
HAL Id: hal-01570784
https://hal.science/hal-01570784

Submitted on 31 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

A language proposition for system requirements
Benoît Lebeaupin, Antoine Rauzy, Jean-Marc Roussel

To cite this version:
Benoît Lebeaupin, Antoine Rauzy, Jean-Marc Roussel. A language proposition for system require-
ments. 11th Annual IEEE International Systems Conference, IEEE, Apr 2017, Montréal, Canada.
�10.1109/SYSCON.2017.7934808�. �hal-01570784�

https://hal.science/hal-01570784
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

A Language Proposition for System Requirements
Benoît Lebeaupin∗, Antoine Rauzy† and Jean-Marc Roussel‡

∗LGI, École Centrale Paris, Université Paris-Saclay, Châtenay-Malabry, France
benoit.lebeaupin@centralesupelec.fr

†Departement of Production and Quality Engineering, NTNU, Trondheim, Norway
antoine.rauzy@ntnu.no

‡LURPA, ENS Cachan, Université Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
jean-marc.roussel@lurpa.ens-cachan.fr

Abstract—Natural language is currently the basis of the ma-
jority of system specifications, even if it has several drawbacks.
In particular, natural language is inherently ambiguous. In this
article, we propose a way to complete the natural language text of
requirements by giving a formal syntax to this text. We introduce
and use an example to illustrate our ideas.

I. INTRODUCTION

According to reports such as the one by Schmidt et al. [1],
an important part of IT projects fail or exceed cost or time
constraints because of reasons related to stakeholder needs
(such as incomplete, unrealistic or changing requirements).
Arguably, this is also the case for systems engineering in
general. For that reason, requirements engineering constitute
an important part of the design process of systems. Additionally,
life-critical systems are oversaw by regulatory bodies which
require companies to perform requirements engineering.

In the context we are interested in, a requirement on a system
is a sentence defining a property, for example “The weight
of the system shall be less than 100kg1”.

Most requirements are written using natural language (NL)
text even if it has several drawbacks for requirements engineer-
ing:

• We want to communicate requirements with the less dis-
tortion possible between stakeholders. But unconstrained
natural language is inherently ambiguous.

• We cannot use natural language requirements for auto-
mated reasoning: for example, it’s hard to detect automat-
ically that two requirements contradict themselves.

• Model-Based Systems Engineering (MBSE) is a develop-
ing trend, but it is not clear how to articulate MBSE and
NL requirements.

We however think that requirements will continue to be
written using NL, but it is not necessary that we use only natural
language to specify requirements. We propose to complete the
natural language requirements, first by defining a syntax for
requirements, second by using artifacts such as architectural
models and linking them to the text of requirements. We will
only talk about the former in this article. Our contributions
are a requirements language proposition and how to effectively
use it.

1Sentences written in this font are requirements or parts of requirements,
usually inspired by an industrial specification document. They were modified
to make them generic for obvious intellectual property issues

In the next section, we present a review of related works.
In the section 3, we introduce an example of system which
will serve as illustration in the rest of this article. In section 4,
we will discuss generally about requirements and requirements
engineering and present the outline of the proposed language.
We then illustrate the proposed idea in sections 5 with examples
of requirements. Finally, we conclude this paper and give an
outlook in section 6.

II. RELATED WORK

Requirements engineering (RE) covers a lot of different
processes and here we are mostly interested by the “specifying”
step of requirements engineering. This “specifying” step is the
process of documenting clearly and precisely the requirements
in a requirements document. Even then, “requirement” does
not mean the same thing for everybody: in this article, we
focus on concrete and relatively low level requirements of a
physical system, for example a component in an airplane. These
requirements have few things in common with the high-level
“goals” of Goal-Oriented Requirements Engineering (GORE)
[2].

Additionally, since requirements engineering was first devel-
oped for software systems, a large part of RE works concern
software-only systems. However our work concerns physical
systems which may include software. What difference does
it make? First, software systems are usually considered as
discrete event systems and various RE methods are based on
this (such as the transition axiom method [3], or Event-B
[4]). Yet the inputs and outputs of a motor or the ambient
temperature for example, are better modeled as continuous
variables. Another difference is that physical systems directly
interact with the physical world, which adds less predictable
and less formalizable parameters.

The Stimulus tool [5], developed by Argosim, aims to
improve real-time requirements for embedded software by
allowing to simulate these requirements. Stimulus focuses
on real-time requirements while our work aims to include
different types of requirements, including real-time ones.
That being said, our work and the work by Argosim have
relatively similar principles, notably the link between models
(architecture models and state machines) and requirements.
However, requirements need to be completely formal to be

simulated with Stimulus, while we aim for a less powerful,
but easier (and less expensive), goal.

One approach for writing requirements focuses on
the use of templates (also called “boilerplates”) [6] [7].
An example of template could be “The <system>
shall <do something> with <a given level
of performance> in <a given context>”. After
choosing an adequate template, the writer fills in the blanks
with the relevant information, for example “The <ABS>
shall <release braking pressure> in <less
than 100ms> in <case of a risk of wheel
lock>”.

Fundamental RE books often mention templates [8] [9], but
they also warn the reader of their limitations and usually advice
that the use of templates should not be mandatory. The main
problem is that templates tend to be too “rigid” and prevent
the writer from expressing what he needs. One solution would
be to add more templates but that requires to manage them,
something which can become difficult when there are too many
templates. On the other hand, if the templates are more generic,
they allow more expressiveness, but they are also less useful
for guiding writers and reducing ambiguity.

In the work of Fraga et al. [7], the templates can be generated
from ontologies, which allows more flexibility. The case study
presented by Kaindl [10] could also be considered as using
ontologies, even if the word itself is not mentioned. The
problem of creating and managing these ontologies can become
complicated, even if this is an area of active research. Among
other works, we can note a standardization effort by the Object
Management Group aiming to link UML models with the Web
Ontology Language [11].

Templates are a restriction of natural language, and as
such are part of Controlled Natural Languages (CNLs) [12].
Essentially, the goal of our work is to define a language
for requirement which should be 1) less ambiguous than
natural language (NL) 2) close enough to NL that using it
would not require extensive training. This is also the goal of
CNLs, which can be separated into two types: the “technical”
CNLs, to improve human-human communication (ex [13]),
and the “logic-based” CNLs, to improve the human-computer
communication (ex [14]).

Some works [15] [16] aim to integrate requirements and
models by automatically translating NL requirements into
models using Natural Language Processing (NLP) methods.
These approaches’ reliance on automatic NLP translation
requires starting from textual requirements which are already
using a very precise language and are highly structured and
regular. The context of the work by de Almeida Ferreira and
da Silva [15] is also relatively different: since it focuses on
software development, the authors consider that the require-
ments they work with can come from stakeholders of various
backgrounds, including completely non-technical backgrounds.
We mainly studied physical, safety-critical systems. In this
context, requirements come mostly from sources such as other
technical specifications (for example the specification of the
upper-level system) or norms.

ECU

Hydraulic
modulator Brake

Wheel

Sensor

HMIBrake pedal,
booster and
master cylinder

Limit of the system

Fig. 1. The Anti-Lock Braking System and its context

III. ILLUSTRATIVE EXAMPLE

An ABS, or anti-lock braking system, is a mechatronic
system aiming to prevent the wheels of a vehicle from locking
up during braking. Wheel locking should be avoided because it
means wheels are slipping on the road, which leads to several
problems:

• uncontrollability of the vehicle
• decreased adhesion on most surfaces
• possibility of burned or burst tires (particularly for

aircrafts)
The principle of the ABS is that when it detects certain
conditions indicating an imminent wheel lock up, it releases
the brake to avoid the lock up. Normal braking is resumed
once the dangerous conditions are not satisfied anymore. This
braking/release cycle can be repeated several times per second.

In this work we will consider an ABS installed in an
automobile. In modern cars, an anti-lock braking system is
usually installed for each wheel. For the sake of simplicity, in
this work, we will only consider one ABS acting on one wheel,
independently from the other wheels and anti-lock braking
systems. Additionally, we consider that the activation of the
ABS is binary: either it simply transmits the braking fluid to
the brakes as if the ABS was not there, or it sets the braking
pressure to zero.

In fig. 1, we present the environment of the ABS we consider
and a very basic decomposition of the system. Compared to a
classic braking circuit, when the electronic control unit (ECU)
detects a risk of wheel lock-up, the hydraulic modulator shuts
off the hydraulic connection between the master cylinder and
the brake cylinder and depressurize the latter portion. We will
consider that the system detects when the brake should be
released by calculating the wheel slip, i.e. the relative speed
between a point on the exterior of the wheel and a point on
the road. This value is calculated using the rotational speed
of the controlled wheel and the speed of the vehicle, which
is itself approximated using the rotational speeds of the other
wheels. The rotational speeds of the wheels are measured using
sensors. The ECU also communicates with other systems, such
as a warning lamp on the car dashboard.

Here is a basic description of the behavior of the system.
First, if the ABS is deactivated, the braking circuit behavior is
identical to the same circuit without the ABS (i.e. the pressure
in the brake cylinder is the same as the pressure at the output
of the master cylinder). If the ABS is activated and if the
conditions indicating a risk of wheel lock up are false, the

braking circuit behavior is also identical to the same circuit
without the ABS. If the ABS is activated and if the conditions
indicating a risk of wheel lock up are true, the pressure in the
brake cylinder is 0 bar, regardless of the pressure in the master
cylinder. The system is able to change between braking and
release several times per second. The system also monitors its
status and reports it to a central computer in the car.

Reasons for Using the ABS as Example

The ABS, in its most basic configuration, is a relatively
simple and understandable system. However, it can serve as an
example of more complex systems. It comprises hardware parts
and software parts, which is increasingly the case in recent
systems. It is also a system which interacts directly mostly with
other technical systems, rather than with human users. This
context allows to have a relatively predictable and formalizable
environment, which allows to have more efficient methods for
designing systems and their specifications.

The ABS is complex enough to be decomposed into several
subsystems, which make it an interesting example in a world
where systems are more and more complex. This increasing
complexity leads project managers to decompose systems in
smaller parts to keep them understandable by a single team.

The anti-lock braking system is also a life-critical system.
Non critical systems are not necessarily designed using require-
ments engineering since it can be relatively time-consuming.
However, methods such as requirements engineering are
required for critical systems. Even if all systems can benefit
from (good) requirements engineering, the context of physical,
life-critical systems is particular. For a such systems, we would
expect requirements to change relatively slowly compared
to, for example, requirements for a smartphone application
developed using an agile method.

IV. THEORETICAL AND CONCEPTUAL DEVELOPMENTS

A. About Requirements

We decompose systems into subsystems to keep a manage-
able complexity so that different teams can focus on different
subsystems. This goal defines the limits between subsystems:
we will decompose a system according to a customer/supplier
point of view, whether the supplier and customer are in the
same company or not. This point of view is not necessarily
the same as a “functional” point of view, or even an “physical”
point of view.

Requirements are a communication tool: their goal is that
the supplier understands what the customer wants. Of course,
as all communication tools, they distort the information, both
when writing requirements and when reading them.

As a high level goal, these distortions should be the smallest
possible: ideally, the writer of requirements wants to be able
to express exactly what he wants, and wants the reader to
understand exactly what he, the writer, meant. This ideal goal
can be decomposed into sorts of guidelines we find in RE
fundamentals books [8] [9] on what the requirements should
be like, for example:

NL Requirements “Meaning space”

Possible interpretations

Fig. 2. Representation of ambiguity

• Requirements should be relatively short to be more easily
understandable

• Potentially ambiguous vocabulary and syntax should be
avoided

• One requirement should not contradict another require-
ment

Other guidelines stem from, for example, the necessity of
managing requirements (for example, the requirements must be
uniquely identified), but we will focus here on the ambiguity
aspect.

B. Natural Language

The goal of requirements is that everyone should understand
the same thing when reading them, in other words, require-
ments should not be ambiguous. It could seem surprising
that most requirements are written using natural language:
Natural languages are ambiguous, so why do we use them for
requirements?

One of the answers, quite simply, is that other possible
languages, such as formal languages, are less ambiguous only
for those who know them. One advantage of natural languages
is that everyone know at least one of them. Additionally,
organizations usually have a common natural language. On the
other hand, formal languages are generally known only by a
small minority of people and requirements should be readable
by people from potentially widely different backgrounds.

Another advantage of natural language is that it allows to
express extremely varied things, whereas formal languages
can be severely restricted. Even if specifications are only an
abstraction of real systems, the systems we want to specify exist
in the real world. The authors are convinced that, for any given
formal language, a non-negligible proportion of requirements
in an industrial specification are practically impossible to write
using this language.

We thus consider that, in our context, natural language must
be part of any realistic method for requirements engineering.
However, we think that natural languages should not be the
only way to express requirements.

C. Additional Information to Disambiguate Natural Language
Text

We saw that the goal of requirements is communication.
Misunderstandings of requirements are an important source of
problems and the sooner these misunderstandings are detected,

NL Requirements Models

“Meaning space”

Possible interpretations :

Explicit links :
Formalized

syntax

Fig. 3. Models and formal syntax as tools against ambiguity

the less costly it is to the project [17]. Therefore, we want to
help engineers avoid writing bad requirements. Requirements
can be bad for different reasons, but in this work we will focus
mainly on the natural language text of requirements and on
reducing the ambiguity of this text.

Let us consider a “meaning” space as in fig. 2. When
someone reads a text, she associates (interprets) the text with
a part of the meaning space. An ambiguous text is a text
which can be associated with different parts of the meaning
space by different readers. Our goal is to have a one-to-one
correspondence between text and meaning. Of course, this
“meaning” space does not exist physically, or even as bits in
a computer, and we cannot refer directly to it, but we can
restrict possible interpretations by providing a “preferred way”
to interpret a text.

As illustrated in fig. 3, the requirements are linked to
syntactic information and to model elements. This additional
information precises the text in the requirements. If the text,
the syntactic information and the models are consistent and
correct, the additional information should allow readers to
choose the correct meaning when reading the specification.
Potential ambiguity, such as one text with several meanings or
several texts sharing one meaning, is then hopefully removed.
Concretely, a requirement will be written as a succession of
hyperlinks: some will refer to model elements and others will
refer to information on the syntax of the requirement.

In this article, we will focus on the syntax part. What we are
describing here is a logic-based Controlled Natural Language,
but seen from another point of view. The formal language,
instead of being the base of the means of communication,
is seen as a way to disambiguate the syntax of a text by
completing it with additional information. In another article,
we will present how to use models as references to help
disambiguate the lexical parts of requirement.

D. Formalizing the Structure of Requirements
We sought for the specific rules governing the structure of

requirements. Requirements should respects the rules of natural
language to be easily understandable, but we can find other
rules that should be respected by requirement writers.

A requirement on a system is a property, a property which
should be true when the system is installed. If the property is
false, it means the system does not respects the requirement.
Requirements, at least in the context we study, should be
precise enough so that they are either true or false. This means
that requirements are, from a computer science point of view,
Boolean-valued functions.

Additionally, it is usually possible to decompose
requirements in smaller fragments: for example, the
requirements we studied were often in the form of implications:
“When the power supply is lower than 10mW,
the brake pressure shall be equal to the
master cylinder pressure”.

“the power supply is lower than 10mW” is
called the antecedent and “the brake pressure is
equal to the master cylinder pressure” is
called the consequent. The implication is also called material
conditional. For a Boolean equation R = A =⇒ B, where A
and B are Boolean-valued functions, R is false if and only if
A is true and B is false: A =⇒ B is equivalent to ¬A ∨B.

In the previous example, we can continue the decomposi-
tion: “the power supply is lower than 10mW” is
a Boolean-valued function and is composed of “the power
supply”, “is lower than” and “10mW”. We can con-
sider that it is not necessary to decompose “the power
supply” further: we arrived at an atomic expression. Addi-
tionally, when we study the words in requirements, and the
models they refer to, we notice that “the power supply”
is a reference to a well defined and delimited atomic concept.

To describe the structure of requirements, we propose a type
system similar to those existing in programming languages. A
requirement is represented as a double (S, P), where P is the
property the customer wants to be true and S is the system
to which we request that property. In the specification of a
system called T, S is usually the same as T, but not always:
we may want to express a property on a subsystem of T rather
than on the complete system.

We will recursively define the set of terms from a set F of
functions:

Implication

Lower than

Power
Supply

mW

10

Equal

Brake
Pressure

Master
Cylinder
Pressure

Fig. 4. Syntax tree of a requirement

• 0-ary functions (constants) are terms.
• If f is a n-ary function, n > 0, and (t1, . . . , tn) are n

terms; f(t1, . . . , tn) is a term.

Let us now introduce types: each n-ary function of F have
one output type and n input types. For a term to be well-typed,
the types it contains must respect a constraint satisfaction
problem.

The type of a term is the output type of its root function: the
type of a term of the form f(t1, . . . , tn), where f is a n-ary
function, is the output type of f . The constraints on the types
depend on the function f . Additionally, if a requirement is a
double (S, P), S should be of type “system” and P of type
“Boolean”.

This decomposition is relatively similar to the grammatical
analysis of a NL sentence, which yields parse trees: a sentence
(“The chicken crosses the road”) can be composed by a noun
phrase (“The chicken”) and a verb phrase (“crosses the road”).
A verb phrase can itself be composed of a verb (“crosses”) and a
noun phrase (“the road”). A noun phrase can be composed of a
determiner (“the”) and a noun (“road”), etc.. The decomposition
is also quite close to the Abstract Syntax Trees used in computer
science.

For our previous example “When the power supply
is lower than 10mW, the brake pressure
shall be equal to the master cylinder
pressure”, we can define the tree in fig. 4.

We detail some of the functions used:

• “Implication” is a binary function, with a Boolean output
type and two inputs of type Boolean.

• “Lower than” is a binary function, with a Boolean output
type and two inputs of the same type (we do not want to
define a “Lower than” function for each physical unit (N,
m, W...))

We consider that a measurement (a number-unit pair, for
example: 10mW, 15 meters) is constructed using a unit function
(there “mW” or “meter”) which takes a number as argument
(10, 15).

This typed language allows to formalize the syntax of a part
of the requirements, but it is not enough to formalize all of them.
To avoid limiting expressiveness, we need to allow engineers
to write free text requirements or fragments of requirements.
To do this while still keeping the syntax we described, we

Implication

Lower than

Probability
of failure
leading to

per Hour

In state

On

“The driver
is unable
to steer”

10-8

Fig. 5. Syntax tree with a non formalized leaf

propose that the engineer can write the free text he wants to
write, but he needs to add a type to this free text fragment.

For example, we consider the requirement “While in
state On, the probability of a failure
leading to the driver being unable to
steer shall be lower than p per hour”.

If we cannot or do not want to formalize “the driver
being unable to steer”, we can simply let this free
text in the requirement and give it the type Boolean (we
consider here that either the driver is able to steer or he is
not). We can however decompose the rest of the requirement
as seen in fig. 5.

It is also possible to write an entire requirement as free text,
without any syntax information. Obviously, such a requirement
will not appear in a query depending on syntax information, for
example a query selecting the antecedent of each requirement
if it exists.

E. Testing Properties on Requirements and Sets of Require-
ments

We proposed to add a formal structure to requirements. The
goal is to reduce ambiguity by providing a trusted way to
interpret the text: for example, a formal syntax will allow to
know exactly the scope of a conjunction (“and”, “or”). We
can also use this syntax information to realize automatic tests,
queries and reasoning.

There are various criteria on requirements and on sets of
requirements we would like to check. Lists of quality criteria
are defined in norms (such as IEEE Std. 29148-2011 [18]),
industrial standards (such as the ones gathered for the CESAR
project [19] or fundamental RE books. Some of these criteria
are covered by other methods (such as traceability) or cannot
be checked automatically, but other are more suitable for our
method. We present a few tests which can be done automatically
on formalized specifications.

Some of these tests aim to validate consistency criteria.
Inconsistency can happen at different levels. We do not try to
“understand” automatically the meaning of a requirement, so we
cannot detect that two or more requirements have incompatible
meanings. However, we can detect inconsistency at a syntactic
level, such as trying to compare a force with a torque.

Implication

Lower than

Master
Cylinder
Pressure

Bar

50

Equal

Brake
Pressure

Master
Cylinder
Pressure

And

In state

Off

Fig. 6. Syntax tree of another requirement

Other criteria focus on completeness: even if it is not
possible to detect automatically that a specification does not
omit anything, we can detect potential problems. We can use
syntactic information to extract particular requirements or parts
of requirements. For example we can select the antecedent (if
it exists) for each requirement. We wrote a pattern search to
that end.

V. EXAMPLES OF REQUIREMENTS

A. First Example

Let us take a high level goal of the ABS, such as “When
the system is not activated, the system shall not prevent
braking”. This kind of goal is useful to better understand the
context of the specified system, but if we want requirements
to be precise and non-ambiguous, a goal like this is not a
requirement. A more explicit requirement inspired from this
goal could be “In state Off, when the master
cylinder pressure is lower than 50 bar,
the brake pressure shall be equal to the
master cylinder pressure”. (We assume that a
master cylinder pressure lower than 50 bar constitute expected
behavior of the environment and that everything else is
considered as anomalous behavior. What the system shall
do in case of anomalous behavior can be specified in other
requirements.)

Of course, since this is the point of this work,
the requirement “In state Off, when the master
cylinder pressure...” is not limited to this textual
component. We can detail the syntax of this requirement as in
fig. 6. Here, the elements of the tree are generic functions, they
could be found in any specification, except “Off”, “Master
Cylinder Pressure” and “Brake Pressure”. We
identify these three text fragments as specific references to
the architecture of the system (for “Master Cylinder
Pressure” and “Brake Pressure”) or to a description
of the behavior of the system (for the state “Off”). More
details about these references will be given in a coming article.

B. Second Example

In specifications, we can find requirements similar to “The
system shall not be damaged by a maximum

master cylinder pressure of 60 bar”. Some
expressions such as “shall not be damaged by”
are found repeatedly in industrial specifications. These
expressions are currently used and engineers have no problem
understanding them, so we do not consider them particularly
ambiguous. We can include them directly in the language by
creating syntax functions for these expressions: here, “Not
damaged” takes a system as argument and outputs a Boolean.

What “Not damaged” exactly means can be defined in the
preamble of the specification or in an external document or
norm if it is needed.

C. Third Example

We consider the goal “We do not want failures which would
prevent the driver from braking”. We can express a detailed
safety requirement such as “The probability of a
non-detected failure leading to the system
being unable to apply a brake pressure of
more than 20 bar in state Braking shall be
lower than 10−8 per H”2. Here too, “the probability
of a non-detected failure leading to X” was often found in
the industrial specifications we studied and we defined a
corresponding syntax function.

The “20 bar” limit is chosen as a threshold: under 20 bar we
consider that the driver cannot brake. This limit can be seen
as arbitrary, but we need a limit to be able to write a complete
and precise requirement. One way to avoid this threshold effect
could be to add more requirements (30 bar, 20 bar, 10 bar. . .)
for different levels of failure.

Additionally, here we look only at one dimension, whether
pressure is sufficient or not, but we can also add requirements
about a temporal dimension. For example we could want to
specify that a delayed output is less dangerous than no output
at all, or that transient violations of a threshold are acceptable.

Adding these precisions to a specification requires either writ-
ing and managing more requirements or using more expressive
ways to describe the properties we want. For example, instead
of having one or several threshold and writing a requirement
for each of them, we could define a continuous function which
would link the acceptable probability of an event happening
with the severity of this event. However this approach is
not without drawbacks. First, the goal of requirements is
communication: we have to ensure that whatever model or
artifact we use is understood the same way by everyone,
preferably without needing important training. Second, adding
precise details is not useful if customer or supplier have no
method to test, verify or calculate these details.

Other, Less “Cooperative”, Examples

The three previous examples were relatively fit to be analyzed
and formalized, however, that is not the case for all real
requirements.

2this requirement does not necessarily cover completely the goal, and we
may need other requirements

D. Fourth Example

“The system equipment or structural
items shall remain within their own
design and integration envelop after a
failure leading to a partial or total part
detachment.” In this requirement we can identify 3 parts:

• one antecedent: “after a failure leading to
a partial or total part detachment”

• one consequent: “remain within their own
design and integration envelop”

• which parts are concerned : “The system
equipment or structural items”

If it is possible, we could use a Computer Aided Design model
to use as a reference for “design and integration
envelop”, but apart from that, formalizing this requirement
seems to be complicated.

E. Fifth Example

“The system shall be designed to
minimize the potential for human errors
that would significantly reduce safety
during maintenance and operation.” We can
identify a condition “during maintenance and operation”
but not much more. We note that this requirement is not
necessarily a good requirement (it is not exactly precise nor
complete). But since it is the kind of requirement we find
in industrial specifications, a priori they are not useless and
engineers want to be able to express such properties.

F. General Remarks on these Last Examples

It may be possible to formalize more the syntax of these last
two requirements, but the problem is more whether it would
be useful rather than whether it would be possible. Maybe
we can rewrite these requirements to be perfectly formal, but
if the cost of writing this formal definition is too important
compared to the gain, formalizing would not be profitable.

From a more general point of view, we do not think that
completely formal specifications are practically possible or
profitable for systems we studied. However, we think that
writing more formalized specifications than the current, natural
language-only ones could be useful. We can see the situation as
a slider between non-formal and completely formal: different
contexts will have different optimal levels of formalization.
We need tools to be able to write these different levels of
formalization.

We think that one of the advantages of our approach over
other works is that it is gradual: contrary to methods such
as Event-B [4], we do not need to have a completely formal
specification in order to see the benefits of our work. Relatively
small steps can already be beneficial: for example, we can write
partially formalized requirements or formalize only a part of
the specification and get some advantages, such as reduced
ambiguity and the ability to realize some automatic tests. Less
formalized requirements means less reduction in ambiguity,
but also less work.

For these requirements which are not formalizable,
or whose formalization would not be profitable, other
methods could ease requirements engineering. For
example, the requirement “The system equipment
or structural items shall remain within
their own design and integration envelop
after a failure leading to a partial or
total part detachment” is not necessarily specific to
the anti-lock braking system. If all other specifications by
the same company include this requirement, it could make
sense to have a set of unchanging requirements automatically
included in new specifications, or other similar reuse strategies.

VI. CONCLUSIONS AND PERSPECTIVES

A. Summary

In this article we present ideas on how to make the text of
requirements less ambiguous without adding a major burden
to the writers and readers of a specification. In addition to
examinations of the relevant scientific literature, we based our
work on studies of industrial specifications and discussions with
RE practitioners in the industry. We think that it is possible to
improve the whole process of RE by defining more precisely
the syntax of the text of requirements. We can then use the
additional information to realize automatic and quick tests on
the requirements.

We experimented the ideas we proposed by modifying an
industrial specification and by trying to write a completely new
specification for an example system.

B. Coherence Between Natural Language and Formal Structure

A crucial problem of having co-existing natural language
and formal language is to ensure the coherence between the
information included in these two media. As in any other
domain where we have more than one description of the
same thing, we have to ensure that these descriptions do not
contradict themselves. When we modify one of them, the
change should affect the other descriptions, or at least the
impact should be easily tractable.

One way to ensure the coherence is to have one description
as the source description, and generate the other from it. This
generation should preferably be done automatically to avoid
additional work for requirements engineers and to ensure that
the two descriptions are actually coherent. This is relatively
difficult to do with natural language either as the source or as
the generated description:

• If natural language is the source, it means we need to be
able to generate formal language from it directly. Some
works [15] focus on this issue, but automatic NLP is
difficult and not necessarily well developed enough for
the applications we envision here.

• If the formal language is the source, it means that the
requirements writer needs to be able to read and write
formal language. This is an important drawback if we
want our method to be relatively easy to use. Additionally,
the generated text may feel unnatural to readers.

The principle of logic-based CNLs is to use the formal
language as the source and to “hide” this formal language
using natural language words. A writer still needs to master,
or at least to understand, the underlying formal logic, to know
what he can or cannot write.

C. Editors for Requirements

This coherence problem is essentially unavoidable: we cannot
hope to get formal language text automatically from non-formal
text. One of our goal is to build a good requirements editor to
help writers keep coherent the NL text and the formal syntactic
information.

Helping the engineers with writing formal requirements will
probably be complex. We can look at how other works, partic-
ularly concerning CNL, approach this problem. For example,
a requirements editor could include an autocomplete program
which would detect known words. The editor would then write
either the corresponding syntactic function automatically.

At the very least, links can be traced between the NL text
and the syntactic information. If one of them is modified, the
editor can raise a flag on the other, so that the writer can verify
the consistency.

A requirements editor for our approach is not envisioned
as a separate tool, isolated from other, existing requirements
editor. Existing editors, such as DOORS, do not particularly
focus on specifying requirements, but they are extremely useful
for other steps of RE, such as inter-requirement traceability.
We think an editor for our approach could be a complementary
add-on for these generic requirements management tools.

D. Ambiguity of the Lexical Part of Requirements

We also studied the words which are used in requirements.
These words, when they are not the functions we defined earlier
(implication, and, lower than...), usually refers to concepts
peculiar to the specified system. These concepts are usually
defined using models. For example, the interface of a system
(here for the ABS, elements such as “the Brake Pressure”
or “the Master Cylinder Pressure”), are usually defined in an
architecture model. In the same way, the desired behavior of a
system can be described using a state machine.

In various domains of systems engineering, including re-
quirements engineering, knowing how to use efficiently these
models is the subject of active research. We suggest to add,
to the words of requirements, explicit links referring to the
corresponding models or elements of models. This will help
reducing the lexical ambiguity in the requirements, such as
one word having two or more possible meanings.

E. Generalization to Other Types of Specifications

Another perspective is to look at how we could apply
what we propose to other types of specifications. To develop
our approach, we studied industrial specifications. These
specifications concerned different systems, which were however
relatively similar (aeronautical context, safety-critical, mixed
software/hardware systems). We can wonder how the same

ideas applied to different contexts would work. Some adapta-
tions are obviously necessary: for example, the unit “torque”
is not relevant in a software context. But the real question is
whether the basic principles of what we propose in this work
are still sound. We think the construction process we did with
the ABS example makes sense, but we could not study actual
automotive specifications.

ACKNOWLEDGMENT

The author is supported by the Blériot-Fabre chair, co-
directed between CentraleSupelec and Safran.

REFERENCES

[1] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying software
project risks: An international delphi study,” Journal of management
information systems, vol. 17, no. 4, pp. 5–36, 2001.

[2] A. van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Fifth IEEE International Symposium on Requirements Engineer-
ing. IEEE, 2001, pp. 249–262.

[3] L. Lamport, “A simple approach to specifying concurrent systems,”
Communications of the ACM, vol. 32, no. 1, pp. 32–45, 1989.

[4] J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[5] B. Jeannet and F. Gaucher, “Debugging Real-Time Systems Require-
ments: Simulate The “What” Before The “How”,” in Embedded World
Conference, 2015.

[6] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (EARS),” in IEEE International Symposium on
Requirements Engineering(RE), 2009, pp. 317–322.

[7] A. Fraga, J. Llorens, L. Alonso, and J. M. Fuentes, “Ontology-assisted
systems engineering process with focus in the requirements engineering
process,” in Complex Systems Design & Management. Springer, 2015,
pp. 149–161.

[8] K. Pohl, Requirements engineering: fundamentals, principles, and
techniques. Springer, 2010.

[9] S. Badreau and J.-L. Boulanger, Ingénierie des exigences: Méthodes et
bonnes pratiques pour construire et maintenir un référentiel. Dunod,
2014.

[10] H. Kaindl, “A scenario-based approach for requirements engineering:
Experience in a telecommunication software development project,”
Systems Engineering, vol. 8, no. 3, pp. 197–210, 2005.

[11] R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie,
and E. Kendall, “The object management group ontology definition
metamodel,” in Ontologies for software engineering and software
technology. Springer, 2006, pp. 217–247.

[12] T. Kuhn, “A survey and classification of controlled natural languages,”
Computational Linguistics, vol. 40, no. 1, pp. 121–170, 2014.

[13] ASD Simplified Technical English. [Online]. Available: http://www.asd-
ste100.org/

[14] N. E. Fuchs and R. Schwitter, “Attempto Controlled English (ACE),” in
Proceedings of the First International Workshop on Controlled Language
Applications, 1996.

[15] D. de Almeida Ferreira and A. R. da Silva, “A controlled natural language
approach for integrating requirements and model-driven engineering,”
in Fourth International Conference on Software Engineering Advances,
2009, pp. 518–523.

[16] V. Gervasi and B. Nuseibeh, “Lightweight validation of natural language
requirements,” Software: Practice and Experience, vol. 32, no. 2, pp.
113–133, 2002.

[17] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and
G. Moroney, “Error cost escalation through the project life cycle,” in
INCOSE 14th Annual International Symposium, 2004, pp. 19–24.

[18] ISO/IEC/IEEE International Standard - Systems and software engineering
– Life cycle processes – Requirements engineering, ISO Std., 2011.

[19] A. Rajan and T. Wahl, CESAR: Cost-efficient Methods and Processes
for Safety-relevant Embedded Systems. Springer, 2013.

