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Nonlinear Backward Stochastic Evolutionary Equations
Driven by a Space-Time White Noise

Ying Hu* Shanjian Tang'

August 1, 2017

Abstract

We study the well solvability of nonlinear backward stochastic evolutionary equations
driven by a space-time white noise. We first establish a novel a priori estimate for solution of
linear backward stochastic evolutionary equations, and then give an existence and uniqueness
result for nonlinear backward stochastic evolutionary equations. A dual argument plays a
crucial role in the proof of these results. Finally, an example is given to illustrate the existence
and uniqueness result.

1 Introduction

Let H be a Hilbert space with {e;} being its orthonormal basis, A an infinitesimal generator
which generates a strongly continuous semigroup {e4*,t+ > 0}, and Sy(H) the Hilbert space of
Hilbert-Schmidt operators in H. Denote by W a cylindrical Wiener process in the probability
space (Q,F,P) with (F;)i>0 being the augmented natural filtration and P the predictable o-
algebra.

By L%([O, T| x Q, H) we denote the totality of H-valued progressively measurable processes
X. For p € [1,00), by LL([0,T] x Q, H) we denote the Banach space of H-valued progressively
measurable processes X with EfOT | Xs|[Pds < oo and by LL,(€,C([0,T],H)) the subspace of
H-valued progressively measurable processes X with strongly continuous trajectories satisfying
Emax,epo, 7] || Xs|[P < oo. Here and below we use the symbol || - || to denote a norm when the
corresponding space is clear from the context, otherwise we use a subscript. Consider the map
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[:Qx[0,T] x HxSy(H)x H— H where f(-,0,0,0) € L%(2x [0,T], H) and there is a positive
constant L such that

1f(t,p1,q1,81) — f(t.p2. g2, 82) [l < L([lp1 — pallm + a1 — @2lls, oy + 51 — s2llm)-

Linear backward stochastic evolutionary equations arise in the formulation of stochastic
maximum principle for optimal control of stochastic partial differential equations, and see among
others [1, 8,4, 5, 7,10, 11, 12]. The study can be dated back to the work of Bensoussan [1], and
to Hu and Peng [8] for a general context. The nonlinear case is given by Hu and Peng [9]. In these
works, the underlying Wiener process is assumed to have a trace-class covariance operator—in
particular, to be finite-dimensional. Recently, Fuhrman, Hu, and Tessitore [6] discusses a linear
backward stochastic evolutionary equation driven by a space-time white noise. The objective
of the paper is to study the nonlinear backward stochastic evolutionary equation driven by a
space-time white noise.

Consider the following form of nonlinear backward stochastic evolutionary equations (BSEEs)

—dP, = |A'P,+ Z Ci(t)Qeei + f (t, Py, Qy, Z Ci*(t)Qte@)] dt
i—1 =1

_ZQtGi dgl, te(0,T); (1.1)
i=1

Pr =,

where 8 = (e;, W;), i = 1,2... is a family of independent Brownian motions, n € L?(S2, Fr,P, H).
The unknown process is the pair denoted (P, Q) and takes values in H x So(H). We will work
under the following assumptions, which are assumed to hold throughout the paper.

Hypothesis 1.1

1. e, t >0, is a strongly continuous semigroup of bounded linear operators in H. Moreover,
eth € Sy(H) for all t > 0 and there exist constants ¢ > 0 and o € [0,1/2) such that
HetAHSQ(H) <et™ for allt € (0,T).

2. The processes C; are strongly progressively measurable with values in L(H). Moreover we
have |Ci(t)|lz(my < ¢, P-a.s. for allt € [0,T] and i € N.

8. 322 1etACi(s)h||? < et 72| h||% for all t € (0,T), s >0, and h € H.

We give the following notion of (mild) solution.
Definition 1.1 We say that a pair of processes
(P.Q) € L3(Q x [0,T], H) x L}(Q x [0.7], 5,(H))
is a mild solution to equation (1.1) if the following holds:



1. The sequence

M
SM(s) =Y (T —8)*C;(s)Quess s €[0,T); M=1,2,...,
=1

converges weakly in L%(Q x [0,T), H).
2. For any t € [0,T)],

0 T
b = G(Tt)A*UJFZ/ ST CE (5)Qseids
=171
T . 00
+/ els—A" ¢ s,PS,QS,ZCg‘(s)QSei ds (1.2)
¢ i
0 T . A !
—Z/ els—0A Qseidf,, P-a.s.
i=1"1t
Note that the integral involving f is well-defined due to the following

T (o]
[ (sra S o)
t i=1

T
< C/t (Hf(s,o,o,o)HH+HPS||H+||Qs||82(H)+(T_S)a

ds
H

(T~ %Y G (5)Ques
i=1

)ds
H

Note that the term ) .2, C*Qe; is not bounded in @ with respect to the Hilbert-Schmidt
norm. Its appearance in the drift gives rise to new difficulty in the resolution of the underlying
BSEEs, and has to be carefully estimated. In particular, we prove via a dual method novel a
priori estimate (see Proposition 2.4 in Section 2 below for details) for solution of linear BSEEs
driven by a space-time white noise. The new a priori estimate and the dual arguments are
crucial in the subsequent Picard iteration for our nonlinear BSEEs.

The rest of the paper is organized as follows. In Section 2, we prove a new a priori estimate
for solution of linear BSEEs driven by a space-time white noise. The nonlinear BSEEs are
studied in Section 3. Finally in Section 4, we give an example.

< 0.

2 Linear BSEE Revisited

(Forward) stochastic evolutionary equations (FSEE) driven by a cylindrical Wiener process have
been extensively studied. See, e.g. Da Prato and Zabczyk [2, 3] for excellent expositions and
the references therein. Here we give some precise a priori estimate for mild solutions of linear
FSEEs, which will play a crucial role in our subsequent analysis.



Lemma 2.1 For v € LF (2 x [0,T], H), the linear stochastic equation

Ay = AVidt+ Y Ci(t)VedBi+ Y Ct)(T =)y dBj, te(0,T);
i=1

— (2.1)
yO = 07
has a unique mild solution Y7 in L% (2, C([0,T), H)). Furthermore, we have
t
B < CB [ (6= 57207 = )y ds. 2:2)
Forn € L*(Q, Fr,P,H) and fo € L%(Q2 x [0,T],H) such that for some B € (0, 3)
T
B [T = 5P o)l ds < o, (2.3
0
the following linear functional G defined by
T
G) = BV + B [ (o090t v € L3 x 0.7, ) 24
0

has a unique linear and continuous extension to L3 (2 x [0,T], H), denoted by G.

Proof. The first two assertions can be found in [6, Theorem 4.3 and Proposition 4.5]. We now
prove the last assertion, that is

First from (2.2), we immediately have
EIVIIY < Cllaqomuy: 7€ LFO % 0.T), 1)

It suffices to prove the following

T
E /0 (T~ ) 2|V ds < C s ooy 7 € LF(Q % [0,7), H).



We have from (2.2)

T
E / (T — 5)~2| V7| ds
0

T t
< CB [ (1= [t )T 9 By dsae
0 0
T /T
_ CE/ / (T — )2t — 5)72° dt (T — )|y 1% ds
0 s
T rl
- CE/ / (1—0)7290722db (T — 5)' ||| % ds
0 0
1
1-2 —28p—2a 2
< CT 6/0 (1-9) o2 dp H’YHL%,(Qx[o,T},H)' (2.6)
Here we have used in the last equality the transformation of variables: t = s + (T' — s)6. O

Remark 2.2 Let N > 1 be an integer. For v € L (Q2x[0,T], H), the linear stochastic equation

o] N
AV, = AVidi+) Ci(t)VpdBj+ Y  Ci(t)(T —t)*y dp;, te(0,T];

i=1 i=1 (27)
y(] = Oa
has a unique mild solution Y7~ in L% (2, C([0,T), H)). Furthermore, we have
t
|V < CE/O (t = 8)72T = 5)*|lys7 ds (2.8)

for a positive constant C, which does not depend on N. For n € L*(Q, Fr,P,H) and fy €
LY(Q x [0,T), H) such that for some 3 € (0,1)

’ /OT(T = 8)? || fo(s)II% ds < oo, (2.9)

the following linear functional GV defined by
6= B B [ a0 v e IF@ x0T E) (210
has a unique linear and continuous extension to L%(Q x[0,T),H), denoted by a". FPurthermore,

there is a positive constant C such that C' does not depend on N and

—N
G P < s o 7 € LR x 0,7, H). (2.11)

5



We now recall the following result from [6], concerning the following linear BSEE driven by
a white noise:

—dP,

[A*P; + Z C; (t)Quei + fo(t)] dt — Z Qe; 3,

pa - (2.12)

PT = n.

Lemma 2.3 Let n € L*(Q, Fr,P,H) and fo € L%(Q x [0,T],H). There ezists a unique mild
solution (P,Q) € L3(Q x [0,T],H) x L% (2 x [0,T],S2(H)) to BSEE (2.12).

In the subsequent study of the nonlinear case, we need the following a priori estimate for
BSEE (2.12).

Proposition 2.4 (a priori estimate) Let n € L*(Q, Fr,P,H) and fo € L%(Q x [0,T], H). For
B € (o, 3) and a mild solution (P,Q) € L%(Q x [0,T], H x Sy(H)) to BSEE (2.12), we have

T T
[ 1P+ [ 10 B+ B [ (o113 Cue)uedl

T
< c@mm%+E/<T—$%ww%@)
t

Proof. Let us prove the first two terms by duality argument. We have,

T

T
E /t (Pu. po) pids +E / (@eTdsyumds = E(p, Xr)g +E /t (o, X rds,

where

dX, = (AX, —i—psds—i—ZC XdBH—ZFeZdﬁ se(t,T]; X;=0.
=1 =1



Hence,
T
B [ (s +E [ (@uTlsmds
t

T
— E(p, Xr)y +E / (oo X,V prds
t

IN

1 1 T 1 1
E [|Inll%] 2 Bl X732 +/t E[| X[ H2El|fsllH]> ds

1 1 1 T 1
< E[Hﬁ”%{]QE[HXTH%{]Q+t§u£TE[HX8H%{]2/ E[|| f5|13]2 ds
<s< t
1 1 1 T 1 -
< E[Hny@]mmxﬂy%{p+t§u£TE[HXsH%]2/t( — s)PE[||fsl|H]2(T — s)~ ds
S8

1-28
— 28 <

Using the inequality from [6, Proposition 4.4]

NI

\ T 2
< E[llnlE]® EllXTlI7] + Sup E[HXHH]?EM (T — )1 fs|[% ds

2 2
SEE%]E‘|XS||H > CH(/)’F)HL%(Qx[t,T},HXSQ(H))

with
2 r 2 r 2
0T B ety sy =B [ ol +E [ I0IB, ns

we have

T
E/t <P57P5>Hd3+E/ <Q87 >52(H ds

1
T 2
< C(Blalh+ 5 [ =P ds) 1Dl e acsian

This implies the desired a priori estimate for the norm of (P, Q).
To complete the proof, we consider once again the duality:

T o0 T
E/ (T =523 CiQuer,r)ds = Efn, Xr) +E/ (o X,)ds
t i=1 ¢
where X; = 0 and

dX, = AXyds + ZC )X dBE + ZC — 8)%,dBL, s et T

=1 =1

7



We have
T 9]
E/ (T —s) Z CiQsei,vs)ds
t i=1

T
— E(p,Xr) +E / (T = $)° for (T — 5P X,)ds

NI

IN

E [|Inlf3] * E [|1Xr]%] |
| [ - PIIn s B | [ - S

On the one hand, we have from [6, Proposition 4.5],

1
2

T T
ElXr|3 < C / (T — 1)"2(T — Bl |3l = C / Elly|3dl
t t
and

T
E / (T — )| X, |[3ds

IN

t
T S
o[ @52 / (5 — 1)720(T — 1)2E |l |3 dids
t t
T T
_ ¢ / / (T — 5)~2B(s — 1)~20ds(T — 1) ||l
t !
1

T
_ c(/ (1—9)2592%9)/ (T — 1) E ||l
t

0

1 T
< Ccrt% (/ (1—9)2592%9)/ |y |%dl.
t

0

Note that in the last equality, we have used the transformation of variables: s = [+ (T — 1)6.
Concluding the above, we have

T 00
E/ (T —s)” Z CiQse4,7s)ds
t i=1

T 2
< (Bl +E [ @ - 9PIIAIE ) Tl

Then we have the last desired a priori estimate. O



Proposition 2.5 Suppose that

T
El|n|f% +E /0 (T = 528 ol Byds < oo.

There exists a unique solution to linear BSEE (2.12) such that
T T T o0
B [P Brds + B [ 11Qulnds +E [ (T =513 Cils)Queillrds < o
0 0 0 P

Proof. Uniqueness is an immediate consequence of Proposition 2.4. It remains to consider the
existence assertion.
Define for any integer k > T,

5@ = fo&)xpr-1/m@), te0,T]

We have for any k > T,
T T—1/k
KB /0 175 ()13 ds = k2B /0 o3| ds

T-1/k T
< B[ @-9PIh@hds<E [ (TP hls)lhds <o (213
0 0

Therefore, f§ € L%(Q x [0,T], H), and in view of Lemma 2.3, BSEE (2.12) for fy = f§ has a
unique mild solution (P*, QF) for any integer k > T.
Moreover, for k > > T, we have

T—1/k

T
E / (T = )| £ (s) = fi(s) % ds < B (T | fo()3ds — 0 (2.14)
0 T-1/1

as k,I — oo. Applying Proposition 2.4, we see that {(P* Q*)} is a Cauchy sequence in the
space L% (2 x [0,T], H x Sy(H)), and the sequence of processes {(T — s)* > 32, Ci(s)Q%e;, s €
[0,T);k > T} is a Cauchy sequence in the space L%(Q x [0,T], H). Thus, they have limits
(P,Q.(T —t)*S) € L%(Q2 x [0,T], H x So(H) x H), which satisfies the following equation:

—dP, = [A'P+S(t) + fo(D)]dt = ) Que; B},

i=1

(2.15)
Pr =
To show that (P, Q) is a mild solution to BSEE (2.12), it is sufficient for us to prove that

S(t) =Y Ci(t)Quei, (2.16)
i=1

9



with the limit being defined in the following weak sense:

N
T -1 Y Cr Qe t € (0T} F{(T - 07S(0).t € 0.7])
i=1
weakly in the Hilbert space L%(Q x [0, 7], H).
Note that )7 is the solution to the stochastic equation (2.1) for v € LF (€2 x [0,T], H). We
have the following duality:

T oo
B /0 (=3 GO e e = B / Qber (T — 1)*Cilt)) dt
T
_ E(n,y;>+E/O (FE (), V7Y dt. (2.17)

Passing to the limit & — oo, we have for v € L¥ (2 x [0,T], H),

T
E/ T 1OS(t), ) dt = E<n,y;;>+E/ o), VIV dt = Gy (2.18)
0

Since the process (T'—t)*S(t),t € [0,T] lies in L% (2 x [0, 7], H), in view of Lemma 2.1, we have
for v € L%(2 x [0,T],H)

E/ —1)S(t), ) dt = G(v). (2.19)
On the other hand, we have the duality:
T
B[ (@-n Zc* Qi ) di = B / Qe (T — H°Cit)y ) dt
0
— B+ E / (T 0 F (0. (T~ )0V > dt. (220)
0
Setting k — oo, in view of (2.8), we have

T T
E / (T— 02Ny dt = E(n YY)+ E / (o). YNy di=GN(y)  (2.21)
0 0

with
N
Nty =Y Crt)Qei, tel0,T). (2.22)

10



In view of Remark 2.2, we have
T —N
E/O T =S¥ O)Edt =G ()* < C (2.23)
with C being independent of N. Then, the set {(T'—-)*S™(:), N = 1,2,...} is weakly compact,

and thus has a weakly convergent subsequence. Let (T'—-)S(-) be one weak limit. Then in view
of equality (2.21), we have for v € L%(2 x [0,T], H),

!

E/ T —)°S(t), ) dt = @(w)zE/O (T —t)°S(t),7) dt. (2.24)

Therefore, S = S, and the desired equality (2.16) is true. O

3 Main Result

In this section, we state and prove the following result.

Theorem 3.1 Forn € L?(Q, Fr,P, H) and the map f: Qx [0,T] x H x So(H) x H — H where
f(-,0,0,0) € LY (2 x [0,T), H) such that

T
B [0 = P 1(5.0.0.0)f ds < o (3.1)
0
for some (€ («, %), and

1 £(t,p1,q1,51) — f(t, 2,02, 82) [l < L(llp1 — p2llm + |l — @2llsy(ary + lIs1 = s2llm)  (3.2)

for a positive constant L. There exists a unique solution (P, Q) for (1.1) such that

T T
E/O ||ps||§,d5+1@/0 ||Qs||§2(H)ds+E/ 2a||§;c \Oues|2ds < oo,

Proof. (i) Uniqueness. Let (P, Q%) be a mild solution to BSEE (1.1) for i = 1,2. Define
P:=P' - P2 Q:=Q'-Q%

and

F) =, PLQLY Cr(H)Qie) — f(t, P2, Q7Y Cr(t)Qfe:), te[0,T].

i=1 i=1

11



We have

—dP, A*Pt+§jc* Ques + f(t)] dt — ZQte@dﬁt, t €0, T};

Pr = 0.

(3.3)

It suffices to show that P = 0 and @ = 0 on the interval [T" — ¢, T] for a sufficiently small
€g > 0. From Proposition 2.4, we have

T T
E / 1Bl 3ds + E / 104113, 11y ds + E / Q“IIZC O sesl 2 ds

< o(& [ @-NFelas).

and further in view of the Lipschitz continuity of f,

T T
B [ 1P B [ 10 s B [ (- )Y Cie)Quel s
i=1

T
< CE/t (T — )20 <HPHH+HQSHSQ(H + [[(T QO‘ZCz QtezHH>
=1
T
< C€2(6a)E/t <HPHH+HQ5H&(H + [[(T _szazc QsezHH>

Thus we have the desired uniqueness on the interval [T' — g, T for a sufficiently small g3 > 0.
Iteratively in a backward way, we can show the uniqueness on the whole interval [0, T].

We use the Picard iteration to construct a sequence of solutions to linear BSEEs, and show
that its limit is a solution to the nonlinear BSEE (1.1). Noting that f(-,0,0,0) verifies the
integrability (3.1), in view of Proposition 2.5, the following BSEE

1 * pl * 1. _ 1. 7 .
—dP} = [A*P, +;ci (t)Qtei] dt + f(t,0,0,0)dt ;Qtel dgi, tel0,T); (3.4
P% =7
has a unique mild solution (P!, Q'), and BSEE
( oo [e'e]
—dPfTt = [ATPFTY Y Cr)QF el dt + f(1, PF,QFY CHH)QFes) dt
i=1 i=1
(3.5)

—ZQ’”l ,dB;, te0,T);

UE

k+1 _
P =

12



has a unique mild solution (P**!, Q*!) with k = 1,2, ..., such that for k =0,1,2,...,

T T
E / 1P ds + E / QM+, oy ds + E / 2a||20 JQEHei|[3,ds < oo.
0 0

From Proposition 2.4 and the Lipschitz continuity of f, we can show the following for ¢ €
[T —e,T]

T T
B[ |IPE = o s + B [ @5 - QHIE, ds
t t
T o0
4B [ =92 Y GIQE ! - Qe
t i=1
T T
< 0P <E / |PE~ — PFl[jrds + E / Qs — QF ||§2(H>ds)
t t
T o0
40208 [ 9 3 Culs) [0 - @Ml s,
t i=1
Choose €1 > 0 such that 062(6 @) — % Then the sequence
(Pt 2a||§jc (5)Qkeil2), s € [T —e1,T]

converges strongly in L%(Q x [T —e1,T], H x So(H) x H) to a triplet
{(FP, Qi, (T = 1)*S(t)),t € [T — 1, T]}.
Moreover, we have
i .
—dP, = [A*P,+5(t) + f(t, P, Qu, S(t)]dt — Y Que;dBj, t€[0,T);
i=1
Pr =
It remains to prove the following weak convergence:

N
T— 1) Ci(t)Quent € [T — ey, TN =T —1)°S(t),t € [T —e1, T} (3.7)

weakly in the Hilbert space L% (Q x [T — &1, T], H).

13



For v € LY (Q2x [T'—¢1,T], H), let X7 be the unique mild solution of the following stochastic
equation:

AXpdt+Y " Cit) X+ Y Cilt) (T — 1)y dpf, t e (T —e1,TY;

dX; =
i=1 i=1 (3.8)
Xr—e, = 0.
Using (3.5), we have the following duality:
T o
E (T =) CrHQI es,w) dt
T—e i=1
r Eok k
= B XD+ B | (FPELQL Y C(OQEe) ) dt. (3.9)
et i=1
By setting k — 0o, we have
T T
B[ (T-0SWw)dt = B Al +E [ (f(t P, QuS®), A7) dt. (3.10)
T—eq T—e
On the other hand, in view of BSEE (3.5), we have the duality:
T N T N
E (T—1)"> Cit)Q" e,y ) dt = E D (@ e, (T = )*Cit)y) dt
T—a i=1 T—e1 j—
= E <77, x;vN> +E <f(t,Pf,Qf,Zc;(t)lei),xng> dt. (3.11)
e i=1
Here, X7V is the unique mild solution of the following stochastic equation:
dX, = AXpdt+) Ci(t)Xedpi+ > Ci(t)(T —t)*vdpi, te (T —ey,Tl; (3.12)
i=1 i=1 '
Xr—e, = 0.
Setting k — oo, we have
T N T
E (T—6)*> Ci()Qeiw ) dt = E <77, X%’N> v E <f(t, P, Qu, S(1)), XJ’N> dt.
T—eq i—1 T—eq

Note that we only have the following weaker integrability on f(-, P,Q,S):

T
B[ (0 PP Qu SO dt < .

14



Subsequently, in view of [6, Theorem 4.3], we have

T N
lim B T_El((T — ) Zzl CF (t)Qe;,ve) dt
T
= E(nXl)+E ; (f(t, P, Qu, S(t)), X)) dt. (3.13)

Proceeding identically as in the proof of the previous equality (2.16), we have the weak
convergence (3.7). In this way, we get the existence of BSEE (1.1) on the interval [T'—&1,7T]. In

a backward way, we can show its existence iteratively on the intervals [T'—2e1, T —¢e1],...,[0,T —
noe] for the greatest integer ng such that le; < T, and thus the existence on the whole interval
[0,T7]. O
4 Example

Set H := L?(0,1) and consider an H-valued cylindrical Wiener process {W;,t > 0}. A is
the realization of the second derivative operator in H with Dirichlet boundary conditions. So
D(A) = H?(0,1) N H}(0,1) and A¢ = ¢" for all ¢ € D(A). Choose an orthonormal basis in
L?(0,1) with sup; SUPge(o,1 |€i(7)| < oo, for instance a trigonometrical basis. Let o € LF(Q x
(0,7),L>(0,1)). Define C;(t) : H— H by

(Ci(t)¢)(z) := o(t,x)ei(z)o(x), (t,x) € [0,T]x[0,1]

for ¢ € H. We have A* = A and Cf = C; with i =1,2,.... From Da Prato and Zabczyk [3], we
see that (A, C) satisfies Hypothesis 1.1.

Then for suitable conditions on (7, f), our Theorem 3.1 can be applied to give the exis-
tence and uniqueness of a mild solution to the following backward stochastic partial differential
equation driven by a space-time white noise:

2 00
_dPt(x) = %Pt(x) —|—0'(7f,$)Qt($):| dt+f (t,x,Pt’Qt’ZU(t)Qt> dt
—Qu(z) dWy(z), (t,z) €[0,T) x (0,1); - (4.1)
Pt(O) = Pt(l) :0, te [O,T],
Pr(x) = n(x), ze€]l0,1].
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