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Damped internal wave beams in stratified fluids have long been known to generate strong
mean flows through a mechanism analogous to acoustic streaming. While the role of
viscous boundary layers in acoustic streaming has thoroughly been addressed, it remains
largely unexplored in the case of internal waves. Here we compute the mean flow generated
close to an undulating wall that emits internal waves in a viscous, linearly stratified two-
dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the
form of the boundary conditions dramatically impacts the generated boundary streaming.
Particularly in the no-slip scenario, the Reynolds stress divergence within the viscous
boundary layer is much stronger than within the bulk, while also flowing in the opposite
direction. In this case, we show that the Reynolds stress divergence scales in direct
proportion to €2v/Re, where € is the dimensionless wave amplitude and Re is the wave
Reynolds number. Using a WKB approach, we apply this formalism to a classical idealised
model of wave-mean flow interactions known to reproduce the salient features of the
quasi-biennial oscillation. The presence of boundary layers has a quantitative impacts on
the flow reversals.
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1. Introduction

Internal gravity waves play a crucial role in the dynamics of atmospheres and oceans
by redistributing energy and momentum (Sutherland 2010). In particular, strong mean
flows can be generated by non-linear effects within internal wave beams (Lighthill 1978),
a phenomenon analogous to acoustic streaming (Riley 2001; Nyborg 1965). Internal wave
streaming is central to the quasi-biennial oscillation of equatorial zonal winds in the equa-
torial stratosphere (Baldwin et al. 2001). The salient features of this robust phenomenon
have been reproduced in a celebrated laboratory experiment (Plumb & McEwan 1978)
and in direct numerical simulations (Wedi & Smolarkiewicz 2006). Since then, other
instances of internal wave streaming have been reported in various experimental and
numerical configurations: Semin et al. (2016) used a quasi two-dimensional experimental
setting similar to Plumb & McEwan (1978) to describe internal wave streaming in the
absence of flow reversal; Grisouard & Biihler (2012); Bordes et al. (2012); Kataoka &
Akylas (2015) showed that three-dimensional effects lead to vortical streaming in the
domain bulk. However, those previous studies have not addressed the role of viscous
boundary layers and their potential implications for the generation of mean flows confined
to the boundary. This contrasts with acoustic waves which have long been known to
produce strong mean flows within their viscous boundary layers (Rayleigh 1884; Nyborg
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1958). Boundaries are essential to the generation of the waves in laboratory experiments
(Gostiaux et al. 2006) or numerical models (Legg 2014), and to energy focusing (Maas
et al. 1997). In the atmosphere and oceans, internal gravity waves are often generated
through the interaction between a mean flow and a solid boundary (orography in the
atmosphere, bathymetry in the oceans). Viscous effects are negligible at those geophysical
scales, but numerical simulations of these flows are usually performed with larger effective
turbulent viscosities. It is therefore crucial to understand the effect of viscous boundary
layers. Viscous internal wave beams generated by boundaries have been extensively
studied (Voisin 2003), together with their consequences on the bulk energy budget of
numerical ocean models (Shakespeare & Hogg 2017). The role of viscous boundary layers
has been addressed by Beckebanze & Maas (2016) to close the energy budget of internal
wave attractors; Chini & Leibovich (2003) described the viscous boundary layers in the
case of Klemp and Durran boundary conditions; Passaggia et al. (2014) studied the
structure of a stratified boundary layer over a tilted bottom with a small stream-wise
undulation. The effect of the viscous boundary layers on the mean flow is not discussed
in those works. By contrast, Grisouard & Thomas (2015, 2016) carried out full nonlinear
simulations of internal wave reflections and showed the existence of strong mean flows
induced by the waves in the vicinity of a reflecting boundary. They also showed the
importance of the wave boundary layers in the energy budget of the mean flow. This
provides a strong incentive to revisit the mean flow generation associated with internal
gravity waves boundary layers.

Here, using a two-dimensional and quasi-linear framework, we compute the mean flow
generated by internal gravity waves close to a boundary, paying particular attention to
the role of boundary conditions. The importance of changing the boundary condition in
numerical models of internal wave dynamics close to bottom topography has been noticed
in previous work related to mixing and wave dissipation (Nikurashin & Ferrari 2010).
We will show that changing boundary conditions also substantially affects wave-driven
mean flows. The quasi-linear approach is introduced in section 2. The structure of the
viscous linear waves, their induced Reynolds stress divergences and the consequences for
mean flow generation are discussed in section 3. An application to an idealised model
of a quasi-biennial oscillation analog is presented in section 4. A WKB treatment of the
problem is provided in appendix A.

2. Internal gravity wave-mean flow interactions with zonal symmetry

We consider a fluid within a two-dimensional domain, periodic in the zonal z-direction
with period L and semi-infinite in the vertical z-direction. The bottom boundary is a ver-
tically undulating line located on average at z = 0. The fluid is considered incompressible,
Boussinesq, viscous with viscosity v and linearly stratified with buoyancy frequency N.
For the sake of simplicity, we ignore any buoyancy diffusion process. This approximation
is relevant for experimental configurations where the stratification agent is salt, given
the low diffusivity « = /1000, but it does not apply to the atmosphere and the ocean,
where turbulent viscosity and diffusivity have the same order of magnitude.

Throughout this work, we solely consider monochromatic waves. Let us introduce the
typical zonal wave number k = 27/L, angular frequency w and amplitude of the bottom
undulation hy. There are three independent dimensionless numbers in the problem. The
Froude number Fr = w/N controls the angle of propagation of the wave. The wave
Reynolds number Re = w/ (k‘QV) controls the viscous damping and the viscous boundary
layer thickness of the wave field. When considering the lee wave generation case, this
wave Reynolds scales as UL/v, where U is the typical mean zonal velocity. The third
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parameter is the dimensionless amplitude of the wave ¢ = hpk. It corresponds to the
typical slope of the bottom boundary, controlling the linearity of the wave. In numerical
simulations, an additional aspect ratio r = kH and a wave Péclet number w/(k?s) have
to be taken into account, because the domain has a finite height H, and because it
includes a buoyancy diffusivity «. Both parameters will be much larger than one in the
numerical simulations presented in this paper, and we will assume that they do not play
a significant role in this limit. We use k71, w™! as reference length and time for the
space-time coordinates, ¢ = w/k as a reference velocity, N?/k as a reference buoyancy,
and write the dynamical equation in dimensionless form

du+ (u-Vi)u =-Vp+ Fr2be, + Re”'V?u
Ob+u-Vb+w =0 , (2.1)
V-u =0

where u = (u,w) is the two-dimensional velocity, p the renormalised pressure, b the
buoyancy anomaly, e, the unit vector of the vertical direction pointing upward, and
V2 = 0,y + 0. the standard Laplacian operator.

Previous studies in the context of acoustic streaming have investigated the effect of
changing boundary conditions on mean flow properties (Xie & Vanneste 2014). In this
paper devoted to internal wave streaming, we discuss two different bottom boundary
conditions on z = eh (z,t):

free-slip:  w = € (9sh + ud,h) , Gny]-ny =0 ; noslip: u = edhe,, (2.2)

where nj, = V (2 — eh (z,t)) is a local normal vector of the bottom boundary, ni- a local
tangent vector and G the velocity gradients tensor (G;; = 0;u;). This free-slip condition is
the one implemented in the numerical model considered in this paper (see MITgem user’s
manual 2018). It is equivalent to the stress-free condition when boundary curvature can
be neglected. In the stress-free case, G is replaced by its symmetric part only. Regarding
the boundary streaming, we checked that discrepancies between stress-free and our free-
slip condition arise only in non-hydrostatic regimes of internal waves. Therefore, in most
practical cases, the results obtained by considering the free-slip condition (2.2) will also
be relevant for numerical simulation using the stress-free condition. Furthermore, we
require all gradients with respect to z to vanish as z — oc.

When considering a progressive pattern (h(x,t) = h(z —t)) in (2.2), a Galilean
change of referential yields the case of lee-wave generation by a depth-independent mean
flow passing over bottom topography. Then, the free-slip bottom boundary condition
for the generation of lee waves obviates the need to treat the near-bottom critical layer
induced by a more realistic no-slip condition (Passaggia et al. 2014). Regarding the
free-slip condition, the predictions will be compared against direct numerical simulations
of monochromatic lee waves generation using the MIT global circulation model (Adcroft
et al. 1997) which specifically uses our definition for the free-slip condition. The no-slip
boundary condition in (2.2) is relevant to model the generation of internal gravity waves
in laboratory experiments using vertically oscillating bottom membranes (Plumb &
McEwan 1978; Semin et al. 2016) or a system of plates and camshafts (Gostiaux et al.
2006). We will however consider limiting cases where the viscous boundary layer is larger
than the boundary height variations, which is not always the case in actual experiments.

We decompose any field ¢ into a mean flow part ¢ and a wave part ¢’ using the zonal
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averaging procedure (see Biihler 2014):
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The averaging of the zonal momentum equation in (2.1) leads to the mean flow evolution
equation:

O = —0.u'w' + Re™10..7. (2.4)
The source of streaming is the divergence of the Reynolds stress —d,u/w’. To compute
this term, we subtract the averaged equations from (2.1) and linearise the result assuming
(u/,w', b, p') = O (e) with e < 1.

At this stage, we assume that [u] < 1. Starting from a state of rest, at early times of
its evolution, the mean flow is weak, which justifies this assumption. At later times, the
feedback of the mean flow on the wave can no longer be ignored (Kataoka & Akylas 2015;
Fan et al. 2018), as will be discussed in more detail in section 4 (see also equation (A 1) in
appendix A). This case without feedback from the mean flow leads to homogeneous wave
equations, which provides a simple framework to describe essential features of boundary
streaming:

o' + 0yp' — Re™'V2u/ =0
O’ + 0,p' — Fr=2b — Re™'VZ2uw' =0
O -+ ' —0- (2.5)
Oy’ + O w' -0

The coupled equations (2.4) and (2.5) form a quasi-linear model for the interaction
between boundary generated viscous waves and the zonal mean flow. The Reynolds stress
divergence, —0,u/w’, at the origin of streaming, is the only non-linear term remaining in
the problem. It acts as a forcing term and is computed from the wave field.

We perform the wave-mean decomposition on the boundary conditions (2.2) and we
linearise the result assuming as above a wave amplitude of order € on an asymptotically
flat boundary at z = 0:

0,u =0 0 =0
free-slip: w —9h =0 ; mno-slip: w —9h =0 (2.6)
o =0 u =0

In the free-slip case, the Reynolds stress divergence vanishes at the bottom (@W\zzo =
0), while, in the no-slip case, the Reynolds stress itself vanishes at the bottom (vw/'w’|,—o =
0). Given that w/w’|, o, = 0 for damped waves, the integrated streaming in the no-slip
case has to be zero: fooo d.u'w' dz = 0. Consequently, all the streaming far from the
bottom boundary has to be compensated for by an opposite boundary streaming.

3. From viscous waves to boundary streaming
3.1. Viscous internal gravity waves

We describe in this section the detailed structure of the Reynolds stress divergences
for both the free-slip and the no-slip boundary conditions, when the mean flow can be

neglected. Injecting the ansatz (u/,w’,b',p’) = R Kﬂ,ﬂ),l;,ﬁ> ei(”mz’t)} in equation

(2.5) leads to the dispersion relation for viscous internal gravity waves, expressed here as

o _ iRte i)
m’ = = <1j: 1+FT2R6> 1. (3.1)
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Among the four possible solutions for m, we retain only the two upward propagating ones,
by discarding the solutions with a negative imaginary part. To simplify the discussion,
we express these solutions in the asymptotic regime Fir?Re > 1, with (1 — Fr) = O (1):

{ my = —mo+i/ (2Lr) + o ((ReFrtmo) ") .
my = (1+14) /e + 0 (Re'/?) ’ .
with

mo =V Fr—2—1, Lpg.= ReFr*mgy, Ope= \/% . (3.3)

The solution m,, corresponds to the propagating solution converging toward the
inviscid solution in the limit Re — co. Lg. is the damping length-scale of the wave-
beam, scaling linearly with the wave Reynolds number. The solution my; corresponds to
the wave boundary layer. The boundary layer thickness given by dg. scales as Re~'/2
as in the classical case of an horizontally oscillating flat boundary. This last solution is
needed to match the propagating solution with the viscous boundary conditions and is
analogous to the one discussed in acoustic boundary streaming (Nyborg 1958).

The viscous internal-wave dispersion relation has already been extensively studied.
Chini & Leibovich (2003) considered a finite Prandtl number, which provides an addi-
tional branch of boundary layer solutions associated with the diffusion operator in the
buoyancy equation. They also gave asymptotic expansions for large Reynolds number.
Grisouard & Thomas (2016) considered the effect of a Coriolis force, which provides an
additional branch of boundary layer. Although rotation, buoyancy diffusion, and their
associated boundary layer solutions undoubtedly impact boundary streaming, we do not
consider these additional effects, to simplify the presentation.

In the case of a progressive sine-shaped bottom undulations, h (x,t) = R [ei(x_t)], the
general expression of the wave field is given by the linear combination of a propagating
(w) and a boundary layer (bl) part

[, w bV, p]=%R { (puwP[muw] €% + ¢ P [mp] €7%) ei(z_t)} , (3.4)
with
Pim] = [1, —m~ AP TP m T B (14 mz)il} . (3.5)

P[m)] is the polarisation of the wave obtained from (2.5), (m,,, ms;) are given in equation
(3.2), and (¢, dp1) are scalars determined by the boundary conditions (2.6):

2
LUTLLTY]

d) = ’L‘Ei — g _MawMpl

: w m2, —m?2 . G =€ —

free-slip: _ frgiszvw ; no-slip: oo = ie L (3.6)
o, = i€ m2,—m?2, My =My

The generic vertical profiles of the wave field u’ are drawn in figure 1 for both boundary
conditions. Most of the differences between the two profiles are located in the boundary
layer close to the bottom. We will see that these different profiles lead to very different
boundary streaming behaviors, by computing the Reynolds stress divergence of the
corresponding wave fields.

3.2. Reynolds stress divergence

The Reynolds stress u/w’ is composed of cross terms involving both the propagative and
the boundary layer contributions. In the limit of small viscosity, the “self-interaction” of
the propagating contribution decreases exponentially over a scale Lg.. This corresponds
to bulk streaming. All the other terms involve a pairing with the boundary layer
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Figure 1: a) Example of a linear computation of the vertical profile of the fully established
wave field, v/, in the absence of a mean flow, with the free-slip (blue) and no-slip (red)
boundary conditions. b) Zoom on the boundary layer of the wave. The wave damping
length, L., and the boundary layer thickness, dg., are represented on the graph along
with the inviscid vertical wave length, A, = 27/my.

contribution that decay exponentially over the scale dge. The sum of these terms induces
the boundary streaming. We thus decompose the Reynolds stress into a bulk and a
boundary term

ww' (2) = By (2) + Fy (2) . (3.7

In the remainder of this section, the quasi-linear computations will be performed by
using the exact solutions of (3.1). In order to get insights on the basic differences between
the free-slip and the no-slip case, it is however useful to estimate the Reynolds stress by
using the asymptotic expression (3.2) for both boundary conditions in (2.6):

j

Fy (Z) :g%exp{_[‘;e

free-slip: 2 ; L B
Fy(z) =3 o exp{—m} (smm + cos E)
(3.8)
2
_ Fy,(z) =< eXp{—L;}
no-slip: . ; 3
Fbl (Z) = - eXp{fm}COSR

The bulk Reynolds stress F, has the same expression at leading order for both the free-
slip and the no-slip case. The difference lies in the boundary ’s Reynolds stress expression
Fy;. Similarly, the asymptotic expressions of the streaming body forces are:

2
. —0.Fy (2) = mew{m;}
free-slip: 2 o

€ m .
—0.Fy (2) = —5%exp {fﬁ} sin ﬁ

2
-0,F, () = SR OXP {— L;e }

—0,Fy (2) —52"2“’7\/‘%% exp {—ﬁ} (cos ﬁ 4+ sin é)

no-slip:

In the free-slip case, the boundary forcing amplitude does not depend on the wave
Reynolds number at leading order, only its e-folding height does. This amplitude de-
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Figure 2: Plot of the vertical profile of the Reynolds stress divergence in the absence of
mean flow (@ = 0) considering the free-slip boundary condition for different couples
(Re, Fr). The markers plots come from high-resolution direct numerical simulations
(DNS) while the dashed lines plots come from the full linear theory without mean flow.
The other dimensionless parameters for the simulation are ¢ = 0.01 and R = 6Lg,.; the
resolution is Az = Az = 0g./50 ; the grid is stretched above z = 6Lg,. to avoid wave
reflection; the simulated data have been smoothed over ten time steps of the simulation
to get rid of the fast motion coming from surface waves present in the numerical model.
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Figure 3: a) Plot of the vertical profile of the Reynolds stress divergence for the no-slip
boundary condition computed using the full linear theory without mean flow. b) Plot of
the vertical profile of the mean flow at ¢ = 10 computed using the quasi-linear model
for the no—slip boundary condition. ¢) Hovmoller diagrams of the mean flow , % (z,t),
computed using the quasi-linear theory for the scenario in which the lower boundary
condition is no-slip. The parameters are Re = 200, Fr = 0.3 and ¢ = 0.005.

creases with the Froude number. This effect can be seen in figure 2 where the free-
slip Reynolds stress divergence 0,u/w’ is plotted for three different values of Reynolds
and Froude numbers. These quasi-linear calculations are successfully compared to high
resolution direct numerical simulations of the established wave pattern generated by a
depth-independent flow above a sine-shaped topography in a linearly stratified fluid.

In the no-slip case, the boundary forcing is opposite and much stronger than the
bulk forcing, as shown in figure 3-a). According to equation (3.9), the amplitude of the
boundary forcing scales as Re'/?: it blows up in the inviscid limit. The underlying reason
is the vanishing of the integral of the Reynolds stress divergence over the whole domain,
as discussed at the end of section 2.
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Figure 4: Hovmoller diagrams of the mean flow, @ (z,t), for the scenario in which the
bottom boundary condition is free-slip. a) Direct numerical simulation (DNS) b) quasi-
linear model ¢) quasi-linear model without the boundary streaming terms in the Reynolds
stress divergence. The parameters are Re = 200, Fr = 0.3 and ¢ = 0.01, dz = dz =
0re/15. The grid is exponentially stretched on the vertical axis above z = 6Lg, in the
DNS.

3.3. Boundary flows

We now look for the mean flow response to the Reynolds stress divergences, by injecting
the linear predictions for wave fields in equation (2.4). When ignoring the influence of
the mean flow on the wave fields, equation (2.4) becomes a linear diffusion equation with
a steady forcing, that can be decomposed into a bulk and a boundary contribution, as
in equation (3.7).

The typical time scales 7, and 73; for the mean flow to reach a given velocity U in the
presence of either bulk or boundary streaming forcing terms are obtained by balancing
Oyu with 0,F, and 0, Fy;, respectively. Using the large Reynolds asymptotic estimates
given in equation (3.9) leads then to 74; /7, ~ Fr~2Re~! in the free-slip case and 7 /7, ~
Fr=4mg ' Re=3/2 in the no-slip case. We thus expect the boundary streaming to dominate
over the bulk streaming at the early stage of the mean flow evolution in both cases.

At a quasi-linear level, the early stage of the mean flow evolution is obtained for both
the free-slip and the no-slip conditions by solving equation (2.4) numerically, assuming
that the wave field is described by equations (3.1), (3.4), (3.5) and (3.6). A finite size
domain is considered in the simulations with an aspect ratio r = 6Lg.. The waves are
computed as if the domain were semi-infinite and a free-slip upper boundary condition
is considered for the mean flow.

In figure 4, we compare the quasi-linear predictions for the free-slip boundary condition
against direct numerical simulations. The parameters are Re = 200, Fr = 0.3 and € =
0.01. For those parameters, the wave boundary layer thickness is dg. = 0.1 and the
viscous damping length is Lr. = 5.15. The Hovmoller diagrams focus on an area close
to the bottom boundary. We use a vertical resolution of dz = 0.0067 which resolves
properly the wave boundary layer. In the DNS, a stretched grid has been implemented
on the vertical to to avoid any downward reflection. The quasi-linear model captures well
the boundary streaming effect. To emphasise the crucial role of the boundary streaming
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term, we added a diagram in figure 4 of a quasi-linear computation where the boundary
forcing has been removed in (2.4) ( Fy; = 0 in (3.7)). We clearly see that the presence of
boundary streaming is important to predict accurately the mean flow evolution in this
case.

In figure 3-c, we show a Hovmoller diagram of the mean flow computed using the quasi-
linear model in the case of no-slip boundary condition. The parameters are Re = 200,
Fr = 0.3 and € = 0.005. As expected from the discussion following equation (3.9), the
boundary forcing generates a strong boundary mean flow going in a direction opposite to
the direction of the bulk mean flow. Consistently with our previous estimates of typical
time scales for the mean flow evolution, the establishment of the bulk flow occurs at a
time scale larger than the establishment of the quasi-stationary boundary flow.

In the no-slip case, the mean flow eventually reaches a stationary state given by

T (2) = Re /O T () de. (3.10)

Then, the contribution from the boundary streaming is negligible with respect to the
contribution from the bulk streaming. This can be quantified by computing the order of
magnitude of typical mean flow amplitudes U,, and Uy, obtained by splitting Reynolds
stresses in (3.10) into a bulk and a boundary contribution, respectively. Using the large
Reynolds asymptotic expressions obtained in (3.8), we get U, ~ €2Re?Frim2 and Uy ~
€2Re'/?mg. We thus expect the bulk flow to be dominant in the long time limit, for large
Reynolds numbers.

In the free-slip case, no stationary regime is reached and the mean flow amplitude keeps
increasing in time. It can be assessed by considering the z-integrated momentum, P (t) =
fooo u (z,t) dz. Using the free-slip boundary condition and integrating (2.4), we get P (t) =
(W|z:0) t. At sufficiently large times, the mean flow varies over the characteristic length
scale v/ Re t. Consequently, the mean flow amplitude P/v/Re t increases as t*/2: eventually,
the feedback of the mean flow on the wave will no longer be negligible. We can however
use this mean flow amplitude estimate, together with the large Reynolds asymptotic
expressions in (3.8), to infer Uy /U, ~ Fr~2my*Re~'/2. We thus expect the bulk flow
to be dominant in the long time limit just as in the no-slip case.

3.4. Limitation of the quasi-linear model

To derive our quasi-linear model, we assumed ¢ < 1 with all other parameters fixed.
We considered a specific asymptotic regime in order to have readable expressions such
as in equations (3.2), (3.3), (3.8) and (3.9), but the quasilinear numerical calculations
have been made using the actual solution of the dispersion relation (3.1). We can define a
more precise criterion on € comparing the neglected non-linear terms with the linear one.
For the linearity of the bulk term in (3.4) we need to have mgpe < 1. For the linearity of
the boundary layer term, we need to have €/dr. < 1. Let us remark that the linearity of
the boundary layer should be the least reasonable assumption in general as mgdg. < 1
in most practical cases. The wave beam can be linear while the boundary layer is not.

To illustrate how boundary streaming can affect mean flow properties in the bulk, we
apply in the next section the quasi-linear model to the case of a standing wave pattern
for the bottom boundary.

4. Application to an idealised analogue of the quasi-biennial
oscillation

In this section, we consider a standing wave pattern imposed at the bottom boundary:
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h (z,t) = cos (x) cos (t) with a no-slip boundary condition. This idealised configuration is
thought to capture the essential mechanism at the origin of the equatorial stratospheric
quasi-biennial oscillation (Plumb 1977), and has been experimentally studied by Plumb &
McEwan (1978). Two linear waves with equal amplitude and opposite zonal phase speeds
are emitted by such a bottom excitation. The resulting Reynolds stress is simply the sum
of the Reynolds stresses computed from each individual wave plus a rapidly oscillating
term that can be smoothed out by averaging over this fast oscillation. The Reynolds
stress divergences induced by the two waves are opposite and cancel themselves out in the
absence of mean flow. Above a certain value of the waves amplitude, a Hopf bifurcation
occurs, a vacillating mean flow is generated and approaches a limit cycle (Plumb 1977).
Plumb & McEwan (1978) reported the spontaneous generation of an oscillating mean flow
in laboratory experiments when the wave amplitude exceed a threshold, and compared
their measurements against quasi-linear computations. They considered a no-slip bottom
boundary condition for the mean flow but inviscid impermeability condition for the wave
field, allowing them to ignore any boundary layer effect. Here, we investigate the effect
of the viscous boundary layers and the associated boundary streaming on the oscillation
arising with the standing wave excitation, assuming a no slip condition for both the mean
flow and the waves. We show that the inclusion of boundary streaming induces important
alterations on the mean flow in this idealised model of wave-mean flow interactions.

In section 3, we ignored the effect of the mean flow on the wave field. We need here
to take this feedback into account, as the initial instability arises from a perturbation of
the mean flow itself. The effect of the mean flow on the wave is included by performing a
WKB expansion of the wave field following the method of Muraschko et al. (2015), but
including dissipative effects. The full calculation is detailed in appendix A. The Reynolds
stress divergence is then computed and injected into the mean flow equation (2.4) in order
to compute the long time evolution of @. This task is done numerically using the results of
appendix A and the no-slip boundary condition in (3.6). While Plumb & McEwan (1978)
considered asymptotic expression for the bulk solution of the dispersion relation (A5),
our numerical calculations use the actual solutions. This allows us to be self-consistent
in a larger range of parameters, including low Reynolds numbers. More importantly, as
discussed at the end of Appendix A, this actual solution captures important corrections
close to the critical layers, where the mean flow is of the order of the wave zonal phase
speed.

The resulting Hovmoller diagrams of mean flows time series are showed on figure 5 for
different values of the Reynolds number. The time series used for the upper plots have
been computed using the full quasi-linear model while the one used for the bottom plots
have been computed without the boundary layer contributions. All simulations start
with the same initial perturbation. In figure 5a, we see that the inclusion of boundary
streaming in the quasi-linear model kills the stationary oscillation present when the
boundary streaming is ignored. In figure 5b, the Reynolds number is increased and the
oscillation is present in both cases. However, the oscillation period is decreased by 20%
when the boundary streaming is included. By further increasing the Reynolds number
we see in figure 5c that the inclusion of the boundary streaming significantly changes
the mean flow oscillation. This new regime presenting an additional frequency in the
signal can actually be reached without the boundary streaming but at a larger Reynolds
number. A similar regime has been reported by Kim & MacGregor (2001), and we will
more thoroughly study these bifurcations in a companion paper. Our aim is here to show
that the presence of the wave boundary layer has an impact on such bifurcation diagrams,
in addition to significantly altering the period of oscillations in the periodic case.

For the range of parameters corresponding to figures 5b and 5c¢, the mean flow reaches
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Figure 5: The mean flow, u (2, t), is generated by the streaming coming from two counter
propagative waves with same amplitude and opposite horizontal phase speed, generated
by a vertically oscillating bottom boundary with no-slip condition using the quasi-linear
model. Hovmoller diagrams of the mean flow time series are shown for three different
Reynolds numbers. In each panel (a,b,c) the upper plot corresponds to a case where
the boundary streaming has been included in the computation, while the lower plot
corresponds to a computation with same parameters but without the contribution of the
boundary streaming terms. In all cases, Frr = 0.15 and ¢ = 0.3. In figure b), the mean
flow oscillates with an oscillation period of about 40 and 50 time units for the case with
(upper plot) and without (lower plot) boundary streaming respectively.
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Figure 6: a) Mean flow snapshots extracted from the two time series plotted in figure 5b
computed with (BL) and without (NoBL) boundary streaming and taken at ¢ = 10 and
t = 12.5 respectively. b) Plot of the associated Reynolds stress divergences obtained for
the wave propagating in the direction of positive mean flow (“4”) and for the counter-
propagating one (“-”) considering the mean flow profile obtained by either including
(BL) or ignoring (NoBL) the boundary streaming. ¢) Plot of the total Reynold stress
divergences, sum of the two counter propagative waves contributions for the case with
boundary streaming (BL) and without boundary streaming (NoBL).

an amplitude close to the phase speed of the waves. To investigate the effect of the
boundary layers in these cases, we consider two mean flow snapshots, plotted in figure 6,
taken from the two time series plotted in figure 5b. The snapshots are taken at the same
stage of the oscillation cycle. In figure 5b, we see that the bottom profile of the mean flow
is approximately steady before a reversal. Let us call Ay, the typical length over which the
mean flow reaches its extremum value denoted U. This velocity is of order one as it is close
to the gravity wave zonal phase speed. Using equation (2.4), we infer the typical scaling
of Age by balancing the viscous term Re™'0,,u and the streaming term 0,u/w’, which is
dominated by the bulk contribution F;, associated with the wave propagating in the same
direction of the mean flow. This yields Age ~ U (Re F,,(0))". Considering U = 1 as a
typical mean flow, and using the asymptotic expression in equation (3.8), we obtain the
scaling Age ~ e_QRe_lmgl7 which gives in the present case Ar. ~ 0.1, in agreement with
figure 6-a. Here AR, is of the same order as the boundary layer thickness §r.. Given the
scalings, one expects Ag. < dg. at higher Reynolds number. This explains qualitatively
why the boundary layers and their associated boundary streaming significantly alters the
mean flow reversals at higher Reynolds number, as observed in figure 5c.

The Reynold stress divergences computed using the two mean flow snapshots shown in
figure 6-a and considering the counter-propagating waves separately are plotted in figure
6-b. The total Reynolds stress divergences are plotted in figure 6-c. As expected, the
boundary layers significantly modify the streaming vertical profiles. Interestingly, while
bulk streaming is dominated by the wave travelling in the same direction as the mean
flow, the main discrepancy between the case with and without boundary streaming comes
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from the boundary forcing associated with the wave going in a direction opposite to the
mean flow at the bottom.

For our calculation we made two strong hypotheses. We assumed that there is a vertical
scale separation between the wave and the mean flow and further assumed that the wave
field reaches its steady state in a time much shorter than the typical time of evolution of
the mean flow. The wave field is thus computed using a static WKB approximation with
a frozen in time mean flow. Since the mean flows shown in figure 5 exhibit sharp shear
at the bottom, and since they reach values of the order of the zonal phase speed of the
waves, those hypotheses are not valid. This WKB approximation is however the simplest
way of accounting for the mean flow effect on the wave field. We also considered a high
value of €, which is necessary to reach the oscillating regime while keeping the numerical
cost reasonably low. It does not fit the linearity criteria discussed at the end of section 2
for the quasi-linear approach to be self-consistent. We should also stress that the no-slip
bottom boundary condition is irrelevant to the actual quasi-biennial oscillation occurring
in the upper atmosphere, and that our model has been derived in a distinguished limit
for which the viscous boundary layer is much larger than the boundary height variations,
which is not satisfied in laboratory experiments. However, despite these limitations, our
results show that the boundary conditions and the associated wave boundary layers
should not be overlooked, since boundary streaming has a quantitative impact on mean
flow reversals in the domain bulk.

5. Conclusion

We have shown that changing the boundary conditions has a drastic impact on the
boundary mean flow generated by internal waves emitted from an undulating wall in a
viscous stratified fluid. In particular, Reynolds stress divergences close to the boundary
blow up with the wave Reynolds number in the case of no-slip boundary conditions, while
they remain bounded in the free-slip case. Using a novel WKB treatment of the waves
that takes into account viscous effects, we treated the case of a forced standing wave
in the classical idealised model of wave-mean flow interactions that captures the basic
mechanism responsible for the quasi-biennial oscillation (Plumb 1977). The boundary
streaming significantly alters the mean flow reversals by either inhibiting them, decreasing
their period or altering their periodicity depending on the wave amplitude. Beyond these
particular examples, our results show the importance of describing properly the physical
processes taking place in the boundary layers where waves are emitted to model correctly
the large-scale flows induced by these waves.

We have neglected the effects of rotation and diffusion of buoyancy which are known
to change the properties of the wave fields close to boundaries (Grisouard & Thomas
2015, 2016), and will therefore affect boundary streaming. By restricting ourselves to
a quasi-linear approach, we have also neglected nonlinear effects that may become
important close to the boundary, even in the limit of weak undulations, due to the
emergence of strong boundary currents. All these effects could deserve a particular
attention is future numerical and laboratory experiments.

The authors warmly thank Louis-Philippe Nadeau for his help with the MIT-GCM,
and express their gratitude to Freddy Bouchet and Thierry Dauxois for their useful
insights.
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Appendix A. WKB expansion of viscous internal gravity wave within
a frozen in time mean flow

We compute here the leading order terms of a Wentzel-Kramers-Brillouin (WKB)
expansion of the viscous wave field within a weakly sheared mean flow frozen in time. We
follow the method developed in Muraschko et al. (2015), the novelty being the presence
of viscosity, in the wave equation (2.5). The internal wave equations write

o' +T0,u' + w0, u+ 0p’ — Re™ V2! =0
Oy’ + ul,w' + 0.p' — Fr=2V — Re™ V2w =0 (A1)
O +udyb 4+ w' =0
Ogu' + 0w’ =0

We assume that the mean flow is time independent and varies over a vertical scale
L,, much larger than the inverse of the vertical wave number modulus 1/ |m|. None of
those quantities are known prior to our problem. For the present calculation, we assume
L, > 1 and |m| ~ 1 but the final result will apply for different scalings as long as
L,m > 1 is fulfilled. We therefore assume that @ depends on a smooth variable Z = az
with a =1/L, < 1.

We introduce the WKB ansatz for a monochromatic wave solution
u’ ’l]j (Z) P (Z)

/ = | w(z i(x —ct) +
v TR 7 C (A2
Y ]7 p; (Z)
with ¢ = 1. The function @ (Z) accounts for the vertical phase progression of the wave.
The local vertical wave number is defined by m (Z) = 9z®. Injecting this expansion into
the previous equation and collecting the leading order terms in a leads to:

Z
VA

Ug a1 WoOzu — iRe ! (ﬂ()azm + 2m82ﬁ0)
~ ~ ~ _ . _1 ~ ~
M ’lf)o +a M 1f)1 + 82}70 iRe (woazm + 2m82w0) +o (a) _ 07
bo b1 0
Do D1 dzwo
with
Re™! (14 m?) —i(c—7) 0 0 (
M — 0 Re—1(1+mi)2—i(c—u) —1im
0 Er —i(c—m) 0
i m 0
(A4)

We introduce the polarisation P [m] defined by [110, o, bo, }50} = ¢o (Z) P [m], where

@0 (Z) is the amplitude of the wave mode. The cancellation of the zeroth order term in
equation (A 2) yields to det M = 0. This gives the local dispersion relation

cC—u

B2 (c—m)? (1+m?) (1 +iRe‘11+mQ> =1. (A5)

Then, using MP = 0 we obtain the polarisation expression

Plm] = [c—u,—;(c—u),Frim,FTQ (11+m2)]. (A6)

The cancellation of the terms proportional to a in (A 3) provides an equation for the
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amplitude ¢q (Z). To get rid of the terms involving components of the order one wave,
let us introduce the vector Q = [110, Wo, —bo Fr, ]50} such that Q- M = 0. We then take

the inner product between Q and the terms proportional to a in (A 3). This gives
ligWo 0z + Oz (WoPo) = iRe 0z (m (4§ + 07)) - (A7)
By introducing ¢% = #3 (c — 7)? /m and using the dispersion relation (A 5), we obtain
after some algebra:
2iRe™! (1+m?)
¢c—Tu+2iRe 1 (1 +m?2)

Jzlog 3 + dzlog (1+m?) = 0. (A8)
This last equation has to be solved for every solution m (Z) of the dispersion relation.
This is done numerically in general.

By solving the dispersion relation (A5), we find that in the limit of large Reynolds
number the bulk solution is independent of Re and we recover the amplitude equation
obtained by Muraschko et al. (2015)

970 = 0. (A9)

However, for the boundary layer solution we find the scaling mgl ~ =iRe(c—u) at
leading order in the large Reynolds limit. In this case, the amplitude equation for the
boundary layer solution reduces to

7 (¢g (c— a)2) ~0. (A 10)

These results fail close to critical layers where |c — T < 1.

Let us consider the momentum flux computed from the self-interaction of the upwardly
propagating bulk solution of (A 5), i.e. the one converging toward the inviscid solution
when we take the limit Re — oo. If we assume Frlc—u| <« 1 and Relc—u| ~
(Fr |¢ —u|) ™ for every z, we recover the expression of equation (2.1) of Plumb & McEwan
(1978) with a3 =0 :

W (2) = sign (¢) | <z=o>|2exp{—ﬂ§Re /OZ( 4 } (A11)

c—u()"

This expression fails close to critical layers where the scaling assumption Re|c —a| ~
(Fr|c —u|)”* can not remain valid.
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