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Abstract. In the risk management context, the extreme-value method-

ology consists in estimating extreme quantiles - one hundred years return

period or more - from an extreme-value distribution adjusted on data. In

this communication, we quantify the extrapolation limits associated with

extreme quantile estimations. To this end, we focus on the framework of the

block maxima method and we study the behaviour of the relative approx-

imation error of a quantile estimator dedicated to the Gumbel attraction

domain. We give necessary and sufficient conditions for the error to con-

verge towards zero and we provide a first order approximation of the latter.

We show that extrapolations can be greatly limited depending on the data

distribution.

Keywords. Extreme-value theory, extreme quantile estimation,

asymptotic properties, environmental risks.

1. Introduction

The EDF R&D department makes use of the extreme-value theory to per-

form many statistical studies of extreme events based on meteorological

series (temperature, flow, wind speed, ...). These studies are used to size

structures against meteorological events such as flood, storm or drought.

They consist, given an extreme-value distribution fitted on data, in esti-

mating extreme quantiles of one hundred or more return period.

But what credibility should be attributed to these extrapolations ? Even

if several works offer empirical rules for extrapolation limits (see, e.g., [1]),

we introduce new mathematical rules based on the convergence analysis

towards extreme-value distributions.



In this work, we focus on data from a distribution in the Gumbel max-

imum domain of attraction (F ∈ DA(Gumbel)).

First, we provide necessary and sufficient conditions for the relative con-

sistency of the estimator of an extreme quantile in the Gumbel maximum

domain of attraction. Our second result establishes a first order equiva-

lent of the asymptotic approximation error associated with the previous

estimator.

2. Extreme quantiles estimation using the block maxima

method.

In this study, we consider quantiles from an unknown distribution F ∈
DA(Gumbel). Given a n-sample, an extreme quantile is a (1−p)th quantile

xp of F , with p→ 0 as n→ +∞.

The block maxima approach in extreme-value theory, consists in divid-

ing the observation period into nonoverlapping periods of equal size and

restricts attention to the maximum observation in each period (see, e.g.,

[3]). The pseudo observations thus created follow (under domain of attrac-

tion conditions) an extreme-value distribution G. Parametric statistical

methods for the extreme-value distributions are then applied to those ob-

servations. This method relies on the extreme-value theorem.

Extreme Value Theorem (see, e.g., [2]): Let X1, X2, ..., Xm be in-

dependent random variables from a distribution F ∈ DA(Gumbel) and

Xm,m = max (X1, X2, ..., Xm). There exist sequences {am > 0} and {bm}
such as :

P
(
Xm,m − bm

am
≤ x

)
→ G(x), m→∞,

with

G(x) = exp {− exp (−x)} , x ∈ R. (1)

Interpreting the limit in this Theorem as an approximation for large

values of m suggests the use of the Gumbel distribution for modeling the

behaviour of maxima from long sequences.

An extreme quantile approximation xpm of F is then obtained by using

the fact that P(Xm,m < x) = Fm(x) ≈ G

(
x− bm
am

)
together with a first

order approximation of the log function by inverting equation (1) :



x̃pm = bm − am log(mpm).

In the following, we focus on the relative approximation error εappm of

xpm by x̃pm defined as

εappm =
xpm − x̃pm

xpm
.

3. Asymptotic results

Let us define the cumulative hazard rate function H(x) = − log (1− F (x))

and suppose H is a strictly increasing and twice differentiable function.

Let us also consider pm such that
log(1/pm)

logm
= τm, with τm

>→ τ ≥ 1, or

equivalently pm = m−τm .

Let us define Ki(x) =
xi
(
H−1

)(i)
(x)

H−1(x)
, i ∈ {1, 2} and the associated

limits li = lim
x→+∞

Ki(x).

Our first result provides a necessary and sufficient condition such that

the relative approximation error tends to zero as m tends to infinity. This

condition links the tail distribution behaviour (via K2) with the rate of

convergence towards zero of pm (via the τm − 1 difference).

Theorem 1: Suppose K1 is regularly varying with index θ1 (K1 ∈ RVθ1),

θ1 ≤ 1, K2 ∈ RVθ2 , θ2 ≤ 2 and τ ≥ 1. Then :

εappm
m→+∞−→ 0⇐⇒ (τm − 1)2K2(logm)

m→+∞−→ 0.

The regularly varying hypothesis K1 ∈ RVθ1 has been first introduced

by [4]. In this paper, one can also find a discussion on the distribution

types satisfying this hypothesis.

Let us introduce

Ψ(t) :=

∫ 1

0

xe−tx dx et g(τ, θ) :=
τθ − θ(τ − 1)− 1

θ(θ − 1)(τ − 1)2
, θ /∈ {0, 1}, τ > 1, t ≥ 0.

Our second result exhibits a first order equivalent associated with the rel-

ative approximation error.



Theorem 2: Under the assumptions of Theorem 1, we have, as m→ +∞
:

(1) if l1 ∈ {0, 1} then K2(logm)→ 0, θ2 ≤ 0 and

εappm ∼ (τm − 1)2K2(logm)τ−l1g(τ, θ2 + l1)→ 0, ∀τ ≥ 1.

(2) if l1 ∈ [0,+∞[, l1 /∈ {0, 1}, then K2(logm)→ l1(l1 − 1), θ2 = 0 and

εappm ∼ (τm − 1)2l1(l1 − 1)τ−l1g(τ, l1)→ 0 if and only if τ = 1.

(3) if l1 = +∞ then K2(logm)→ +∞ and

εappm ∼ (τm − 1)2K2(logm)Ψ
(

(τm − 1)
√
K2(logm)

)
→ 0 if and only if (τm − 1)2K2(logm)→ 0.

This second Theorem allows to distinguish between three families of dis-

tributions. First, distributions verifying l1 ∈ {0, 1}, for which there is con-

vergence towards zero of the error without any condition being required on

τ . There is no extrapolation limits in this case. Such distributions include

for example the Exponential and Gamma distribution.

Second, one has distributions verifying l1 ∈ [0,+∞[, l1 /∈ {0, 1}. For

these distributions, convergence to zero requires τ = 1. In such a case,

extrapolation is limited to extreme quantiles of order such that log(pm) ∼
log(1/m), i.e. extreme quantiles not very far from the sample maximum.

Such distributions include Weibull and Gaussian distribution.

Finally the most restrictive case is the case where l1 = +∞. In the latter

case, τ must be equal to 1, but an additional condition is required on the

convergence rate of τ towards 1. Indeed, (τm − 1)2K2(logm) → 0 implies

τ = 1. If this condition holds, then εappm ∼
1

2
(τm − 1)2K2(logm). The ex-

trapolation is even more limited than in the previous case, this phenomena

occurs for instance with the Lognormal distribution.

4. Numerical illustrations

Previous Theorems allow us to compute the maximum return period Tmax
up to which one can extrapolate. The maximum return period can be

interpreted as follows :

Tmax ≈
1

mpmin
,



where pmin is the minimum order of an extreme quantile which can be

estimated with a relative error smaller than 10%, i.e.

pmin = argmin
p

{∣∣∣∣xp − x̃pxp

∣∣∣∣ < 0.1

}
.

The maximum return period Tmax in years is displayed in Table 1 for

some distributions in the Gumbel maximum domain of attraction.

m = 60 m = 90 m = 120

Exponential no limit no limit no limit

Gamma(shape = 0.5) > 1e+ 15 > 1e+ 15 > 1e+ 15

Gaussian 75 126 183

Weibull(shape = 1.5) 1041 2071 3375

Lognormal 7 7 8

This shows that extrapolation is dependent on the data distribution.

Extrapolation can be either greatly limited in the Lognormal case for ex-

ample, or not at all in the Exponential case.

Other numerical illustrations will be provided during the talk.
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