — Move3D d
move3D p = mconcat (map move3DA p)
draw3DA :: BasicAction3D d — Drawing3D d
draw3DA (Pen Empty) = (const mempty)
draw3DA (Pen (Circle d)) = (extrude d)
draw3DA _ = mempty
draw3D :: Program3D d — Drawing3D d
draw3D p = let (_,d) = sem3D pin d
sem3D :: Program3D d — Semantics3D d
sem3D p = mconcat

(map (\a — (move3DA a, draw3DA a)) p)

with the extrude function defined by
extrude :: d — Position3D d — Scene d

extrude _ (Empty, _, )
= mempty



in the case the last turtle pen position is empty,

extrude 0 (Circle 0, _, _)
= mempty

in the case the last and current turtle pen position have zero radius
hence both define a point’

extrude d (Circle 0, (_, v), aff)
= span3D v (d, aff)

in the case the previous turtle pen shape has zero radius hence
define a single point,

extrude 0 (Circle d, aff, (—, v))
= cospan3D (d, aff) v

in the case the current turtle pen shape has zero radius hence define
a single point, and

extrude dy (Circle dy, aff1, aff2)
= tube3D (di, aff1) (d2, aff2)

in the case both last and current turtle pen shapes are ellipse with
non zero radius.

Functions span3D, tube3D and cospan3D allow for triangulating
the surface defined by extrusion from one position to another. Their
semantics is informally depicted in Figure 2.

Figure 2. Triangulation examples respectively performed by func-
tions span3D, tube3D and cospan3D.

6.5 The Octopus Experiment

Our current implementation, called Octopusg, is thus based on
curve-to-curve extrusion.

Technically, our proposal is a lot more evolved than what is
described above. Octopus programs, implemented in Haskell and
executed on the central processing unit (CPU), define 3D scene
specifications that consists in trees of (2D shaped) pen positions.
Extrusion, tessellation, normal computation and lighting are exe-
cuted in parallel on the graphics processing unit (GPU) via a mod-
ern OpenGL graphic pipeline with vertex, geometry and fragment
shaders.

As example, the image in Figure 3 is extracted from a 3D ani-
mated scene example, described by means of 5000 timed elements,
extruded into more than 500,000 triangles per image, displayed

"hence inducing only a segment that is omitted
8see http://poset.labri.fr/octopus/
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Figure 3. A scene image example.

at 50 frames per second. Its associated triangulation is given in
Figure 4 and the normal colors’ are given in Figure 5.

It must be noted that the efficiency of the rendering is also due
to Haskell itself that automatically exploit the multicore structure
of the CPU, easily reaching more than 180% CPU usage.

Figure 4. Associated triangulation.

Although we aim in the long term at defining a 3D animation
programming language dedicated to a broad class of users, be they
trained with basic geometry notions or not, this goal is yet not
achieve. The Octopus language necessitates further experiments
and extensions before being considered as a mature front end.

A significant difference with the 2D turtle case is that, in our
3D version, a pen “action” creates now a drawing by extruding a
surface from the pen shape and position defined by the previous pen
“action”. The moves between these two actions are thus implicitly
combined to be treated as a single one.

9The surface vertex colors are set to the vertex normal coordinates.
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Figure 5. Associated surface normals.

More precisely, extrusion allows for combining several simple
moves into a complex one which facilitates the task of drawing
regular shapes.

For instance, a regular polygon with n vertices and (outer) radius
n is defined in Logo by n repetitions of walks of 2 X r X sin(x/n)
distance units followed by turns of 2x 7 /n. Its definition necessitates
some basic knowledge in trigonometry. With (2D) extrusion, it
suffices instead to define n + 1 successive pen positions (with point
shape) separated by the combined movements Turn 90, Walk r,
Turn (360 / n), Walk (—r) and Turn (—90), two successive pen
positions being extruded into a segment. The resulting drawing is
the same without any explicit trigonometric function.

7 Related Works

Between groups and monoids, inverse semigroups have already
been studied and developed quite a while in algebra[15, 16]. In
computer science, they already appears in connection with Girard’s
Linear Logic [6] and related studies of reversible computations [1,
3]. More recently, inverse semigroup have been applied to music
modeling [2, 9, 12].

Resettable monoids, first studied in [14], are known in semigroup
theory as semi-adequate monoids [5, 14]. Although not much pop-
ular even in theoretical computer science, it is known that their
free algebras capture deterministic unranked trees [13]. They have
recently been studied in formal language theory by the second
author for developing a new algebraic characterization of regu-
lar languages of finite trees [11]. It is conjectured that dropping
the commutation hypothesis (property (8)) will eventually lead to
languages of ranked trees.

To the best of our knowledge, resettable monoids have never
been considered in programming language semantics even though
interleaving semantics for concurrency relies for long on the no-
tion of commuting processes : a property explicitly axiomatized in
resettable monoids.

In the context of functional programming languages, drawing
and animation languages have already led to many proposals. As
already suggested above, the novelty of our approach does not

lay our yet fairly implicit EDSL language proposal. Our front-end
is still a toy language example essentially designed for studying
the applicability of inverse semigroup theory to the definition of a
generic and efficient back-end for media programming languages.

Nevertheless, our proposal can still be related with existing ap-
proaches among which Euterpea [8] in computer music and Dia-
grams [19] in computer graphics.

Indeed, both proposals provide semigroup based uniform and
robust program structures that are applicable to many distinct
purposes. Paul Hudak’s notion of polymorphic temporal media,
based on a 2D structuration of time with its (horizontal) sequential
and its (vertical) parallel product is an example. The automatic
computation of object envelopes of figures in Diagrams is another
example. In Diagrams, semigroup actions are even made explicit
(see [19] for many other examples).

Our approach clearly follows these paths already open by previ-
ous authors.

8 Conclusion

We thus propose a formal approach for defining (and implementing)
a temporal media program semantics model based on semigroup
theoretical concepts.

The main novelty of our approach is to make explicit the usage
of semi-direct products. This allows, in particular, for combining,
within semigroup structures, both (spacial or temporal) moves and
(musical or graphical) renderings.

To the best of our knowledge, the notion of semi-direct product,
though deriving from the notion of monoid action that is already
used in Diagrams [19], have not yet been considered in temporal
media programming.

Octopus, an extension of Logo’s turtle for programming 3D
animation is based on this approach. Efficient rendering is achieved
by combining simple (but possibly large) tree shaped temporal 3D
scene specifications defined in Haskell (on the CPU) with efficient
rendering on a modern OpenGL graphic pipeline (on the GPU).

Though applicable to the definition of non trivial 3D animation,
the resulting programming language is stable enough to be viewed
as a programming language proposal. In particular, we believe that
the uniform semantics modeling of both space and time dimensions
that we have proposed throughout these pages is neither fully
exploited not fully understood.

Our belief is that inverse (and resettable) semigroups could be
much more developed towards programming semantics. For in-
stance, the approach presented here could be generalized for com-
bining in a fairly abstract way reversible computations, e.g. moves,
with non reversible ones, e.g. drawings.

Aside the Octopus experiment, one possible development of our
proposal may consist in rephrasing the FRP definitions [4] in terms
of monoid constructions. Doing so, the inderlyng semigroup syntax
will certainly restrict the way behaviors and events can be defined
and combined, and this may eventually lead to a more efficient
operational semantics. As a matter of fact, recent works on FRP
(see [18]) tend to restrict FRP programs to somewhat automata
(henceforth semigroup) like specifications for better efficiency in a
reactive context.
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