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We introduce and study the beta exponentiated Nadarajah-Haghighi model, which has increasing, decreasing, upside-down bathtub and bathtub shaped hazard functions. Some of its mathematical properties are determined including a power series for the quantile function. The model parameters are estimated by the method of maximum likelihood. The new distribution and some other competitive models are fitted to a meteorological data set. We prove empirically that it has a superior performance compared with other distributions based on some goodness-of-fit statistics. As a result, some parameters such as return level and mean deviation about the return level are estimated under the best model. We define a new parametric model based on the introduced distribution.

Introduction

The exponential distribution was the first lifetime model for which statistical methods were extensively developed in the life testing literature. In many applied sciences such as medicine, engineering and finance, among others, modeling and analyzing lifetime data are crucial. Several lifetime distributions have been used

to model these types of data, including the exponential, Weibull, gamma and Rayleigh distributions and their generalizations (see, e.g., [START_REF] Gupta | Generalized exponential distributions[END_REF][START_REF] Nadarajah | The beta exponential distribution[END_REF]). Each distribution has its own characteristics due specifically to the shapes of the hazard rate function (hrf), which can be monotonically decreasing or increasing, bathtub and unimodal.

Nadarajah and Haghighi [START_REF] Nadarajah | An extension of the exponential distribution[END_REF] introduced an extension of the exponential distribution as an alternative to the gamma, Weibull and exponentiated exponential (EE) distributions. The cumulative distribution function (cdf) of the Nadarajah-Haghighi (NH) distribution is given by

G(x) = 1 -e 1-(1+λx) α , x > 0, (1) 
where λ > 0 and α > 0 are scale and shape parameters, respectively. The corresponding probability density function (pdf) and hrf are given by

g(x) = α λ (1 + λ x) α-1 e 1-(1+λx) α (2) 
and h(x) = α λ (1 + λx) α-1 .

Equation [START_REF] Nadarajah | The beta exponential distribution[END_REF] has two parameters just like the gamma, Weibull and EE distributions. Note also that the NH model has closed-form survival and hrfs just like the Weibull and EE distributions. For α = 1, it reduces to the exponential distribution. For general properties about the NH model, the reader is referred to [START_REF] Nadarajah | An extension of the exponential distribution[END_REF]. The NH distribution has its mode at zero and allows for increasing, decreasing and constant hrfs.

Lemonte [START_REF] Lemonte | A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function[END_REF] proposed a three-parameter generalization of the NH distribution called the exponentiated NH (ENH) model, whose cdf is given by

G(x, α, λ, θ) = { 1 -e 1-(1+λx) α } θ , (3) 
where the parameters α > 0 and θ > 0 control the shapes of the distribution and λ > 0 is the scale parameter.

The ENH density function is given by

g(x, α, λ, θ) = αλθ(1 + λx) α-1 e 1-(1+λx) α { 1 -e 1-(1+λx) α } θ-1 . (4) 
The beta generalized family pioneered by Eugene et al. [START_REF] Eugene | Beta-normal distribution and its applications[END_REF] includes nearly all of well-known models as special or limiting cases such as those exponentiated distributions. It is a rich class of generalized distributions, which allows for greater flexibility of its tails and can be widely applied in many areas such as engineering, biology and medicine, among others. One major benefit of this family is its ability of fitting skewed data that cannot be properly fitted by existing distributions.

Several models have been investigated in the beta family in the last ten years. In fact, this class has been studied in the literature for some special baselines, among them, we cite the beta normal (BN) [START_REF] Eugene | Beta-normal distribution and its applications[END_REF], beta exponential (BE) [START_REF] Nadarajah | The beta exponential distribution[END_REF], beta generalized half-normal (BGHN) [START_REF] Pescim | The beta generalized half-normal distribution[END_REF], beta Weibull geometric (BWG) [START_REF] Cordeiro | The beta-Weibull geometric distribution[END_REF], beta generalized exponential (BGE) [START_REF] Souza | The beta generalized exponential distribution[END_REF], beta generalized Weibull (BGW) [START_REF] Singla | The Beta Generalized Weibull distribution:Properties and applications[END_REF], beta gamma (BG) [START_REF] Kong | On the Properties of Beta-Gamma Distribution[END_REF] and beta exponentiated Weibull (BEW) [START_REF] Cordeiro | The beta exponentiated Weibull distribution[END_REF] distributions.

The cdf of the beta-G class is given by

F(x) = 1 B(a, b) ∫ G(x) 0 w (a-1) (1 -w) b-1 dw = B(G(x); a, b) B(a, b) , (5) 
where G(x) denotes the baseline cdf, a > 0 and b > 0 are two additional parameters,

B(a, b) = ∫ 1 0 t a-1 (1-t) b-1 dt is the beta function and B(z; a, b) = ∫ z 0 t a-1 (1 -t) b-1
dt is the incomplete beta function. The role of these parameters is to control skewness and vary tail weights of the generated model.

The pdf corresponding to (5) is given by

f (x) = 1 B(a, b) G(x) a-1 {1 -G(x)} b-1 g(x), (6) 
where g(x) = d dx G(x). The density f (x) will be most tractable when G(x) and g(x) have simple forms. The rest of the paper is organized as follows. In Section 2, we define the beta exponentiated Nadarajah-Haghighi (BENH) distribution by using the NH model as baseline in the beta family. We show the flexibility of its hrf and present some special models. In Section 3, we study some of its structural properties, which include ordinary and conditional moments, mean deviations and Bonferroni and Lorenz curves. We derive a useful power series for the quantile function (qf) in Section 4. A Monte Carlo simulation study is performed in section 5. In Section 6, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters.

In Section 9.1, we provide an application from meteorology data to prove empirically that the new model can yield better fits than some other known lifetime models. Finally, Section 10 offers some conclusions.

The BENH distribution

In this section, we introduce the five-parameter BENH distribution by taking G(x) in Equation ( 3) to be the cdf of the ENH distribution. Let φ = (λ, θ, α, a, b) be the parameters of the proposed model, where λ > 0, α > 0, θ > 0, a > 0 and b > 0. By using (3) in Equation ( 5), the cdf of the BENH distribution reduces to

F(x; φ) = B ( { 1 -e 1-(1+λx) α } θ ; a, b ) B(a, b) . (7) 
Henceforth, if X is a random variable with cdf (7), we use the notation X ∼ BENH a,b (λ, θ, α). The pdf of X is given by

f (x; φ) = αθλ B(a, b) (1 + λx) α-1 e 1-(1+λx) α { 1 -e 1-(1+λx) α } θ a-1 [ 1 - { 1 -e 1-(1+λx) α } θ ] b-1 . (8) 
Clearly, the sequential double construction beta class→exponentiated class→NH model yields the BEHN density function [START_REF] Cordeiro | The beta-Weibull geometric distribution[END_REF]. The derivations of some properties of the BEHN model can be facilitated by this construction. We eliminate sometimes the dependence of the parameters and write

F(x) = F(x; φ), f (x) = f (x; φ), etc.
The hazard rate function of X follow from equations ( 7) and [START_REF] Cordeiro | The beta-Weibull geometric distribution[END_REF] as

h(x) = f (x)/[1 -F(x)].

Shapes of the density and hazard functions

The BENH distribution given by ( 8) is much more flexible than the ENH distribution since it allows for greater flexibility of the tails. In fact, it can approach different distributions when its parameters change. 

Special models of the BENH distribution

The BENH a,b (λ, θ, α) model contains as special cases some well-known distributions. The BENH 1,1 (λ , θ , α) model is the ENH [START_REF] Lemonte | A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function[END_REF], BENH a,b (λ, θ, 1) is the beta generalized exponential (BGE) distribution [START_REF] Souza | The beta generalized exponential distribution[END_REF],

BENH a,b (λ, 1, 1) is the beta exponential (BE) distribution pioneered by [START_REF] Nadarajah | The beta exponential distribution[END_REF], BENH 1,1 (λ, 1, α) is identical to the NH model [START_REF] Nadarajah | An extension of the exponential distribution[END_REF] and BENH 1,1 (λ, θ, 1) coincides with the generalized exponential (GE) distribution [START_REF] Gupta | Discriminating between the Weibull and the GE distributions[END_REF]. 

Simulation

The BEHN distribution is easily simulated from [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] as follows: if v is a generated beta variate with shape parameters a and b, then

x = λ -1 { [ 1 -log ( 1 -v 1/θ )] 1/α -1 } (9) 
is a generated variate having density (8).

Linear representation

Equations ( 7) and ( 8) are straightforward to be evaluated using any software with algebraic facilities. In this section, we present a linear representation for the BENH density in terms of EHN densities.

If | z |< 1 and b > 0 is real non-integer, the power series holds

(1 -z) b-1 = ∞ ∑ j=0 (-1) j Γ(b) Γ(b -j) j! z j , (10) 
where Γ(•) is the gamma function. By using [START_REF] Souza | The beta generalized exponential distribution[END_REF], the pdf (8) can be rewritten as

f (x; φ) = αλθ B(a, b) ∞ ∑ j=0 (-1) j Γ(b) Γ(b -j) j! e 1-(1+λ x) α (1 + λx) α-1 { 1 -e 1-(1+λx) α } θ (a+j)-1
and then

f (x; φ) = ∞ ∑ j=0 v j f ENH (x; α, λ, (a + j)θ), ( 11 
)
where f ENH (x; α, λ, (a + j)θ) denotes the ENH density with parameters α, λ and (a + j)θ and the coefficient v j (for j ≥ 0) is given by

v j = (-1) j Γ(b) (a + j) j!Γ(b -j)B(a, b) .
Equation ( 11) is the main result of this section. It reveals that the BENH density is an infinite mixture of ENH densities with parameters α, λ and (a + j)θ (for j ≥ 0) (See [START_REF] Lemonte | A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function[END_REF]).

Mathematical properties

In this section, we study some structural properties of the BENH distribution, specifically moments, cumulants, mean deviations and Bonferroni and Lorenz curves. Established algebraic expansions to determine some structural properties of this distribution can be more efficient than computing those directly by numerical integration of the density function [START_REF] Cordeiro | The beta-Weibull geometric distribution[END_REF], which can be prone to rounding off errors among others. The formulae derived throughout the paper can be easily handled in softwares such as Mathematica and Maple.

Theorem 1. The rth ordinary moment of X ∼ BENH a,b (λ, θ, α) is given by

µ ′ r = E(X r ) = θ λ r ∞ ∑ j,k=0 r ∑ i=0 (-1) r+k-i e k+1 v j (k + 1) i α +1 ( (a + j)θ -1 k ) ( r i ) Γ ( i α + 1, k + 1 ) . ( 12 
)
Proof. We can write

µ ′ r = E(X r ) = ∫ ∞ 0 x r f (x; φ)dx = ∞ ∑ j,k=0 (-1) k e k+1 v j ( (a + j)θ -1 k ) ∫ ∞ 0 x r (1 + λx) α-1 e -(k+1)(1+λx) α dx. ( 13 
)
It follows, since r > 0 is an integer, that

∫ ∞ 0 x r (1 + λx) α-1 e -(k+1)(1+λx) α dx = (-1) r-i αλ r+1 (k + 1) i α +1 r ∑ i=0 ( r i ) Γ ( i α + 1, k + 1 ) , where Γ(a, x) = ∫ ∞
x w a-1 e -w dw denotes the complementary incomplete gamma function. Then, we have

µ ′ r = θ λ r ∞ ∑ j,k=0 r ∑ i=0 (-1) r+k-i e k+1 v j (k + 1) i α +1 ( (a + j)θ -1 k ) ( r i ) Γ ( i α + 1, k + 1 ) , (14) 
which completes the proof.

For lifetime models, it is also of interest to find the conditional moments and the mean residual lifetime function.

Remark 1. The conditional moments of X, say E(X s | X > t) = ∫ ∞ t x s f (x; φ)dx, are given by E(X s | X > t) = αλθ ∞ ∑ j,k=0 (-1) k e k+1 v j ( (a + j)θ -1 k ) ∫ ∞ t x s (1 + λx) α-1 e -(k+1)(1+λx) α dx = λ -s θ ∞ ∑ j,k=0 s ∑ i=0 (-1) s+k-i e k+1 v j (k + 1) i α +1 ( (a + j)θ -1 k ) ( s i ) Γ ( i α + 1, (k + 1)(1 + λt) α
) .

The mean residual lifetime function

µ(t) = E(X | X > t) -t is given by µ(t) = θ λ ∞ ∑ j,k=0 1 ∑ i=0 (-1) 1+k-i e k+1 v j ( (a + j)θ -1 k ) ( 1 i ) Γ ( i α + 1, (k + 1)(1 + λt) α ) -t.
Generally, there has been a great interest in obtaining the first incomplete moment of a distribution. Based on this quantity, we can obtain, for example, the mean deviations that provide important information about characteristics of a population. Indeed, the amount of dispersion in a population may be measured to some extent by all the deviations from the mean and median. One way to measure the amount of scatter in a population is the totality of deviations about the mean and the median. The mean deviations of X about the mean µ ′ 1 = E(X) and about the median M can be expressed as

δ 1 = 2µ ′ 1 F(µ ′ 1 ) -2m 1 (µ ′ 1 )
and δ 2 = µ -2m 1 (M), respectively, where F(µ ′ 1 ) is easily evaluated from [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF], the median M follows from [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] as the solution of F(M; φ) = 0.5 and

m 1 (z) = ∫ z 0 x f (x)dx. We can write m 1 (z) = α λ θ ∞ ∑ j,k=0 (-1) k e k+1 v j ( (a + j)θ -1 k ) ∫ z 0 x (1 + λx) α-1 e -(k+1)(1+λx) α dx = θ λ ∞ ∑ j,k=0 1 ∑ i=0 (-1) 1+k-i e k+1 v j ( (a + j)θ -1 k ) ( 1 i 
)

Γ ( i α + 1, k + 1 ) { 1 -(1 + λz) α } . ( 15 
)

Quantile function

In this section, we derive a power series for the qf of the BENH distribution obtained by inverting [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] as

Q(u) = F -1 (u)
. First, we can expand (9) using Mathematica as

x = ∞ ∑ i=1 s i v i/θ , (16) 
where

s 1 = 1/(λα), s 2 = 1/(2λα 2 ), s 3 = (α 2 + 1)/(6λα 3 ), s 4 = (α 3 + 4α 2 + 1)/(24λα 4 ), etc.
An expansion for the inverse of the incomplete beta function B(v; a, b) = u can be found in Wolfram website 1 as

v = B -1 (u; a, b) = ∞ ∑ j=1 q j y j , (17) 
where y = y(u) = [aB(a, b)u] 1/a and q 1 = 1, q 2 = (b -1)/(a + 1), etc.

Combining ( 16) and ( 17), the BENH qf can be expressed as

x = Q(u) = ∞ ∑ i=1 s i         ∞ ∑ j=1 t j u j/a         i/θ , (18) 
where t j = q j a j B(a, b) j and the q ′ j s are given above. By expanding ( ∑ ∞ j=1 t j u j/a

) i/θ in Taylor series, we can rewrite [START_REF] Huster | Modelling paired survival data with covariates[END_REF] as

        ∞ ∑ j=1 t j u j/a         i/θ = ∞ ∑ k=0 f k (i θ -1 )         ∞ ∑ j=1 t j u j/a         k , (19) 
where We now use an equation of Gradshteyn and Ryzhik [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] for a power series raised to a positive integer k

f k (p) = ∑ ∞ m=k (-1) m-k ( m k ) (p) m /m! (for k ≥ 0)
        ∞ ∑ j=0 a j z j         k = ∞ ∑ j=0 c k, j z j , (20) 
where the coefficients c k, j (for k, j = 1, 2, . . .) are obtained from the recurrence equation

c k, j = (k a 0 ) -1 k ∑ m=1 [m(k + 1) -j] a m c k, j-m (21)
and, for k ≥ 0, c k,0 = a k 0 . The coefficient c k, j can be determined from c k,0 , . . . , c k, j-1 and then from the quantities a 0 , . . . , a k listed above.

We can write using (20) and ( 21)

        u 1/a ∞ ∑ j=0 p j u j/a         k = u k/a ∞ ∑ j=0 d k, j u j/a
where p j = t j+1 for j ≥ 0, and, for k ≥ 0, d k,0 = p k 0 and, for j ≥ 1,

d k, j = (k p 0 ) -1 ∑ k m=1 [m(k + 1) -j] p m d k, j-m .
Inserting the last equation in (19), we obtain

        ∞ ∑ j=1 t j u j/a         i/θ = ∞ ∑ k, j=0 f k (i θ -1 ) d k, j u ( j+k)/a
and then Q(u) in ( 16) can be expressed as

Q(u) = ∞ ∑ k, j=0
e k, j u ( j+k)/a , where e k, j = ∑ ∞ i=1 s i f k (i θ -1 ) d k, j (for j, k ≥ 0).

Finally, we can write

Q(u) = ∞ ∑ r=0 h r u r/a , (22) 
where h r = ∑ ∞ k, j=0 k+ j=r e k, j .

Equation ( 22) reveals that the qf of the BEHN distribution is just a power series. Then, several mathematical quantities of X can be expressed in terms of integrals over (0, 1). In practical terms, the upper limit ∞ in the above sums can be substituted by a number like twenty or thirty. In fact, if W(•) be any integrable function in the real line, we can write

∫ ∞ 0 W(x) f (x)dx = ∫ 1 0 W        ∞ ∑ r=0 h r u r/a        du. ( 23 
)
Equations ( 22) and ( 23) are the main results of this section since we can obtain from them numerically various BENH structural quantities. They can be determined by using the integral on the right-hand side for special W(•) functions, which can be simpler than if they are evaluated from the left-hand integral.

A simulation study

We perform a Monte Carlo simulation study to assess the finite sample behavior of the MLEs of λ, θ, α, a and b. The results were obtained from 2,000 Monte Carlo replications and the simulations were carried out using the R statistical software. In each replication, a random sample of size n is drawn from the BENH a,b (λ, θ, α)

distribution and the parameters were estimated by the maximum likelihood method. The random variable X was generated using the inversion method. We considered two setups with the following values for the parameters 1 and2, respectively.

In both setups, we note that the biases and RMSEs of the MLEs of λ, θ, α, a and b decay toward zero when the sample size increases, as expected. There is a small sample bias in the estimation of the model parameters.

Future research should be conducted to obtain bias corrections for these estimators. 

Estimation and inference

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is the most commonly employed. The MLEs enjoy desirable properties and can be used when constructing confidence intervals for the parameters and also in test statistics. Given the observed values x 1 , . . . , x n , the MLEs of the model parameters of the BENH distribution are determined by maximization the log-likelihood function given by

ℓ(φ) = ℓ(x i , α, λ, θ, a, b) = n [ log α + log θ + log λ -log {B(a, b)} ] + (α -1) n ∑ i=1 log(1 + λx i ) n ∑ i=1 {1 -(1 + λx i ) α } + (θa -1) n ∑ i=1 log { 1 -e 1-(1+λx i ) α } + (b -1) n ∑ i=1 log [ 1 - { 1 -e 1-(1+λx i ) α } θ ] . (24) 
The above log-likelihood can be maximized numerically using by using the R (optim function), SAS (PROC NLMIXED), Ox program (sub-routine MaxBFGS), Nmaximize command in Mathematica, among others.

To check the goodness of fit of all statistical models, some goodness-of-fit statistics shall be used are computed using computational package Mathematica. The MLEs are evaluated using Nmaximize as well as the goodness-of-fit statistics including the Anderson-Darling (A * ), Cramér-von Mises (W * ), Liao-Shimokawa (L-S) and Kolmogrov-Simnorov (K-S) statistics (with their p-values). These statistics are used as goodness-offit measures and to evaluate how closely a specific density fits the corresponding histogram of a given data set.

Usually, the distribution with smallest statistic values will yield a better fit. These statistics are given by

A * = ( 2.25 n 2 + 0.75 n + 1 
)        -n - 1 n n ∑ i=1 (2i -1) log (z i (1 -z n-i+1 ))        , L -S = 1 √ n n ∑ i=1 Max [ i n -z i , z i -i-1 n ] √ z i (1 -z i ) , W * = ( 0.5 n + 1 )        n ∑ i=1 ( z i - 2i -1 2n 
) 2 + 1 12n        , K -S = Max [ i n -z i , z i - i -1 n ] ,
where z i = cdf(y i ) and the y ′ i s are the ordered observations.

The log-beta exponentiated Nadarajah-Haghighi distribution

Let X be a random variable having the BENH density function [START_REF] Cordeiro | The beta-Weibull geometric distribution[END_REF]. The random variable Y = log(X) defines the log-beta exponentiated Nadarajah-Haghighi (LBENH) distribution. The density function of Y reparameterized in terms of λ = e -µ can be expressed as

f (y) = α θ B(a, b) e y-µ ( 1 + e y-µ ) α-1 e 1-(1+e y-µ ) α { 1 -e 1-(1+ e y-µ ) α } θ a-1 [ 1 - { 1 -e 1-(1+ e y-µ ) α } θ ] b-1 , ( 25 
)
where y, µ ∈ R, θ > 0, α > 0, a > 0 and b > 0.

If Y is a random variable having density function (25), we can write Y ∼ LBENH(µ, θ, α, a, b). Thus, if The survival function corresponding to (25) is a,b) .

X ∼ BENH(λ, θ, α, a, b) then Y = log(X) ∼ LBENH(µ, θ, α
S (y) = 1 - B [ { 1 -e 1-(1+ e y-µ ) α } θ ; a, b ] B(
We define the standardized random variable Z = (Y -µ) having density function given by

f (z) = α θ B(a, b) e z (1 + e z ) α-1 e 1-(1+e z ) α { 1 -e 1-(1+ e z ) α } θ a-1 [ 1 - { 1 -e 1-(1+ e z ) α } θ ] b-1 , z ∈ R (26) 

The LBENH regression model for censored data

A parametric regression model that provides a good fit to lifetime data tends to yield more precise estimates of the quantities of interest. Next, we construct a linear regression model for the response variable y i and the explanatory variable vector v T i = (v i1 , . . . , v ip ) based on the LBENH distribution given by

y i = v T i β + z i , i = 1, . . . , n. (27) 
Here, the random error z i is assumed to have the density function (26) with unknown parameters µ i ∈ R, α > 0, θ > 0, a > 0 and b > 0. The parameter µ i = v T i β is the location of y i . The vector µ = (µ 1 , . . . , µ n ) T of location parameters is represented by a linear model µ = Vβ, where V = (v 1 , . . . , v n ) T is a known model matrix. The LBENH model (27) opens new possibilities for fitting many different types of data.

Consider a sample (y 1 , v 1 ), . . . , (y n , v n ) of n independent observations, where the random response is defined by y i = min{log(x i ), log(c i )}. We assume non-informative censoring such that the observed lifetimes and censoring times are independent. Let F and C be the sets of individuals for which y i is the log-lifetime and log-censoring, respectively. The log-likelihood function for the vector of parameters η = (β T , θ, α, a, b) T from model ( 27) is given by l

(η) = ∑ i∈F log[ f (y i )] + ∑ i∈C log[S (y i )],
where f (y i ) is the density function (25) and S (y i ) is the survival function (26) of Y i . The log-likelihood function for η reduces to

l(η) = r { 1 + log ( α θ σ B(a, b) )} + ∑ i∈F y i -v T i β + (α -1) ∑ i∈F log ( 1 + e y i -v T i β ) - ∑ i∈F ( 1 + e y i -v T i β ) + (θ a -1) ∑ i∈F log        1 -e 1- ( 1+ e y i -v T i β ) α        + (b -1) ∑ i∈F log          1 -        1 -e 1- ( 1+ e y i -v T i β ) α        θ          + ∑ i∈C log                          1 - B                 1 -e 1- ( 1+ e y i -v T i β ) α        θ ; a, b          B(a, b)                          , ( 28 
)
where r is the number of uncensored observations (failures).

The MLE η of η can be obtained by maximizing the log-likelihood function (28). We use the statistical R software to compute the estimates. From the fitted model ( 27), the survival function for y i can be estimated by

S (y i ; βT , α, θ, â, b) = 1 - B                     1 -e 1- ( 1+ e y i -v T i β ) α          θ ; â, b           B(â, b) . (29) 
Under general regularity conditions, the asymptotic distribution of ( η -η) can be approximated by the multivariate normal N p+4 (0, J(θ) -1 ), where J(θ) is the observed information matrix. Then, the inference on the parameter vector η can be based on this approximation distribution for η. The likelihood ratio (LR) statistic can be used to discriminate between the LBENH and LENH regression models since they are nested models.

Applications

In this section, we provide two applications to show the usefulness of the BENH distribution and the new LBENH regression model.

Meteorological application

We fit some well-known statistical distributions and the BENH distribution to a meteorology data set and determine the best fitted distribution among the fitted models. We also provide some meteorological parameters for these data under the best model.

Model fitting

We consider the following models as competitive for the proposed distribution:

• The Gumbel model with density function

f (x) = e -e -x-µ σ -x-µ σ σ , x, µ ∈ R, σ > 0 ,
• The gamma Weibull (GW) [START_REF] Provost | The gamma-Weibull distribution[END_REF] model with density function

f (x) = k λ -k-ξ x ξ+k-1 e -λ -k x k Γ(1 + ξ/k) , x > 0 , ξ + k, λ > 0 ,
• The BE [START_REF] Nadarajah | The beta exponential distribution[END_REF] model with density function

f (x) = λ e -(bλx) ( 1 -e -λx ) a-1 B(a, b) , x > 0, a, b, λ > 0 ,
• The ENH [START_REF] Lemonte | A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function[END_REF] model with density function

f (x) = αλθ(1 + λx) α-1 e 1-(1+λx) α { 1 -e 1-(1+λx) α } θ-1 , x > 0, α, θ, λ > 0,
• The BG [START_REF] Kong | On the Properties of Beta-Gamma Distribution[END_REF] model with density function

f (x) = x ρ-1 e -x/λ λ ρ B(α, β)Γ(ρ) { γ(ρ, x/λ) Γ(ρ) } α-1 { 1 - γ(ρ, x/λ) Γ(ρ) } β-1 , x > 0, α, β, ρ, λ > 0,
• The BEW [START_REF] Cordeiro | The beta exponentiated Weibull distribution[END_REF] model with density function

f (x) = α cλ c x c-1 e -(λ x) c ( 1 -e -(λ x) c ) α a-1 ( 1 - ( 1 -e -(λ x) c ) α ) b-1 B(a, b) , x > 0, a, b, c, λ, β > 0.
The application refers to the "yearly maxima wind" data, which represents the yearly maxima wind speed (miles per hour) registered at a certain location over a period of 50 years as reported in Table 1.1 by [START_REF] Castillo | Extreme Value and Related Models with Applications in Engineering and Science[END_REF].

These data may help in the design of structures and buildings.

The maximum likelihood method is used to obtain the parameter estimates and their standard errors (computed by inverting the observed information matrix) given in Table 3 for the current data. Further, all mentioned goodness-of-fit statistics are determined for each fitted distribution and listed in Table 4.

Based on the figures in Table 4, we note that the BENH distribution has the smallest statistics. Therefore, we can conclude that this distribution gives the best fit to these data among the other distributions. Also, this fact is confirmed by observing the plots of the estimated cdfs of these distributions and the empirical cdf given in the Appendix. In fact, the estimated BENH cdf and the empirical cdf are quite close. Further, the LR statistic can be used to compare a distribution having extra parameters with some of its sub-models. Then, we apply the LR statistic for comparing the BENH and ENH distributions. The LR statistic w for testing the following hypotheses: H 0 : a = b = 1 (ENH) versus H 1 : a b 1 (BENH) yields the value w = 12.3273 (p-value=0.0021). Thus, the BENH model provides a better fit to the yearly maxima wind data when compared with the ENH model.

The 95% and 99% confidence intervals for these parameters are listed in Table 5. 

Meteorological parameters

We prove empirically that the BENH distribution is the best model for the yearly maxima wind data. So, it is of interest to obtain the following meteorological parameters for these data.

Return level

A return period is an estimate of the likelihood of an event, like a flood or wind speed to occur and it is the inverse of the probability that the event will be exceeded in any one year (or the expected waiting time or the mean number of years that will be taken for an exceeding event to occur). The probability, return period and return level (high quantile of the distribution) of the event can be estimated by P(

x T ) = 1 -F(x T ), T = 1/P(x T ) and x T = F -1 ( 1 -1 T )
, respectively, where F -1 (•) is the qf and P(x T ) is called the exceedance probability (Nadarajah and Choi [START_REF] Nadarajah | Maximum daily rainfall in South Korea[END_REF]).

The return level x T under the BENH distribution is obtained by solving

B ( 1 -e -(λ x T +β x k T ) ;α, ρ ) = B(α, ρ) ( 1 - 1 T 
) .

where x T > 0 and T ≥ 1. Table 6 provides the estimates of the return level x T for the yearly maxima wind speed data in Table 3 by replacing the model parameters by their MLEs. The mean deviation about the return level is the mean of the distances of each value from their return level.

Analogously to the mean deviation about the mean given in Section 4, the mean deviation about return level is given by

η = ∫ ∞ 0 |x -x T | f (x)dx = 2x T F(x T ) -x T + µ -2m(x T ),
where m(x T ) is given by ( 15) and f (x) is the density of the BENH distribution.

Diabetic Retinopathy Study

We consider a data set analyzed by Huster et al. [START_REF] Huster | Modelling paired survival data with covariates[END_REF]. Patients with diabetic retinopathy in both eyes and 20/100 or better visual acuity for both eyes were eligible for the study. The patients were followed for two con- The explanatory variable x 1 is marginally significant for the model at the significance level of 5%.

In order to assess if the model is appropriate, the empirical survival function and the estimated survival function (29) from the fitted LBENH regression model are plotted in Figure 6. In fact, the LBENH regression model provides a good fit for these data.
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 2123 Figure 1: Plots of the BENH density function. (a) a = 1.9, b = 3.9, λ = 0.5, θ = 2.3 and α = 2 (dotted line), α = 3 (dashed line), α = 4 (solid line), α = 5 (thick line). (b) a = 2.9, b = 1.9, λ = 1.3, α = 1.3 and θ = 1 (dotted line), θ = 3 (dashed line), θ = 5 (solid line), θ = 7 (thick line). (c) a = 9, b = 1.5, α = 3, θ = 1.5 and λ = 1 (dotted line) λ = 1.3, (dashed line), λ = 1.5 (solid line), λ = 1.7 (thick line).

Figure 4 :

 4 Figure 4: Plots of the BENH hazard function. (h) a = 4, b = 11, α = 0.4, λ = 15, θ = 1.7 and (i) a = 3.2, b = 1.5, α = 1.3, λ = 0.8, θ = 8.

  and (p) m = p(p -1) . . . (pm + 1) is the descending factorial.

  of the model: λ = 1.5, θ = 10.0, α = 2.0, a = 4.0, and b = 2.0 (setup 1) and λ = 3.0, θ = 5.0, α = 1.5, a = 2.5, and b = 3.0 (setup 2). The mean estimates of the five model parameters and the corresponding root mean squared errors (RMSEs) for the sample sizes n = 50, 100 and 200 are listed in Tables

Figure 5 :

 5 Figure 5: Plots of the LBENH density function. (j) µ = 0.5, α = 0.1, a = 0.5, b = 0.9 and θ = 5 (dotted line), θ = 10 (dashed line), θ = 30 (solid line), θ = 70 (thick line). (k) µ = 7, θ = 0.8, α = 3, b = 0.8 and a = 1 (dotted line), a = 1.5 (dashed line), a = 2.3 (solid line), a = 4 (thick line). (l) µ = 0.8, θ = 11, α = 1.2, a = 5 and b = 1.5 (dotted line) b = 5, (dashed line), b = 15 (solid line), b = 55 (thick line).

secutively completed 4

 4 month follow-ups and the endpoint was the occurrence of visual acuity less than 5/200. We choose only the treatment time. A 50% sample of the high-risk patients defined by diabetic retinopathy criteria was taken for the data set (n = 197) and the percentage of censored observations was 72.4%. The variables involved in the study are: ti -failure time for the treatment (in min); censoring indicator (0=censoring, 1=lifetime observed); xi1 -age (0 = patient is an adult diabetic, 1 = patient is a juvenile diabetic). We adopt the model y i = β 0 +β 1 x i1 +z i , where the random variable Y i follows the LBENH distribution (25) for i = 1, . . . , 197. The MLEs of the model parameters are determined using the statistical software R. In order to estimate α, θ, a, b and β, we perform iterative maximization of the logarithm of the likelihood function (28) starting with initial values for α and β taken from the fitted log-NH regression model (with a = b = θ = 1). The MLEs (approximate standard errors and p-values in parentheses) are: α = 0.4536 (0.1887), θ = 10.7832 (0.1247), â = 2.5057 (2.5872), b = 0.0219 (0.0327), β0 = -3.6222 (1.1698) (0.4994) and β1 = 0.6399 (0.3984) (0.0274).

Table 1 :

 1 

	n	Parameter	Mean	RMSE
		λ	1.1910	1.2007
		θ	13.3681	7.8019
	50	α	3.6020	2.7661
		a	7.6681	8.0093
		b	3.9407	5.1279
		λ	1.3289	1.0321
		θ	11.6246	5.0460
	100	α	2.8785	1.7866
		a	5.9771	5.3011
		b	3.1445	3.3964
		λ	1.4131	0.7452
		θ	10.7861	3.5364
	200	α	2.4810	1.2138
		a	4.8404	3.0189
		b	2.5862	2.2210

Monte Carlo simulation results for Setup 1: Mean estimates and RMSEs of λ, θ, α, a and b.

Table 2 :

 2 

	n	Parameter	Mean	RMSE
		λ	2.7536	2.5369
		θ	8.8775	10.0651
	50	α	2.6233	1.9267
		a	4.6692	4.0526
		b	4.8437	5.1057
		λ	2.9982	2.2718
		θ	7.4226	7.5222
	100	α	2.2102	1.3976
		a	3.9831	3.0587
		b	4.0726	3.5745
		λ	2.9956	2.0220
		θ	6.8338	6.2232
	200	α	2.0991	1.2690
		a	3.7933	2.7461
		b	3.6886	2.8409

Monte Carlo simulation results for Setup 2: Mean estimates and RMSEs of λ, θ, α, a and b.

Table 3 :

 3 MLEs of the parameters (standard errors in parentheses) for yearly maxima wind data

	Distributions	Estimates				
	Gumbel(µ, σ)	29.448375	6.728401			
		(0.986481)	(0.811886)			
	GW(ξ, k, λ)	16.37274	0.636736	0.191498		
		(3.81043)	(0.102927)	(0.250299)		
	BE( λ , a , b)	0.174056	99.999996	0.667858		
		(0.033464)	(63.3027)	(0.214419)		
	ENH(α, λ, θ)	1.090938	0.098860	29.99999		
		(0.230356)	(0.0479538)	(14.0858)		
	BG(α, β, ρ, λ)	82.54150	75.99302	0.285808	595.603	
		(89.3679)	(98.5805)	(0.280189)	(873.244)	
	BEW(α, λ, a, b, c)	89.96635	0.299499	14.99929	0.365674	0.992785
		(98.776)	(0.358327)	(16.1477)	(0.351981)	(0.57515)
	BENH(λ, θ, α, a, b)	0.440040	41.48587	0.899999	88.218035	0.364810
		(0.24795)	(68.1182)	(0.197686)	(144.411)	(0.194824)

Table 4 :

 4 Goodness-of-fit statistics for yearly maxima wind data

	Distributions	A *	W *	L-S	K-S	p-value
	Gumbel(µ, σ)	1.0083	0.149555	5.73492	0.130391	0.363071
	GW(ξ, k, λ)	1.81995	0.276761	6.2735	0.130799	0.359295
	BE(λ , a , b)	0.995606	0.160182	3.41307	0.12506	0.414754
	ENH(α, λ, θ)	1.32567	0.204332	3.84876	0.126957	0.395883
	BG(α, β, ρ, λ)	1.83913	0.282842	7.01132	0.134266	0.328222
	BEW(α, λ, a, b, c)	0.644849	0.107817	2.89811	0.112035	0.556868
	BENH(λ, θ, α, a, b)	0.561666	0.094480	2.75311	0.107788	0.606717

Table 5 :

 5 Confidence intervals for the model parameters

	CI	λ	β	k	α	ρ
	95%	[0 0.926]	[0 174.9]	[0.512 1.287]	[0 371.2]	[0 0.746]
	99%	[0 1.079]	[0 217.2]	[0.389 1.410]	[0 460.7]	[0 0.867]

Table 6 :

 6 Return level estimates xT for the T-year of the maxima wind speed data

	T	Return level estimate of wind data (mm)
	2	31.4687
	5	40.1367
	10	46.6312
	20	53.1969
	50	61.9929
	100	68.7284
	200	75.5285
	9.1.4. Mean deviation about the return level
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Conclusions

We introduce a five-parameter lifetime model called the beta exponentiated Nadarajah-Haghighi (BENH) distribution, which extends several distributions proposed and widely used in the literature. The new distribution is useful to model lifetime data with increasing, decreasing, upside-down bathtub and bathtub shaped hazard functions. It can be much more flexible than the exponentiated Nadarajah-Haghighi, beta exponentiated Weibull, beta gamma, beta exponential, gamma Weibull and Gumbel distributions. We provide some closed-form expressions for the ordinary, incomplete and conditional moments, mean deviations and quantile and generating functions. By using nine goodness-of-fit statistics we prove empirically that the new model can be superior to some distributions generated from other families in terms of model fitting by means of a meteorological application.

Appendix

The symbol ψ (1) (•) denotes the trigamma function, and the polygamma function of order m is denoted by: 7 displays the estimated cdfs for some models and the empirical cdf for yearly maxima wind data. 

The BENH distribution