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Abstract

In this work we give a sense to the notion of orientation for self-similar Gaussian fields with
stationary increments, based on monogenic wavelet analysis of these fields, with isotropic Riesz
wavelets. We compute the covariance of the random wavelet coefficients, which leads to a new
formulation for the structure tensor and provides an intrinsic definition of the orientation vector
as eigenvector of this tensor. We show that the orientation vector does not depend on the choice
of the mother wavelet, nor the scale, but only on the anisotropy encoded in the spectral density
of the field. Then we generalize this definition to a larger class of random fields called localizable
Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two
classes of Gaussian models with prescribed orientation are studied in the light of these new analysis
tools.

Keywords: monogenic wavelets, Riesz formulation, Fractional fields, anisotropy function,
structure tensor, orientation vector, tangent fields.

1. Introduction

Anisotropic images, admitting different characteristics along a considered direction, are ubiq-
uitous in many areas as computer vision [1], image processing [2], and hydrology [3]. A major
issue is then the definition of a suitable concept of local anisotropy.

A widely used approach, in the image processing community, consists in defining directionality
properties of an image by means of its Riesz transform [4]. Several characteristics can then be
derived from the knowledge of the Riesz transform of an image: its local orientation, which is
roughly speaking the dominant direction at a given point and the structure tensor whose rank is
related to the local dimensionality of the image. This approach has proven to be successful for
many applications such as classification or texture retrieval [5]. Recently, this framework has been
extended to the case of superimposed patterns. An extension of the synchrosqueezing method to
the bidimensional setting, based on wavelet analysis, has been proposed in [6].

In many cases, the analyzed anisotropic image is related to some physical phenomena, that
can be well-modeled using a stochastic approach. Anisotropic random fields are then naturally
involved in the modeling of medical images [2] or in spatial statistics [7]. In such situations, the
Riesz framework is not so easy to apply. The main difficulty lies in giving a rigourous definition of
the Riesz transform of a random field. Indeed [8], the Riesz transform of a function is well-defined
if it belongs to Lp for some p > 1, which is not the case for the sample paths of many classical
random fields, as Fractional Fields widely used to model random textures. The non-local character
of the Riesz transform then prevents any definition based on a restriction of the considered random
field to a compact set.
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To overcome all these difficulties, we choose to use a wavelet-based approach, extending the
work of [9] about analysis of anisotropic images by means of wavelet analysis. In [9], the authors
defined wavelet versions of the characteristics derived from the Riesz framework. At each scale,
is then defined a structure tensor and an orientation of the image. Numerical experiments put
in evidence the effectiveness of the approach, and especially the fact that one clearly recover
the anisotropic features of the image. From the theoretical point of view, the orientation and
the structure tensor depend on the scale but also of the chosen analysis wavelet. Surprisingly,
considering the very general case of localizable Gaussian fields, the anisotropic characteristics of a
random field become intrinsic. Our main contribution consists in proving that nor the orientation
nor the structure tensor depends on the wavelet or the scale.

Our paper is organized as follows. In Section 2, we first recall some basic facts about the
Riesz transform and its use for defining anisotropic features of an image. Thereafter in Section 3,
we define the wavelet-based version of the orientation and the structure tensor in the Gaussian
self-similar case. We prove in Theorem 1 that these two characteristics are intrinsic in the sense
that they depend only on the anisotropic properties of the analyzed random field. Section 4 is
then devoted to the extension of all these notions to the localizable case. We then provide two
classes of Gaussian models with prescribed orientation. For sake of clarity, we postponed all proofs
in Section 5.

2. Classical tools in directionality analysis of images

In this section, we give some background about two classical tools for analyzing the anisotropy
properties of an oriented texture: the local orientation and the structure tensor. We first recall
in Section 2.1 the usual definitions based on the Riesz transform introduced in [4]. Thereafter,
Section 2.2 is devoted to the presentation of the wavelet extension of these two notions based on
monogenic wavelet analysis (see [10]).

2.1. Local orientation of an image and structure tensor

The classical notion of local orientation of a texture is based on the Riesz transform. The Riesz
transform Rf of any f ∈ L2(R2) is defined in the Fourier domain1 as

Rf =

(
R1f
R2f

)
with R̂1f(ξ) = j

ξ1
‖ξ‖

f̂(ξ), R̂2f(ξ) = j
ξ2
‖ξ‖

f̂(ξ) , ∀ξ = (ξ1, ξ2) ∈ R2 .

The main properties of R [8, 9] are summed up in the two following propositions. The first
ones concern the invariance with respect to dilations, translations, and the steerability property
(relation with the rotations).

Proposition 1. The Riesz transform commutes both with the translation, and the dilation oper-
ator, that is for any f ∈ L2(R2), a > 0 and b ∈ R2, one has

RDaf = DaRf with Daf = f(a−1·) ,

and
RTbf = TbRf with Tbf = f(· − b) .

Proposition 2. The Riesz transform is steerable, that is, for any f ∈ L2(R2) one has

Rθ(Rf) = R−1θ R(Rθf) =

(
cos θR1(Rθf) + sin θR2(Rθf)
− sin θR1(Rθf) + cos θR2(Rθf)

)
,

1where the 2D Fourier transform is defined by f̂(ξ) =
∫
R2 f(x)e−j〈x, ξ〉 dx.
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where Rθf = f(R−θ ·) is the rotation operator by the angle θ, and

R−θ =

(
cos θ sin θ
− sin θ cos θ

)
.

is the matrix of the spatial rotation of angle −θ.

The Riesz transform is also a unitary and componentwise antisymmetric operator on L2(R2).

Proposition 3. For any i ∈ {1, 2}, the i–th component of the Riesz transform Ri is an antisym-
metric operator, namely for all f, g ∈ L2(R2) we have

〈Rif, g〉L2(R2) = −〈f, Rig〉L2(R2) .

Since R1
2 +R2

2 = −I, it implies in particular that

〈Rf, Rg〉L2(R2,R2) = 〈R1f, R1g〉L2(R2) + 〈R2f, R2g〉L2(R2) = 〈f, g〉L2(R2) .

In what follows we denote (1, i, j, k) the canonical basis of the algebra of quaternions H, and S1 the
unit sphere of R2. Using the Riesz transform one can also define the so-called amplitude, phase
and local orientation of an image [4, 11] under suitable assumptions.

Definition 1 (Monogenic signal). Let f ∈ L2(R2,R∗+). Assume that a.e. Rf 6= 0. Then

∀a.e. x ∈ R2, Mf(x) = f(x) + iR1f(x) + jR2f(x) = A(x)eϕ(x)n(x) .

with

A = ‖Mf‖ = (f2 +R1f
2 +R2f

2)1/2, ϕ(x) = arctan

(∥∥Rf(x)
∥∥

f(x)

)
and n(x) =

Rf(x)∥∥Rf(x)
∥∥ .

The functions A, ϕ and n are respectively called the amplitude, the scalar phase and the local
orientation of f .

To characterize the degree of directionality of f at some point x, a classical tool, widely used in the
image processing community, is the so-called structure tensor, which has been revisited through
the Riesz transform by [12], and is based on the 2× 2 matrix:

Jf (x) = Rf RfT =

(
R1f(x)2 R1f(x)R2f(x)

R2f(x)R1f(x) R2f(x)2

)
.

As pointed out by [9], this matrix is symmetric and positive, then admits two non-negative eigen-
values λ1(x) and λ2(x). It can be proven that the local orientation is always an eigenvector of the
matrix Jf (x) associated to its largest eigenvalue λ1(x). The following coherency index provides a
degree of directionality at any point [9]:

χf (x) =
λ1(x)− λ2(x)

λ1(x) + λ2(x)
∈ [0, 1] .

The case χf (x) ≈ 1 corresponds to an almost one dimensional image at x, whereas the case
χf (x) = 0 may correspond to different situations as isotropy or existence of a corner.

In practice, this matrix is filtered by a positive windows function W to form the structure tensor
JWf (x) = (W ∗ Jf )(x). For the practical estimation of the local orientation and the coherency

index, the structure tensor is replaced with this filtered matrix JWf (x). Note that in this case, all
these quantities depend on the chosen windows W .
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2.2. Wavelet-based version of the notion of orientation and of the structure tensor

A wavelet extension of the notion of local orientation has been proposed in [10], and is based
on the monogenic wavelet analysis. The starting point is the use of isotropic wavelet bases whose
existence is proved in [13, 14, 15, 16, 17, 18]. For practical implementation, [10] proposes to define
a wavelet tight frame in the following way:

Proposition 4. Let ϕ(λ) be a real radial frequency profile such that

– ϕ(λ) = 0, ∀λ > π.

–
∑
j∈Z
|ϕ(2jλ)|2 = 1, ∀λ.

– ∀n = 0, · · · , N, ϕ(n)(λ) = 0,∀λ.

Then, the real isotropic wavelet ψ defined by its 2–D Fourier transform ψ̂(ξ) = ϕ(‖ξ‖) , generates
a tight wavelet frame of L2(R2) whose basis functions ψi,k(x) = 2iψ(2ix− k) are isotropic with
vanishing moments up to order N .

The tight frame property means that any function f belonging to L2(R2) can be expanded as

f(x) =
∑
i,k

〈f, ψi,k〉ψi,k(x) ,

and one has ‖f‖2L2 =
∑
i,k |ci,k|2 where

ci,k(f)
def
= 〈f, ψi,k〉 , (1)

denote the wavelet coefficients of the function f .
The properties of the Riesz transform stated in Proposition 1, Proposition 2 and Proposition 3,

imply that if {ψi,k} is an isotropic tight wavelet frame of L2(R2), then {Rψi,k} is a vector valued
tight wavelet frame of (L2(R2))2. In addition, for any (i,k) in Z× Z2, one has

Rψi,k = (Rψ)i,k ,

which means that the wavelet frame {Rψi,k} is generated by a single wavelet Rψ.
The Riesz-based wavelet coefficients of a given function f ∈ L2(R2) in the vector valued tight

wavelet frame {Rψi,k} are then defined as:

c
(R)
i,k (f) =

(
c
(1)
i,k(f)

c
(2)
i,k(f)

)
, (2)

with c
(1)
i,k(f) = 〈f,R1ψi,k〉 and c

(2)
i,k(f) = 〈f,R2ψi,k〉.

The wavelet-structure tensor at scale i ∈ Z is then defined from the following 2× 2 matrix of
rank 1:

JWf,i[k] = c
(R)
i,k (f)c

(R)
i,k (f)∗ =

 |c(1)i,k(f)|2 c
(1)
i,k(f) · c(2)i,k(f)

c
(1)
i,k(f) · c(2)i,k(f) |c(1)i,k(f)|2

 . (3)

which has to be filtered by a discrete positive windows w[k]. This leads to the natural wavelet
counterpart of the tensor structure and in whole generality, it depends not only on the scale and
localization indices (i,k), but also on the chosen wavelet ψ.

The aim of next sections is to extend all these notions to the case of random Gaussian fields.
We first shall consider the case of self-similar Gaussian fields admitting stationary increments in
Section 3, and thereafter in Section 4 to the more general classe of localizable Gaussian fields.
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3. Wavelet-based orientation of self-similar Gaussian fields admitting stationary in-
crements

Observe first that all the definitions of the previous section cannot be extended directly to
the case of random fields since their sample paths do not belong to any Lp space, but are only
tempered distributions. The aim of the two next sections is to adapt this framework to Gaussian
random fields. In this section, we first begin with the simple case of self-similar Gaussian fields.
We give in Section 3.1 some background on such fields. Then in Section 3.2, we define our notion of
orientation, extending the wavelet based framework recalled in Section 2.2. Finally in Section 3.3,
we give several examples of oriented self-similar Gaussian fields with stationary increments. From
now on, we restrict ourself to bidimensional centered real valued Gaussian fields, since our goal is
to analyse anisotropic images. We shall also assume that the Gaussian field X under consideration
is stochastically continuous, that is the covariance

(x,y) 7→ E[X(x)X(y)] ,

is a continuous function on (R2)2.

3.1. Self-similar Gaussian fields with stationary increments

In what follows we shall focus on the special case of self-similar Gaussian fields admitting sta-
tionary increments. Remember that the bidimensional Gaussian field X is said to admit stationary
increments if for any x ∈ R2,

{X(x+ h)−X(x)}h∈R2

(fdd)
= {X(h)}h∈R2 ,

whereas X is said to be H–self-similar (see [19]), for some H ∈ (0, 1) if

∀c > 0, {X(cx)}x∈R2

(fdd)
= {cHX(x)}x∈R2 ,

where as usual
(fdd)

= means equality of finite dimensional distributions. Since X is assumed to be
stochastically continuous, the self-similarity implies in particular that X(0) = 0 a.s.

We now recall, following [20], the notion of spectral measure of a Gaussian field admitting
stationary increments, based on the following classical result.

Proposition 5. Let X = {X(t)}t∈R2 be a centered real-valued Gaussian field with stationary
increments. Then, there exists a unique Borel measure σX satisfying∫

R2

min(1, ‖ξ‖2) dσX(ξ) <∞ ,

such that for any x,y ∈ R2, the covariance reads:

E(X(x)X(y)) =

∫
R2

(e j〈x, ξ〉 − 1)(e−j〈y, ξ〉 − 1) dσX(ξ) .

The measure σX is called the spectral measure of the Gaussian field with stationary increments X.

In what follows we shall consider only Gaussian fields whose spectral measure σX admits a density
fX , called the spectral density of X, with respect to the Lebesgue measure: dσX(ξ) = fX(ξ) dξ.
Since X is real-valued this function is necessarily even. Such field admits an harmonizable repre-
sentation:

X(x) =

∫
R2

(
e j〈x, ξ〉 − 1

)
f
1/2
X (ξ)Ŵ(dξ) , (4)

where Ŵ is a complex-valued white noise. By uniqueness of the spectral density, the representation
of H–self-similar Gaussian fields follows (see also [19]):
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Proposition 6 (Bonami, Estrade [21]). Let H ∈ (0, 1) and X be a H–self-similar Gaussian
field with stationary increments admitting a spectral density fX . Then fX is of the form

fX(ξ) = ‖ξ‖−2H−2 SX
(
ξ

‖ξ‖

)
,

where SX is a positive homogeneous function defined on the sphere S1 = {ξ ∈ R2, ‖ξ‖ = 1}. The
function SX is called the anisotropy function of X.

Remark 1. The estimation problem of the anisotropy function has been addressed by Istas in [22].

Proof. By definition, for any c > 0,

{X(cx)}x∈R2

(fdd)
= {cHX(x)}x∈R2 .

It implies in particular that

∀x,y ∈ R2, E(X(cx)X(cy)) = c2HE(X(x)X(y)) .

Since X is a Gaussian field with spectral density fX , following Proposition 5, we obtain:∫
R2

∣∣∣e jc〈x, ξ〉 − 1
∣∣∣2 f(ξ) dξ = c2H

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 f(ξ) dξ .

Performing the change of variable ξ ← cξ in the first integral, and by uniqueness of the spectral
density, one then deduces:

for a.e. ξ ∈ R2, fX

(
ξ

c

)
= c2H+2fX(ξ) .

Fix now ξ 6= 0 and set c = ‖ξ‖. One deduces directly the required result, namely that fX has to be

known only on S1 to be defined almost everywhere, and that SX is defined as ξ 7→ ‖ξ‖2H+2
fX(ξ).

�

We now investigate the orientation properties of a self-similar Gaussian field deformed by a linear
transform.

Proposition 7. Let X be a H–self-similar Gaussian field with stationary increments admitting
as spectral density fX and as anisotropy function SX . Let L be an invertible 2 × 2 real valued
matrix. Define XL by XL(x) = X(L−1x). Then XL is a H–self-similar Gaussian field admitting
as

• spectral density
fXL

(ξ) =
∣∣det(L)

∣∣ fX(LTξ) , ξ ∈ R2 ,

• anisotropy function

SXL
(Θ) =

∣∣det(L)
∣∣∥∥LTΘ

∥∥2H+2
SX

(
LTΘ∥∥LTΘ

∥∥
)
, Θ ∈ S1.

Proof. The self-similarity and stationarity properties of XL directly come from that of X and of
the linearity of L. To compute the spectral density of XL, observe that:

E(XL(x), XL(y)) = Cov(X(L−1x), X(L−1y)) ,

=

∫
R2

(
e j〈L−1x, ξ〉 − 1

)(
e−j〈L

−1y, ξ〉 − 1
)
fX(ξ) dξ ,

=

∫
R2

(
e j〈x, (L−1)Tξ〉 − 1

)(
e−j〈y, (L

−1)Tξ〉 − 1
)
fX(ξ) dξ ,

=

∫
R2

(
e j〈x, ζ〉 − 1

)(
e−j〈y, ζ〉 − 1

)
fX(LTζ) |det L|dζ ,
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using the change of variable ζ = (L−1)Tξ, which directly leads by identification to the explicit
expression of fXL

, as well as that of SXL
given in Proposition 7. �

We now explain how to define in a proper way the local directional characteristics of a Gaussian
field X admitting stationary increments in the self-similar case, and the relation to its anisotropy
function SX .

3.2. Definition of a wavelet-based orientation in the self-similar case

Let {ψi,k} be an isotropic tight wavelet frame as defined in Section 2.2, and {ψ(R)
i,k } the corre-

sponding vector valued Riesz-based wavelet tight frame generated by Rψ. Our notion of wavelet–
based orientation of a self-similar Gaussian field will be based on the following preliminary result,
leading to a new formulation for the structure tensor.

Theorem 1. Let X be a H–self-similar Gaussian field admitting a spectral density fX . Then,

the Riesz-based wavelet coefficients of X, c
(R)
i,k (X), in the vector wavelet tight frame {ψ(R)

i,k }, are
well-defined.

Moreover, for all i ∈ Z, the covariance matrix of the c
(R)
i,k is

Σ(c
(R)
i,k (X)) = E

(
JWf,i[k]

)
= E

(
c
(R)
i,k (f)c

(R)
i,k (f)∗

)
, (5)

with JWf,i[k] defined in (3), reads:

Σ(c
(R)
i,k (X)) = 2−2i(H+1)

[∫ +∞

0

|ϕ(r)|2

r2H+1
dr

]
J(X) ,

where for any `1, `2 ∈ {1, 2},

[J(X)]`1,`2 =

∫
Θ∈S1

Θ`1Θ`2 SX(Θ) dΘ . (6)

with the notation Θ = (θ1, θ2).
J(X) is a non-negative definite 2 × 2 matrix depending only on the anisotropy function SX , and
will be called the structure tensor of X.

Proof. First consider the a.s. existence of the Gaussian vector c
(R)
i,k (X): for ` = 1, 2,

c
(`)
i,k(X) =

〈
X, R`ψi,k

〉
,

=

∫
R2

(∫
R2

(
e j〈x, ξ〉 − 1

)
f

1/2
X (ξ)Ŵ(dξ)

)
R`ψi,k(x) dx ,

=

∫
R2

(∫
R2

e j〈x, ξ〉R`ψi,k(x) dx−
∫
R2

R`ψi,k(x) dx

)
f

1/2
X (ξ)Ŵ(dξ) ,

=

∫
R2

(
R̂`ψi,k(ξ)− R̂`ψi,k(0)

)
f

1/2
X (ξ)Ŵ(dξ) ,

=

∫
R2

R̂`ψi,k(ξ)f
1/2
X (ξ)Ŵ(dξ) .

The third equality comes from the classical stochastic Fubini Theorem (see [23]), which holds since∫
R2

(∫
R2

|e j〈x, ξ〉 − 1|2fX(ξ)|ψi,k(x)|2 dξ

)1/2

dx

=

∫
R2

(∫
R2

|e j〈x, ξ〉 − 1|2fX(ξ) dξ

)1/2

|ψi,k(x)|dx <∞ ,

7



by the integrability properties of ψi,k and the existence of the stochastic integral. The last equality

derives since R̂`ψi,k(0) = 0 by moments assumptions recalled in Proposition 4.
The covariance matrix is then easily computed: by definition of the Riesz transform, one has

for any `1, `2 ∈ {1, 2},

E[c
(`1)
i,k (X)c

(`2)
i,k (X)] = 2−2i

∫
R2

ξ`1ξ`2

‖ξ‖2
∣∣∣ψ̂(2−iξ)

∣∣∣2 fX(ξ) dξ .

Set now ζ = 2−iξ and use the expression of f given in Proposition 6. Then

E[c
(`1)
i,k (X)c

(`2)
i,k (X)] = 2−2i(H+1)

∫
R2

1

‖ζ‖2H+2

ζ`1ζ`2

‖ζ‖2
∣∣∣ψ̂(ζ)

∣∣∣2 SX ( ζ

‖ζ‖

)
dζ .

Set ζ = rΘ with (r,Θ) ∈ R+ × S1. Hence, remembering that ψ is isotropic, ψ̂(ζ) = ϕ(r),

E[c
(`1)
i,k (X)c

(`2)
i,k (X)] = 2−2i(H+1)

∫
Θ∈S1

∫ +∞

r=0

1

r2H+2
Θ`1Θ`2

∣∣ϕ(r)
∣∣2 SX(Θ) r dr dΘ ,

= 2−2i(H+1)

[∫ +∞

r=0

|ϕ(r)|2

r2H+1
dr

][∫
Θ∈S1

Θ`1Θ`2 SX(Θ) dΘ

]
.

Theorem 1 then follows. �

We now define the structure tensor of X, its orientation and its coherency index.

Definition 2 (Orientation and coherency). The matrix J(X) defined in Theorem 1 (6) is
called the structure tensor of X. Let λ1, λ2 be its two eigenvalues. The coherency index of X is
defined as

χ(X) =
|λ2 − λ1|
λ1 + λ2

.

An orientation ~n is any unit eigenvector associated to the largest eigenvalue of J(X) or equivalently

of Σ(c
(R)
i,k (X)).

3.3. Examples

We present below several examples of self-similar Gaussian fields, and explicit each time their
structure tensor and their local orientation.

3.3.1. Example 1: Fractional Brownian Field (FBF)

We begin with the Fractional Brownian Field (FBF) defined in [24]. This random field is the
isotropic multidimensional extension of the famous Fractional Brownian Motion defined by [25].
Its harmonizable representation is:

X(x) =

∫
R2

1

‖ξ‖H+1
(e j〈x, ξ〉 − 1)

Ŵ(dξ)

2π
.

We can easily check (SX ≡ 1
2π ), setting Θ = (cos θ, sin θ) ∈ S1, that

[J(X)]1,1 =
1

2π

∫ 2π

0

cos2 θ dθ =
1

2
, [J(X)]1,2 = [J(X)]2,1 =

1

2π

∫ 2π

0

cos θ sin θ dθ = 0 ,

and

[J(X)]2,2 =
1

2π

∫ 2π

0

sin2 θ dθ =
1

2
.

8



which directly implies

J(X) =

(
1
2 0
0 1

2

)
, χ(X) = 0 .

Any unit vector is thus an orientation of the FBF, which is clearly consistent with its isotropic
nature.

3.3.2. Example 2: Anisotropic Fractional Brownian Field (AFBF)

The general model of Anisotropic Fractional Brownian Field (AFBF) was firstly introduced
in [2] and studied in [21]. We focus here to the special case of elementary fields, which corre-
sponds to H–self-similar AFBF with orientation α0, and accuracy δ > 0. It admits the following
harmonizable representation (α0 ∈ (−π/2, π/2), δ > 0):

Xα0,δ(x) =

∫
R2

(e j〈x, ξ〉 − 1)f
1/2
X (ξ)Ŵ(dξ) , (7)

where

fX(ξ) = ‖ξ‖−2H−2 SX
(
ξ

‖ξ‖

)
with SX(Θ) =

1

2δ
1[−δ,δ](argΘ − α0) . (8)

Let us compute its structure tensor J(X), using the definition given in Theorem 1. We start with
the diagonal terms:

[J(X)]1,1 =

∫
Θ∈S1

Θ2
1 SX(Θ) dΘ =

1

2δ

∫ α0+δ

α0−δ
cos2 θ dθ =

1

2
+

1

2
cos(2α0)

sin(2δ)

2δ
.

By the relation cos2 θ + sin2 θ = 1, we get as well

[J(X)]2,2 =
1

2
− 1

2
cos(2α0)

sin(2δ)

2δ
.

The last terms are computed as follows:

[J(X)]1,2 = [J(X)]2,1 =
1

2δ

∫ α0+δ

α0−δ
cos θ sin θ dθ =

1

2
sin(2α0)

sin(2δ)

2δ
.

Hence the structure tensor of the AFBF is

J(X) =

(
1
2 + 1

2 cos(2α0) sin(2δ)
2δ

1
2 sin(2α0) sin(2δ)

2δ
1
2 sin(2α0) sin(2δ)

2δ
1
2 −

1
2 cos(2α0) sin(2δ)

2δ

)
.

Remark that J(X) diagonalizes as

J(X) =

(
cosα0 − sinα0

sinα0 cosα0

)(
1
2 + 1

2
sin(2δ)

2δ 0

0 1
2 −

1
2
sin(2δ)

2δ

)(
cosα0 − sinα0

sinα0 cosα0

)T

,

Denoting λ1 ≥ λ2 the two eigenvalues of J(X),

λ1 =
1

2
+

1

2

sin(2δ)

2δ
and λ2 =

1

2
− 1

2

sin(2δ)

2δ
,

the coherency index of X is given by

χ(X) =
λ1 − λ2
λ1 + λ2

=
sin(2δ)

2δ
.

9



An orientation of the elementary field Xα0,δ being a unit eigenvector associated with λ1, we obtain

~n =

(
cosα0

sinα0

)
.

This is in accordance with what we observe when performing simulations. Moreover notice that
χ(X) tends to 1 when δ → 0, meaning that the coherency is strong when the cone of admissible
directions is tight around the angle α0.

Remark 2. Note that in the limite case δ → 0, the density function SX tends to the Dirac measure
along the line argΘ = α0, and the tensor structure degenerates to

J(X) =

(
cos2 α0 cosα0 sinα0

cosα0 sinα0 sin2 α0

)
,

which diagonalizes as

J(X) = Rα0

(
1 0
0 0

)
RT
α0
.

leading to the same orientation vector (cosα0, sinα0)T. Notice also that in the limit case, the
structure tensor is no more invertible.

3.3.3. Example 3: sum of two AFBF

To understand how our notion of wavelet based orientation can be adapted to the setting of
multiple oriented random fields, we consider the following toy model (α0, α1 ∈ (−π/2, π/2), δ > 0):

X = Xα0,δ +Xα1,δ .

The Gaussian field X is then the sum of two elementary fields of same regularity H and of
respective directions α0 6= α1 (as defined in Example 2 above). We assume that δ < |α1 − α0|/2.
This last condition implies in particular that [α0− δ, α0 + δ]∩ [α1− δ, α1 + δ] = ∅ and the spectral
densities have disjoint supports. Then we have

J(X) =

(
1 + 1

2
sin(2δ)

2δ (cos(2α0) + cos(2α1)) 1
2
sin(2δ)

2δ (sin(2α0) + sin(2α1))
1
2
sin(2δ)

2δ (sin(2α0) + sin(2α1)) 1− 1
2
sin(2δ)

2δ (cos(2α0) + cos(2α1))

)
.

As previously the matrix J(X) diagonalizes as

J(X) = R(α0+α1)/2

(
1 + sin(2δ)

2δ cos(α0 − α1) 0

0 1− sin(2δ)
2δ cos(α0 − α1)

)
RT

(α0+α1)/2
,

where we denoted

R(α0+α1)/2 =

(
cos
(
α0+α1

2

)
− sin

(
α0+α1

2

)
sin
(
α0+α1

2

)
cos
(
α0+α1

2

) ) .
Thus, the coherency index is

χ(X) =
sin(2δ)

2δ
cos(α0 − α1) ,

which tends to cos(α0−α1) when δ → 0. One can also observe that the more α0 and α1 are close,
the more the random field is coherent and then admits a dominant orientation. An orientation of
X is given by

~n =

(
cos
(
α0+α1

2

)
sin
(
α0+α1

2

)) .

We then recover a dominant orientation, related to the half angle of the two orientations.
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3.3.4. Example 4: deformation of an AFBF by a linear transform

Let L be an invertible 2× 2 matrix and α0 ∈ (−π/2, π/2), δ > 0. Set

XL(x) = Xα0,δ(L
−1x) . (9)

Thanks to Proposition 7, we have an explicit expression for the spectral density of XL:

fXL
(ξ) =

|det(L)|
2δ

‖LTξ‖−2H−21[α0−δ,α0+δ](arg(LTξ)) ,

=
|det(L)|

2δ
‖LTξ‖−2H−21[tan(α0−δ),tan(α0+δ)]((L

Tξ)2/(L
Tξ)1) .

Since the matrix L is invertible, it admits a Singular Value Decomposition L = U∆VT where
U,V are two orthogonal matrices and ∆ a diagonal matrix with non-negative eigenvalues. One
then can deduce the general case of an invertible matrix L from three specific ones: L ∈ O+

2 (R),
L ∈ O−2 (R) and L diagonal with non-negative eigenvalues. Before deriving the general form of an
orientation vector, we will consider each term of the SVD.

(i) We first consider the case where L is an orthogonal matrix of the form

L = Rθ0 =

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
,

one has

fXL
(ξ) =

1

2δ
‖ξ‖−2H−21[α0+θ0−δ,α0+θ0+δ](arg ξ) ,

which implies that one can choose as orientation for XL the unit vector

~nL =

(
cos (α0 + θ0)

sin (α0 + θ0)

)
= L

(
cosα0

sinα0

)
= (L−1)T

(
cosα0

sinα0

)
, (10)

since any orthogonal matrix equals the transpose of its inverse.

(ii) We now deal with the case where L is an orthogonal matrix of the form

L =

(
cos θ0 sin θ0
sin θ0 − cos θ0

)
=

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
×
(

1 0
0 −1

)
.

One has

fXL
(ξ) =

1

2δ
‖ξ‖−2H−21[θ0−α0−δ,θ0−α0+δ](arg ξ) ,

which implies that one can choose as orientation for XL the unit vector

~nL =

(
cos (θ0 − α0)

sin (θ0 − α0)

)
= L

(
cosα0

sinα0

)
= (L−1)T

(
cosα0

sinα0

)
, (11)

since as above any orthogonal matrix equals the transpose of its inverse.

(iii) We finally deal with the case where L is a diagonal matrix L =

(
λ1 0
0 λ2

)
, with λ1, λ2 > 0.

In this case observe that the condition

tan(α0 − δ) <
(LTξ)2
(LTξ)1

< tan(α0 + δ) ,

is equivalent to λ1

λ2
tan(α0 − δ) < ξ2

ξ1
< λ1

λ2
tan(α0 + δ), that is to

δ∆ < arg ξ < δ∆ ,
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with δ∆ = arctan(λ1

λ2
tan(α0 − δ)) and δ∆ = arctan(λ1

λ2
tan(α0 + δ)). Hence,

fXL
(ξ) =

|det(L)|
2δ

‖LTξ‖−2H−21[δ∆,δ∆](arg ξ) ,

SXL
(Θ) =

|det(L)|
2δ

‖LTΘ‖−2H−21[δ∆,δ∆](argΘ) .

Now, recalling that:

[J(XL)]`1,`2 =

∫
Θ∈S1

Θ`1Θ`2 SXL(Θ) dΘ ,

we obtain

[J(XL)]1,1
|det(L)|

=
1

2δ

∫ δ∆

δ∆

cos2 θ SXL
(cos θ, sin θ) dθ =

1

2δ

∫ δ∆

δ∆

cos2 θ

(λ21 cos2 θ + λ22 sin2 θ)H+1
dθ ,

[J(XL)]2,2
|det(L)|

=
1

2δ

∫ δ∆

δ∆

sin2 θ SXL
(cos θ, sin θ) dθ =

1

2δ

∫ δ∆

δ∆

sin2 θ

(λ21 cos2 θ + λ22 sin2 θ)H+1
dθ ,

[J(XL)]1,2
|det(L)|

=
1

2δ

∫ δ∆

δ∆

cos θ sin θ SXL
(cos θ, sin θ) dθ =

1

2δ

∫ δ∆

δ∆

cos θ sin θ

(λ21 cos2 θ + λ22 sin2 θ)H+1
dθ .

Now, let us define (u1(θ), u2(θ)) = (cos θ, sin θ) and introduce the functions

f`1,`2 : θ 7→ u`1(θ)u`2(θ) (λ21u1(θ)2 + λ22u2(θ)2)−H−1 , F`1,`2 : x 7→
∫ x

0

f`1,`2(θ) dθ,

ν : α 7→ arctan

(
λ1
λ2

tanα

)
, G`1,`2 : α 7→ F`1,`2(ν(α)) .

Each term of the structure tensor writes

[J(XL)]`1,`2
|det(L)|

=
G`1,`2(α0 + δ)−G`1,`2(α0 − δ)

2δ
.

When the parameter δ is small, we have

G`1,`2(α0 + δ)−G`1,`2(α0 − δ)
2δ

= G′`1,`2(α0) +
δ2

12
G′′′`1,`2(α0) +O(δ4) ,

= ν′(α0) F ′`1,`2(ν(α0)) +O(δ2) ,

= ν′(α0) f`1,`2(ν(α0)) +O(δ2) .

Hence,

G`1,`2(α0 + δ)−G`1,`2(α0 − δ)
2δ

=
λ1λ2

λ22 cos2 α0 + λ21 sin2 α0

× u`1(ν(α0)) u`2(ν(α0))

(λ21 cos2(ν(α0)) + λ22 sin2(ν(α0)))H+1
+O(δ2) .

Let us define CH,λ1,λ2,α0
= λ21λ

2
2(λ22 cos2 α0 + λ21 sin2 α0)−1(λ21 cos2(ν(α0)) + λ22 sin2(ν(α0)))−H−1.

Then, one has for small δ,

J(XL) = CH,λ1,λ2,α0

(
cos2(ν(α0)) cos(ν(α0)) sin(ν(α0))

cos(ν(α0)) sin(ν(α0)) sin2(ν(α0))

)
+O(δ2) ,

which can be written as

J(XL) = CH,λ1,λ2,α0
Rν(α0)

(
1 0
0 0

)
RT
ν(α0)

+O(δ2) .
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Therefore ~nL = (cos ν(α0), sin ν(α0))T can be viewed as an approximate eigenvector of J(XL)
associated to its largest eigenvalue, and then an orientation of XL. Finally, remark that

ν(α0) = arctan

(
λ1 sinα0

λ2 cosα0

)
= arg

[(
λ2 cosα0

λ1 sinα0

)]
= arg

[(
λ2 0
0 λ1

)
×
(

cosα0

sinα0

)]
.

Consequently, an approximate (up to δ2) orientation of XL is in this case

~nL =

(
λ2 0
0 λ1

)
~n∥∥∥∥∥

(
λ2 0
0 λ1

)
~n

∥∥∥∥∥
with ~n =

(
cosα0

sinα0

)
.

Observe that

(
λ2 0
0 λ1

)
is the comatrice of L. Then, dividing the numerator and denominator of

the last equation by det(L) = λ1λ2, we get

~nL =
L−1~n

‖L−1~n‖
=

(L−1)T~n

‖(L−1)T~n‖
, (12)

since the diagonal matrix L−1 equals its transpose.
We now gather (10), (11) and (12): using the existence of the SVD for every matrix, we deduce

the following proposition.

Proposition 8. Let L be an invertible 2×2 matrix and XL the Gaussian field defined by (9). Set
~n =

(
cosα0

sinα0

)
the orientation vector of X. Then the unit vector

~nL =
(L−1)T~n

‖(L−1)T~n‖
,

is an approximate (up to δ2) orientation vector of XL.

Proof. Let L = U∆VT be the SVD singular decomposition of L, with U,V ∈ O2(R) and ∆
diagonal with non-negative eigenvalues.
XL(x) = X(V−T∆−1U−1x) be the Gaussian field defined by (9). Let decompose the three
operations like this:

XL = X ◦ (VT)−1︸ ︷︷ ︸
X1

◦∆−1

︸ ︷︷ ︸
X2

◦U−1 .

Then, since VT is an orthogonal matrix, we have from (i) and (ii) that the unit orientation vector
of X1 is

~n1 = ((VT)−1)T~n .

Now from (iii), the unit orientation vector (up to δ2) of X2 = X1 ◦∆−1 is

~n2 =
(∆−1)T~n1

‖(∆−1)T~n1‖
=

(∆−1)T((VT)−1)T~n

‖(∆−1)T((VT)−1)T~n‖
.

Finally, from (i) and (ii) again, the unit orientation vector (up to δ2) of XL = X2 ◦U−1 is

~nL =
(U−1)T~n2

‖(U−1)T~n2‖
,

=
(U−1)T(∆−1)T((VT)−1)T~n

‖(U−1)T(∆−1)T((VT)−1)T~n‖
,

=
((VT)−1∆−1U−1)T~n

‖((VT)−1∆−1U−1)T~n‖
=

(U∆VT)T~n

‖(U∆VT)T~n‖
=

(L−1)T~n

‖(L−1)T~n‖
.

�
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4. Wavelet-based orientation of localizable Gaussian fields

We now extend the notion of intrinsic orientation, defined for self-similar random fields, to much
more general setting, that of localizable Gaussian fields. This will be the purpose of Section 4.2.
In Section 4.3, we will apply it to two classes of model with prescribed orientation. First of all,
let us remind in Section 4.1 the definition of localizable Gaussian fields.

4.1. Localizable Gaussian fields

We first recall, following [26, 27, 28], the definition of H–localizable Gaussian fields.

Definition 3 (Localizable Gaussian field). Let H ∈ (0, 1). We say that the random field
Y = {Y (x), x ∈ R2} is H–localizable at x0 ∈ R2 with tangent field (or local form) the random
field Yx0 = {Yx0(x), x ∈ R2} if{

Y (x0 + ρh)− Y (x0)

ρH

}
h∈R2

d−→
{
Yx0(h)

}
h∈R2 , (13)

as ρ→ 0, where
d→ means convergence in distribution, that is the weak convergence for stochastic

processes (see [29]).
A random field Y = {Y (x), x ∈ R2} is said to be localizable if for all x ∈ R2 it is H–localizable
for some H ∈ (0, 1).

In Theorem 3.9 and Corollary 3.10 of [27], Falconer proved the following result that we state in
the Gaussian case. It enables to describe the whole class of possible tangent fields of a Gaussian
field with continuous sample paths.

Theorem 2. Let X be a localizable Gaussian field with continuous sample paths. For almost all
x0 in R2 the tangent field Yx0 of X at x0 has stationary increments and is self-similar, that is
for some H ∈ (0, 1) and for all ρ ≥ 0,

{Yx0(ρx), x ∈ R2} (fdd)
= {ρHYx0(x), x ∈ R2} . (14)

In short, a Gaussian field with continuous sample paths will have at a.e. point, a “fractal” tangent
field behaving like a FBF.
We now illustrate this notion considering a classical example of Gaussian field with prescribed
tangent field: the Multifractional Brownian Field defined in the unidimensional setting in [30],
and in the multivariate case in [26, 31]. Such field is localizable at each point, with a fractional
Brownian Field for tangent field.

Example 1 (Multifractional Brownian Field). Let h : R2 → (0, 1) be a continuously differ-
entiable function whose range is supposed to be a compact interval [α, β] ⊂ (0, 1). The Multifrac-
tional Brownian Field (MBF) with multifractional function h, is the Gaussian field defined by its
harmonisable representation as follows

Xh(x) =

∫
R2

e j〈x, ξ〉 − 1

‖ξ‖h(x)+1
Ŵ(dξ) . (15)

4.2. Tensor structure and orientation of localizable Gaussian fields

The results of Section 3 together with Theorem 2 of section 4.1, will allow us to define the
wavelet-based orientation of any H–localizable Gaussian field X almost everywhere.

Definition 4 (Localizable field orientations). Let X be a Gaussian field with continuous sam-
ple paths. Assume that X is localizable at the point x0, with tangent field Yx0 , and that Yx0 is a
self-similar Gaussian field with stationary increments. One then defines:
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• The local anisotropy function Sx0 at x0 of the localizable Gaussian field X is the anisotropy
function of its tangent field Yx0 .

• The local structure tensor Jx0(X) at x0 of the localizable Gaussian field X is the structure
tensor of its tangent field Yx0 .

• A local orientation at x0 of the localizable Gaussian field X is any orientation of its tangent
field Yx0 .

In view of these definitions and of Theorem 2, we deduce that any localizable Gaussian field X
admits a local orientation at almost every point x0 ∈ R2.

Example 2 (Local structure tensor and orientation of a MBF). The Multifractional Brow-
nian Field Xh (15) admits at each point a structure tensor proportional to the identity matrix. In
particular, any unit vector is an orientation of Xh. Indeed, the tangent field Yx0 of the MBF at
point x0 is a FBF, whose structure tensor has been determined in example 3.3.1.

4.3. Two new models of localizable Gaussian fields with prescribed orientation

In this section, we will extend our previous works [32, 33] and define two classes of Gaussian
fields with prescribed orientation. The details about numerical aspects and synthesis of the model,
as well as comparison between them, will be detailed in the companion paper [34]. These two
models will be derived from two general classes: Generalized Anisotropic Fractional Brownian
Fields (GAFBF) and Warped Anisotropic Fractional Brownian Fields (WAFBF) that we describe
in Sections 4.3.1 and 4.3.2 respectively.

4.3.1. First model: Generalized Anisotropic Fractional Brownian Fields (GAFBF)

We introduce below the definition of Generalized Anisotropic Fractional Brownian Fields
(GAFBF) which generalizes the notion of Locally Anisotropic Brownian Fields (LAFBF) intro-
duced in [32], and whose simulation will be studied in [34].

Our Gaussian field will be defined from two functions h from R2 to [0, 1] and C from R2 ×R2

to R+ satisfying the following set of assumptions:

Assumptions (H)

• h is a β–Hölder function, such that a = infx∈R2 h(x) > 0, b = supx∈R2 h(x) < 1 and b < β.

• (x, ξ) 7→ C(x, ξ) is bounded, that is ∀(x, ξ) ∈ R2 × R2, C(x, ξ) 6M .

• ξ 7→ C(x, ξ) is even and homogeneous of degree 0: ∀ρ > 0, C(x, ρξ) = C(x, ξ).

• x 7→ C(x, ξ) is continuous and satisfies: there exists some η, with β ≤ η such that

∀x ∈ R2, Ax
def
= sup

z∈R2

‖z‖−2η
∫
S1

[
C(x+ z,Θ)− C(x,Θ)

]2
dΘ <∞ . (16)

Morever x 7→ Ax is bounded on any compact set of R2.

We now define our model, the Generalized Anisotropic Fractional Brownian Field.

Definition 5. Generalized Anisotropic Fractional Brownian Fields (GAFBF)
Let us consider h : R2 → [0, 1] and C satisfying Assumptions (H). We then define the GAFBF as
the following Gaussian field generalizing [32, 33] by

X(x)
def
=

∫
R2

(e j〈x, ξ〉 − 1)
C(x, ξ)

‖ξ‖h(x)+1
Ŵ(dξ) . (17)
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The main properties of the GAFBF X are summed up in the following propositions.

Proposition 9. The GAFBF X (17) admits at any point x0 ∈ R2, a tangent field Yx0 given by

Yx0(x) =

∫
R2

(e j〈x, ξ〉 − 1)f1/2(x0, ξ)Ŵ(dξ) =

∫
R2

(e j〈x, ξ〉 − 1)
C(x0, ξ)

‖ξ‖h(x0)+1
Ŵ(dξ) . (18)

In particular, for each point x0, the local anisotropy function of the Gaussian field X at x0 is
C(x0, ·) : ξ 7→ C(x0, ξ)2.

Proof. Proposition 9 is proven in Section 5.2. �

Example 3. We now derive our first example of Gaussian field with prescribed orientation and
prescribed regularity. Let α : R2 → (−π/2, π/2) be a continuously differentiable function, and is
2η–holderian with η ≥ β, and δ > 0. We then consider the localizable Gaussian field defined by
formula (17) with

C(x0, ξ) =
1√
2δ
1[−δ,δ](arg(ξ)− α(x0)) . (19)

One can verify that C satisfies assumptions (H). Thanks to Proposition 9, we know that the
anisotropy function of X at each point x0 is the function C(x0, ·)2. Using the results of Section
3, we immediately deduce the following proposition.

Proposition 10. The GAFBF X defined by (17) with C as in (19) admits at each point x0 the
approximate (up to δ2) local orientation

~n =

(
cosα(x0)
sinα(x0)

)
.

The Hölder condition relying on α impose a tradeoff between the rugosity variations of the texture
governed by h, and the variations of the orientation governed by α. This restriction prevent
the orientation to grow too rapidly, otherwise we would observe some line artefacts in numerical
simulations (see [34] for details). To overcome this drawback, we define below a second model
based on the deformation of an AFBF.

4.3.2. Warped Anisotropic Fractional Brownian Fields (WAFBF)

We now consider a second model, satisfying similar properties, but we will give numerical
evidences that this new model behaves differently. In particular this second approach will avoid
the apparition of numerical artefacts. This other model is in the same spirit than the approach
developed in [35], but in the case where the warped Gaussian field is the elementary field (7,8).

Definition 6 (Warped Anisotropic Fractional Brownian Fields). Let X be a H self-similar
elementary field, with anisotropy function SX , as defined in (7,8). Let Φ : R2 → R2 be a con-
tinuously differentiable function. The Warped Anisotropic Fractional Brownian Field (WAFBF)
ZΦ,X is defined as the deformation of the elementary field X:

ZΦ,X(x) = X(Φ(x)) . (20)

The aim of this section is to study the local properties of such Gaussian fields.

Proposition 11. The Gaussian field ZΦ,X defined by (20) is localizable at any point x0 ∈ R2,
with tangent field Yx0 defined as

Yx0(x) = X(DΦ(x0) x) , ∀x ∈ R2 , (21)

where DΦ(x0) is the jacobian matrix of Φ at point x0.
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Proof. Proposition 11 is proven in Section 5.3. �

Proposition 12. Let ZΦ,X be the WAFBF defined in Definition 6, from an elementary field X
(7,8). In addition, we assume that the C1-differentiable deformation Φ is a diffeomorphism on an
open set U ⊂ R2.
Then, at each point x0 ∈ U , an approximate (up to δ2) local orientation of the WAFBF Z, as
defined in Definition 2, is given by

~nZ(x0) =
DΦ(x0)T~n

‖DΦ(x0)T~n‖
,

where ~n = (cosα0, sinα0) is a unit orientation vector of the elementary field X, as computed in
section 3.3.2.

Proof. According to Definition 4, the local orientation of ZΦ,X at x0 ∈ U is given by the one of its
tangent field Yx0 . From Proposition 11, Yx0(x) = X(DΦ(x0) x), and since Φ is a diffeomorphism
in a neighborhood of x0, DΦ(x0) is invertible. Proposition 8 applied to L−1 = DΦ(x0) directly
leads to the result. �

Example 4 (Local rotation). We now illustrate this result considering the case α0 = 0, then the
orientation ~n = (cosα0, sinα0) of the elementary field X is now the unit vector ~n = e1 = (1, 0)T.
The deformation we consider is a local rotation governed by a continuously differentiable function
x 7→ α(x). We have the following proposition:

Proposition 13. Let X be the standard elementary field with anisotropy function SX(Θ) =
1
2δ1[−δ,δ](argΘ), which means that its orientation vector is e1 = (1, 0)T, and consider the warped
field

ZΦ,X(x) = X(Φ(x)) =

∫
R2

e j〈Φ(x), ξ〉 − 1

‖ξ‖H+1

1[−δ,δ](arg ξ)

2δ
Ŵ(dξ) ,

with

Φ(x) = R−α(x)x =

(
cosα(x)x1 + sinα(x)x2
− sinα(x)x1 + cosα(x)x2

)
≡
(

Φ1(x)
Φ2(x)

)
, (22)

and α : R2 → R a C1 function on R2 such that, on an open set U ⊂ R2, one has:

∀x0 ∈ U, ∇α(x0) ∧ x0 =
∂α

∂x1
(x0)x0,2 −

∂α

∂x2
(x0)x0,1 6= −1 . (23)

Then, for each point x0 ∈ U satisfying (23), ZΦ,X admits as local orientation

~n(x0) =
u(α(x0)) + 〈u(α(x0))⊥,x0〉∇α(x0)

‖u(α(x0)) + 〈u(α(x0))⊥,x0〉∇α(x0)‖
. (24)

with u(α(x0)) = (cos(α0(x0)), sin(α0(x0)).

Proof. Since the function α is assumed to be C1, the deformation Φ (22) is also C1. Its Jacobian
matrix is given by

DΦ(x) =

(
cosα(x) + ∂α

∂x1
(x)Φ2(x) sinα(x) + ∂α

∂x2
(x)Φ2(x)

− sinα(x)− ∂α
∂x1

(x)Φ1(x) cosα(x)− ∂α
∂x2

(x)Φ1(x)

)
,

whose determinant is

det DΦ(x) = 1 +
∂α

∂x1
(x)x2 −

∂α

∂x2
(x)x1 .
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Figure 1: Image texture of size 512 × 512 resulting from the simulation of the field ZΦ,X(x) = X(R−α(x)x) on

[0, 1]2, where X is the standard elementary field with parameters H = 0.5, α0 = 0 and δ = 0.3, for the following
functions α: (a) α(x1, x2) = −π

3
(top left), (b) α(x1, x2) = −π

2
+ x1 (top right), (c) α(x1, x2) = −π

2
+ x2 (bottom

left), (d) α(x1, x2) = −π
2

+ x21 − x2 (bottom right).

Under the assumption (23) followed by α, the determinant on the open set U is non-zero, so Φ is
a C1-diffeomorphism on U . Then, Proposition 11 and 12 hold, and at each point x0 ∈ U , ZΦ,X

admits as local orientation ~n(x0) = DΦ(x0)Te1/‖DΦ(x0)Te1‖, which writes

~n(x0) =
u(α(x0)) + 〈u(α(x0))⊥,x0〉∇α(x0)

‖u(α(x0)) + 〈u(α(x0))⊥,x0〉∇α(x0)‖
.

�

Some examples of realizations of ZΦ,X on the domain [0, 1]2 are displayed on Figure 1 for
different α, fulfilling the condition (23). Remark that the orientation vector given by (24) is equal
to u(α(x0)) = (cosα(x0), sinα(x0)) plus a term depending on the gradient of α. Consequently,
we don’t exactly have a prescribed orientation governed by α.

We now inverse the problem, and investigate the construction of a deformation Φ, to obtain
a prescribed orientation α. To this aim, we will employ a conformal deformation, which has the
particularity to preserve the angles. An important result, stated in the following proposition, is
that we can prescribed the orientation α of a Gaussian field, if this orientation is supposed to be
harmonic.
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Proposition 14. Let ZΦ,X(x) be the Gaussian field (20), warped by a conformal deformation Φ
defined as follows: let α : R2 → R be an harmonic function, and λ its harmonic conjugate function

such that Ψ =

(
λ
−α

)
is holomorphic (as a complex function, identifying R2 with C). Define now

Φ as any complex primitive of exp(Ψ), as an holomorphic function on C. Then at any point x0,
an approximate (up to δ2) local orientation of ZΦ,X is

~nZ(x0) =

(
cos(α(x0))
sin(α(x0))

)
,

which is exactly the orientation vector defined by the angle function α.

Proof. Firstly, the existence of λ is the classical result of the existence of an harmonic conjugate
of α (see [8]). Then Ψ is holomorphic, and exp(Ψ) is holomorphic too (as the composition of
holomorphic functions). In addition, since Φ is a complex primitive of exp(Ψ) as an holomorphic
function on C, Φ being a primitive exp(Ψ), we have at any point:

Φ′(x0) = exp(Ψ(x0)) = eλ(x0) e−iα(x0)

(as a complex function in C). Moreover, since Φ is holomorphic,

Φ′(x0) =
∂Φ

∂x1
(x0) = −i ∂Φ

∂x2
(x0) ,

which leads to the Jacobian matrix:

DΦ(x0) = exp(λ(x0))

(
cos(α(x0)) sin(α(x0))
− sin(α(x0)) cos(α(x0))

)
,

and concludes the proof. �

Example 5 (Affine orientation functions). We consider the family of harmonic functions

α(x1, x2) = ax1 + bx2 + c ,

with a, b, c real constants. By the procedure of Proposition 14, we are able to construct the defor-
mation function Φ, whose explicit formula is

Φ(x1, x2) =
exp(ax2 − bx1)

a2 + b2

(
a sin(ax1 + bx2 + c)− b cos(ax1 + bx2 + c)
a cos(ax1 + bx2 + c) + b sin(ax1 + bx2 + c)

)
. (25)

Then we can check that

DΦ(x)Te1 = exp(ax2 − bx1)

(
cos(ax1 + bx2 + c)
sin(ax1 + bx2 + c)

)
, ~n(x) =

(
cosα(x)
sinα(x)

)
.

An example of simulation of such a prescribed local orientation field is provided in Figure 2, where
the angle variations are governed by the function α(x1, x2) = 2x1 − x2.

5. Proofs

This last section is devoted to the proofs of Proposition 9 and Proposition 11.
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Figure 2: Image texture of size 512 × 512 resulting from the simulation of the field ZΦ,X(x) = X(Φ(x)) on [0, 1]2,
where X is the standard elementary field with parameters H = 0.5, α0 = 0 and δ = 0.3, and Φ is the deformation
function defined by (25) corresponding to the harmonic function α(x1, x2) = ax1 + bx2 + c, with (a, b) = (2,−1).

5.1. Technical lemmas

We first state and prove some lemmas that are used in the proof of Proposition 9.

Lemma 1. Assume that h is a β–Hölder function with Lipschitz constant Λh defined on R2 sat-
isfying

0 < a = inf
x∈R2

h(x) ≤ sup
x∈R2

h(x) = b < β .

Then, for all x,y ∈ R2 and for all ξ ∈ R2,∣∣∣‖ξ‖−h(y) − ‖ξ‖−h(x)∣∣∣ ≤ Λh‖y − x‖β ∣∣log‖ξ‖
∣∣ (‖ξ‖−a−11‖ξ‖>1 + ‖ξ‖−b−11‖ξ‖≤1

)
.

Proof. Let us fix ξ ∈ R2 and apply the mean value inequality to the function

h 7→ ‖ξ‖−h−1 = exp(−(h+ 1) ln ‖ξ‖) .

We obtain that ∣∣∣‖ξ‖−h2−1 − ‖ξ‖−h1−1
∣∣∣ ≤ C|h1 − h2| ∣∣log‖ξ‖

∣∣ (‖ξ‖−α−1) ,

with α = min(h1, h2) if ‖ξ‖ > 1 and α = max(h1, h2) if ‖ξ‖ < 1. This leads to the inequality:

∀(x,y) ∈ (R2)2, ∀ξ ∈ R2,
∣∣∣‖ξ‖−h(y) − ‖ξ‖−h(x)∣∣∣ ≤ |h(y)− h(x)|

∣∣log‖ξ‖
∣∣

×
(
‖ξ‖− infz h(z)−11‖ξ‖>1 + ‖ξ‖− supz h(z)−11‖ξ‖≤1

)
.

The holderianity of h allows to conclude. �

Lemma 2. Assume that h : R2 → [0, 1] and C : R2 × R2 → R+ are two functions satisfying
assumptions (H). Let (x,y) ∈ R2 ×R2. Then, there exists some constant Kx > 0 depending only
on x such that for any (ρ,v) ∈ R+ × R2 such that |ρ| ≤ 1∫

R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [f1/2(x+ ρw, ξ)− f1/2(x, ξ)

]2
dξ ≤ Kx|ρ|2β max(‖w‖2β , ‖w‖2η)

(
1 + ‖x‖2

)
.

Moreover the function x 7→ Kx is bounded on any compact set.
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Proof. Observe that

C(x+ ρw, ξ)

‖ξ‖h(x+ρw)+1
− C(x, ξ)

‖ξ‖h(x)+1
=
C(x+ ρw, ξ)

‖ξ‖h(x+ρw)+1
− C(x+ ρw, ξ)

‖ξ‖h(x)+1
+
C(x+ ρw, ξ)

‖ξ‖h(x)+1
− C(x, ξ)

‖ξ‖h(x)+1
.

Using the classical inequality |a− b|2 ≤ 2(|a|2 + |b|2), we deduce that∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [f1/2(x+ ρw, ξ)− f1/2(x, ξ)

]2
dξ ,

≤ 2

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [C(x+ ρw, ξ)

‖ξ‖h(x+ρw)+1
− C(x+ ρw, ξ)

‖ξ‖h(x)+1

]2
dξ

+2

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2

‖ξ‖2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ .

To bound the latter integral
∫
R2

∣∣∣e j〈x, ξ〉−1
∣∣∣2

‖ξ‖2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ, we set ξ = rΘ with

(r,Θ) ∈ R∗+ × S1 and use the homogeneity of C. It yieds:

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2

‖ξ‖2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ ,

=

∫
R∗+

|e js − 1|2

s2h(x)+1

[∫
S1
| 〈x, Θ〉 |2h(x)

[
C(x+ ρw,Θ)− C(x,Θ)

]2
dΘ

]
ds ,

≤ ‖x‖2h(x)
[∫

R∗+

|e js − 1|2

s2h(x)+1
ds

] [∫
S1

[
C(x+ ρw,Θ)− C(x,Θ)

]2
dΘ

]
,

where we set s = r 〈x, Θ〉 in the second equality. We now use condition (16) of assumptions (H)
with z = ρv. Hence,

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2

‖ξ‖2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ ≤ Ax |ρ|2η‖w‖2η‖x‖2h(x)

[∫
R∗+

|e js − 1|2

s2h(x)+1
ds

]
.

Then, since ‖x‖2h(x) ≤ ‖x‖2 + 1 is always valid (h(R2) ⊂ [0, 1]), one has

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2

‖ξ‖2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ ≤ Bx‖w‖2η|ρ|2η

(
‖x‖2 + 1

)
, (26)

with

Bx = Ax

∫
R∗+

|e js − 1|2

s2h(x)+1
ds <∞ .

We now bound
∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [ C(x+ρw,ξ)
‖ξ‖h(x+ρw)+1 − C(x+ρw,ξ)

‖ξ‖h(x)+1

]2
dξ. Since C is bounded and by

Lemma 1 we have for some A > 0 depending only on h and C:

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [C(x+ ρw, ξ)

‖ξ‖h(x+ρw)+1
− C(x+ ρw, ξ)

‖ξ‖h(x)+1

]2
dξ

≤ A|ρ|2β‖w‖2β
∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [∣∣log ‖ξ‖

∣∣2 (‖ξ‖−2a−21‖ξ‖>1 + ‖ξ‖−2b−21‖ξ‖≤1
)]

dξ .
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Since
∣∣∣e j〈x, ξ〉 − 1

∣∣∣ ≤ min(‖x‖ · ‖ξ‖, 2), we directly get that

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 [C(x+ ρw, ξ)

‖ξ‖h(x+ρw)+1
− C(x+ ρw, ξ)

‖ξ‖h(x)+1

]2
dξ ≤ Ã |ρ|2β‖w‖2β

(
‖x‖2 + 1

)
. (27)

with

Ã = A

[∫
R2

∣∣log ‖ξ‖
∣∣2 (‖ξ‖−2a−21‖ξ‖>1 + ‖ξ‖−2b1‖ξ‖≤1

)
dξ

]
.

The conclusion then follows from (26) and (27) with Kx = 2Bx + 2Ã. The fact that x 7→ Kx is
bounded on any compact set comes from the fact that x 7→ Ax is bounded on any compact set. �

5.2. Proof of Proposition 9

Let X be the Gaussian field defined by formula (17), and x0 ∈ R2. Let Zx0 be the gaussian
field

Zx0,ρ(u) =
X(x0 + ρu)−X(x0)

ρh(x0)
,

and Yx0 the AFBF defined by formula (18). We are going to prove that Yx0 is the tangent field
of X at x0 ∈ R2, that is {

Zx0,ρ(h)
}
h∈R2

d−→
{
Yx0(h)

}
h∈R2 .

as ρ → 0, in the sense of weak convergence of stochastic processes. The proof is divided in two
steps :

(i) We first prove that the finite dimensional distribution of Zx0,ρ converge to those of Yx0 as
ρ→ 0:

(Zx0,ρ(h1), . . . , Zx0,ρ(hN )) −→ (Yx0(h1), . . . , Yx0(hN )) ,

which means the convergence of the measures of these finite dimensional random vectors on
RN . The Lévy theorem insures that it is equivalent to prove the converge in term of the
characteristic functions of these random vectors, which is, in the Gaussian case, equivalent
to show that we have convergence with respect to the covariance:

∀(u,v) ∈ (R2)2, lim
ρ→0

E[Zx0,ρ(u)Zx0,ρ(v)] = E(Yx0(u)Yx0(v)) . (28)

(ii) Thereafter, we set ρ = 1/n ∈ [0, 1] and prove that the sequence of random fields (Zn)n∈N∗
def
=

(Zx0,1/n)n∈N∗ , satisfies a tightness property, which is fulfilled if (Zn)n∈N∗ satisfies the fol-
lowing Kolmogorov criteria (see for example [36] p.64):

∀T > 0, ∀u,v ∈ [−T, T ]2, sup
n>1

E(|Zn(u)− Zn(v)|γ1) ≤ C0(T )‖u− v‖2+γ2 , (29)

for some positive constant C0(T ) which may depend on T and γ1, γ2 which are universal
positive constants.

Now we prove these two conditions (28) and (29).

(i) First step:

We aim at proving (28) that is for all (u,v) ∈ (R2)2:

lim
ρ→0

E[(X(x0 + ρu)−X(x0))(X(x0 + ρv)−X(x0))]

ρ2h(x0)
= E(Yx0(u)Yx0(v)) . (30)
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First observe that, by definition of X, one has

E[(X(x0 + ρu)−X(x0))(X(x0 + ρv)−X(x0))] =

∫
R2

gu,v(x0, ξ) dξ , (31)

where we set

gu,v(x0, ξ) =

[(
e j〈x0+ρu, ξ〉 − 1

)
f1/2(x0 + ρu, ξ)−

(
e j〈x0, ξ〉 − 1

)
f1/2(x0, ξ)

]
×
[(

e−j〈x0+ρv, ξ〉 − 1
)
f1/2(x0 + ρv, ξ)−

(
e−j〈x0, ξ〉 − 1

)
f1/2(x0, ξ)

]
,

and f1/2(x, ξ) = C(x, ξ)/‖ξ‖h(x)+1. We now split the integral into four terms:

E[(X(x0 + ρu)−X(x0))(X(x0 + ρv)−X(x0))]

=

∫
R2

(
e jρ〈u, ξ〉 − 1

)(
e−jρ〈v, ξ〉 − 1

)
f1/2(x0 + ρu, ξ)f1/2(x0 + ρv, ξ) dξ (I1)

+

∫
R2

(
e jρ〈u, ξ〉 − 1

)(
1− e j〈x0, ξ〉

)
f1/2(x0 + ρu, ξ)

[
f1/2(x0 + ρv, ξ)− f1/2(x0, ξ)

]
dξ (I2)

+

∫
R2

(
1− e−j〈x0, ξ〉

)(
e−jρ〈v, ξ〉 − 1

) [
f1/2(x0 + ρu, ξ)− f1/2(x0, ξ)

]
f1/2(x0 + ρv, ξ) dξ (I3)

+

∫
R2

∣∣∣e j〈x0, ξ〉 − 1
∣∣∣2 [f1/2(x0 + ρu, ξ)− f1/2(x0, ξ)

] [
f1/2(x0 + ρv, ξ)− f1/2(x0, ξ)

]
dξ (I4)

= I1 + I2 + I3 + I4 .

In order to prove (30), we now investigate the behavior of each integral I1, I2, I3, I4 when ρ→ 0.

• Study of the first term I1

We suppose below that ρ > 0: indeed, since ξ 7→ C(x, ξ) is even, the case ρ < 0 derives in the
same way. In the integral I1, we set ζ = ρξ (ζ = −ρξ if ρ < 0), dζ = ρ2 dξ and use the explicit
expression of f , then:

I1 = ρh(x0+ρu)+h(x0+ρv)

∫
R2

(
e j〈u, ζ〉 − 1

)(
e−j〈v, ζ〉 − 1

) C(x0 + ρu, ζ/ρ)C(x0 + ρv, ζ/ρ)

‖ζ‖h(x0+ρu)+h(x0+ρv)+2
dζ .

By homogeneity of ξ 7→ C(x, ξ), we deduce:

ρ−2h(x0)I1 = ρh(x0+ρu)+h(x0+ρv)−2h(x0)

×
∫
R2

(
e j〈u, ζ〉 − 1

)(
e−j〈v, ζ〉 − 1

) C(x0 + ρu, ζ)C(x0 + ρv, ζ)

‖ζ‖h(x0+ρu)+h(x0+ρv)+2
dζ .

Observe now that

ρh(x0+ρu)+h(x0+ρv)−2h(x0) = exp
(
ln ρ [h(x0 + ρu) + h(x0 + ρv)− 2h(x0)]

)
.

Using that h is β−Hölder, we obtain

|h(x0+ρu)+h(x0+ρv)−2h(x0)| ≤ |h(x0+ρu)−h(x0)|+|h(x0+ρv)−h(x0)| . (‖u‖β+‖v‖β)|ρ|β .

Since β > 0 by assumption, and lim
ρ→0+

ρβ ln ρ = 0, we then deduce the limit:

lim
ρ→0+

ln ρ [h(x0 + ρu) + h(x0 + ρv)− 2h(x0)] = 0, (32)

and hence lim
ρ→0+

ρh(x0+ρu)+h(x0+ρv)−2h(x0) = 1.
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It implies that

lim
ρ→0+

ρ−2h(x0)I1 = lim
ρ→0+

∫
‖ζ‖≤1

(
e j〈u, ζ〉 − 1

)(
e−j〈v, ζ〉 − 1

) C(x0 + ρu, ζ)C(x0 + ρv, ζ)

‖ζ‖h(x0+ρu)+h(x0+ρv)+2
dζ

+ lim
ρ→0+

∫
‖ζ‖≥1

(
e j〈u, ζ〉 − 1

)(
e−j〈v, ζ〉 − 1

) C(x0 + ρu, ζ)C(x0 + ρv, ζ)

‖ζ‖h(x0+ρu)+h(x0+ρv)+2
dζ .

We now apply the Lebesgue’s Dominated Convergence Theorem to each integral separately. We
first bound the two integrands as follows:

∀‖ζ‖ ≤ 1,

∣∣∣∣∣(e j〈u, ζ〉 − 1)(e−j〈v, ζ〉 − 1)
C(x0 + ρu, ζ)C(x0 + ρv, ζ)

‖ζ‖h(x0+ρu)+h(x0+ρv)+2

∣∣∣∣∣ ≤ M2‖u‖‖v‖‖ζ‖2

‖ζ‖2(b+1)
,

∀‖ζ‖ ≥ 1,

∣∣∣∣∣(e j〈u, ζ〉 − 1)(e−j〈v, ζ〉 − 1)
C(x0 + ρu, ζ)C(x0 + ρv, ζ)

‖ζ‖h(x0+ρu)+h(x0+ρv)+2

∣∣∣∣∣ ≤ 4M2 1

‖ζ‖2(a+1)
,

In the first line we used |e jt − 1| ≤ 2 | sin(t/2)| ≤ |t|, and the Cauchy-Schwarz inequality applied
to the R2-scalar product. Secondly, since a > 0 and b < 1 by assumption, we easily check that the
functions ζ 7→ ‖ζ‖−2b and ζ 7→ ‖ζ‖−2(a+1) are respectively integrable on ‖ζ‖ ≤ 1 and ‖ζ‖ ≥ 1.
The Lebesgue’s Dominated Convergence Theorem then implies that

lim
ρ→0+

ρ−2h(x0)I1 =

∫
R2

(
e j〈u, ζ〉 − 1

)(
e−j〈v, ζ〉 − 1

) C(x0, ζ)2

‖ζ‖2h(x0)+2
dζ = E(Yx0(u)Yx0(v)) .

since the functions h and x→ C(x, ζ) are continuous.

• Study of the other terms I2, I3, I4

We now prove that the three other integrals I2, I3, I4 are negligible with respect to the first
one when ρ is small.

We only detail the negligibility of I2, the other cases I3 and I4 being similar. Using the Cauchy–
Schwarz inequality, we get that

I2 ≤
[∫

R2

∣∣∣e jρ〈u, ξ〉 − 1
∣∣∣2 f(x0 + ρu, ξ) dξ

]1/2

×
[∫

R2

∣∣∣e j〈x0, ξ〉 − 1
∣∣∣2 [f1/2(x0 + ρv, ξ)− f1/2(x0, ξ)

]2
dξ

]1/2

.

The analysis of the first integral has already be done in the study of I1 taking u = v. We then
obtain

lim
ρ→0

ρ−2h(x0)

∫
R2

∣∣∣e jρ〈u, ξ〉 − 1
∣∣∣2 f(x0 + ρu, ξ) dξ = E[Yx0(u)2] . (33)

The bound of the second integral directly comes from Lemma 2. Since β ≥ supx h(x), we get that

lim
ρ→0

ρ−2h(x0)I2 = 0 .

The same approach also yields for I3 and I4, leading to

lim
ρ→0

ρ−2h(x0)I3 = lim
ρ→0

ρ−2h(x0)I4 = 0 .

which concludes the proof of (30).
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(ii) Second step:

We now have to prove that the sequence (Zn)n∈N∗
def
= (Zx0,1/n)n∈N∗ satisfies (29).

By definition, for ρ = 1
n ∈ [0, 1],

Zx0,ρ(u)− Zx0,ρ(v)

=
1

ρh(x0)

∫
R2

[(
e j〈x0+ρu, ξ〉 − 1

)
f1/2(x0 + ρu)−

(
e j〈x0+ρv, ξ〉 − 1

)
f1/2(x0 + ρv)

]
Ŵ(dξ) .

Hence,

E
[(
Zx0,ρ(u)− Zx0,ρ(v)

)2]
=

1

ρ2h(x0)

∫
R2

∣∣∣∣(e j〈x0+ρu, ξ〉 − 1
)
f1/2(x0 + ρu, ξ)−

(
e j〈x0+ρv, ξ〉 − 1

)
f1/2(x0 + ρv, ξ)

∣∣∣∣2 dξ ,

=
1

ρ2h(x0)

∫
R2

∣∣∣∣(e j〈x0+ρu, ξ〉 − 1
)(

f1/2(x0 + ρu, ξ)− f1/2(x0 + ρv, ξ)
)

−
(

e j〈x0+ρv, ξ〉 − 1− (e j〈x0+ρu, ξ〉 − 1)
)
f1/2(x0 + ρv, ξ)

∣∣∣∣2dξ ,

≤ 2

ρ2h(x0)

∫
R2

∣∣∣e j〈x0+ρu, ξ〉 − 1
∣∣∣2 (f1/2(x0 + ρu, ξ)− f1/2(x0 + ρv, ξ)

)2
dξ

+
2

ρ2h(x0)

∫
R2

∣∣∣e j〈ρ(v−u), ξ〉 − 1
∣∣∣2 f(x0 + ρv) dξ .

the last inequality coming from |a− b|2 ≤ 2|a|2 + 2|b|2.
We now apply Lemma 2 with x = x0 + ρu and w = v−u. It implies the following bound for

the first integral

2

ρ2h(x0)

∫
R2

∣∣∣e j〈x0+ρu, ξ〉 − 1
∣∣∣2 (f1/2(x0 + ρu, ξ)− f1/2(x0 + ρv, ξ)

)2
dξ ,

≤ 2

(
sup

y∈B(x0,T )

Ky

)(
1 + 2‖x0‖2 + 2‖u‖2

)
max

(
‖v − u‖2β , ‖v − u‖2η

)
|ρ|2β−2h(x0) ,

≤ K1 max
(
‖v − u‖2β , ‖v − u‖2η

)
. (34)

with K1 =
(

supy∈B(x0,T )Ky

)
)
(
1 + 2‖x0‖2 + 4T 2

)
since β − h(x0) is always positive.

To bound the second one observe that C is homogeneous w.r.t. the second variable and
bounded. Set ζ = ρξ‖u− v‖ and deduce that

2

ρ2h(x0)

∫
R2

∣∣∣e j〈ρ(v−u), ξ〉 − 1
∣∣∣2 f(x0 + ρv) dξ

≤ 2‖u− v‖2h(x0+ρu)‖C‖∞ρ2h(x0+ρu)−2h(x0)

×
∫
R2

∣∣∣e j〈Θ, ζ〉 − 1
∣∣∣2 (‖ζ‖−2a−21‖ζ‖>1 + ‖ζ‖−2b−21‖ζ‖≤1

)
dζ ,

with Θ = (u− v)/‖u− v‖. By the same arguments than in (32) we have that

lim
ρ→0

ρ2(h(x0+ρv)−h(x0)) = 1 ,

so it has a finite upper bound A1 > 0, which is achieved on a compact by continuity

A1 = max
ρ,v

{
(ρ,v) ∈ [0, 1]× [−T, T ]2, ρ2(h(x0+ρv)−h(x0))

}
.

25



Identically we have ‖u−v‖2h(x0+ρv) = ‖u−v‖2(h(x0+ρv)−a)‖u−v‖2a and the first term tends to
1, then the function (ρ,u,v) 7→ ‖u−v‖2(h(x0+ρv)−a) also achieves its upper bound A2 > 0. Thus,

2‖u− v‖2h(x0+ρu)‖C‖∞ρ2h(x0+ρu)−2h(x0) ≤ 2A1A2‖C‖∞‖u− v‖2a .

Hence, using that
∣∣∣e j〈Θ, ζ〉 − 1

∣∣∣2 ≤ min(2, ‖Θ‖‖ζ‖) = min(2, ‖ζ‖),

2

ρ2h(x0)

∫
R2

∣∣∣e j〈ρ(v−u), ξ〉 − 1
∣∣∣2 f(x0 + ρv) dξ ≤ K2‖u− v‖2a . (35)

with K2 = 2A1A2‖C‖∞
∫
R2 min(2, ‖ζ‖2)(‖ζ‖−2a−21‖ζ‖>1 + ‖ζ‖−2b1‖ζ‖≤1) dζ.

Since K1,K2 are two positive constants depending only on T , inequalities (34) and (35) imply
that

E
[(
Zx0,ρ(u)− Zx0,ρ(v)

)2] ≤ K2‖u− v‖2a
[
1 +

K1

K2
max

(
‖v − u‖2(β−a), ‖v − u‖2(η−a)

)]
,

and since β − a > and η − a > 0, the second factor achieved its bounds on the compact set
[−T, T ]2 × [−T, T ]2, hence

sup
ρ∈(0,1)

‖u− v‖−2aE
[(
Zx0,ρ(u)− Zx0,ρ(v)

)2]
<∞ .

To conclude, we use the fact that Zx0,ρ(u)− Zx0,ρ(v) is a Gaussian r.v. and then for any γ1 > 0

sup
ρ∈(0,1)

‖u− v‖−aγ1E
[∣∣Zx0,ρ(u)− Zx0,ρ(v)

∣∣γ1] ,
and [

sup
ρ∈(0,1)

‖u− v‖−2aE
∣∣Zx0,ρ(u)− Zx0,ρ(v)

∣∣2]γ1/2 .
are equal up to a multiplicative constant depending only on γ1. Inequality (29) then follows if we
consider γ1 > 2/a with γ2 = aγ1 − 2.

5.3. Proof of Proposition 11

Let x0 ∈ R2. Since X is H–self-similar, one has

X(x) =

∫
R2

(e j〈x,ξ〉 − 1)f1/2(ξ) Ŵ(dξ) ,

with f(ξ) = SX(ξ) ‖ξ‖−2H−2. Then,

ZΦ,x(x) = X(Φ(x)) =

∫
R2

(e j〈Φ(x),ξ〉 − 1)f1/2(ξ) Ŵ(dξ) ,

As for the proof of Proposition 9 in Section 5.2, we divide the following proof into two steps.

(i) First step:
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Let u,v ∈ R2, and consider:

1

ρ2H
E
[(
Z(x0 + ρu)− Z(x0)

) (
Z(x0 + ρv)− Z(x0)

)]
=

1

ρ2H

∫
R2

e j〈Φ(x0), ξ〉
(

e j〈Φ(x0+ρu)−Φ(x0), ξ〉 − 1
)

e−j〈Φ(x0), ξ〉
(

e−j〈Φ(x0+ρv)−Φ(x0), ξ〉 − 1
)
f(ξ) dξ ,

=
1

ρ2H

∫
R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ρξ

〉
− 1

)(
e
−j
〈

Φ(x0+ρv)−Φ(x0)
ρ , ρξ

〉
− 1

)
f(ξ) dξ ,

=
1

ρ2H

∫
R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ζ

〉
− 1

)(
e
−j
〈

Φ(x0+ρv)−Φ(x0)
ρ , ζ

〉
− 1

)
f(ζ/ρ) dζ/ρ2 ,

=
1

ρ2H

∫
R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ζ

〉
− 1

)(
e
−j
〈

Φ(x0+ρv)−Φ(x0)
ρ , ζ

〉
− 1

)
ρ2H+2f(ζ) dζ/ρ2 ,

=

∫
R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ζ

〉
− 1

)(
e
−j
〈

Φ(x0+ρv)−Φ(x0)
ρ , ζ

〉
− 1

)
f(ζ) dζ .

To compute the limit of this quantity when ρ → 0, let us denote by g(ρ, ζ) the integrand of the
last integral. We have

lim
ρ→0

g(ρ, ζ) =
(

e j〈DΦ(x0)u, ζ〉 − 1
)(

e−j〈DΦ(x0)v, ζ〉 − 1
)
f(ζ) .

Now we have to bound the integrand |g(ρ, ζ)|: using the inequality |ejx− 1| 6 min(2, |x|), one has

|g(ρ, ζ)| 6 min

2,

∣∣∣∣∣
〈

Φ(x0 + ρu)−Φ(x0)

ρ
, ζ

〉∣∣∣∣∣
min

2,

∣∣∣∣∣
〈

Φ(x0 + ρv)−Φ(x0)

ρ
, ζ

〉∣∣∣∣∣
 f(ζ) ,

6 min

(
2,

1

ρ

∥∥Φ(x0 + ρu)−Φ(x0)
∥∥ ‖ζ‖)min

(
2,

1

ρ

∥∥Φ(x0 + ρv)−Φ(x0)
∥∥ ‖ζ‖) f(ζ) ,

6 min

(
2,

1

ρ
sup

[x0,x0+ρu]

∥∥Φ′(x)
∥∥ ‖ρu‖ ‖ζ‖)min

(
2,

1

ρ
sup

[x0,x0+ρv]

∥∥Φ′(x)
∥∥ ‖ρv‖ ‖ζ‖) f(ζ) ,

6 min
(
2,K ‖u‖ ‖ζ‖

)
min

(
2,K ‖v‖ ‖ζ‖

)
f(ζ) ,

6 min(2, C ‖ζ‖)2f(ζ) ≡ G(ζ) .

The second inequality is obtained by Cauchy–Schwarz inequality, the third by mean value inequal-
ity, the forth under the assumption that Φ which is continuously differentiable so

∥∥Φ′∥∥ 6 K, the
fifth with C = K max(‖u‖ , ‖v‖). Finally, we show that ϕ is integrable since:∫

R2

G(ζ) dζ =

∫
R2

min(2, C ‖ζ‖)2f(ζ) dζ ,

=
1

C2

∫
R2

min(2, ‖ξ‖)2f
(
ξ

C

)
dξ ,

=
C2H+2

C2

∫
R2

min(2, ‖ξ‖)2f(ξ) dξ ,

6 C2H

∫
R2

min(4, ‖ξ‖2)f(ξ) dξ < +∞ .

where we have used the self-similarity of f , and Proposition 5. Hence, using the Lebesgue’s
Dominated Convergence Theorem, we obtain

lim
ρ→0

1

ρ2H
E[(Z(x0 + ρu)− Z(x0))(Z(x0 + ρv)− Z(x0))] = E[Yx0(u)Yx0(v)]

where we denoted

Yx0(u) =

∫
R2

(
e j〈DΦ(x0)u, ξ〉 − 1

)
f1/2(ξ)Ŵ(dξ) ,
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which is by definition the tangent field.

(ii) Second step:

We then proved that the convergence holds in the sense of finite dimensional distributions. To
deduce Proposition 11, we prove in the same way as in Step 2 of Proposition 9 a Kolmogorov
criteria.

E

[(
Z(x0 + ρu)− Z(x0)

ρH
− Z(x0 + ρu)− Z(x0)

ρH

)2
]

=
1

ρ2H

∫
R2

∣∣∣e j〈Φ(x0+ρu), ξ〉 − e j〈Φ(x0+ρv), ξ〉
∣∣∣2 f(ξ) dξ ,

=
1

ρ2H

∫
R2

∣∣∣e j〈Φ(x0+ρu)−Φ(x0+ρv), ξ〉 − 1
∣∣∣2 f(ξ) dξ ,

=

∫
R2

∣∣∣∣e j
〈

Φ(x0+ρu)−Φ(x0+ρv)
ρ , ζ

〉
− 1

∣∣∣∣2 f(ζ) dζ ,

=

∫
R∗+

∣∣e js − 1
∣∣2

s2H+1

[∫
S1

∣∣∣∣ 〈Φ(x0 + ρu)−Φ(x0 + ρv)

ρ
, Θ

〉 ∣∣∣∣2HSX(Θ) dΘ

]
ds ,

≤
∥∥∥∥Φ(x0 + ρu)−Φ(x0 + ρv)

ρ

∥∥∥∥2H
∫

R∗+

∣∣e js − 1
∣∣2

s2H+1
ds

[∫
S1
SX(Θ) dΘ

]
.

with s = r
〈

Φ(x0+ρu)−Φ(x0+ρv)
ρ , Θ

〉
. Let denote by CH the first integral above and P the second

one. Then, since Φ is C1, one have

E

[(
Z(x0 + ρu)− Z(x0)

ρH
− Z(x0 + ρu)− Z(x0)

ρH

)2
]

≤ CHP

ρ2H

(
sup

[x0+ρu,x0+ρv]

‖Φ′(x)‖‖ρ(u− v)‖

)2H

,

≤ CHP‖Φ′‖2H‖u− v‖2H ,

≤ C0‖u− v‖2H .

with C0 = CHP‖Φ′‖2H . We conclude as well as the end of Step 2 of Proposition 9.
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