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I. INTRODUCTION 
 
Recently, the demand for wireless 
communications which will provide reliable 
voice and data communications, anytime and 
anywhere has massively grown. The service 
area in these networks is partitioned into cells. 
In each cell, a Base Station (BS) manages the 
allocation of channels1 to the Mobile Subscriber 
(MS) enabling the MS to communicate with 

                                                           
1 Channels could be frequencies, time slots or codes 
depending on the radio access technique used. 

other MS’s or PSTN users. Note that the BS 
itself is assigned a set of channels and this 
assignment could be static or dynamic. We 
primarily assume a static assignment of 
channels for this paper but the ideas in the paper 
can easily be extended to dynamic assignment 
scenarios as well.  
As a MS moves from one cell to another, any 
active call needs to be allocated a channel in the 
destination cell. This event (handoff) must be 
transparent to the MS. If the destination cell has 
no available channel, the call is terminated. The 
disconnection of ongoing calls is highly 
undesirable and one of the goals of the network 
designer is to keep the handoff blocking 
probability low. In [6] the authors show that the 
well-known Guard Channel policy, which 
reserves a set of channels for handoff calls, is 
optimal for minimizing this entity. 
This technique is simple to dimension in a 
mono-class traffic framework, but the 
optimization is quite complicated in a multi-
class context. In a multi-class context it is 
sometimes preferable to block a call of a less 
valuable class and to accept another one of a 
more valuable class. Furthermore, these 
techniques ignore completely the experience or 
knowledge that could be gained during real-time 
operation of the system. 
In this new context, the use of learning 
techniques [1,8], can lead to good solutions in 
reasonable times. Instead of relying on a known 
teacher, the system is designed to learn an 
optimal assignment policy by directly 
interacting with the environment. This policy 



must be able to reduce the blocking probability 
for handoff calls and, also, able to produce 
higher revenues.  
A number of researchers have recently explored 
the application of the learning algorithms like 
5HLQIRUFHPHQW� /HDUQLQJ� �5/�, 0XOWL/D\HU�
3HUFHSWURQ� �0/3� and Genetic algorithms to 
resource allocation [3], network routing and 
admission control [4,5] in telecommunications 
systems.  
This paper proposes an alternative approach to 
solving the call admission control (CAC) in 
multimedia cellular  networks. The optimal 
CAC policy is obtained through a form of 
reinforcement learning known as Q-learning 
[8,9]. 
We consider a system with two classes of 
traffic. We associate to each class of traffic a 
different reward (payoff) representing the cost 
for serving a customer of that class. These 
rewards are, also, different according to the call 
type (new or handoff call). Our objective is to 
accept or reject customers so as to maximize the 
expected value of the rewards received over an 
infinite planning horizon. By making the 
assumptions of poisson arrivals and a common 
exponential service time, this problem can be 
formulated as an SMDP and learning is a 
solution to this problem. 
The rest of the paper is organized as follows. 
After a brief description of the Q-Learning 
strategy and the formulation of the CAC 
problem as an a SMDP and giving the RL 
algorithm (Q-CAC) that solves the SMDP in 
section 2, we detail the implementation of the 
proposed RL algorithm in section 3. 
Performance evaluation and numerical results 
are exposed in section 4. Finally, section 5 
summarizes the main contributions of this work. 
 

II. PROBLEM DESCRIPTION 
We propose an alternative approach to solving 
the call admission control problem. The 
approach is based on the judgment that the CAC 
can be regarded as an SMDP, and learning is 
one of the effective ways to find a solution to 
this problem. A particular learning paradigm has 

been adopted known as UHLQIRUFHPHQW� OHDUQLQJ�
�5/�. In RL, as shown in )LJ���, an agent aims 
to learn an optimal control policy by repeatedly 
interacting with the controlled environment in 
such a way that its performance evaluated by 
the sum of rewards (costs) obtained from the 
environment is maximized. There exists a 
variety of RL algorithms. A particular algorithm 
that appears to be suitable for the CAC task is 
called Q-learning. In what follows, we first 
describe this algorithm briefly� as in [2], and 
then present the details of how the CAC 
problem can be solved by means of Q-learning. 

$�� 4�/HDUQLQJ�6WUDWHJ\��
Assume that the learner agent exists in an 
environment described by some set of possible 
states ^ `�VVV6 ,...,, 21 . It can perform any of 
possible actions ^ `�DDD$ ,...,, 21 . The 
interaction between the agent and the 
environment at each instant consists of the 
following sequence : 
� The agent senses the state 6V � � . 
� Based on �V , the agent performs an action 

$D � � . 
� As a result, the environment makes a 

transition to the new state 6VV 	 � 
 ’1  
according to probability )(’ D3� � . 

� The agent receives a real-valued reward 
(payoff) ),( ��� DVUU   that indicates the 
immediate value of this state-action transition. 
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s2
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a2
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…
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Fig. 1. The Agent-environment interaction. 
 

The task of the agent is to learn a policy, 
$6 o:S , for selecting its next action 

)(  VD S  based on the current state V . The 



optimal policy )(* VS , is the policy which 
maximizes the total expected discounted 
rewards ),(  DVUU   received over an infinite 
time, and defined as  

¿¾
½®̄   ¦�� 0

0))(,()( � ��� VVVVU(V9 SJ�
    (1) 

where ( stands for the expectation operator and 
10 dd J  is a discount factor. )(V9 �

 is often 
called the value function of the state V . 
Equation (1) can be rewritten as [2] 

¦�� 
)(’

’ )’())(())(,()( �� � � V9V3VV5V9 �
�� SJS  

where ^ `))(,())(,( VVU(VV5 SS   is the mean 

value of  ))(,( VVU S . The optimal policy *S  
satisfies Bellman’s optimality criterion 
 

)()(* * V9V9 �  

»¼
º«¬

ª � ¦�� �� � ��� V9D3DV5
’

’ )’()(),(max
�J   (2) 

The task of 4-learning is to determine a *S  
without knowing 5�V�D� and 3 ��� � �D�, which 
makes it well suited for the CAC problem. This 
is achieved by reformulating (2). For a policy 
S , define a 4-value (or state-action value) as 

¦� 
’

’ )’()(),(),( ! ! ! V9D3DV5DV4 "" J  

which is the expected discounted cost for 
executing action D�at state V�and then following 
policy S  thereafter. 
Let 

¦�  
’

*

’

* )’()(),(),(),(* ! ! ! V9D3DV5DV4DV4 "" J  

We then get 
 > @),(*max)(* DV4V9 #$&%  

Thus, the optimal value function 9 that 
satisfies Bellman’s optimality criterion can be 
obtained from 4�V�D��and in turn 4�V�D��may 
be expressed as > @^ `¦ '� 

’
’ ),’(*max)(),(),(* ( )*( ( EV4D3DV5DV4 J  

The Q-learning process tries to find in a 
recursive manner using available information 
�V + ��D + ��V¶ + ��U + ��where s +  and s’ +  (=s + ,.- ) are the states 
at time W�and W�1�respectively; and D +  and U +  are 

the action taken at time W�and the immediate cost 
due to D +  at s + , respectively.  
The Q-learning rule is 

),(1 DV4 / 0  

   ®̄   '� RWKHUZLVHDV4
DDDQGVVLIDV4DV4

1
11111

),,(

),,(),( D
 (3) 

where  > @^ ` ),(),’(max),( D[4EV4UDV4 222322 �� ' J  

and  

),(1
1

4444 DVYLVLW� D  is the learning rate, 

where ),( 555 DVYLVLW is the total number of times 
this state-action pair has been visited. 
It has been shown [9] that if the 4-value of each 
admissible �V�D�� pair is visited infinitely often, 
and if the learning rate is decreased to zero in a 
suitable way, then as W�o�f��4 + �[�D��converges 
to 4�[�D��with probability 1. 

%�� /HDUQLQJ�&$&�E\�4�/HDUQLQJ�
This section develops the SMDP formulation 
suitable for the CAC problem in a multimedia 
cellular network. We consider a fixed channel 
assignment (FCA) system with N available 
channels in each cell. But this can be extended 
easily to the dynamic assignment (DCA) 
scenario as well. Let us focus on a given cell.  
We also consider two classes of traffic &1 and 
&2. But, the ideas in this paper can be extended 
easily to several classes of traffic as well. Calls 
of the first class needs only one channel and 
calls of the second needs two channels. We, of 
course, consider the handoff calls of these two 
classes coming from the neighboring cells as 
represented in )LJ���.  

New
C1call

HO of
C2 call

HO of
C1 call

New
C2 call

 
Fig. 2. New and Handoff calls. 

 



This cellular system can be considered as a 
discrete-time event system. The major events 
which may occur in a cell include new and 
handoff call arrivals and call departures. These 
events are modeled as stochastic variables with 
appropriate probability distributions. In 
particular, new call arrivals in a cell obey a 
Poisson distribution. We also reasonably 
suppose that handoff traffic is of Poisson type. 
Call holding time is assumed to be 
exponentially distributed.  
Calls arrive and leave over time and the network 
can choose to accept or reject connection 
requests. In return, the network collects revenue 
(payoff) from customers for calls that it 
accepted or rejected. The network operator 
wants to find a CAC policy that maximizes the 
long term revenue/utility and reduces call 
blocking probabilities for handoff calls. We set 
the experimental parameters as shown in WDEOH�1�
and 2. 
We identify the system states V, the actions D�
and the associated rewards U as follows :  
1) VWDWHV��� At time W, the system is in a 

particular configuration, [, defined by the 
number of each type of ongoing calls. At 
random times an event H can occur, where H 
indicates either a new or handoff call arrival 
or a call departure. The departure event is 
due to a safe termination of a call or a call 
handoff to a neighboring cell. The 
configuration [ and the event H together 
determine the state of the system, V �[�H�. 
We define the state V �[�H� as : 
� [ �[6 �� [6 6 � where [6 � and� [6 6   are the 

number of calls of each class of traffic 
(&� and &��respectively) in the cell. 

We do not take into account the states 
associated with a call departure for all 
classes of traffic. The reason for this 
simplification is that call departure is not a 
decision point for the admission controller, 
and therefore no action needs to be taken.  
� H={1,2,3,4}�
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2) DFWLRQV�� Applying an action is to accept or 
reject the current call. So, the possible 
actions are defined as $={1,0}�where 

®̄ UHMHFW
DFFHSWD R

0

1
 

3) UHZDUGV���The reward U�V�D� assesses the 
immediate payoff incurred due to the 
acceptation of a call in state V. We set the 
reward parameters, as shown in WDEOH�2, for 
each class of traffic. They are different for 
new calls and for handoff calls. To prioritize 
handoff calls, larger reward values have 
been chosen for handoff calls. These values 
are chosen to be up to 10 times larger 
compared to the those of the new calls in 
order to accelerate the algorithm 
convergence and to have results in a 
reasonable time. The reward parameter is 
equal to zero when the action is to reject the 
call (D �). 

Where ®̄    RWKHUZLVH
HHDQGDLIDVU SS

0

1
),(

K
  

 
Table. 1. Immediate rewards. 

 
K1 K2 K3 K4 

5 1 50 10 
 

In summary, we choose the state descriptor to 
be )),,(( H[[V T TT , where [ U  is the number of 
calls of class L� in progress, and H��� {1,2,3,4} 
stands for a new or handoff call arrival. When 
an event occurs, the learner has to choose a 
feasible action for that event. The action set is 
$�V� ^0 UHMHFW�� 1 DFFHSW` upon a call arrival. 
Call terminations are not decision points, so no 
action needs to be taken.  
The learner has to determine a policy for 
accepting calls given V, that maximizes the long-
run average revenue, over an infinite horizon. 
For CAC, the system constitutes an SMDP with 
a finite state space 6�  � ^�[�� H�` and a finite 
action space $={0,1}. 
 



III. ALGORITHM IMPLEMENTATION 
After the specification of the states, actions and 
costs, let us describe the Q-CAC algorithm 
which is the online implementation of the Q-
learning algorithm for solving the CAC 
problem.  
There exists a variety of approaches to represent 
and store the Q-values [8]. In this work we used 
the lookup table. The lookup table is the most 
straightforward method. It has the advantage of 
being both computationally efficient and 
completely consistent with the structure 
assumption made in proving the convergence of 
the Q-learning scheme. However, when the 
input space consisting of state-action pairs is 
large or the input variables are continuous, 
using lookup tables can be prohibitive because 
memory requirement may be huge. In this case, 
some function approximators such as neural 
networks [8] may be used in an efficient 
manner. In [2], the author gives a comparison 
between these two approaches in term of 
computational complexities and storage 
requirements.  
We set initial Q-values to zero such that Q-
learning started with the greedy policy. We note 
that the only interesting states in which 
decisions need to be made are those associated 
with call arrivals. So, we avoid the updates of 
Q-values at departure states. This will reduce 
the amount of computation and storage of Q-
values significantly.  
We apply a test data set to compare our policy 
with the greedy policy (the policy that always 
accepts a new call if the capacity constraint will 
not be violated by adding the new call). In Q-
CAC, when there is a new call arrival, the 
algorithm first determines if accepting this call 
will violate QoS. In this case, the call is 
rejected, else the action is chosen according to  

),(*maxarg
)(

DV4D VWX�Y      (12) 

where $�V� ^� DFFHSW��� UHMHFW`� 
In particular, (12) implies the following 
procedures. When a call arrives, the Q-value of 
accepting the call and the Q-value of rejecting 
the call are determined. If rejection has the 
higher value, we drop the call. Otherwise, if 

acceptance has the higher value, we accept the 
call.  
In these two cases, and to learn the optimal Q-
values 4�V�D�, we update our value function at 
each transition from state V to V¶ under action D 
using (3). The flowchart of )LJ�� �� shows the 
procedures involved in the Q-CAC algorithm. 
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Fig. 3. Q-CAC algorithm. 
 

In order Q-learning to perform well, all the 
potentially important state-action pairs �V�D� 
have to be explored. Basically, the convergence 
theorem of Q-learning requires that all state-
action pairs �V�� D� are tried infinitely. To 
overcome the slow convergence, during the 
training period, when there are more than one 
feasible action, the control action is chosen, not 
according to (12), but the one that leads to the 
least visited configuration with probability H . 
This heuristic, named  GLUHFWHG�H , 
significantly speeds up the convergence of the 
value function. The Q-values are first learned 
with a sufficiently long time period using this 



heuristic in an offline learning scheme with the 
parameters given in WDEOH� �. These values are 
used to set up the initial Q-values in our online 
Q-CAC algorithm. We notice that we can use 
only the online learning scheme, but this will 
take a long time before the convergence of the 
Q-values. The offline learning scheme permits 
the exploration of all potentially state-action 
pairs. 

IV. SIMULATION 
In order to evaluate the benefits of our call 
admission control algorithm (Q-CAC), we 
simulate a mobile communication system using 
a discrete event simulation. As stated before, we 
consider a fixed channel assignment (FCA) 
system with 1�� ��� channels in each cell. The 
performance of the algorithm was evaluated on 
the basis of the total rewards of accepted calls 
(7RWDO�UHZDUGV), the total rewards of the rejected 
calls (7RWDO�/RVW�5HZDUGV) and by measuring the 
handoff blocking probability. In simulations, the 
learning rate is chosen to be J�  � ���, and 
exploration probability 1 H . The major 
procedures involved in the simulations are 
summarized in )LJ��� . 
A set of simulations were carried out, including 
the cases of a constant traffic load for all traffic 
classes, a traffic load varying and a time varying 
traffic load. The experimental results are given 
in )LJ�� � through )LJ�� �. The main conclusion 
from these results is that the reinforcement 
learning seem to be promising for the call 
admission control problem. Q-CAC leads to 
significantly better results than the greedy 
policy. In all cases the lost reward due to 
rejection of customers and blocking probability 
of handoff calls are significantly reduced. The 
total rewards due to acceptance of customers is 
also significantly increased. 
1) Constant Traffic Load  
Our first set of experiments involved a constant 
traffic load for the classes of traffic &1 and &2. 
The parameters used in the simulation are given 
in WDEOH���and��.  
The parameters were chosen as follows. The 
call duration is assumed to be exponentially 
distributed with parameter µC (1/µC = 120s). 

The sojourn time of a mobile user within a cell 
is also supposed to be exponentially distributed 
with parameter µH (1/µH = 60s). Consequently, 
the call holding time is exponentially distributed 
with parameter µ=µC + µH (1/µ = 40s). 
 

7DEOH��� Experimental parameters. 
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Fig. 4 (a) Total rewards per hour  (b) Total Loss rewards 
per hour 

 
)LJ�� �� shows the total rewards calculated each 
ten minutes over one simulated hour. We can 
see in )LJ�� �� �D�� that the total rewards due to 
acceptance of new or handoff calls of the two 
classes of traffic (&� or &�) in the cell after one 
hour is more important compared to the total 
rewards of the greedy policy. In Fig. 4 (b) we 
can, clearly, see that the total loss rewards due 
to rejection of new calls or the failure of handoff 
calls could be reduced significantly. 



2) Traffic Load varying 
In this case we use the same policy learned in 
the first case (FRQVWDQW�WUDIILF�ORDG) but with six 
different traffic load  conditions (for both 
classes C1 and C2) as shown in WDEOH��.  

�
7DEOH��� Experimental parameters 
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Compared with the greedy policy, Q-CAC 
policy reduces the blocking probability of the 
handoff calls as shown in )LJ�� �. It is also 
shown in )LJ�� that the Q-CAC algorithm 
results in significant gains compared with 
alternative heuristics in term of total rewards 
and total loss rewards received after one 
simulated hour for all the traffic loads 
considered in WDEOH� � and especially when the 
traffic load is heavy . 
We can note that when the traffic load is slight, 
the performance advantage of Q-CAC over the 
greedy policy become negligible. This can be 
easily explained by the fact that when the traffic 
load is slight, there is enough channels for all 
the calls and so all the calls are accepted. This 
explains why, in )LJ���, the blocking probability 
is nearly equal to � when the traffic load is set to 
���� FDOOV�K� for the class of traffic C1 and ���
FDOOV�K�for the class of traffic C2. 
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Fig. 5 (a) Total rewards per hour  (b) Total Loss rewards 
per hour 
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Fig. 6. Handoff blocking with six different traffic loads. 

 
This illustrates clearly that Q-CAC has the 
potential to significantly improve performance 
over a broad range of network loads. 
3) Time-Varying Traffic Load 
The traffic load in a cellular system is typically 
time varying. In this case, we always use the 
same policy learned in the first case (FRQVWDQW�
WUDIILF� ORDG) and we take, as in [3], the pattern 
given in )LJ�� � concerning arrivals during a 
typical 24-h business day. The peak hours occur 
at 11:00 a.m. and 4:00 p.m. )LJ�� � gives the 
simulation results under the assumption that the 
two traffic classes followed the same time-
varying pattern given in )LJ�� �. The maximum 
traffic load is set to be 180 calls/h for class C1 
and 90 calls/h for class C2. The blocking 
probabilities were calculated on an hour-by-
hour basis. The improvement of the Q-CAC 
over the greedy policy is apparent specially 
when the traffic is heavy (at 11:00 a.m. and 4:00 
p.m.).  
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Fig. 7 .  A traffic pattern of a typical business day. 
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Fig. 8 . Performance with time-varying traffic load. 

 

V. CONCLUSION 
In this paper, we presented a new approach to 
solving the problem of call admission control in 
a cellular multimedia network. We formulate 
the problem as an average reward dynamic 
programming problem (SMDP), but with a very 
large state space. Traditional SMDP methods 
are computationally infeasible for such large 
scale problems. So, the optimal solution is 
obtained by using a self-learning scheme based 
on Q-Learning algorithm. The benefits gained 
by using Q-CAC are as follows. First, the 
learning approach provides a realistic and 
simple way to obtain an approximate optimal 
solution for which an optimal solution can be 
very difficult to find using traditional methods 
(SMDP). Second, since the proposed Q-CAC 
scheme is performed in real-time environment, 
it is possible to carry out online learning while 
performing the real admission control. In this 
way, any unforeseen event occurring due to 
significant variations in the environment 
conditions, such as traffic load, can be 
considered as a new experience that the system 

could utilize for improving its learning quality. 
Third, the computational requirements are slow 
and the acceptation policy can be determined 
with very little computational effort. It is, also, 
shown that the Q-CAC algorithm results in 
significant savings than alternative heuristics. 
Prospective works deal with comparison with 
other classical solutions such as Trunk 
Reservation (Guard Channel) or Virtual 
Partitioning and with other learning algorithms 
such as Neural Networks. 
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