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Damped internal wave beams in stratified fluids have long been known to generate
strong mean-flows through a mechanism analogous to acoustic streaming. While the
role of viscous boundary layers in acoustic streaming has thoroughly been addressed,
this remains largely unexplored in the case of internal waves. Here we compute the
mean-flow generated close to an undulating wall that emits internal waves in a viscous,
linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we
show that the mean-flow behavior depends strongly on the boundary conditions, and
find good agreement with numerical simulations. We apply these computations to an
idealised model for the quasi-biennial oscillation, and find that the presence of boundary
layers have a qualitative impact on the period of flow reversals within the domain bulk.

Key words:

1. Introduction

Internal gravity waves play a crucial role in the dynamics of atmospheres and oceans
as they redistribute energy and momentum (Sutherland 2010). In particular, strong
mean-flows can be generated by non-linear effects within internal wave beams (Lighthill
1978), a phenomenon analogous to acoustic streaming (Riley 2001). A striking example
of internal wave streaming is the quasi-biennial oscillation of equatorial zonal winds in
the stratosphere driven by damped internal gravity waves (Baldwin et al. 2001). This is a
robust phenomenon that has also been reproduced in a celebrated laboratory experiment
(Plumb & McEwan 1978). In that case, the classical explanation of streaming relies on
the damping of the wave within the domain bulk. Other instances of bulk streaming
have then been reported in numerical simulations (Grisouard & Bühler 2012), laboratory
experiments (King et al. 2009; Bordes et al. 2012; Semin et al. 2016), and a self-consistent
theory for the generation of vortical mean-flows in the domain bulk has been proposed
(Kataoka & Akylas 2015). None of these studies have addressed the role of viscous
boundary layers and their potential implications for the generation of mean-flows confined
to the boundary, by contrast with acoustic waves, that have long been known to produce
strong mean-flow within their viscous boundary layers (Zarembo 1971; Xie & Vanneste
2014). This is surprising, given that boundaries are central to the generation of the waves
in laboratory experiments (Gostiaux et al. 2006) and numerical models (Legg 2014),
or to their effect on energy focusing through multiple reflections (Maas et al. 1997).
Viscous internal wave beams generated by boundaries have been extensively studied
(Voisin 2003), together with their consequences on the energy budget of numerical ocean
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models (Shakespeare & Hogg 2017). Importance of viscous boundary layers for the energy
budget of internal wave attractors have recently been addressed (Beckebanze & Maas
2016). However, mean-flow generation associated with viscous boundary layers have not
been discussed. Here we compute in a two-dimensional, quasi-linear framework the mean-
flow generated by internal gravity waves close to a boundary, paying particular attention
to the role of boundary conditions. The importance of changing boundary condition in
numerical models of internal wave dynamics close to bottom topography has been noticed
in previous work related to mixing and wave dissipation (Nikurashin & Ferrari 2010).
We will show that changing boundary conditions also substantially affects wave-driven
mean-flows. The quasi-linear approach is introduced in section 2. The structure of the
viscous linear waves and their induced Reynolds stresses are presented in section 3. The
consequences for mean-flow generation are discussed in 4, together with an application
to an idealised model of the quasi-biennial oscillation. A WKB treatment of the problem
is provided in appendix A.

2. Zonally symmetric waves and mean-flow interaction

We consider a fluid within a two-dimensional domain, periodic in the zonal x-direction
with period L and semi-infinite in the vertical z-direction. We leave for future work
the study of three-dimensional effects, that are known to be central to streaming effects
in the domain bulk (Grisouard & Bühler 2012; Bordes et al. 2012; Kataoka & Akylas
2015).The bottom boundary is a vertically undulating line located on average at z = 0,
whose equation is given by z = h (x, t). We consider an incompressible viscous Boussinesq
fluid with viscosity ν and linearly stratified with buoyancy frequency N . For the sake of
simplicity, we do not consider any diffusion process for the buoyancy. This hypothesis is
relevant for experimental configurations when the stratification agent is salt given the
low diffusivity κ = ν/1000. We also consider a linear friction term for the velocity field
with coefficient γ, thought to be a crude model for possible lateral boundaries (Plumb &
McEwan 1978; Semin et al. 2016).

The dynamical equations writes: ∂tu + (u · ∇) u = −∇p+ bez − γu + ν∇2u
∂tb+ u · ∇b+N2w = 0
∇ · u = 0

(2.1)

where u = (u,w) is the two-dimensional velocity, p the renormalised pressure, b the
buoyancy anomaly and ∇2 = ∂xx + ∂zz the standard Laplacian operator.

In this paper, we discuss two different bottom boundary conditions on z = h (x, t):

free-slip: w = ∂th , S [nh] · n⊥h = 0 ; no-slip: u = ∂thez (2.2)

where nh = ∇ (z − h (x, t)) is a local normal vector of the bottom boundary, n⊥h a local
tangent vector and S the shear stress tensor (Sij = ∂jui).

The free-slip boundary condition is considered in many oceans numerical models when
the viscous shear layer is not resolved (see e.g. Legg 2014). When considering a progressive
pattern (h (x, t) = h (x− ct)) in 2.2, a Galilean change of referential brings us to the case
of the lee-waves generation by barotropic mean-flow passing over a bottom topography.
All the predictions concerning the free-slip boundary condition will be compared against
direct numerical simulations of monochromatic lee-waves generation using the MIT global
circulation model (Adcroft et al. 1997) which specifically uses our definition for the free-
slip condition. The no-slip boundary condition in (2.2) is relevant to model the generation
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of internal gravity waves in laboratory experiments using vertically oscillating bottom
boundaries such as in Plumb & McEwan (1978) or Semin et al. (2016).

They are four independent dimensionless numbers in the problem. Let us consider k
and ω, the typical zonal wave number and angular frequency for the bottom oscillations.
The Froude number Fr = ω/N controls the propagation of the inviscid wave. We define
a Reynolds number based on the wave properties, Re = ω/

(
k2ν
)
, controlling the viscous

damping and the viscous boundary layers thickness. When considering the lee-wave
generation case, this Reynolds number can be linked to the standard Reynolds number
Re = UL/ν where U is the typical mean zonal velocity. An amplitude parameter for
the wave is given by the typical slope of the bottom boundary, ε = hbk, where hb is the
typical amplitude of h. In this paper, the considered amplitude parameters are small
enough to neglect triadic interactions of waves. Finally, the rescaled friction coefficient
γ̃ = γ/ω controls the frictional damping of the wave. An additional aspect ratio number
R = kH has to be taken into account in numerical simulation where the domain has a
finite height H.

We decompose any field φ into a mean-flow φ and a wave φ′ using the zonal averaging
procedure (see Bühler 2009):

φ (z, t) =
1

L

∫ L

0

dx φ (x, z, t) , φ′ = φ− φ. (2.3)

The averaging of the zonal momentum equation in (2.1) leads to the mean zonal-
momentum equation:

∂tu = −∂zu′w′ − γu+ ν∂zzu. (2.4)

By subtracting the averaged equations from (2.1) and linearizing the result, we obtain
the wave equations

∂tu
′ + u∂xu

′ + w′∂zu = −∂xp′ − γu′ + ν∇2u′

∂tw
′ + u∂xw

′ = −∂zp′ + b′ − γw′ + ν∇2w′

∂tb
′ + u∂xb

′ +N2w′ = 0
∂xu

′ + ∂zw
′ = 0

(2.5)

Wave-wave interactions are ignored in the present model. The coupled equations (2.4)
and (2.5) form a quasi-linear model for the interaction between boundary generated
viscous waves and the zonal mean-flow. The Reynolds stress, ∂zu′w′, at the origin of
streaming, is the only non-linearity kept. It acts as a forcing term and is computed from
the wave field. We further assume that the time scale given by the damping length scale
divided by the inviscid vertical group velocity of the wave is much smaller than the time
scale of the evolution for the mean-flow. Hereby, we assume that the wave field is always
the steady response of the boundary within a frozen mean-flow medium. This assumption
breaks in the presence of critical layers (see Bühler 2009).

We perform the wave-mean decomposition on the boundary conditions (2.2) and,
assuming a small amplitude bottom oscillation (ε � 1), we linearize the result on a
asymptotically flat boundary at z = 0:

free-slip:

 ∂zu = 0
w′ − ∂th = 0
∂zu
′ = 0

; No-slip:

 u = 0
w′ − ∂th = 0
u′ − h∂zu = 0

, (2.6)

In the free-slip case, the Reynolds stress vanishes at the bottom (∂zu′w′|z=0 = 0),
while, in the no-slip case there is no momentum injected in the wave (u′w′|z=0 = 0).
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Given that u′w′|z=+∞ = 0 for damped waves, the integrated streaming has to be
zero,

∫∞
0
∂zu′w′ dz = 0. All the streaming far from the bottom boundary has to be

compensated by an opposite boundary streaming. In the next section, we look at the
Reynolds stresses for both boundary conditions at the early stage of the mean-flow
evolution when the mean-flow is still weak.

3. Boundary generated viscous waves

In this section, we are interested in the wave equations (2.5) with u = 0. Let us look

for plane wave solutions, (u′, w′, b′, p′) = <
[(
ũ, w̃, b̃, p̃

)
ei(kx+mz−ωt)

]
, where ω > 0 and

k > 0 will be fixed by the bottom boundary conditions. By injecting this ansatz in (2.5),
we get the dispersion relation for the viscous internal gravity waves:

ω2

(
1 + i

ν
(
k2 +m2

)
+ γ

ω

)
= N2 k2

k2 +m2
. (3.1)

The inviscid dispersion relation, recovered by setting (ν, γ) = 0, has two real solutions,
m0 = k

√
Fr−2 − 1 and its opposite, corresponding to upwardly or downwardly propagat-

ing waves. From now on and until further notice we consider γ = 0. For viscous waves, we
retain the upwardly propagating ones by discarding the solutions of (3.1) with a negative
imaginary part. The general expressions of the two remaining solutions can be written
explicitly but we rather consider the asymptotic expressions for ν � 1 which simplifies
the discussion: {

mw = −m0 + i/2Lν + o (ν)
mbl = (1 + i) /δν + o (

√
ν)

(3.2)

with {
Lν = k−1ReFr3

√
1− Fr2

δν = k−1
√

2/Re
(3.3)

The solution mw corresponds to the propagating solution converging toward the inviscid
solution in the limit ν → 0. Lν is the damping length-scale of the viscous wave scaling
with the inverse of the viscosity. The solution mbl corresponds to the boundary layer
solution diverging in the limit ν → 0. The boundary layer thickness given by δν scales
like the square root of the viscosity as in the classical case of an oscillating flat boundary.
This last solution is needed to match the propagating solution with the viscous boundary
conditions. Shakespeare & Hogg (2017) considered the effect of viscous (and diffusive)
damping on the propagative solution, but ignored the boundary layer terms.

In the case of a progressive sine-shaped bottom undulations, h (x, t) = hb<
[
ei(kx−ωt)

]
,

the general expression of the wave field is given by linear combination of a propagating
and a boundary layer part:

[u′, w′, b′, p′] = <
{
φwP[mw] ei(kx+mwz−ωt) + φblP [mbl] e

i(kx+mblz−ωt)
}
. (3.4)

where P[m] =
[
ω/k,−ω/m, iN2/m,N2/

(
k2 +m2

)]
is the polarization of the plane wave

obtained from (2.5) and (φw, φbl) are dimensionless amplitude factors determined by the
boundary conditions (2.6):

free-slip:

 φw = ihb
mwm

2
bl

m2
w−m2

bl

φbl = ihb
mblm

2
w

m2
bl−m2

w

; No-slip:

{
φw = ihb

mwmbl
mw−mbl

φbl = ihb
mwmbl
mbl−mw

. (3.5)

Let us remark that, on top of the inviscid linearity criterion m0hb � 1, there is an
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Figure 1. a)Example of a linear computation of the vertical profile of the fully established wave
field, u′, in the absence of mean-flow with the free-slip (orange) and no-slip (red) boundary
conditions. b) Zoom on the boundary layer of the wave. The wave damping length, Lν , and the
boundary layer thickness, δν , are represented on the graph along with the inviscid vertical wave
length, λz = 2π/m0.

additional stronger criterion hb/δν � 1 ensuring the linearity of the boundary layer
term. While the wave beam is linear, the boundary layer of the wave can be nonlinear
and requires higher harmonics contributions to be well described in that case. To simplify
the discussion, we consider the contribution of the mode-1 only.

The generic vertical profiles of the wave field u′ are drawn in figure 1 for both boundary
conditions. Most of the disagreement between the two profiles is in the boundary layer
close to the bottom boundary leading to very different boundary streaming behaviour as
we will see by computing the Reynolds stresses.

The total vertical momentum flux, u′w′, is composed of cross terms involving both
the propagative and the boundary layer contributions. In the limit of small viscosity, the
“self-interaction” of the propagating contribution decreases exponentially over a scale
Lν . This term induces the bulk streaming. All the other terms involve a pairing with the
boundary layer contribution decreasing exponentially over a scale δν . The sum of these
terms induces the boundary streaming, which has to our knowledge never been discussed
in previous studies of internal waves in stratified fluids. We thus decompose the Reynolds
stress into a bulk and a boundary term

∂zu′w′ (z) = fw (z) + fbl (z) . (3.6)

Without mean-flow, in the small ν limit and for both boundary conditions in (2.6),
the two contributions of the Reynolds stress write

free-slip:

{
fw (z) = − kc2ε2

2Fr4Ree
−z/Lν + o (ν)

fbl (z) = −kc
2ε2

2Fr2 e
−z/δν sin z

δν
+ o (1)

No-slip:

{
fw (z) = − kc2ε2

2Fr4Ree
−z/Lν + o (ν)

fbl (z) = kc2ε2

2Fr

√
Re(1−Fr2)

2 e−z/δν + o
(
ν−1/2

)
. (3.7)

The bulk forcing fw has the same expression at leading order for both the free-slip and
the no-slip case. The difference relies in the boundary forcing expression fbl.

In the free-slip case, the boundary forcing amplitude does not depend on the Reynolds
number at leading order, only the width does. The amplitude decreases with the Froude
number. This effect can be seen on figure 2 where the free-slip Reynolds stress is
plotted for three different values of Reynolds and Froude numbers. These predictions are
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Figure 2. Plot of the vertical profile of the Reynolds stress in the absence of mean-flow (u = 0)
for the free-slip boundary condition for different couples (Re, Fr). The markers plots comes from
high-resolution DNS data while the dashed lines plots comes from the linear theory. The other
dimensionless parameter for the simulation are ε = 0.01, γ̃ = 0 and R = 6kLν ; the resolution
is ∆x = ∆z = δν/50 ; the simulated data have been smoothed over ten time steps of the
simulation.

Figure 3. a) Plot of the vertical profile of the Reynolds stress in the absence of mean-flow
(u = 0) for the no-slip boundary condition computed using the linear theory, b) Hovmöller
diagrams of the mean-flow predicted by the present quasi-linear model for the no-slip boundary
condition. The parameters are Re = 200, Fr = 0.3, ε = 0.01 and γ̃ = 0.

successfully compared to high resolution direct numerical simulations of the established
wave pattern generated by a barotropic flow above a sine-shaped topography in a linearly
stratified fluid.

In the no-slip case, the Reynolds stress close to the boundary is opposite and much
stronger than in the bulk, as shown in figure 3-a). According to Eq. (3.7), its ampli-

tude scales as Re1/2: the boundary Reynolds stress diverges in the inviscid limit. The
underlying reason is the vanishing of the integral of the Reynolds stress over the whole
domain.

So far we have discussed about the Reynolds stresses in the absence of mean-flows. In
the next section, we compute the long time evolution of the mean-flow in the presence
of those wave-induced Reynolds stresses.

4. Boundary mean-flow generation and application to an idealised
model of the quasi-biennial oscillation

In order to compute the long time evolution of the mean-flow, we need to consider the
presence of the mean-flow in the wave computation. We perform a WKB expansion of the
wave field following the method of Muraschko et al. (2015) assuming that the mean-flow
is sufficiently smooth. We further assume that the group velocity of the wave is infinite.
The full calculation is detailed in appendix A. One can then compute the Reynolds
stress and inject it into the mean-flow equation (2.4) in order to compute the long time
evolution of u. This task can be done numerically using the results of appendix A. We
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Figure 4. Hovmöller diagrams of the mean-flow, u (z, t). The top diagram uses the data coming
from a direct numerical simulation while the diagram in the middle has been computed using the
present quasi-linear model with the WKB approximation. The bottom diagram has computed
using the quasi-linear model but without the boundary layer term in the wave. The parameters
are Re = 200, Fr = 0.3 and ε = 0.01. The additional numerical parameters are γ̃ = 0, R = 2kLν ,
dx = dz = δν/15.

performed the computation for both the free-slip and the no-slip boundary conditions in
(2.6).

On figure 4, we compare the quasi-linear predictions for the free-slip boundary con-
dition against a direct numerical simulation. The parameters are Re = 200, Fr = 0.3
and ε = 0.01. For those parameters, the wave boundary layer thickness is kδν = 0.1
and the viscous damping length is kLν = 5.15.The Hovmöller diagrams focus on an area
close to the bottom boundary. The DNS uses a vertical resolution of kdz = 0.025 which
resolves properly the wave boundary layer length scale. We used a stretched grid on
the vertical to act as a sponge layer to avoid any downward reflection. The quasi-linear
model captures well the boundary streaming effect. To emphasize the crucial role of the
boundary streaming term, we added a diagram on figure 4 of a quasi-linear computation
where we removed the boundary layers terms in the wave expression (fbl (z) = 0 in (3.6)).
We clearly see that the effect of the boundary streaming is important to predict well the
mean-flow evolution in this case.

In figure 3 b), we show a Hovmöller diagram of the mean-flow computed using the
present quasi-linear model in the case of no-slip boundary condition. The parameters
are, Re = 200, Fr = 0.3 and ε = 0.05. As expected from previous discussions below
(3.7), the boundary forcing generates a strong boundary mean-flow going in the opposite
direction of the bulk mean-flow. Interestingly, the boundary flow saturates quickly and
acts as a modified boundary condition for the bulk flow.

To illustrate how boundary streaming can affect mean-flow properties in the bulk, we
apply the present quasi-linear computation to the case of a standing wave pattern for
the bottom boundary, with h (x, t) = hb cos (kx) cos (ωt) and no-slip conditions. Two
counter propagative linear waves with equal amplitude are emitted by such a bottom
excitation. Their zonal phase velocities are respectively c = ω/k and −c. The Reynolds
stress associated with the combination of those two viscous waves is simply the sum
of the Reynolds stresses associated with each wave individually. This configuration has
been studied experimentally by Plumb & McEwan (1978). They reported the spontaneous
generation of an oscillating zonal flow when the wave amplitude exceed a threshold, and
noticed strong similarities with the quasi-biennial oscillations of low latitude stratospheric
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Figure 5. Hovmöller diagram of the mean-flow generated by the streaming coming from two
equal but counter propagative waves generated by a vertically oscillating bottom boundary with
no-slip condition. The parameters are Re = 10, Fr = 0.2, γ̃ = 0.15 and ε = 0.1. The period of
the oscillations is ωTo = 180 with the boundary streaming and ωTo = 225 without.

winds. Plumb & McEwan (1978) compared their measurements against a quasi-linear
computation neglecting the presence of a boundary layer for the waves. We plot a
Hovmöller diagram of the mean-flow oscillations computed using the quasi-linear model
with and without the contribution from the boundary layer terms on figure 5 a) and
b) respectively. We see that in the presence of the wave boundary layer, the mean-
flow oscillations are four times bigger in amplitude close to the bottom boundary, and
the period of the oscillations are 20% smaller. The increase of bottom velocities due
to boundary streaming favours the emergence of critical layers (u = ±c) close to the
boundary. The quasi-linear model breaks down in the presence of such critical layers,
where the vertical group velocity vanishes. It suggests that the presence of the linear
boundary layer can lead to non-linear behaviour through boundary streaming only.

5. Conclusion

We have shown that changing the boundary conditions has a drastic impact on the
boundary mean-flow generated by internal waves emitted from an undulating wall in a
viscous stratified fluid. In particular, Reynolds stresses close to the boundary diverge
with the Reynolds number in the case of no-slip boundary conditions, while their remain
bounded in the free-slip case. Using a novel WKB treatment of the waves that takes into
account viscous effects, we have also shown that boundary streaming has a substantial
impact on the flow in the bulk, as we observed a 20% drop for the period of the large
scale flow reversals in the idealised model of the quasi-biennial oscillation by Plumb
& McEwan (1978) when taking into account boundary streaming. The control of bulk
properties by boundary layers shows the importance of describing properly the physical
processes taking place at these boundaries to properly predict large scale flow reversals.

We have neglected the diffusion in the buoyancy equation which involves additional
diffusive boundary layers that could modify the boundary streaming. By restricting
ourselves to a quasi-linear approach, we have also neglected nonlinear effects that may
become important close to the boundary even in the limit of weak undulations, due to
the emergence of the strong boundary current. These effects could deserve a particular
attention is future numerical and laboratory experiments.

The authors warmly thank Louis-Philippe Nadeau for his help with the MIT-GCM,
and express their gratitude to Freddy Bouchet and Thierry Dauxois for useful insights.
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Appendix A. WKB expansion of viscous internal gravity wave within
a weakly sheared mean-flow frozen in time

We compute here the leading order terms of a Wentzel-Kramers-Brillouin (WKB)
expansion of the viscous wave field within a weakly sheared mean-flow frozen in time. We
follow the method developed in Muraschko et al. (2015), the novelty being the presence
of viscosity, in the wave equation (2.5). We assume that the mean-flow, u, defined in
(2.3), is frozen in time and depends only on the smooth variable Z = az with a� 1. We
introduce a WKB ansatz:

u′

w′

b′/N
p′

 = <


+∞∑
j=0

aj


ũj (Z)
w̃j (Z)

b̃j (Z) /N
p̃j (Z)

 exp

{
ik (x− ct) +

iΦ (Z)

a

} (A 1)

where c is the phase speed of the wave. The function Φ (Z) accounts for the vertical
phase progression of the wave. The local vertical wave number is defined by m (Z) = ∂ZΦ.
Injecting this expansion into the previous equation and collecting the leading order terms
in a leads to:

M


ũ0
w̃0

b̃0/N
p̃0

+ a

M


ũ1
w̃1

b̃1/N
p̃1

+


w̃0∂Zu− iν (ũ0∂Zm+ 2m∂Z ũ0)
∂Z p̃0 − iν (w̃0∂Zm+ 2m∂Zw̃0)

0
∂Zw̃0


+ o (a) = 0

(A 2)
with

M =


−ik (c− u)

(
1 +

ν(k2+m2)+γ
k(c−u)

)
0 0 ik

0 −ik (c− u)

(
1 +

ν(k2+m2)+γ
k(c−u)

)
−N im

0 N −ik (c− u) 0
ik im 0 0

 .
(A 3)

We introduce the polarization P [m] defined by
[
ũ0, w̃0, b̃0/N, p̃0

]
= φ0 (Z) P [m],

where φ0 (Z) is the dimensionless amplitude of the wave mode. The cancellation of the
zeroth order term in Eq. (A 1) yields to det M = 0. This gives the local dispersion relation

(c− u)
2

(
1 + i

ν
(
k2 +m2

)
+ γ

k (c− u)

)
=

N2

k2 +m2
. (A 4)

Then, using M ·P = 0 we obtain the polarization expression

P [m] =

[
c− u,− k

m
(c− u) ,

iN2

m
,

N2

k2 +m2

]
. (A 5)

The cancellation of the terms proportional to a in (A 2) provides an equation for the
amplitude φ0 (Z). To get rid of the terms involving components of the order one wave, we
look for a vector P

∗
such that P

∗ ·M = 0. We then take the inner product between φ0P
∗

and the terms proportional to a in (A 2). Introducing ϕ2
0 = φ20 (c− u)

2
/m, we obtain

after long but straightforward algebra :

∂Z logϕ2
0 +

2iν

k (c− u)
∂Zm

2 = 0 (A 6)
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This last equation has to be solved for every solution m (Z) of the dispersion relation. In
the limit ν → 0, we recover the inviscid result obtained by Muraschko et al. (2015).
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