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Abstract: Human Immunodeficiency Virus (HIV) infection of humans represents a complex biological
system and a great challenge to public health. Novel approaches for the analysis and prediction of the
infection dynamics based on a multi-scale integration of virus ontogeny and immune reactions are
needed to deal with the systems’ complexity. The aim of our study is: (1) to formulate a multi-scale
mathematical model of HIV infection; (2) to implement the model computationally following a
hybrid approach; and (3) to calibrate the model by estimating the parameter values enabling one
to reproduce the “standard” observed dynamics of HIV infection in blood during the acute phase
of primary infection. The modeling approach integrates the processes of infection spread and
immune responses in Lymph Nodes (LN) to that observed in blood. The spatio-temporal population
dynamics of T lymphocytes in LN in response to HIV infection is governed by equations linking
an intracellular regulation of the lymphocyte fate by intercellular cytokine fields. We describe the
balance of proliferation, differentiation and death at a single cell level as a consequence of gene
activation via multiple signaling pathways activated by IL-2, IFNa and FasL. Distinct activation
thresholds are used in the model to relate different modes of cellular responses to the hierarchy of
the relative levels of the cytokines. We specify a reference set of model parameter values for the
fundamental processes in lymph nodes that ensures a reasonable agreement with viral load and
CD4+ T cell dynamics in blood.

Keywords: virus infection; immune response; acute phase; HIV spread; multi-scale model; single-cell
regulation; reaction-diffusion; spatial dynamics

1. Introduction

Human Immunodeficiency Virus (HIV) type 1 infection represents a complex biological system [1–4]
and a great challenge for cure strategies [5,6]. Novel approaches for the analysis and prediction of the
infection dynamics based on a multi-scale integration of virus ontogeny and immune reactions are
needed to deal with the systems’ complexity [7–10]. Such approaches have not yet been developed in
the HIV modeling field [11–13].

The term “multi-scale models” is used with different meanings in different sciences. In
mathematics, it implies the presence of one or several small parameters, homogenization and averaging
techniques. In physics, it is understood in the sense of microscopic-macroscopic scales (e.g., molecular
dynamics versus continuum mechanics). These questions are exhaustively discussed in particular
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in [14]. Multi-scale modeling in biology has been intensively developed during the last decade. It
implies that the model includes different biological scales: cells, intracellular regulation, extracellular
matrix, the tissue under study and other organs (not necessarily all of them in the same model). It is in
this sense that we understand multi-scale modeling in this work.

A multiscale framework turned out to be insightful for understanding the mechanisms and
identifying potential therapeutic targets for human infection with Mycobacterium tuberculosis [15–17].
Other specific examples of immune system analysis based on multiscale models are the studies of
early CD8+ T cell immune responses in Lymph Nodes (LN) [18,19], the NF-κB signaling pathway [20]
and immune processes in lymph nodes [21,22]. The gained experience led to the formulation of some
more general principles for developing and computationally implementing integrative models of
immune responses [16,23,24]. A recent study integrating the spatial structure of the T cell zone of
lymph nodes and the dynamics of T cell responses in HIV infection has quantified the effect of the
destruction of the Fibroblastic Reticular Cell (FRC) network on T cell reactivity [25]. The aim of our
study is: (1) to formulate a multi-scale mathematical model of HIV infection; (2) to implement the
model computationally following a hybrid approach; and (3) to calibrate the model by estimating the
parameter values enabling one to reproduce the “standard” dynamics of HIV infection in blood during
the acute phase of primary infection.

The major targets of HIV infection are macrophages and CD4+ T cells [4]. Both cell types
play a key role in the regulation of immune responses by producing cytokines, such as IL-2 and
interferons. The activation state of CD4+ T cells has a strong effect on the replication of the virus [26].
Naive resting CD4+ T cells do not support HIV replication, whereas activated cells are the major
source of newly-secreted virus particles. HIV selectively infects and destroys memory CD4+ T cells in
lymphoid tissues. After mucosal infection, some period of local replication and amplification takes
place, finally resulting in the migration of the infected cells to the draining lymph nodes and, from there,
to the rest of the body [26]. Dendritic cells (DC), which are highly efficient Antigen-Presenting Cells
(APC), play a key role in disseminating HIV from mucosal tissues to the draining lymph nodes [27].
Intravenous infection leads to fast direct dissemination of the virus to all lymphoid organs. In these
organs, the productive infection is initially observed in the T cell zone. The development of AIDS occurs
when the level of mucosal CD4+ T cells drops to 5%–10% of their normal homeostatic level. Although
about half of the gut-associated lymphoid tissue CD4+ T cells is depleted after acute infection [28],
the prolonged maintenance of CD4+ T cells is explained by an increased turnover of the cells resulting
from a chronic immune activation [26].

HIV viremia is controlled primarily by CD8+ T Lymphocytes (CTL) [28]. The infection is
characterized by the production of up to 1010 new virus particles per day [27]. The viral load drops from
∼1–5 × 106 viral copies/mL to a steady state of ∼3 × 104 viral copies/mL [28]. It is remarkable that
despite massive HIV-specific CTL responses (up to 19%), a full control of HIV viremia is not achieved.
The magnitude and rapidity of the CD8+ T cell response correlate with the viral set point [29]. The set
point is a strong predictor of the rate of the progression to AIDS [27]. The failure of HIV-specific CTLs to
control HIV infection is attributed to functional defects of these cells associated with apoptosis [29,30].
The development of CTL responses in lymphoid organs is much less characterized than those in the
peripheral blood [28]. Therefore, relating the immune processes in LNs to those in peripheral blood is
important for a deeper understanding of the control of HIV infection.

Overall, the failure of the immune system to generate a protective antiviral response to HIV
infections is linked to exhaustion of virus-specific immunity, the destruction of lymphoid organs,
chronic immune activation and viral escape from the cellular and humoral immunity and is, therefore,
multifactorial and multistage [4]. To analyze the regulatory mechanisms causing the chronicity of HIV
infections, a multidisciplinary approach is required based on mathematical modeling and animal model
systems. In this study, we propose a computational approach for a multi-scale integrative modeling of
HIV infection. The approach is based on our previous experience in modeling erythropoiesis in blood
diseases [31–36].
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2. Methods

2.1. Multiscale Framework

The traditional approaches to model HIV dynamics focus only on one scale [9,11–13]. The multiscale
and multi-physics approach [14] provides unprecedented opportunities for understanding HIV via
linking microscopic (intracellular) regulations in the immune system to the macroscopic environment
of the lymphoid organs, resulting in a system level dynamics as observed and monitored in blood.
The potential of such a multiscale approach is illustrated by a recent study on HIV spread in an HIV
risk population [37]. For a general guideline on the principles of multiscale modeling, we refer to
our recent review [38] and a textbook [14]. The model of acute HIV infection developed in this study
belongs to the category of coupled-intricate models. It considers two macroscopic compartments, i.e.,
the blood and lymph nodes, and the cell population dynamics in the T cell zone of the lymph nodes at
the mesoscopic level. The individual cell dynamics is regulated by cytokine fields created by APCs and
T cells via intracellular signaling cascades linking cellular receptors with gene transcription factors.
The conceptual scheme of our modeling approach is summarized in Figure 1.
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Figure 1. General structure of the multiscale model of HIV infection.

2.1.1. Cell Displacement

In the developed model, cells are represented by individual elastic spheres. The cells are supposed
to move randomly in a 2D domain. When they meet, the mechanical interaction takes place via an elastic
force acting on cells and influencing their motion. The motion of the cell (idealized as the motion of
their centers) is governed by Newton’s second law:

mẍi + mµẋi −∑
j 6=i

fij + f r = 0, (1)

where m is the mass of the cell and µ is the friction factor due to contact with the surrounding medium.
The potential force between two cells is modeled by:

fij =

{
K

h0−hij
hij−(h0−h1)

, h0 − hi < hij < h0

0 , hij ≥ h0
,

where hij is the distance between the two cell centers i and j, h0 is the sum of their radii, K is a positive
parameter and h1 is the sum of the incompressible part of each cell. The repulsion force between the
cells tends to infinity as hij decreases to h0 − h1. The random force f r has a constant modulus and
random direction.
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2.1.2. Cell Division and Differentiation

Cells enter the computational domain Ω of the LN at some rate if there is free space. Naive T cells
move in the computational domain randomly. If they contact APC, they divide (Figure 2). When the
cell reaches half of its life cycle, it will increase its size. When it divides, two daughter cells appear; the
direction of the axis connecting their centers is chosen randomly from 0–2π. The duration of the cell
cycle is 18 h with a random perturbation ranging from −3 to 3 h. We consider two levels of maturity
for CD4+ T cells and three levels for CD8+ T cells. If a differentiated cell has enough IL-2, then it
divides and gives two mature daughter cells. Finally, differentiated cells leave the lymph node. In
the simulations, this means that they are removed from the computational domain. The overall cell
fate regulation is determined by a hierarchy of the gene activation thresholds for signaling coming
via TCR, IL-2, IFNa and Fas receptors, as shown in Figure 3. Different activation thresholds uncouple
the distinct modes of cellular responses depending on the cytokine levels and intracellular signaling,
yielding context-specific functional responses [39].
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Figure 2. Scenarios of virus modes of infection of CD4 T cells. (A) Free virus infection of resting
CD4 T cells resulting in a latent infection; (B) interaction between infected APC and uninfected
CD4 T lymphocytes resulting in a productive infection; (C) cell-to-cell spread of HIV from infected
to uninfected CD4 T lymphocytes resulting in a productive infection upon activation by HIV
antigen-presenting APC.
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Figure 3. Scheme of the cell fate regulation via TCR, IL-2, IFNa and Fas receptor-mediated signaling in
naive T cells to adaptively program the balance of growth-differentiation and death.
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2.2. Biological Assumptions

The model is based on the following assumptions:

• HIV enters the lymph node with infected antigen-presenting cells. These cells secrete HIV and
transmit it to uninfected (both HIV-specific and non-specific) CD4+ T cells by cell-cell interaction;

• Each APC or CD4+ T cell is determined by an intracellular viral RNA concentration (Hi).
The cell is considered to be infected if Hi reaches some threshold level h0. HIV upregulates
the concentration of caspase, which can result in cell apoptosis;

• The CD8+ T cells produce FasL, as well as other apoptosis-inducing factors. They also activate
the caspase cascade through direct cell-cell contact with infected cells resulting in target cell
apoptosis. These two mechanisms only affect infected CD4+ T cells and not uninfected cells;

• HIV impairs the immune response by reducing the number of CD4+ T cells in the lymph node.
These cells are killed by cytotoxic CD8+ T cells or by the virus itself. As a result, fewer mature
helper CD4+ T cells are left, and less IL-2 and type I IFN are produced. This leads to a decrease
in the survival and differentiation of CD8+ T cells, which ultimately results in the relapse of
the infection.

We will consider three groups of variables characterizing infection development:

Blood:

1. VBlood(t), the viral load in blood;
2. NCD4,in f (t), the abundance of infected CD4+ T cells in blood;
3. NCD4,un(t), the abundance of uninfected CD4+ T cells in blood;
4. NCD8,e f (t), the abundance of HIV-specific effector CD8+ T cells in blood.

Lymph node:

5. nAPC(x, t), the density of APCs in the T cell zone of LN, uninfected or infected;
6. nCD4,un(x, t), the density of uninfected CD4+ T cells in the T cell zone of LN; and nCD4,in f (x, t),

the density of infected cells;
7. nCD8(x, t), the density of CD8+ T cells in the T cell zone of LN;
8. He(x, t), the concentration of free HIV in the T cell zone;
9. Ie(x, t), the concentration of IL-2 in the T cell zone;

10. Ce(x, t), the concentration of type I IFN in the T cell zone;
11. Fe(x, t), the concentration FasL in the T cell zone.

Different cells in the lymph node (APC, CD4, CD8, uninfected, infected) are considered as
individual objects. The cell densities represent the number of cells in the unit volume. They are
encountered in the model at two levels: locally as sources of IL-2, I IFN and FasL; and globally through
their total quantity in the lymph node, which determines cell flux from the lymph node to the blood.

Intracellular factors:

12. Hi(t), the intracellular concentration of viral genomes in the i-th cell;
13. Ii(t), the intracellular concentration of IL-2-induced signaling molecules in the i-th cell;
14. Ci(t), the intracellular concentration of type I IFN-induced signaling molecules in the i-th cell;
15. wi(t), the intracellular concentration of FasL-induced signaling molecules in the i-th cell.

3. The Model of Acute HIV Infection

3.1. Blood Compartment

In this section, we formulate equations relating the T cell and virus population dynamics in blood
(i.e., in an observable compartment) and lymph nodes for which a detailed description of the HIV
infection process is given. The HIV-specific CD8+ T cells are generated in the course of the antiviral
immune response occurring in LN. The concentration of the cells in blood results from their migration
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from LN via efferent lymphatic vessels to blood and further to peripheral tissues. A simple description
of the above processes is provided by the equation:

dNCD8,e f

dt
= kLN,BloodTCD8,LN − kCD8NCD8,e f , (2)

where NCD8,e f stands for the concentration of HIV-specific CD8+ T cells in blood and TCD8,LN is the
density of HIV-specific CD8+ T cells in LNs,

TCD8,LN(t) =
∫

Ω
nCD8(x, t)dx.

The first term in the right-hand side of this equation describes the production of effector cells in
the lymph nodes and the second term their death in the body.

For the equations of the systemic dynamics of APCs, T cells and infected cell populations, the
parameters were specified according to available experimental and clinical data as follows:

1. k1, rate of T cell production and release into the body: 1.8 h−1;
2. k2, death rate of T cells in the body: 0.12 h−1;
3. k3, elimination rate of the infected cells by T cells 1.8× 10−6 h−1;
4. a, a growth rate parameter of infected cells: 0.00024 h−1;
5. h, a parameter in the growth function of infected cells: 0.006 h−1.

For the migration and decay rate constants, the following estimates can be used:

6. kLN,Blood, migration rate constant of CD8+ T cells from LN to blood. The fraction of HIV-specific
CTLs in acute HIV infection can reach 10% of the total number of CD8+ T cells, i.e., about
100 cell/µL [11]. Therefore, the value of kLN,Blood should be within the range 0.004–0.04 h−1;

7. kCD8, the disappearance rate of HIV-specific effector CD8+ T cells from blood [11]: kCD8 = 0.0013 h−1.

As the infection process takes place mainly in organized lymphoid tissues, a similar equation
applies to the number of HIV-infected CD4+ T cells in blood (NCD4,in f ). We describe the dynamics of
the infected cells in blood by the equation:

dNCD4,in f
dt = f (NLN

CD4,in f ; a, h)− kCD8,CD4NCD8,e f NCD4,in f

+ kCD4,in f−unNCD4,in f NCD4,un − kCD4,in f NCD4,in f .
(3)

The first term in the right-hand side of this equation describes the growth of the number of
infected cells through the accumulation from the lymph nodes; the second term their elimination by
the effector cells; the next term describes contamination of uninfected cells by infected cells; and the
last terms the death of the HIV-infected cell due to the cytopathic effect of the virus. The function f is
considered in the form:

f (Nin f ; a, h) =
aNLN

in f

1+ hNLN
in f

,

where a and h are some positive constants and NLN
in f is the total number of CD4+ T cells in the

lymph node,

NLN
in f (t) =

∫
Ω

nCD4,in f (x, t)dx.

For the migration-accumulation, effector cell- and virus-mediated killing rate constants, the
following estimates can be used:

8. a, the accumulation rate constant of HIV-infected CD4+ T cells in blood due to the migration
of cells from LNs and other peripheral tissues: the reference value 0.1 h−1 suggested in [1] was
tuned to 0.35 h−1;
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9. h, the inverse of the threshold of infected T cells density in LN that leads to 50% reduction of the
maximal accumulation rate of the infected cells in blood: 1/100 cell−1· µL;

10. kCD8,CD4, the elimination rate of HIV-infected CD4+ T cells by CTL-mediated killing. We used
the value estimated in [9] kCD8,CD4 ∼ 0.0004 µL/(cell·h). For a strong CD8+ T cell response, this
value reaching 10% of the total CTL population in blood, this value will ensure the elimination
rate of the infected cells from blood of about 1 per day;

11. kCD4,in f , the death rate of HIV-infected CD4+ T cells in blood due to virus cytopathicity:
0.017–0.17 h−1 [11,12]; with the geometric mean estimate 0.05 h−1. We consider a death rate
of 0.061 h−1.

We describe the dynamics of the uninfected CD4+ T cells in blood by the commonly-used equation:

dNCD4,un

dt
= f (NLN

un ; λ, h1)− kCD4,in f−unNCD4,in f NCD4,un − kCD4,unNCD4,un, (4)

The first term in the right-hand side of this equation describes the influx of healthy CD4+ T cells
from the lymph node,

NLN
un (t) =

∫
Ω

nCD4,un(x, t)dx.

The second term in the right-hand side of Equation (4) describes the contamination of uninfected
cells by infected cells, and the last term describes the death of uninfected T cells. The following
estimates can be used for the parameters adjusted from the values reported in [11,12]:

12. λ, the influx rate of CD4+ from the lymph nodes: 0.45 (µL·h)−1;
13. h1, the inverse of the threshold of uninfected T cells density in LN that leads to 50% reduction of

the maximal accumulation rate of the uninfected cells in blood: 1/200 cell−1·µL;
14. kCD4,in f−un, the infection rate of the CD4+ T cells in blood: 0.00042 (µL·h)−1;
15. kCD4,un, the death rate of uninfected CD4+ T cells in blood: 3.3× 104 h−1.

Finally, an equation for the HIV concentration in blood has to be specified. We utilize a
commonly-used description:

dVBlood
dt

= kV,LN−Blood

∫
Ω

He(x, t)dx− dVBloodV. (5)

For the HIV transfer and elimination rate constants, the following estimates are used:

16. k the influx of HIV from LNs to blood was estimated in [40]. Taking into account the volume
differences of our computational domain (0.001 µL) and the unit of blood volume µL, we used
the following value kV,LN−Blood ∼ 100 virion/(µL·h);

17. dVBlood , the elimination rate of free HIV from blood [11,12]: 0.5–21 h−1; with the geometric mean
taken as an initial guess 3.2 h−1 further tuned to 6 h−1.

3.2. Population Dynamics of Infection in LN

3.2.1. Free HIV

We describe the concentration of HIV in the extracellular matrix as follows:

∂He

∂t
= DHIV∆He +WHi − dHIV He. (6)

For the diffusion coefficient of the virus, we used the available estimates [41–43], which provide
the following broad range for DHIV = 3× 10−5− 4 mm2/h, with the geometric mean taken to be the
baseline value 0.01 mm2/h.

HIV is secreted by two types of infected cells: APCs and CD4+ T cells. The production depends
on the intracellular concentration of HIV DNA in a threshold manner; once the DNA level is above
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a certain value in the activated cell, the secretion starts to take place. Virus production is presented by
the source term WHi ,

WHi = ∑
k=1,Kl

ρHIVδ(x− xk)

with ρHIV specifying the per capita secretion rate by activated cells located at some positions xk. It is
a sum of Dirac delta functions, and due to the singularity of the terms, the equation is understood
in the weak sense. The maximum secretion rate of HIV by an activated CD4+ T cell is taken
to be ρHIV = 5× 102 virion/(cell·h) [11]. The clearance rate of free virus is taken to be about
dHIV = 0.5 h−1 [11].

3.2.2. HIV Infection in Target Cells

The virus is introduced to the lymph node by infected APCs and CD4+ T cells. We suppose
that the number of infected APCs CD4+ T cells entering the lymph node and the concentration of
proviral HIV DNA inside of them depend on the level of HIV infection. The proportion of the infected
APCs and HIV-specific CD4+ entering the lymph node corresponds to the actual level of HIV of
infection divided by 20× 106 virion/µL. The concentration of intracellular HIV DNA is equal to the
infection level divided by 5× 103 virion/µL. HIV infects the CD4+ T cells in the lymph node, resulting
potentially in the apoptosis of activated cells. Otherwise, the virus stays latent inside of the cell.
Furthermore, infected APCs do not induce the differentiation of CD4+ T cells. To describe the number
of the integrated proviral HIV DNA D by (Hi) in each CD4 T cell or APC, we use the equation:

dHi
dt

= β1He︸ ︷︷ ︸
free HIV infection

+

HIV replication inside of the cell︷ ︸︸ ︷
β2(t)

1+ ωIFNCi
+ β3

(
n

∑
j=1

Hj − nHi

)
︸ ︷︷ ︸

HIV transmission by cell-cell contact

. (7)

Here, He denotes the concentration of HIV in the extracellular matrix; n is the number of CD4
T cells and APCs in direct contact with infected cell. When in direct contact with uninfected CD4
cells, the virus is transmitted, but remains latent. Hence, the value of the virus inside the previously
uninfected cell is set to Hj = h0. Furthermore, β2(t) is equal to zero when the virus is latent. Otherwise,
it is equal to a positive constant. Virus multiplication is activated upon a direct contact with an APC
(infected or not). We take h0 equal to 100 virion. The concentration of the integrated DNA in the cell
determines if the cell itself is infected or not. To account for this, we consider the cell to be infected if
Hi reaches the value h0. It starts emitting the virus to the extracellular matrix and become susceptible
to elimination by CD8 T cells.

For the intracellular HIV replication parameters, we used the following values:

1. β1, the infection rate constant for susceptible cells by free virus. It can be evaluated using the
estimates in [44]: β1 = 5.6× 10−5 µL/(virion·h);

2. β2, specifies the maximal production rate of HIV DNA in the activated cell. We used the following
estimate β2 = 5× 102 virion/(cell·h) [11];

3. ωIFN , specifies the protective effect of type I interferon on HIV DNA growth in the activated cell.
The following estimate [45] is used to reproduce a 50% reduction in the viral DNA synthesis rate
due to the availability of type I IFN: ωIFN = 467 µL/pg;

4. β3, the probability that a susceptible cell is infected when it contacts infected cells was estimated
in [44] to be β3 = 0.19.
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3.3. Cytokine Fields in LN

3.3.1. IL-2

Immature T cells differentiate via direct cell-cell contact with uninfected APCs. Proliferation and
differentiation of T cells in the lymph node depend on the concentration of IL-2. It is produced by
mature CD4+ T cells. Its spatial distribution is described by the reaction-diffusion equation:

∂Ie

∂t
= DIL2∆Ie +WIL2− dIL2Ie. (8)

Here, Iex is the extracellular concentration of IL-2; D is the diffusion coefficient; WIL is the rate
of its production by CD4+ T cells; and the last term in the right-hand side of this equation describes
its consumption and degradation. The production rate WIL is determined by mature CD4+ T cells.
We consider each such cell as a source term with a constant production rate ρIL at the area of the cell.
Let us note that we do not take into account explicitly consumption of IL-2 by immature cells in order
not to introduce an additional parameter. Implicitly, this consumption is taken into account in the
degradation term. The following estimates of the parameters were used:

1. ρIL2, the secretion rate of IL-2 by a single CD4+ T cell: 7× 105 molec/h;
2. dIL2, the degradation rate of extracellular IL-2: 0.5 h−1.

3.3.2. Type I IFN

For type I IFN, the equation and the terms in it have a similar interpretation:

∂Ce

∂t
= DIFN∆Ce +WIFN − dIFNCe. (9)

For the type I IFN-controlled processes, the following parameter values were used, taken
from [45]:

1. ρIFN, the secretion rate of type I IFN by single activated APC (plasmacytoid dendritic cell):
1.6× 104 molec/h;

2. dIFN , the degradation rate of extracellular type I IFN: 0.012 h−1.

DIL, DIFN , the diffusion coefficients of IL-2 and type I IFN. As the molecular weights of IL-2 and
type I IFN are close to that of myoglobin, we used the following estimate of the diffusion coefficient:
0.16 mm3/h. Initial and boundary conditions for both concentrations IL-2 and IFN are taken to be zero.
As before, the production rate WIFN equals ρIFN at the area filled by APC cells and zero otherwise.

3.3.3. FasL

We also describe the concentration of FasL and other cytokines secreted by CD8+ T cells:

∂Fe

∂t
= DFe ∆Fe +WF − dFasLFe. (10)

The molecular weight of FasL is estimated to be around 40 kD; therefore, we assumed the
diffusion coefficient to be proportionally smaller than that of myoglobin, i.e., DFe = 0.07 mm2/h.
The production rate of FasL by activated T cells can be estimated from the data in [46] to be
around ρFasL = 2 × 103–4.5 × 104 (molecules/(cell·h) [46] with the geometric mean value of
9.5 molecules/(cell·h). The degradation rate constant of the soluble FasL is assumed to range from
0.3 h−1 (characteristic of the decay rate of Fas receptor [18]) through 0.5 h−1 (estimated degradation
rate of extracellular IL-2 [47]) to 14 h−1 [46], and we used the geometric mean value dFasL = 2 h−1.
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3.4. Intracellular Regulation of Cell Fate

3.4.1. IL-2 Signaling

The survival and differentiation of both CD4 and CD8 T cells depend on the intracellular concentration
of IL-2 (Ii) and interferon (Ci). We describe these two concentrations by the following equations:

dIi
dt

=
α1

nT
Ie(xi, t)− d1Ii. (11)

Here, Ii is the intracellular concentration of signaling molecules accumulated as a consequence of
IL-2 signals transmitted through transmembrane receptor IL2R downstream of the signaling pathway
to control the gene expression in the i-th cell. The concentrations inside two different cells are in
general different from each other. The first term in the right-hand side of this equation shows the
cumulative effect of IL-2 signaling. The extracellular concentration Ie is taken at the coordinate xi of
the center of the cell. The second term describes the degradation of IL-2-induced signaling molecules
inside the cell. Furthermore, nT is the number of molecules internalized by T cell receptors. For the
IL-2 controlled processes, the following parameter values were used taken from [47]:

1. nT, the number of IL-2 molecules internalized by T cells via IL-2 receptors: 2000–5000 per T cell,
with nT = 5000 used in simulations;

2. I∗i , the saturation concentration of IL-2 for T cell division in vitro: 6 × 1010 molec/mL for
5 × 104 cells/mL.

3.4.2. Type 1 IFN Signaling

The IFN-dependent regulatory signal dynamics in individual cells can be described by the
following equation:

dCi
dt

=
α2

nT
Ce(xi, t)− d2Ci. (12)

Here, Ci is the intracellular concentration of signaling molecules accumulated as a consequence of
IFN signals transmitted through transmembrane receptor IFNR downstream of the signaling pathway
to control the gene expression in the i-th cell. The concentrations inside two different cells are in
general different from each other. The first term in the right-hand side of this equation shows the
cumulative effect of IFN signaling. The extracellular concentration Ce is taken at the coordinate xi of
the center of the cell. The second term describes the degradation of IFN-induced signaling molecules
inside the cell.

The quantitative specification of the effect of signaling on gene activation requires a separate
study. To illustrate the model performance, it was enough to assume some reference values as follows:
α1∼α2∼ 1 molec/h and d1∼d2∼ 0.1 h−1. The proliferation and differentiation thresholds have been
arbitrarily set to be I∗i = 100 units (U) and C∗i = 2000 U.

To model the fate regulation of growth versus differentiation of the activated cells in relation to
the timing of the IL-2 and type I IFN signaling, we implement the following decision mechanism.

C1 If the concentration of activation signals induced by type I IFN, Ci, is greater than some critical
level C∗i at the beginning of the cell cycle and that of Ii is smaller than the critical level I∗i at the
end of the cell cycle, then the cell will differentiate, resulting in a mature cell.

C2 If the concentration of activation signals induced by IL-2, Ii, is greater than some critical level I∗i
at the end of the cell cycle, then the cell will divide, producing two more mature cells.

C3 If Ci < C∗i at the beginning of cell cycle and Ii < I∗i at the end of cell cycle, then the cell will die by
apoptosis and will be removed from the computational domain.
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3.4.3. FasL Signaling

HIV also upregulates the level of caspase inside the cell. We describe its concentration as follows:

dwi
dt

= γ1Hi︸︷︷︸
upregulation by HIV

+

upregulation by FasL︷︸︸︷
γ2Fe + γ3n︸︷︷︸

direct activation by contact with CD8s

−
caspase degradation︷︸︸︷

γ4wi . (13)

Here, Fe denotes the effective concentration of extracellular FasL and other cytokines (e.g., TRAIL,
PD1L) secreted by CD8 T cells. n denotes the number of CD8 T cells in direct contact with the cell.
The cell dies if wi > w∗.

For the apoptosis-related regulation processes, the following estimates were used:

1. γ1, the rate of pro-apoptotic signals accumulation because of the viral replication. As the death
rate of the infected CD4 T cells is 1.3 h−1, then we used it to quantify the cytopathic effect of
the intracellular HIV DNA on the cell. It can be further scaled depending on the choice of the
threshold w∗. The latter was estimated in [12], and we set it 2.0 M;

2. γ2, specifies the FasL-Fas-induced caspase accumulation rate. It was estimated to be γ4 = 0.24 h−1

in [12];
3. γ3, the killing rate of infected cells by effector CTL. It has been indicated in [46] that once in contact

with a target cells, the CTL can program them to undergo apoptosis within 5 min. This value
results in the following estimate for the impact of CTL on death likelihood γ3 = 8.3 h−1;

4. γ4, the caspase degradation rate is taken from [18] γ4 = 0.23 h−1.

3.5. Population Dynamics of Immune Response in LN

The influx of APC cells into the lymph nodes is proportional to the number of infected cells Nin f .
It corresponds to [Nin f /50] each 25 h where [x] is the floor function of x. This influx is limited by the
place available in the lymph node. If there is a free place sufficient to put a cell, the new cells are
added. Let us also note that the lymph nodes can increase due to infection in order to produce more
effector cells.

For a hybrid multi-scale agent-based model with many parameters, the standards for specifying
the model to make it reproducible remain to be developed in immunology. We note that in other
fields, such as ecological modeling, the standards for presenting agent-based models in the scientific
literature have already been formulated [48,49].

4. Numerical Simulation Results

We consider a 2D computational domain in the T cell zone of lymph node of about 100 µm× 100 µm.
The corresponding number of T cells in the computational domain is ∼3× 103 with the proportions
of CD4+ and CD8+ T cells being 2:1 and the number of APCs ranging from 30–300 cells.
The maximal number of HIV-specific T cells in the computational domain is assumed to be ∼3× 102.
This corresponds to ∼10% of the lymph node space that can be occupied by T cells.

The average CPU time of the acute phase of HIV simulation was around 3 h on a computer with
four cores and 6 GB of RAM. The code was written under C++ in the Object Oriented Programming
(OOP) style. The characteristic units of the model are the minute for time and the domain length for
space. Further details of the numerical methods are described in the Appendix to [50]. The numerical
code implementing the model is available upon request to the first author or can be directly assessed
at https://github.com/MPS7/MultiScale-HIV.

Reaction-diffusion equations were solved using the Alternating Direction Implicit (API) algorithm.
We set the initial values for the four fields described by reaction-diffusion equations to zero.
Dirichlet conditions were prescribed to the four boundaries of the computational domain. Naive CD4+

and CD8+ T cells are periodically introduced to the middle of the domain when there is available space.
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4.1. Dynamics of APCs, CD4+ and CD8+ T Cells in LN

The initial spread of infection to lymphoid organs is caused by the migration of a few infected
APCs from mucosal compartments. The dynamics of infection in LN described by the model is shown
in Figure 4. It characterizes the population dynamics of the total number of HIV-infected APCs and
CD4+ T cells over the first 30 days after a few infected APCs appear in LN.

The activation of APCs by HIV induces HIV-specific CD8+ T cell response as reproduced in
Figure 5. It is characterized by a sequence of ongoing bursts in the expansion and contraction of CTLs.
The strength of the cytotoxic T cell response is enough to limit the spread of infection and to reduced
the number of infected APCs and CD4+ T cells from Days 15–20 by four-fold.

The overall comparative dynamics of HIV-specific T cell responses (CD4+ and CD8+) is detailed
in Figure 6. The responses are dynamically regulated by the cytokine and HIV distribution in the
computational domain.
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Figure 4. (left) The dynamics of the population of HIV-infected APCs in the lymph node; (right) The
dynamics of the population of HIV-infected CD4+ T cells in the lymph node.
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Figure 5. The dynamics of HIV-specific effector CD8+ T cell response in the lymph node.
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Figure 6. The dynamics of populations of naive and mature HIV-specific CD4+ (black curve) and CD8+

(blue curve) T cells in the lymph node.

4.2. HIV and Cytokine Fields in LN

The spatial distribution of the virus, IL-2, type I IFN and FasL at Days 3 and 12 post the start of
the LN infection is shown in Figures 7–10. In addition to cytokine fields, different cells are shown:
uninfected APCs (green), infected APCs (red), naive uninfected CD4+ T cells (black), infected CD4+ T
cells (orange), naive CD8+ T cells (white), three maturity levels of differentiated CD8+ T cells (blue)
and two maturity levels of uninfected CD4+ T cells (yellow).

Figure 7. Snapshots of the simulation in which the concentration of HIV (in virions/µL) is shown in
blue color gradient. Different cell types are represented as follows: uninfected APCs (green), infected
APCs (red), naive uninfected CD4+ T cells (black), infected CD4+ T cells (orange), naive CD8+ T
cells (white), three maturity levels of differentiated CD8+ T cells (blue) and two maturity levels of
uninfected CD4+ T cells (yellow). (top) Three days after the virus transmission; (bottom) 12 days after
virus transmission.
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Figure 8. Snapshots of the simulation in which the concentration of IL-2 (in molecules/µL) is shown in
green gradient. For cell notations, the same color code as in Figure 7 is used. (top) Three days after the
virus transmission; (bottom) 12 days after virus transmission.

Infected APCs and CD4+ T cells secrete HIV as shown in Figure 7 in blue. Mature CD4+ T cells
produce IL-2, whose concentration in the extracellular matrix is shown by the level of green; see
Figure 8. Activated APCs produce type I IFN shown in red in Figure 9. Finally, the distribution of the
apoptosis-inducing ligands is depicted in Figure 10. The simulations clearly indicate that the cytokines
and HIV distributions are non-homogeneous and not identical. The relative shifts and differences
underlie the existence of compartments differing in the preferential fate of immune cells (division vs.
differentiation vs. death) and the niche for infection continuation (domain with a low interferon level).

Figure 9. Snapshots of the simulation in which the concentration of type I interferon (in molecules/µL)
is shown in red color gradient. For cell notations, the same color code as in Figure 7 is used. (top) Three
days after the virus transmission; (bottom) 12 days after virus transmission.
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Figure 10. Snapshots of the simulation in which the concentration of FasL (in molecules/µL) is shown
in yellow color gradient. For cell notations, the same color code as in Figure 7 is used. (top) Three days
after the virus transmission; (bottom) 12 days after virus transmission.

To illustrate the dynamics of infection process in LN, the animation of the single run of the model
can be viewed via the Supplementary File (Video).

4.3. Systemic Dynamics of HIV Infection in Blood

The model offers a unique tool to link the dynamics of the infection and immune responses in
blood and the lymph node. The viral load in LN and blood is shown in Figure 11. One can see that
their kinetics are pretty similar. The population dynamics of normal CD4+ T cells and infected and
CD4+ T cells is presented in Figure 12.
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Figure 11. (left) The viral load in blood (virion/µL); (right) The HIV concentration in the lymph node
over time.
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Figure 12. Dynamics of infection in blood. (left) The population of uninfected CD4+ T cells (cell/µL);
(right) The population of infected CD4+ T cells (cell/µL).

The elimination of infected T cells is due to the CD8+ T cells’ response developing in LN.
The HIV-specific CD8+ T cells migrate to blood, as shown in Figure 13. The restoration of naive
uninfected CD4+ T cells is only partial and takes longer.

Overall, the simulations indicate that the model consistently reproduces the dynamics of major
HIV infection characteristics in blood (viral load and CD4+ T cells during the initial acute phase of
infection. These are determined by the specified and calibrated processes of infection spread and
immune response development that occur in LN according to the biological schemes implemented in
the model equations.
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Figure 13. Dynamics of immune response in blood. The population of HIV-specific CD8+ T cells over
time (cell/µL).

Sensitivity analysis of the model solutions to parameter variations is an important aspect of the
assessment of the model performance. A comprehensive analysis of the local and global sensitivity
aspects goes beyond the scope of this study. In Figures 14 and 15, we illustrate how the variation in the
value of the migration rate of effector CD8+ T cells from lymph node to blood (kLN,Blood) affects the
dynamics of the observed characteristics of HIV infection. A variation by ±11% of the rate from its
reference values has a strong impact on the dynamics of viral load and reduction in the blood number
of uninfected CD4+ T cells.
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The simulations before represent a single run of the model. To illustrate the variations in individual
model realizations due to random effects built into the model, Figure 16 shows an ensemble of three
single runs of the model from the same starting conditions.
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Figure 14. Sensitivity analysis for blood. The effect of the variation of the rate of CD8+ T cell migration
from lymph node to blood (kLN,Blood) by ± 11%. (left) Viral load (virion/µL); (right) Infected CD4+

T cells (cell/µL).
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Figure 15. Sensitivity analysis for blood. The effect of the variation of the rate of CD8+ T cell
migration from lymph node to blood (kLN,Blood) by ± 11%. (left) Uninfected CD4+ T cells (cell/µL);
(right) HIV-specific CD8+ T cells (cell/µL).
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Figure 16. Three single runs of the model from the same starting conditions showing the effect of
randomness on the dynamics of infected CD4+ T cells in blood (cell/µL).
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5. Discussion

In this study, we formulated a multiscale model of an acute HIV infection, which integrates the
processes of infection spread and immune responses in lymph nodes and links to HIV dynamics
observed in blood. The spatio-temporal population dynamics of T lymphocytes in LN is governed by
equations linking an intracellular regulation of the T lymphocyte fate by intercellular cytokine fields.
We describe the balance of proliferation, differentiation and death at a single-cell level as a consequence
of gene activation via multiple signaling events activated by IL-2, IFNa and FasL. Distinct activation
thresholds uncouple the different modes of cellular responses depending on the relative levels of the
cytokines. This scheme is consistent with recent findings of the rules for signal discrimination between
qualitatively similar microbial products yielding context-specific functional responses [39].

The calibration of the model in a way that links the observed kinetics in the blood compartment
with that in LNs in a quantitatively consistent way is a non-trivial task. We managed to specify
a reference set of model parameters that provides a reasonable agreement with viral load and CD4+

T cell dynamics in blood [4,51]. Further refinement of the model and parameter estimates requires
data on virological and immunological characteristics of HIV-infected individuals at the earliest stage
of infection similar to those that have started to be gathered recently [51,52].

The virus growth in HIV infection is a result of multiple local bursts of the
infection-production-elimination occurring randomly in the lymphoid tissue. Indeed, clinical and
experimental studies of HIV and SIV infections indicate that the virus growth occurs in multiple local
bursts reflecting local non-equilibrium interactions between HIV and immune-activated cells [53]. It
was further discussed in [2] that in chronic HIV infection, the efficient transmission of the virus is
limited to microscopic clusters of T cells in lymphoid tissues, suggesting that the continuity of virus
production is a result of spatially-separated bursts. In view of the above paradigm, the patterns of the
model solution seem to be more realistic than the deterministic curves with an exponential pattern.

The multiscale model of HIV infection formulated in our study is based on a number of simplifying
assumptions of which the following have to be outlined:

1. the spatial dynamics of cells and cytokines in LNs is considered in a 2D regular domain;
2. the model is restricted to primary acute HIV infection and concomitant cytotoxic T cell responses;
3. intracellular regulation of cell fate by multiple cytokine signaling is described via a hierarchy of

activation thresholds;
4. HIV infection is considered in LN and blood compartments.

Detailed sensitivity analysis is an important issue of the developed model to be used for examining
the HIV pathogenesis mechanisms. However, it goes beyond the scope of this particular work and will
be comprehensively examined in a follow up study.

The here formulated model can be extended along many lines, depending on the questions to be
explored and the data available for that. For example, the model allows a straightforward incorporation
of a more detailed description of the intracellular fate regulation by considering regulatory networks.
The ontogeny of HIV in infected cells can be described in much greater detail [54]. Additional cell
fate regulation factors, such as PD1, can be incorporated [55,56]. Finally, elaborate mechanisms for
dynamic tuning of lymphocytes [57,58], genetic evolution of HIV [59], viral latency [6], chronic immune
activation [60] and complementary arms of the immune system [61] need to be considered for extending
this model to describe the long-term HIV infection dynamics. The development of respective fine
resolution mechanistic “elementary” modules and their integration into the developed multi-scale
modeling framework will allow one to study via the sensitivity analysis the efficacy of multi-modal
treatment approaches of HIV infection combining ART, anti-fibrotic and immuno-modulatory drugs.
The insight should assist clinicians in progressing towards an ambitious aim of a perfect long-term
control/cure of the infection with minimal side effects.
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