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Abstract

The Micro-Electrode Array device enables high-throughput electrophysiology measurements that are

less labour-intensive than patch-clamp based techniques. Combined with human-induced pluripotent

stem cells (hiPSC), it represents a new and promising paradigm for automated and accurate in-vitro drug

safety evaluation. In this article, the following question is addressed: which features of the MEA signals

should be measured to better classify the effects of drugs? A framework for the classification of drugs

using MEA measurements is proposed. It relies on an in silico electrophysiology model of the MEA, a

feature selection algorithm and automatic classification tools. An in silico model of the MEA is developed

and is used to generate synthetic measurements. An algorithm that extracts MEA measurements features

designed to perform well in a classification context is described. These features are called numerical

biomarkers. A state-of-the-art machine learning program is used to carry out the classification of drugs

using MEA measurements. We show that the numerical biomarkers outperform the classical ones in

different classification scenarios. We show that using both synthetic and experimental MEA measurements

improves the robustness of the numerical biomarkers and that the classification scores are increased.

Keywords:
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Introduction

One of the main goals of safety pharmacology studies is to anticipate the effect of drugs on cardiomyocytes.

Among other adverse effects, it focuses on predicting arrhythmic behaviors which may lead to torsades de

pointes (TdP). The most common risk factors under consideration are QT prolongation and hERG block.

However these risk factors are now considered insufficient and the guidelines need to be improved. Several

advances in technology and computational modeling may favor the emergence of new methods for more

efficient drug safety evaluation. On the hardware side, the Micro-Electrode Array (MEA) technology [21, 14]

enables high-throughput electrophysiology measurements that are less labour-intensive than patch-clamp

based techniques. On the biological side, the use of human-induced pluripotent stem cells (hiPSC) has
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developed [20] and their recent large-scale production makes it a viable human model replacement. The

combined use of the MEA technology and hiPSC represents a new and promising paradigm for automated and

accurate in-vitro drug safety evaluation [8, 6]. In parallel of these technological breakthroughs, several efforts

have been recently made towards promoting the use of computational tools in drug safety evaluation [9, 13].

In this context, a framework for drug safety evaluation using in silico models and experimental measurements

using a MEA device is hereby presented.

The framework aims at predicting the effect of a drug onto the cardiomyocytes ionic channels activities from

the knowledge of MEA experimental recordings. More precisely, the goal is to determine which ionic channels

are affected by a given drug. The approach is based on an in silico model of the MEA and the cardiomyocytes

tissue, a feature selection algorithm and a classification model. The in silico model is based on a simple

ionic model [5] for the cardiomyocytes electrical activity and on the bidomain equations [23] for the spatial

propagation of the electrical potentials. The ionic model counts three different currents (fast inward, slow

inward, slow outward), each being associated with an ionic species (respectively sodium, calcium, potassium).

The activity of each current is controlled by a scaling parameter that is referred to as conductance in the

following. In the present work, the drugs considered are assumed to affect one of these currents. Thus, the

inactivation of a current caused by a drug is modeled by a diminution of the corresponding conductance

in the ionic model. The conductances and some other parameters of the model can be varied in order to

replicate the variability observed in the experimental measurements. The in silico model is used to generate

what is later referred to as synthetic MEA measurements. The experimental data set itself consists of MEA

electrode recordings which come in the form of time series. Each recording is done in control conditions (no

drug) and with different drug concentrations levels. The experimental data is also labelled, meaning the

affected ionic channels are known for each drug.

As explained above, the MEA measurements, whether synthetic or experimental, come in the form of time

series. For classification purposes, it is more efficient to extract features from these time series. Some

features, also called biomarkers, are already widely used in the community such as the field potential duration

which may be associated with the QT segment in ECGs. These common features are referred to as classical

biomarkers. We propose a way to automatically extract features from the MEA measurements that are

designed to perform well in a classification context. These new features, referred to as numerical biomarkers

in the following, are defined as linear combinations of dictionary entries whose weights are solution of a

sparse optimization problem. The weights are computed using MEA features coming from experimental

measurements, synthetic ones or a composite set of both. To predict the effect of drugs, the idea developed

in this work is to train a classification model, or classifier, to associate MEA measurements with a type

of affected ionic channel, or label. Then, the classifier is tested with new MEA measurements for which

it predicts labels. Provided that the true labels are known, it is possible to measure the precision of the

classification and therefore evaluate a given classifier. In the present work, a state-of-the-art machine learning

classification tool, Support Vector Classification (SVC), is used.

The paper is organized as follows. First, the methods are described. The in silico model is presented and

the generation of synthetic data is explained. The algorithm that computes the numerical biomarkers is

described and the classification tools are presented. Second, the performance of the numerical biomarkers

and of the classification tools are studied in different drug classification scenarios. The numerical biomarkers

are compared to the classical ones using two different classification strategies. Finally, numerical biomarkers

computed with experimental data only and with a composite set of experimental and synthetic data are

compared.
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Methods

Equations

Bidomain equations and ionic model

Let Ω be the domain representing a MEA’s well. The thickness of the layer of cells being small compared to

the size of the well, the problem is assumed to be two-dimensional. The activation is assumed to be triggered

by a current Iapp that is applied in an arbitrary region of the well. We denote by Am, Cm, zthick the surface

area of membrane per unit volume of tissue, the membrane capacitance, and the thickness of the cell layer,

respectively. The intra and extra-cellular conductivity tensors σi and σe are assumed to be scalar. The

propagation of the transmembrane potential Vm and the extracellular potential φe are modeled in Ω with the

bidomain model [23]:
AmCm

∂Vm
∂t

+AmIion(Vm, w)−∇ · (σi∇Vm)−∇ · (σi∇φe) = AmIapp,

−∇ · ((σi + σe)∇φe)−∇ · (σi∇Vm) = 1
zthick

∑
ek

Ikel
|ek|

χek .
(1)

In the second equation, Ikel is the electric current which goes through the electrode located at ek, |ek| is the

electrode surface and χek is the characteristic function of ek (which takes the value 1 on the electrode and 0

elsewhere). An imperfect model for the electrode is used to compute Ikel and described in the Supplementary

Material. Let n be the outward normal to the boundary of the domain Ω. Equations (1) are completed with

the following boundary conditions: σi∇φi · n = 0 (where φi = Vm + φe), and either φe = 0 on the region

connected to the ground or σe∇φe · n = 0 elsewhere.

The transmembrane ionic current Iion is described with the Minimal Ventricular (MV) model [5] which

includes three currents: fast inward (fi), slow inward (si) and outward (so) currents. The reader is referred

to the original publications for more details. Schematically, Iion depends on Vm and on gating variables

w = (wj)1≤j≤3, solution of a system of three nonlinear ordinary differential equations. A conductance

coefficient gs, with s = fi, so or si, controls the activity of the idealized channels associated with each of

three currents of the model.

The partial differential equations are discretized in space by means of P1 finite elements, and in time by

using backward differentiation formula (BDF) schemes with adaptive time steps and order provided by the

Sundials library [11]. The quantity of interest is the extra-cellular potentiel, also referred to as field potential

(FP). It is a function of time and recorded at the electrodes locations.

Synthetic measurements In the present work, the computational model is used to generate synthetic MEA

measurements. For a given set of conductances, the model is evaluated and the electrodes FPs are recorded.

The conductances are chosen as to represent meaningful scenarios, as explained later in the Results section.

To mimic experimental measurements, a zero-mean Gaussian noise of standard deviation 10 µV is added to

the FPs (see Figure 3). A heterogeneity model of some ionic parameters is also considered to replicate the

variability exhibited by the experimental measurements. This model is described later in this section.

Steady-state regime Because the initial conditions of the ionic model do not correspond to those of a

steady-state regime, several beats may need to be simulated before reaching a regime where there is negligible
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beat-to-beat variations. A numerical experiment was carried out to determine when this regime is reached.

Figure 2 shows super-imposed consecutive simulated FPs and the normalized beat-to-beat variations in the

FP. When considering noisy synthetic measurements as described above, the steady-state is assumed to be

reached when the beat-to-beat variations is comparable to variations induced by noise only. The beat-to-beat

variability observed after this beat may be imputed to the coarseness of the mesh, the time discretization

errors and the fluctuations of the ionic model itself. In the present work, the steady-state is assumed to be

reached at the second beat. Therefore, the simulations are run for two cardiac cycles and the second beat is

recorded to be used as a synthetic measurement.

Drug modeling

We chose to model the action of drugs on the ion channels by the conductance-block formulation of the pore

block model [15, 24, 4]. This simple approach, which relies on a small number of parameters, was shown

in [1] to be able to reproduce the expected effects of several drugs on MEA signals. The conductance of a

given channel s is given by:

gs = gcontrol,s

[
1 +

(
[D]

IC50

)n ]−1
, (2)

where gcontrol,s is the drug-free maximal conductance, [D] is the drug concentration, IC50 is the value of the

drug concentration at which the peak current is reduced of 50%, n is the Hill coefficient. In this work, n will

be assumed to be equal to 1.

Heterogeneity modeling

A typical experimental MEA FP measurement exhibits both a depolarization spike and a repolarization

wave (see Figure 3). Using the computational model described above, the repolarization wave is usually

too small compared to what is observed in experiments. As noted in [1], the repolarization wave provided

by this model is larger when the domain includes cells with different APDs. In [1], the cell heterogeneity

was defined on a checkerboard arbitrarily chosen in the MEA’s well. We propose here a different approach,

based on a probabilistic description of the heterogeneity. The tissue is supposed to be a continuous mixture

characterized by a space dependent coefficient:

θw(x, y) = (1− c(x, y))θ(A)
w + c(x, y)θ(B)

w , (3)

where c is a random process with values in [0, 1], θ
(A)
w and θ

(B)
w are coefficients of the MV model characterizing

two kinds of cells, called “type A” and “type B”. In our simulations, we took θ
(A)
w = 0.1, θ

(B)
w = 0.8. The AP

corresponding to different homogeneous realizations of c is shown in Figure 4. We make the hypothesis that

the spatial variations of c are structured by a normal correlation function fc:

fc

[(
x

y

)
,

(
x′

y′

)]
= exp

[
− (x− x′)2 + (y − y′)2

2l2c

]
, (4)

where lc is the correlation length, set to lc = 0.25 mm in the present work. To discretize the random process

c, we compute the correlation matrix on the finite element mesh used for the discretization of the bidomain
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equations. The correlation matrix C = [Ci,j ] ∈ RNmesh×Nmesh reads:

Ci,j = fc

[(
x̂i

ŷi

)
,

(
x̂j

ŷj

)]
, (5)

where Nmesh is the total number of mesh nodes and (x̂i, ŷi) are the coordinates of the ith node. The eigenpairs

of C are denoted by (λi,Φi), and ordered by decreasing order of the eigenvalues λi. By a convenient abuse of

notation, we denote by (x̂, ŷ)→ Φi(x̂, ŷ) the function of the finite element space associated with the eigenmode

Φi. Finally, the discretized heterogeneity field is approximated by the following truncated expansion:

c(x̂, ŷ, ξ) =

nc∑
i=1

ξiΦi(x̂, ŷ) (6)

where ξ = (ξi)i=1...nc is a random vector and nc a truncation index chosen so that the truncation explains

at least 99% of the variance. In other words, nc is the smallest index n such that the following criterion is

verified: ∑n
i=1 λi∑Nmesh

i=1 λi
> 0.99 . (7)

Heterogeneity fields can now be generated simply by sampling the random variable ξ. In the present work,

Nh = 128 heterogeneity fields were generated by sampling ξ from an uncorrelated uniform distribution over

[−1, 1]nc , and each sample is rescaled to range between 0 and 1. An example of heterogeneity field is presented

in Figure 5.

Biomarkers

Biomarkers may be defined as quantities extracted from a signal that convey information about hidden

quantities of interest. In our case, the biomarkers are features extracted from the MEA FP which would

ideally provide information about the conductances of interest: gfi, gso, gsi. In this section, we present

different choices of biomarkers to be used in a classification context.

“Classical” biomarkers

The MEA FP can be split into two regions of interest: the depolarization and the repolarization. The

depolarization observed at one electrode corresponds to the local depolarization of the cardiomyocytes. The

depolarization amplitude (DA) may be qualitatively linked to the AP upstroke velocity. This biomarker is

commonly associated with the activity of the fast sodium channel (gfi for the MV model). The repolarization

amplitude (RA) may be qualitatively linked to some extent to the AP repolarization slope and to a bigger

extent to spatial heterogeneities in AP durations. Once the depolarization and repolarization have been

detected, it is possible to measure the FP duration (FPD), simply as the difference between the repolarization

and depolarization times. Both biomarkers RA and FPD are associated with the activity of the potassium

and calcium currents (gso and gsi in the MV model). In Figure 3, a sample of FP with the corresponding

classical biomarkers is shown. As explained above, each (real or numerical) experiment is performed both in

a drug-block condition and in control condition. Because of the significant variability of measurements in

MEA, it is important to consider the variations observed in the FP in drug block conditions with respect to

the control conditions to isolate the effect of the drug from other sources of variability: tissue variability,

stimulation protocol, etc. Therefore, as proposed in [18], the features of interest are the biomarkers in drug
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block condition divided by the biomarkers in control conditions. For instance, the depolarization amplitude

is actually the following ratio:

DAratio =
DAdrug

DAcontrol
(8)

For the sake of clarity in the notation, the subscript “ratio” is omitted in the following and any biomarker

actually refers to a ratio with the control value. For each MEA measurement, the FP is recorded at each

of the nine electrodes. Again, the important variability in the measurements motivates the use of robust

features. Since the behavior of the FP may greatly vary from one electrode to another, the median of the

biomarkers over all electrodes is in practice a good choice of features. In the following, the set of biomarkers

{D̃A, R̃A, ˜FPD} is referred to as the classical biomarkers, where the ˜ operator denotes the median over all

nine electrodes.

Numerical biomarkers

The rationale behind the choice of biomarkers described above is only qualitative and oftentimes does not

represent the best set of features in a classification context. Here, we adopt a more automatic strategy to

select the best set of biomarkers for a given experimental scenario, as recently proposed in [10]. First, the

set of features to be extracted from a given FP is enriched to build a dictionary of features. It is indeed

possible to extract additional quantities from the FP other than DA, RA and FPD. We propose to compute

also, for each electrode of the MEA, the following features: the area under curve of the repolarization wave

(AUCr), the repolarization center (RC), the repolarization width (RW) and the FP notch (FPN). The details

on how to compute these additional biomarkers are described in the Supplementary Material. Ratios of these

quantities are also added to the dictionary of features: RA/DA, DA/RA, RA/FPD, FPD/RA, DA/FPD,

FPD/DA, RA/RW, RW/RA. Each feature is actually a ratio with its control counterpart as described in (8).

To include the information of all nine electrodes, the median (denoted by the˜operator), mean (denoted by

the <> operator) and maximum values (denoted by a max subscript) over the electrodes are retained in the

dictionary. This amounts to a total of Nb = 38 dictionary entries.

The purpose of the method described below is to associate each conductance with a numerical biomarker

obtained by weighting the entries of the dictionary of features. The weights of such a combination are solution

of an optimization problem. First, let us introduce some notation.

We denote by y1 (resp. y2, y3) the numerical biomarker (to be determined) associated with gfi (resp. gso,

gsi). From now on, the conductances (gfi, gso, gsi) are denoted by θ = (θ1, θ2, θ3). Each dictionary entry is

considered as a function of θ. The numerical biomarkers are sought as a linear combination of the dictionary

entries:

yh(θ) =

Nb∑
j=1

w
(h)
j bj(θ), 1 ≤ h ≤ 3, (9)

where the weights w(h) = (w
(h)
j ) ∈ RNb are the unknowns of the problem. These weights are sought so that

yh(θ) is maximally correlated with θh and minimally correlated with θk, ∀k 6= h. This may be stated as

follows:

∀h ∈ {1, . . . , 3} ,


max
yh

cov (yh(θ), θh)

min
yh

|cov (yh(θ), θk)| , ∀k 6= h

s.t. var (yh(θ)) = 1

(10a)

(10b)

(10c)
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where cov(·, ·) and var(·) are respectively the covariance and variance operators. In the following, we assume

that each component of θ is a zero-mean unit-variance random variable. This is achieved in practice by a

simple rescaling of the conductances samples. We also adopt the following notation:

b̃j(θ) = bj(θ)− E [bj(θ)] , (11)

where E [·] is the expectation operator. The problem may now be recast into an optimization problem where

the cost function to be minimized reads:

J (w(h)) = JC(w(h)) + JN (w(h)) + JP (w(h)), (12)

where

JC(w(h)) =
1

2
‖Cw(h) − e(h)‖2 where Ckj := E(θk b̃j), e

(h)
k := δkh, (13a)

JN (w(h)) =
ξ

2

(
w(h)TGw(h) − 1

)2
where Gij := E(b̃ib̃j), (13b)

JP (w(h)) =
λh
Ng
‖w(h)‖1. (13c)

Let us now explain each term of (13). JC(w(h)) corresponds to (10a) and (10b). It measures the discrepancy

to the situation where cov (yh(θ), θh) = 1 and cov (yh(θ), θk) = 0, ∀k 6= h.

JN (w(h)) is a relaxation of the constraint in (10c). ξ is a regularization parameter that is set to 1 in practice.

JP (w(h)) is a regularization term by penalization of the 1–norm of w(h). `1 penalized cost functions tend to

promote sparse solutions [22]. Sparse solutions for w(h) are interesting in that they offer a more interpretable

decomposition onto the dictionary entries (since most weights are zero) than what an `2 penalization would

yield.

We now discretize the problem by considering N samples of the parameters θ drawn over a parameter space

Θ ⊂ R3. The expectation operator is approximated using a quasi-Monte-Carlo quadrature rule and the cost

function in (12) is minimized using a Nesterov accelerated gradient descent [16]. The Monte-Carlo samples

may come from synthetic or experimental measurements. For synthetic measurements, the conductances

are known, but this is not the case for experimental measurements. In that case, an approximation of these

conductances is computed using Equation (2). Note that the solution weights depend strongly on the choice

of samples used for the Monte-Carlo approximations.

An example of the obtained weights is shown in Figure 7. Interestingly, the classical biomarkers are still

among the most weighted features. The correlation between the conductances of interest and the numerical

biomarkers is compared to the correlation with the classical biomarkers in Figure 8. The correlation between

two quantities u and v is defined as follows:

cor(u, v) =
cov(u, v)√

var(u)var(v)
. (14)

As expected, each numerical biomarker is well correlated with its associated conductance whereas uncorrelated

with the others. This is not the case for the classical biomarkers. The results in the next section show that

such a choice of features improves the classification performance.
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Experimental data set

The MEA considered in the present work is a 6-well MEA with nine electrodes per well. Its geometry as

well as the corresponding finite element mesh is shown in Figure 1. The MEA measurements come in the

form of FP recordings corresponding to the different electrodes of the different wells of the MEA.The MEA

used is a 6-well MEA with nine electrodes per well. These recordings come in the form of time series where

several cardiac cycles, or beats, are recorded. We extracted several beats on each electrode from each well

of the MEA. Data were provided by Janssen Pharmaceutica NV using MC Rack (Multi Channel Systems

GmbH) and post-processed by NOTOCORD Systems (NOTOCORD-FPS 3.0 software). Cells cultures were

developped by the CDI company (iCell Cardiomyocytes). As explained earlier the recordings were made

in control conditions (no drug) and with different drugs at different concentrations levels. The drugs used

for the present study are summarized in Table 2. Note that the diltiazem was recorded in two different

wells (A and B) to compensate the scarcity of calcium-antagonist drugs. The experimental process consists

in adding five times a compound at increasing concentrations in a given well. Thus, including the control

condition record, we finally obtain field potentials for six contexts in each well. Equation (2) was used to

obtain an approximation of the conductances values associated with the experimental measurements which

are needed for the numerical biomarkers calculations. The Hill coefficients and IC50 values are given in the

Supplementary Material of [12] and in [15]. Concerning the dictionary of features, a few adjustments need to

be made in some cases. Indeed, it appears that at some high concentration levels of mexiletine, there is simply

no action potential (because the sodium channels are too blocked) and therefore the field potential is a flat

line. To take this into account, the values of dictionary entries are set to the ones at the last concentration

where an action potential was observed. In addition, all features where DA is in the numerator position in a

ratio are set to zero for this concentration.

Classification

Support Vector Classification

Support vector classification [3] (SVC) is an adaptation of the support vector machine (SVM) method in

a classification setting. Classification generally consists in attributing labels to inputs. The available data

set, comprising both inputs and labels, is generally split into a training set used to build the classifier and a

validation set to test the classifier. The inputs are often multi-dimensional and in our case correspond to the

biomarkers, whether classical or numerical. The labels are integers that represent the classes to which the

inputs are assigned. These classes are mutually exclusive, meaning one sample can only belong to a single

class. SVC belongs to the so-called supervised methods since the labels are known, at least for the training

set. The main idea behind SVC is to maximize the margin between the inputs and the decision boundary [3].

In the linear case, the decision boundary is a hyperplane of the input space. In general however, this is not

sufficient to properly separate the samples according to their classes. A common way to obtain more complex

boundary decisions is to use a so-called “kernel trick” [19] which is based on a mapping from the input space

to a higher-dimensional space where the existence of a separating hyperplane is more likely. In the present

case, the labels are “sodium antagonist”, “calcium antagonist” and “potassium antagonist”, respectively

associated with labels 0, 1 and 2. Among various possible choices of kernels, a Gaussian kernel is employed in

this work.

We used a Python implementation of SVC through the Scikit-learn [17] machine learning library which itself

uses the LIBSVM library [7]. For a given training set, a so-called classifier is built. The classifier is then

8



called to predict the labels of the validation set samples. The predictions are finally compared to the true

labels. There exist several metrics to quantify the prediction quality. Two different metrics are considered

here: the Cohen’s kappa and the receiver operating characteristic area under curve (AUC). The Cohen’s

kappa is a single scalar designed to measure the performance of multi-class classifiers. Its value ranges from -1

(worst possible classifier) to 1 (perfect classifier), 0 corresponding to a coin-flip classifier. The AUC is defined

for each class and measures how a classifier performs with respect to a given class. Its value ranges from 0

(worst) to 1 (best), 0.5 being a coin-flip. Because the classification is repeated several times with different

data set splittings, the classification metrics are summarized using their means and standard deviations (see

Table 3 for instance). The “averaged AUC” corresponds to the average of all AUCs (one AUC per class).

Both metrics are described in detail in the Supplementary Material. We now present two different

strategies to employ SVC in the context of drug classification.

3-versus-3 classification Since there are three distinct classes in the experimental set, those three classes

need to be included in the training set, preferably in equal proportions. The strategy of 3-versus-3 (3v3)

classification consists in dividing the experimental set into a training set and validation set that both include

samples from the three classes. Each class is divided into two sub-classes. This is naturally done for the

sodium and potassium antagonist classes since they are each comprised of data from two different drugs.

For the calcium antagonist class, the diltiazem data is artificially split into two drugs “diltiazem A” and

“diltiazem B” (see Table 2). Each sub-class is associated with an identification number (ID) from 0 to 5.

Therefore, there are 8 possible choices for the training and validation set combinations as summarized in

Table 1.

One-versus-All classification The One-versus-All (OvA) classification strategy consists in training one

classifier for each class. For each class j, the training set labels are modified to take the value 1 for samples in

class j and 0 otherwise and a classifier is trained on this relabeled training set. In other words, the classifier

for class j is only trained to recognize whether or not a sample belongs to class j. For the validation step, the

classifiers do not predict a class label but a probability for a given sample to be in their respective class. Each

sample of the validation step goes through each of the three classifiers and the predicted class corresponds to

the classifier returning the highest probability. The splitting between training and validation sets is done in

the same way as in the 3-vs-3 classification strategy.

Results

Comparison between classical and numerical biomarkers

Here the performance of the numerical biomarkers in a classification context is compared to that of the

classical biomarkers for two different classification strategies. The data set is composed of 880 experiments,

each counting one control measurement and 5 measurements at different drug concentration levels. For each

experiment, the conductances values and FP features are computed as explained in the Methods section and

the labels are defined according to Table 2.
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3v3 classification

The performance of the numerical biomarkers compared to the classical ones is evaluated using the 3v3

classification strategy. The classification procedure is carried out for each different splitting of the data

set as summarized in Table 1. First, the classification inputs are the 3 classical biomarkers for each drug

concentration level: {
D̃Ac1, R̃Ac1, ˜FPDc1, . . . , D̃Ac5, R̃Ac5, ˜FPDc5

}
, (15)

where ck is the k-th concentration level. The inputs are therefore of dimension 15.

Then, the classification inputs are the numerical biomarkers for each concentration, computed as explained in

the Methods section using the classification training set as samples for the Monte-Carlo approximations. The

inputs now read:

{y1,c1, y2,c1, y3,c1 , . . . , y1,c5, y2,c5, y3,c5} . (16)

Note that for each splitting of the data set, new weights for the numerical biomarkers are computed. The

classification procedure is carried out in both cases and the results are summarized in Table 3. Regardless of

the chosen classification score, the results are better using the numerical biomarkers as inputs.

OvA classification

The same procedure as in the 3v3 case is applied to the OvA strategy. The classification procedure is carried

out with both classical and numerical biomarkers as inputs and the results are summarized in Table 4. Again,

the classification results are better using the numerical biomarkers as input, regardless of the classification

score considered. Furthermore, the results are overall better when using the OvA approach rather than the

3v3 one.

Using combined experimental and synthetic measurements for the numerical

biomarkers computation

Having established that numerical biomarkers outperform classical ones in two different classification scenarios,

we now investigate the addition of synthetic measurements for the computation of the numerical biomarkers

weights. To enrich the set of experimental samples used to compute the numerical biomarkers, a set of

synthetic measurements is built. First, conductances samples are chosen to mimic the effect of drugs as

shown in Figure 6. Depending on the most affected conductance, these samples are associated to a synthetic

sodium (resp. calcium and potassium) antagonist drug called “synth A” (resp. B and C). 775 samples per

drug are chosen which amounts to 155 experiments per drug. and their repartition is summarized in Table 2.

This approximately corresponds to a 50%/50% split between experimental and synthetic measurements.

For each conductances sample, the computational model described in the Methods section is evaluated and

the dictionary features are computed from the simulated FPs. For each experiment, the computational

model is also evaluated in the control conditions, i.e. with gfi = gsi = gso = 1 in order to compute the

ratios as defined in (8). The features are incorporated in the experimental set to create a composite set.

This composite set is then used to compute the numerical biomarkers weights. The same data set splitting

procedure as described before is carried out. Note that the synthetic measurements are only used for the

numerical biomarkers computation and are not included neither in the training set nor in the validation set.

Again, two classification strategies are explored.
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Classification results

The classification is carried out using both 3v3 and OvA approaches. The results are summarized in Tables 5

and 6. The addition of synthetic measurements to compute the numerical biomarkers improves the classifier

predictions in both cases. In the 3v3 case, the improvement is more important than in the OvA case.

Discussion

In this study, a framework for an automatic classification of drugs from MEA measurements has been

presented. The framework relies on an in silico model of a MEA device, on a feature selection algorithm and

on state-of-the-art machine learning tools. The in silico model is a PDE model (the bidomain equations)

coupled with a ionic model that describes the transmembrane current of the cardiomyocytes. The ionic model

is a phenomenological model consisting of a set of coupled non-linear ODEs. The feature selection algorithm

proposes a way to compute a so-called numerical biomarker for each conductance of interest, designed to

perform better in a classification context than classical biomarkers. The numerical biomarkers are linear

combinations of the entries of a dictionary of features which is given. The calculation of the weights involves

Monte-Carlo approximations which use experimental or synthetic (or both) conductances and FP samples.

It has been applied to drug classification problems using experimental MEA recordings. The classification

was carried out using the Scikit-Learn Python library [17] which includes several classification tools. In the

present work a Support Vector Classification was used. The data used for the classification consist in FP

features extracted from experimental measurements and their associated labels corresponding to the type of

drug that is considered.

The purpose of the present work is twofold. First, it intends to establish that the classically used biomarkers

may be improved, at least in a classification context, by using numerical biomarkers instead. Second, it

intends to show that the classification performance may benefit from the addition of synthetic measurements

in the calculation of the numerical biomarkers. More generally, the authors intend to show that numerical

simulations are useful to cardiac electrophysiology in general, beyond the sole scope of drug classification.

First, a comparison between classical and numerical biomarkers was carried out. The comparison consists in

classifying drugs from experimental measurements using two different strategies: 3v3 and OvA. For each

strategy, the classification is performed using classical or numerical biomarkers as inputs. As expected, the

classification results in both cases are improved when using the numerical biomarkers. The latter were indeed

designed to be maximally correlated to their associated conductance and minimally correlated to the others.

As a consequence, they are more revealing of the underlying conductances than the classical biomarkers. In

the 3v3 case, the mean AUCs are increased when using the numerical biomarkers as inputs and the standard

deviations remain similar. The mean Cohen’s kappa also significantly increases. However, its standard

deviation is also higher but not enough to compromise the improvement of its mean. The same observations

can be made for the OvA case except for the gfi AUC which is reduced when using numerical biomarkers.

Second, the use of combined experimental synthetic measurements to compute numerical biomarkers is

investigated. The numerical biomarkers are computed using Monte-Carlo approximations that require

conductances and FP features samples. In the previous case, these samples are experimental. The idea is

to improve the robustness of the numerical biomarkers by incorporating synthetic measurements that span

better the parameters (i.e. conductances) space. This approach is meant to compensate the scarcity of

experimental data and more generally the fact that experiments do not cover every possible drug block scenario.

Conductances samples were drawn and the computational model was evaluated to generate noisy FPs. From
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these FPs, the entries of the dictionary of features were computed. The numerical biomarkers weights are

then computed using a composite set of experimental and synthetic samples. These numerical biomarkers

are compared to the ones computed using only experimental data. The same two classification strategies as

before are used to compare both approaches. In the 3v3 case, the improvement is not significant, both for the

AUCs and the Cohen’s kappa. This relatively low improvement needs to be mitigated by the fact that the

classification scores were already high when using experimentally derived numerical biomarkers, especially for

the AUCs. The improvements for the OvA case are however important. These results suggest that, for the

classification scenarios envisioned here, the addition of synthetic measurements is always beneficial. Note also

that the OvA strategy clearly outperforms 3v3 when using composite numerical biomarkers whereas it is not

clear which strategy is the best when using numerical biomarkers computed from experimental measurements

only.

The use of FP features in a classification context is now discussed. In classification problems, and in machine

learning in general, a large number of inputs tend to provoke an over-fitting of the model. This means that

the classifier tends to have satisfactory training scores but generalizes poorly on a validation test. This is in

part solved by the regularization used but the number of inputs still remains important. When dealing with

experimentally recorded FPs, the different signals are often not perfectly synchronized, making timestep-wise

comparisons meaningless. Furthermore, an important variability of the signal amplitudes is observed in

practice, making even perfectly synchronized signals difficult to compare. Using features extracted from the

FP that are do not depend on time shifts and amplitude variations are therefore more robust in a classification

context.

The limitations of the proposed approach are now discussed. First, the conductances values associated with

the experimental measurements are not knwown and are therefore approximated using Equation (2). This

approximation is however subject to several sources of uncertainty such as the IC50 whose value for a given

drug may vary according to the source considered [12, 15]. The uncertainties also come from the Hill’s

equation which is an imperfect model. Knowing the exact values for the conductances is however not critical

since those values are only needed to derive the numerical biomarkers and are not directly used dusing the

classification procedure. Another limitation comes from the computational model used in the present work.

The sources of error are multiple: ionic model error, space and time dicretizations, conductivities errors, etc.

These errors are not critical either since the computational model is only used to compute the numerical

biomarkers weights. This study shows that, despite the modeling errors, adding synthetic measurements

simulated by the computational model leads to better classification results. Other limitations come from

the classification strategies. Both classification strategies are non-exhaustive in that they do not explore

every possible way of splitting the data set. Furthermore, the classification metrics used to compare the

different approaches are not flawless. In some cases comparing AUCs for instance is not the best way to

compare classifiers [2]. Other metrics exist, such as the mean squared error, but were not investigated in this

work. Finally, the numerical biomarkers derived in the present work are not optimal in the sense that their

correlation with their associated conductances is not one, as seen in Figure 8.

We now discuss some perspectives that could lead to interesting future works. Other classification methods

than SVC exist, such as neural networks or random forests for instance. It would be interesting to assess

whether the findings of this work are still valid when considering other classification tools. It would also

be interesting to evaluate which classification tool generally performs best in the present drug classification

context. Other perspectives concern the numerical biomarkers computed using a composite set of synthetic

and experimental measurements. In the present work, the composite set is roughly composed of half synthetic
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and half experimental measurements. However, other proportions could be investigated and an optimal

proportion with respect to the classification score could be found. In the present work, only sodium, potassium

and calcium antagonists drugs are considered but other types of drugs exist. Drugs that affect other ionic

channels or even simultaneously several of them could be investigated. In parallel, more sophisticated ionic

models including more current types would need to be used to model these new drugs. This would of course

come at the expense or more computationally intensive simulations. Finally, training classifiers with only

synthetic measurements instead of experimental ones could be considered. This would be very useful when

experimental data are insufficient or even not available. The classifiers could also be trained with a composite

set of synthetic and experimental data just like it is done in this work for the computation of numerical

biomarkers.
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Tables

Splitting index 0 1 2 3 4 5 6 7

training set IDs {0, 2, 4} {0, 2, 5} {0, 3, 4} {0, 3, 5} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}

validation set IDs {1, 3, 5} {1, 3, 4} {1, 2, 5} {1, 2, 4} {0, 3, 5} {0, 3, 4} {0, 2, 5} {0, 2, 4}

Table 1: Different possible splittings of the experimental data set.
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Drug name Blocked ionic channel Associated conductance ID SVC class label # experiments

Mexiletine sodium gfi 0 0 160

Flecainide sodium gfi 1 0 120

Diltiazem A calcium gsi 2 1 160

Diltiazem B calcium gsi 3 1 160

Moxifloxacin potassium gso 4 2 120

Dofetilide potassium gso 5 2 160

synth. A sodium gfi 6 0 155

synth. B calcium gsi 7 1 155

synth. C potassium gso 8 2 155

Table 2: Repartition of the available (experimental and synthetic) data set.

classical biomarkers numerical biomarkers

Score mean std. mean std.

Cohen’s kappa 0.18 0.15 0.51 0.27

gfi AUC 0.65 0.10 0.86 0.11

gsi AUC 0.92 0.09 1.00 0.00

gso AUC 0.36 0.11 0.82 0.10

averaged AUC 0.65 - 0.89 -

Table 3: Comparison between classical and numerical biomarkers with the 3v3 classification strategy.

classical biomarkers numerical biomarkers

Score mean std. mean std.

Cohen’s kappa 0.18 0.14 0.53 0.25

gfi AUC 0.66 0.11 0.59 0.41

gsi AUC 0.92 0.11 0.96 0.06

gso AUC 0.43 0.11 0.85 0.13

averaged AUC 0.67 - 0.80 -

Table 4: Comparison between classical and numerical biomarkers. Classification scores in the one-vs-all
scenario.
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experiments only experiments + synthetic

Score mean std. mean std.

Cohen’s kappa 0.51 0.27 0.54 0.06

gfi AUC 0.86 0.11 0.87 0.13

gsi AUC 1.00 0.00 1.00 0.00

gso AUC 0.82 0.10 0.84 0.08

averaged AUC 0.89 - 0.91 -

Table 5: Comparison between numerical biomarkers computed from experiments only and combined experi-
ments and synthetic measurements. 3v3 classification strategy.

experiments only experiments + synthetic

Score mean std. mean std.

Cohen’s kappa 0.53 0.25 0.69 0.28

gfi AUC 0.59 0.41 0.87 0.32

gsi AUC 0.96 0.06 1.00 0.01

gso AUC 0.85 0.13 0.89 0.15

averaged AUC 0.80 - 0.92 -

Table 6: Comparison between numerical biomarkers computed from experiments only and combined experi-
ments and synthetic measurements. OvA classification strategy
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Figure captions

Figure 1: MEA geometry and its corresponding finite element mesh. The circles represent the locations of
the nine electrodes.
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Figure 2: Steady-state analysis: the Bidomain equations are solved for 100 consecutive beats. Qualitatively,
a satisfactory steady state is reached at the second beat (left). The beat-to-beat relative difference of the FP
is monitored (right) and is to be compared to the relative difference between two identical solutions, each
polluted by an independent noise (right).
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Figure 4: Heterogeneity modeling: different APs obtained by simulating the MV model with different values
of the heterogeneity parameter c.
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Figure 5: One sample of cell heterogeneity field generated using the correlation matrix method.
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Figure 8: Correlation matrix of the conductances of interest with the “classical” biomarkers (left) and with
the numerical biomarkers (right)
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