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Introduction
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DNA and motifs

• DNA : Long molecule,
sequence of nucleotides

• Nucleotides : A(denine),
C(ytosine), G(uanine),
T(hymine).

• Motif (= oligonucleotides) :
short sequence of nucleotides,
e.g. AGGTA

...GTTCAATCGTAGGTAGGTACTGAATGGTAGGTATGTTGA...

...GTTCAATCGTAGGTAGGTACTGAATGGTAGGTATGTTGA...
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DNA and binding sites

Functional motif : recognized by proteins or enzymes to initiate a
biological process
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Some functional motifs

• Restriction sites : recognized by specific bacterial restriction enzymes⇒ double-strand
DNA break.
E.g. GAATTC recognized by EcoRI

very rare along bacterial genomes

• Chi motif : recognized by an enzyme which processes along DNA sequence and degrades
it⇒ enzyme degradation activity stopped and DNA repair is stimulated by recombination.
E.g. GCTGGTGG recognized by RecBCD (E. coli)

very frequent along E. coli genome

• parS : recognized by the Spo0J protein⇒ organization of B. subtilis genome into
macro-domains.

T
c
GTT

t
A
c
AC

t
ACGTGA

t
AACA

very frequent into the ORI domain, rare elsewhere

• promoter : structured motif recognized by the RNA polymerase to initiate gene
transcription.

E.g. TTGAC
(16;18)
−−− TATAAT (E. coli).

particularly located in front of genes
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Prediction of functional motifs

Most of the functional motifs are unknown in the different species.

For instance,

• which would be the Chi motif of S. aureus ? [Halpern et al. (07)]

• Is there an equivalent of parS in E. coli ? [Mercier et al. (08)]

Statistical approach : to identify candidate motifs based on their statistical properties.

The most over-represented The most over-represented families
8-letter words under M1 anbcdefg under M1

E. coli (` = 4.6 106) H. influenzae (` = 1.8 106)

word obs exp score motif obs exp score
gctggtgg 762 84.9 73.5 gntggtgg 223 55.3 22.33
ggcgctgg 828 125.9 62.6 anttcatc 469 180.3 21.59
cgctggcg 870 150.8 58.6 anatcgcc 288 87.8 21.38
gctggcgg 723 125.9 53.3 tnatcgcc 279 84.5 21.18
cgctggtg 619 101.7 51.3 gnagaaga 270 83.6 20.10
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Statistical questions on word occurrences

Here are some quantities of interest.

• Number of occurrences (overlapping or not) :
- Is Nobs(w) significantly high?
- Is Nobs(w) significantly higher than Nobs(w′)?
- Is Nobs

1 (w) significantly more unexpected than Nobs
2 (w)?

• Distance between motif occurrences :
- Are there significantly rich regions with motif w
- Are two motifs significantly correlated?

• Waiting time till the first occurrence :
- Is the presence of a motif w significant?
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A model to define what to expect
Assessing the significance of an observed value (count, distance,
occurrence, etc.) requires to define a null model to set what to expect.

A model for random sequences :

• Markov chain models : a Markov chain of order m (Mm) fits the h-mers
frequencies for h = 1, . . . , (m + 1).

• Hidden Markov models allow to integrate heterogeneity.

A model for the occurrence processes :

• (compound) Poisson processes allow to fit the number of occurrences
and then to study the significance of inter-arrival times ([Robin (02)], or
to compare the exceptionality of a word in two sequences ([Robin et al.
(07)]).

• Hawkes processes allow to estimate the dependence between
occurrence processes ([Gusto and S. (05)], [Reynaud and S. (10)])
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Markov chains of order m : model Mm
Let X1X2X3 · · ·X` · · · be a stationary Markov chain of order m on
A = {a,c,g,t}, i.e.

P(Xi = b | X1,X2, . . . ,Xi−1) = P(Xi = b | Xi−m, . . . ,Xi−1).

Transition probabilities are denoted by

π(a1 · · · am,b) = P(Xi = b | Xi−m · · ·Xi−1 = a1 · · · am),

whereas the stationary distribution is given by

µ(a1a2 · · · am) := P(Xi = a1, . . . ,Xi+m−1 = am), ∀i .

The MLE are

π̂(a1 · · · am,am+1) =
Nobs(a1 · · · amam+1)

Nobs(a1a2 · · · am+)
, µ̂(a1 · · · am) =

Nobs(a1 · · · am)

`−m + 1

→ ÊN(a1 · · · amam+1) ' Nobs(a1 · · · amam+1)
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Overlapping occurrences

Occurrences of words may overlap in DNA sequences (no space
between words).
⇒ occurrences are not independent.

• Occurrences of overlapping words will tend to occur in clumps.
For instance, they are 3 overlapping occurrences of CAGCAG
below :

TAGACAGATAGACGAT CAGCAGCAGCAG ACAGTAGGCATGA. . .

• On the contrary, occurrences of non-overlapping words will never
overlap.
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Overlapping occurrences (2)

All results on word occurrences will depend on the overlapping
structure of the words.

Classically, this structure is described thanks to the periods of a word :

p is a period of w := w1w2 · · ·wh iff wi = wi+p, ∀i

meaning that 2 occurrences of w can overlap on h − p letters.

We also define the overlapping indicator :

εh−p(w) = 1 if p is a period of w, and 0 otherwise
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Detecting words with significanly unexpected counts
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Problem

Let N(w) be the number of occurrences of the word w := w1w2 · · ·wh
in the sequence X1X2X3 · · ·X` (model M1) :

N(w) =
`−h+1∑

i=1

Yi

where
Yi = 1I{w starts at position i} ∼ B(µ(w))

and

µ(w) = µ(w1)
h−1∏
j=1

π(wj ,wj+1).

Question : how to decide if Nobs(w) is significantly unexpected (under
model M1)?

Ideally : one should compute the p-value P(N(w) ≥ Nobs(w)) or at
least compare Nobs(w) with the expected count EN(w)
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Hint

If the Yi ’s were independent, we would have

∑̀
i=1

Yi ∼ B(`, µ(w)) approx by
{
P(`µ(w)) if `µ(w) small,
N (`µ(w), `µ(w)(1− µ(w))) if `µ(w) ∼ ∞.

But the Yi ’s are not independent (overlaps) :
• For non-overlapping words, such as ATGAC, Yi = 1⇒ Yi+1 = 0.
• For overlapping words, such as ATGAT,
P(Yi+3 = 1 | Yi = 1) > P(Yi+3 = 1).

Sophie Schbath (INRA - MaIAGE) Histoire de mots ALEA 2017 14 / 48



Scores of exceptionality

• In the 80’s, the ratio
Nobs(w)

EN(w)
was used with

EN(w) = (`− h + 1)µ(w) = (`− h + 1)µ(w1)
h−1∏
j=1

π(wj ,wj+1)

→ problem with the variability around 1 : Var(N)?

• Normalization by EN(w) like for a Poisson variable [Brendel et al.
(86)]

Nobs(w)− EN(w)√
EN(w)

.

→ problem with the variability around 0 : Var(N) 6= E(N).
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Scores (2)

• The variance formula was published in 1992 by Kleffe &
Borodowsky. The overlapping structure of the word clearly
appears.

Var[N(w)] = (`− h + 1)µ(w)[1− µ(w)]

+ 2µ(w)

h−1∑
d=1

(`− h − d + 1)

εh−d (w)
h∏

j=h−d+1

π(wj−1,wj )− µ(w)


+ 2µ2(w)

`−2h+1∑
t=1

(`− 2h − t + 2)
[

1
µ(w1)

πt (wh,w1)− 1
]

One then uses the z-score and the Central Limit Theorem :
N(w)− EN(w)√

Var(N(w))
−→ N (0,1) as `→∞.

→ problem when parameters (π, µ) are unknown and have to be
estimated by their MLE (π̂, µ̂)

Indeed,
Var(N − Ê(N)) 6= V̂ar(N)
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Scores (3)

• Prum, Rodolphe, de Turckheim (95) proposed an appropriate
normalizing factor σ̂ for N − ÊN which depends on the overlapping
structure of the word.

It leads to the following score

N(w)− ÊN(w)

σ̂(w)
−→ N (0,1) as `→∞.

and an approximation of the p-value :

P(N ≥ Nobs) ' P

(
N (0,1) ≥ Nobs − ÊN

σ̂

)

A similar score has been derived under model Mm.
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Which model to use?

Scores of exceptionality for the 65,536 8-letter words in the E.coli
backbone.
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Influence of the model

Example : gctggtgg occurs 762 times in the E. coli ’s genome
(leading strands, ` = 4.6106).

model fit expected score p-value rank
M00 length 70.783
M0 bases 85.944 72.9 < 10−323 3
M1 dinucl. 84.943 73.5 < 10−323 1
M2 trinucl. 206.791 38.8 < 10−323 1
M3 tetranucl. 355.508 22.0 1.4 10−107 5
M4 pentanucl. 355.312 22.9 2.3 10−116 2
M5 hexanucl. 420.867 19.7 1.0 10−86 1
M6 heptanucl. 610.114 10.6 1.5 10−26 3
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Influence of the model (2)

gctggtgg ggcgctgg ccggccta
762 occ. 828 occ. 71 occ.

M0 85.944 < 10−323 (3) 85.524 < 10−323 (2) 70.445 0.47 (25608)
M1 84.943 < 10−323 (1) 125.919 < 10−323 (2) 48.173 10−3 (13081)
M2 206.791 < 10−323 (1) 255.638 10−283 (3) 35.830 10−8 (4436)
M3 355.508 1.4 10−107 (5) 441.226 10−78 (15) 14.697 10−49 (47)
M4 355.312 2.3 10−116 (2) 392.252 10−120 (1) 15.341 10−46 (21)
M5 420.867 1.0 10−86 (1) 633.453 10−22 (24) 27.761 10−18 (36)
M6 610.114 1.5 10−26 (3) 812.339 0.16 (14686) 25.777 10−26 (4)

Expected counts and p-values (rank) under models Mm,
m = 0,1, . . . ,6,

estimated from the E. coli ’s genome (4 638 858 bps, leading strands).
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Another approximation for rare words

The Gaussian approximation appeared to be not accurate for
expectedly rare words (E(N(w)) = O(1) as `→ +∞).

Here “w” is rare along the sequence.

• If w is not self-overlapping : N(w) ∼ Pois(E[N(w)]) (Chen-Stein
method).

• In the general case, N(w) is approximated by a
Geometric-Poisson distribution with parameter
((1− a(w))E[N(w)];a(w)) (S. (95)).

Both (compound) Poisson approximations are still valid when plugging
the estimated parameters of the Markov model.
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Compound Poisson approximation (E[N(w)] = O(1))

In the general case : clump decomposition

N(w) =

Ñ(w)∑
c=1

Kc

a(w) =
∑

main periods p

p∏
j=1

π(wj ,wj+1).

where

is the overlapping proba.

Ñ(w) is the number of clumps

can be approximated by Pois((1− a(w))E[N(w)]) (Chen-Stein)

Kc is the size of the c-th clump

follows a geometric distribution G(a(w))
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Chen-Stein method
Chen(75), Stein(71), Arratia et al. (89)

Yi ∼ B(pi) N =
∑
i∈I

Yi

Zi ∼ Po(pi) indep. Z =
∑
i∈I

Zi

dTV(L(N)− L(Z )) ≤ 2(b1 + b2 + b3)

where b1 =
∑
i∈I

∑
j∈Bi

EYi EYj , Bi is any neighborhood of i in I

b2 =
∑
i∈I

∑
j∈Bi\{i}

E(YiYj)

b3 =
∑
i∈I

E| E(Yi − pi | σ(Yj , j ∈/Bi)) |.
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Geometric distribution for the clump size

• Probability for a clump of w to start at a given position

(1− a) µ(w)

• Probability for a k -clump of w to start at a given position

(1− a) a a a a︸ ︷︷ ︸ µ(w) (1− a)

ak−1
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Other approaches

Under model M1 (with known parameters)

• the exact distribution of the count N(w) can be computed

• via its generating function [Régnier (00)],
• via the duality equation P(N(w) ≥ x) = P(Tx ≤ `) where Tx is the

position of the x-th occurrence ; The distribution of Tx can be
obtained by recursion or via its generating function (Robin & Daudin
(99), Stefanov (03)).

• large deviation technique can be used to directly approximate the
p-value [Nuel (04)] :

P(N ≥ Nobs) ' exp(−` I(Nobs)).

It is a very accurate (but numerically costly) method for very
exceptional words.
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Prediction and identification of functional DNA motifs
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Chi motifs in bacterial genomes

• Motif involved in the repair of double-strand DNA breaks.
Chi needs to be frequent along bacterial genomes.

• Chi motifs have been identified for few bacterial species. They are
not conserved through species.

• Known Chi motifs are 5 to 8 nucleotides long and can be
degenerated.

• Moreover, Chi activity is strongly orientation-dependent (direction
of DNA replication).
It is present preferentially on the leading strands (high skew).

The skew of a motif w is defined by Nobs(w)/Nobs(w) where w is
the reverse complementary of w.
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E. coli as a learning case

• 8-letter word GCTGGTGG
• 762 occurrences on the leading strands (` = 4.6 106)
• Among the most over-represented 8-letter words (whatever the

model Mm)
⇒ its frequency cannot be explained by the genome composition.

• Its rank is improved if one analyzes only the backbone genome
(genome conserved in several strains of the species).

• Its skew equals 3.20 (p-value of 3.310−11).

The skew significance can be evaluated thanks to the Gaussian
approximation of word counts.
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Identification of Chi motif in S. aureus

Halpern et al. (07)

• Analysis of the S. aureus backbone (` = 2.44 106).
• 8-letter words : none of the most over-represented and skewed

motifs were frequent enough.
• 7-letter words :

A=gaaaatg (1067), B=ggattag (266), C=gaagcgg (272), D=gaattag (614)
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Toward more complex motifs
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Signature Motif of the Ter Macrodomain of E. coli

Cell (2008)

Use of R’MES software :
exceptional frequency
exceptional contrast
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Degenerated motifs

Definition : a word whose one or more positions may tolerate different
nucleotides. The IUPAC alphabet maybe used (R=A or G, Y= C or T,
N=A or C or G or T, etc.)

Examples :
the Chi motif of H. influenzae is gNtggtgg
the matS motif of E. coli is gtgacRNYgtcac

→ one will consider them like a familyW of words :

N(W) =
∑

w∈W
N(w)
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Degenerated motifs (2)

Gaussian approximation [S. (95)] :
E(N(W)) =

∑
w∈W E(N(w))

Var(N(W)) : need for Cov(N(w),N(w′))
→ one needs to know all possible overlaps between w and w′

Compound Poisson approximation [Roquain and S. (07)] :
mixed clumps need to be considered (again it requires all possible
overlaps between any w and w′ in theW family)
the clump size is no more geometric, the overlap probability a(w)
is replaced by a matrix A = (a(w,w′))
we still get a compound Poisson distribution for N(W)
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Position Weight Matrix

Here is an example of a PWM of length h = 5 :

m =


1 0.25 0 0.25 0.3
0 0 0 0.25 0.1
0 0.75 1 0.25 0
0 0 0 0.25 0.6


A
C
G
T

ma,j = probability of letter a at motif position j

Such representation induces a set of “compatible” words having
different probabilities (or “weights”)
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How to count occurrences of a PWM?

m =


1 0.25 0 0.25 0.3
0 0 0 0.25 0.1
0 0.75 1 0.25 0
0 0 0 0.25 0.6


A
C
G
T

Weights :

νi =
h∏

j=1

m(Xi+j−1, j).

...GTTCGTAGGTACGGTACTGATGGTAAGTATGAGGCT...
weights 0.05 0 0.02 0.1

Classical approach : to count the number of “hits” i.e.
∑

i 1{νi ≥ α}

→ If the set of wordsW = {w , ν(w) ≥ α} is not too large, one can use
previous results for a word family

Othewise, there exists dedicated results [Touzet & Varré (07)], [Pape et
al. (08)], [Turatsinze et al. (08)].
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Another approach : weighted count

Drawbacks of the classical approach :
choice of the threshold α
the hits are not weighted anymore

→ New approach : to directly study the distribution of the weighted
count defined by

T (m) =
`−h+1∑

i=1

νi .

Note : if m is a word, there is a unique compatible word and both
counts are equal to the total word count
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Ongoing results for PWM

Expectation and variance of T (m) can be analytically derived

A Gaussian approximation can be performed

A compound Poisson approximation has been derived for
T =

∑C
c=1 Kc :

the number C of clumps of compatible words can be approximated
by a Poisson variable with explicit parameter (Chen-Stein method)
the distribution of Kc , the total weight of the cth clump can be
simulated

A compound Poisson approximation is better than a Gaussian
approximation as soon as occurrences of compatible words are rare (h
large enough and card(compatible words)<< 4h).
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NBS motif

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A .88 0 0 0 0 0 0 0 0 0 0 0 0 .88
C 0 0 0 .11 1 .88 .73 .73 .88 1 .11 0 0 0
G 0 0 0 .11 0 0 .12 .12 0 0 .11 0 0 0
T .12 1 1 .78 0 .12 .15 .15 .12 0 .78 1 1 .12
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Ongoing results for PWM (2)

To be done :
check the Gaussian approximation is good when few 0’s in the
PWM
study the influence of the parameter estimation
generalize to Markovian sequences
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Structured motifs

TTGACA

−35 element

TRTG

extended

TATAAT ATG

GSSdistal UP
element

proximal UP
element

AWWWWWTTTTT

CTD
1

CTD
2

σ
1

σ
2σ

3

σ
4

−10 element TSS

AAAAAARNR

ω

β
β

α

α

αα

What is the probability for a structured motif to occur in a given
sequence?

Difficulty : even for 2 boxes, previous results on word counts cannot
be used because the overlapping structure is too complicated. The
structure of the motif need to be considered.

Sophie Schbath (INRA - MaIAGE) Histoire de mots ALEA 2017 40 / 48



Structured motifs (2)

The 2 next approaches rely on the exact distribution of the following
intersite distances in Markovian sequences (recursive formula or
probability generating function) [Robin and Daudin (01)], [Stefanov
(03)] :

• Tα,w, the waiting time to reach pattern w from state α
• Tw,w′ , the waiting time to reach pattern w′ from pattern w
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Structured motifs (3)
A first order approximation ([Robin et al. (02)])

• The probability P(N(m) = 0) = 1− P(N(m) ≥ 1) is approximated by

(1− µ(m))

(
1− γ(m)

)`−|m|
where µ(m) = P(m occurs at position i)

γ(m) = P(m at i |m not at i − 1)

• The occurrence probability of m is calculated like

µ(m) = µ(w1)
∑
s∈A

π
(d1+1)
u,s P(Ts,w2 ≤ D1 − d1)

where Ts,w2 is the waiting time to reach pattern w2 from state s
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Structured motifs (4)

An exact approach via random sums ([Stefanov et al. (06)])

• Assumption : w2 should not occur in between the 2 boxes.

• The explicit formula for the pgf of τm is given thanks to the following
decomposition :

τm
D
= Tα,w1 +

L′∑
b=1


L1∑

a=1

X (ab)
w1,w1 + F (b)

w1,w2︸ ︷︷ ︸
D
= Tw1,w2 | failure

+T (b)
w2,w1

+

L2∑
c=1

X (c)
w1,w1 + Sw1,w2︸ ︷︷ ︸

D
= Tw1,w2 | success

,

L1, L2 and L′ are independent geometric variables.
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