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Abstract: Continuum damage mechanics is a framework for describing the variations of 
the elastic properties of a material due to microstructural degradations. This chapter 
presents the application of this theory to the modelling of concrete. Several constitutive 
relations are devised, including incremental, explicit, and non local damage models. A 
general framework for damage induced anisotropy is also presented. Coupled damage and 
plasticity modelling is discussed. Finally, the issue of the experimental determination of 
the internal length in non local models is tackled. 

3.1 Introduction 

This chapter is concerned with the presentation of several continuum damage models and their 
implementation in non linear finite element analyses. Continuum damage means that the 
mechanical effects of progressive microcracking, void nucleation and growth are represented 
by a set of state variables which act on the elastic and/or plastic behaviour of the material at 
the macroscopic level. First, we will deal with the scalar damage model and present different 
versions of this type of constitutive relations. After having recalled how the local integration 
of the constitutive relation can be performed in the same spirit as for plasticity-based models, 
we will deal with more specific applications: cases where the evolution of damage is specified 
in an integrated form, where damage induced inelastic strains are introduced, wheye crack 
closure effects are modelled, and finally where damage is coupled to plasticity. The following 
section deals with damage induced anisotropy. A general framework for capturing 
directionality of damage is recalled. Coupling with plasticity and crack closure effects are also 
discussed. Non local damage is developed in the fourth section. We present integral and 
gradient models. In particular, a general scheme for the implementation of the gradient model, 
implemented into the finite element code "Code_ Aster", is described. The fifth section deals 
with several computational issues related to damage such as the implementation of the model 
within secant or tangent algorithms. The chapter concludes on the problem of the calibration 
of the model parameters in damage models including the internal length. Inverse analysis of 
size effect tests on geometrically similar specimens is used for the experimental determination 
of these parameters. 
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3.2 Isotropic Damage Model 

When damage is assumed to be isotropic, it is considered that it produces a degradation of the 

elastic stiffness of the material through a variation of the Young's modulus: 

(1) 

where v0 , E0 and ~J are the Poisson's ratio and Young's modulus of the undamaged 

isotropic material and the Kronecker symbol respectively. The elastic (i.e. free) energy per 
unit mass of material is: 

(2) 

where C
0 

is the stiffness tensor of the undamaged material. This energy is assumed to be the 

state potential. The damage energy release rate is defined as the variable associated to the 
damage state variable in the state potential: 

(3) 

with the rate of dissipated energy: 

. oplf/ . 
rjJ = --d 

ill 
(4) 

For an isotropic damage model, this equation reduces to: 

rjJ = Yd (5) 

The damage energy release rate is always positive and thus the rate of damage must be 

positive in order to comply with the second principle of thermodynamics. 

The rules governing the evolution of damage can be defined following the same principles 

as those in elasto-plasticity. In fact, the general formalism is that of generalised standard 

materials where the loading function is assumed to be a pseudo potential of dissipation 

(Lemaitre, 1992). The evolution of damage requires the definition of a loading function: 

f(Y,d)= Y- Y0 - Z (6) 

where Y0 is a parameter which defines the threshold of damage, and Z is the hardening­

softening controlling variable. The evolution law is prescribed according to the normality rule: 
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. ·if 
d==A­

OY 

. . 

(7) 

with the Kuhn-Tucker conditions A 2:: 0, f ~ 0, and Af == 0. The evolutionary equations are 

completed by the definition of a hardening function: 

. . 
A ==HZ (8) 

where H can be regarded as the equivalent of a hardening-softening modulus in generalised 
plasticity. In most applications, this modulus is not constant. The major difference with 
plasticity is that the loading function and the evolution equation for damage are provided in an 
explicit form because these quantities are function of the total strain. 

3.2.1 Damage Model with Crack Closure 

Crack closure effects are of importance when the material is subjected to alternated loads, for 
instance reinforced concrete structures subjected to earthquakes. The fundamental property of 
the scalar damage model is that the time derivative of damage is constrained to be positive or 
zero (second principle of thermodynamics). During load reversals, however, micro cracks are 
closing progressively and the tangent stiffness of the material should increase while damage is 
constant (Fig. 1 ). 

Stiffness of the damage 
material 

\ 

A 

E(l-d) 

Stiffness recovery 
due to crack closure 

Material damaged in tension (path OA) and unloaded up to point B 

Figure 1. Schematic response of a material subjected to uniaxial compression after being damaged in 

tension. 

Within isotropic damage modelling, one solution is to introduce two damage scalars (d1,dc), 
instead of one, in order to separate the mechanical effect of micro cracking as a function of the 
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type of loading. La Borderie ( 1991) developed the corresponding constitutive relations and 
applied it to concrete. The elastic energy is: 

1[ 1 + + 1 - -plf=- <a> .. <a> .. + <a> .. <a> .. 
2 £0(1- d1 ) lJ lJ E0 (1- de) lJ lJ 

+ 2:JL (a a -a?: )] + p, d, f(a) + p?d, a 
E iJ iJ kk E (1 - d ) E ( 1 - d ) kk 

0 0 t 0 c 

(9) 

where (a)+ is the positive part of the stress, i.e. the stress tensor expressed in its principal 

directions with the positive principal stresses only, and (a)- =a- (a-)+. 
Inelastic strains due to the growth of damage are also taken into account in this model with 

a function /(a) introduced in order to represent the progressive vanishing of inelastic strains 

due to damage in tension when the material is subjected to compression: 

/(a) = akk when akk E ]0, oo lf (a) 

f(a) =(1 +~)a"kk when akk E]-ac,O] 
2ac 

/(a) = _!!.t:.. akk when akk E [ -oo, -ac] 
2 

(10) 

where ac is the crack closure stress (material parameter). The stress-strain relation reads: 

( 11) 

Since the model has two damage variables, the evolutionary equations include two yield 

functions. These functions are constructed on the same principles as the function used for the 

one scalar model, except that there are two energy release rates associated to the two damage 

variables respectively: 

(12) 

The two loading functions are: 

(13) 

and an associated model can be constructed with two independent hardening functions similar 

to Eq. (8). 
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Note that this constitutive relation cannot be integrated explicitly. The stress 
decomposition into positive and negative parts is not known a priori. Therefore, the conditions 
of evolution of damage are not known for each integration step. Same as in classical plasticity, 
the integration of the constitutive relations is performed with an iterative scheme: the 
equations of the system are the state laws and the evolution laws recast as follows in order to 
obtain a well-conditioned algebraic system: 

1 ( + 1 -
£··= <U>··+ <U>·· 

lJ Eo ( 1 - d1) lJ Eo ( 1 - de) lJ 

+.!JL[U·· _ (} b··] + f1d1 IJ(u) + f32de 8, .. 
E0 lJ kk lJ (1- d

1
) ou~i (1- de) lJ 

~- Z1 = o 
Ye- Ze = 0 

(14) 

1 
(1- dt) = I<;<Y,, zl) 

1 
= R (Y Z ) 

(1- de) c e' c 

Here, F;, F;; are calculated from the integrated equation of evolution of damage instead of an 

incremental one. It does not change the general picture of the integration process, however. 
The system is written in a matrix form: 

1 

I-d t 
(15) 

where matrix [J] can be computed and programmed using formal calculus. A full Newton 

algorithm is implemented in order to solve this non-linear system. Note that there are two sorts 
of non-linearities: the first one is due to the evolution of damage (i.e. whether damage grows 
or not), the second is due to crack closure effects. For constant values of the damage variables, 
the material is orthotropic in the coordinate system of the principal stresses. 

3.2.2 Integrated Damage Model 

As we saw above, the evolution of damage is very often related to the state of strain. 
Moreover, it is defined in an explicit, integrated way, which is easier to handle. The damage 
loading function in Eq. (6) can be redefined as: 

/( E,K) = & -K (16) 
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where E: is a positive equivalent measure of strain and K is a threshold value. The equation f == 
0 represents a loading surface in strain space. For the uniaxial tensile case, the equivalent 
uniaxial strain in Eq. (16) is straightforward. It is the axial strain. However, for general states 
of stress, damage evolution should be related to some scalar quantity, function of the state of 
strain. There are, to this regard, several proposals. For example, an appropriate definition for 
metals is rooted in the elastic stored energy (Peerlings et al. 1998): 

&= 
1 

- &··C··kf&kf E lJ lJ 
( 17) 

which is depicted in Figure 2. It is equivalent to the integrated version of the constitutive 
relation presented in section 2.1. For concrete, Mazars (1984) proposed the following form: 

(18) 

where &i are the principal strains. A third possibility, which is also mentioned by Peerlings, is 
the modified von Mises definition: 

"' k-1 1 (k-1)2 
2 

&- I+- I 
- 2k(1-2v) 1 2k (1-2v)2 1 (19) 

I 1 and 12 are the first invariant of the strain tensor and the second invariant of the deviatoric 
strain tensor respectively. Only the modified von Mises criterion leads to a new material 
parameter, namely the factor k. The parameter k is the ratio between uniaxial compressive and 
uniaxial tensile strengths. These criteria are plotted in figure 2 (with k == 1 0). The loading 
surfaces (Eqs. 17 -19) are closed contours around the origin. The dashed lines represent the 
constant uniaxial compression and uniaxial tension stress paths. 

The evolution of damage has the same form as in the previous sections: 

· {d = h(K) · 
if j(i,K)=O andf(c,K)=Othen _, where d'?:.O 

K=& 

(20) 

{
d == 0 

otherwise 
i=O 

The function h( K) is specific, depending on different models in the literature. For tension 
only, exponential softening can be used: 

(21) 
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where K 0 , a, 17 are model parameters. 

In order to capture the differences of mechanical responses of the material in tension and in 
compression, Mazars proposed to split the damage variable into two parts and used the 
equivalent strain defined in Eq. (18): 

where dt and de are the damage variables in tension and compression, respectively. 
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(22) 

Figure 2. Contour plots for 8 for the elastic stored energy (top left), Mazars definition (top right), and 
the modified von Mises expression (bottom), after Peerlings et al. (1998). 

They are combined with the weight coefficients at and ac defined as functions of the 

principal values of the strains 8~ and 8ij , due to positive and negative stresses (see Mazars, 

1984). 

t 1 t c 1 c 
8·· == (1- d) Gk1a 8·· == (1- d) Gk1a 

lJ lJ k/ ' lJ lJ kl 
(23) 

= ~[~cf}(c;)+]P = 2:3 [{ctXc;)+]P 
at L...J -2 ' ac -2 

8 8 
i=l i=l 

(24) 
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In uniaxial tension at= 1 and ae =0. In uniaxial compression ae = 1 and at =0. Hence, dt and 

de can be obtained separately from uniaxial tests. The purpose of exponent f3 is to reduce the 

effect of damage on the response of the material under shear compared to tension (Pijaudier­

Cabot et al. 1991 ). The evolution of damage is provided in an integrated form, as a function of 

the variable K (Mazars, 1984): 

dt = 1- Ko(l-At)- A, 
K exp(B

1 
(K- K 0)) 

Ac 
(25) 

train 5 

-0 008 ~0,006 -0 00 - 002 

Stress (Mpa) 40 

F'i ure 3 Unia ial. r ~ p n.- · f the •nod 1 y . azar 19 4). 

Figure 3 shows the uniaxial response of the model in tension and compression with the 
following parameters: E0 = 30000 MPa, v0 =0.2, K 0 =0.0001, A,=l, B, =15000, Ac = 1.2, 

Be =1500, /3=1. 

3.2.3 Damage coupled to plasticity 

Elastic damage models or elastic plastic laws are not totally sufficient to correctly capture the 
constitutive behavior of concrete. In some cases, the calculation of the damage variable is a 
key point. For instance, it can become essential when coupled effects are considered (coupling 
between damage and permeability, damage and porosity ... ). Picandet et al. (2001) observed 
in experiments that there is a relationship between damage and the gas permeability of the 
material. Damage, measured according to the unloading slope during cyclic compressive 
loading is related to the variation of permeability, independently from the type of concrete 
tested (normal concrete, high strength concrete, fiber-reinforced concrete). Thus, the capability 
of the constitutive model to capture the unloading behavior is essential if a proper evaluation 
of the permeability is required. 
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An elastic damage model is not appropriate as irreversible strains cannot be captured: a 
zero stress corresponds to a zero strain and the value of the damage is thus overestimated 
(figure 4a). An elastic plastic relation is not adapted (even with softening, see for example 
Grassl et al, 2002) as the unloading curve always follows the same elastic slope (figure 4b ). 
An appealing alternative consists in combining these two approaches into an elastic-plastic­
damage law. The softening behavior and the decrease in the elastic modulus are so reproduced 
by the damage part while the plasticity effect accounts for the irreversible strains. With this 
formulation, experimental unloading can be correctly simulated (figure 4c ). 

a. El a tic damage rn . d b. Elastic p~asli" mod t 

tre lr .·s 

t 11in tra·n 

tre ~ s c. ~ la . tic p la li c damage nwdel 

train 

Figure 4. Unloading response of elastic damage, elastic plastic and elastic plastic damage models. 

The plastic model is governed by the following set of equations: 

de .. =d&~ +de? 
lj lj lj 

t eo e 
() ij = ij kl 8 kl 

de; = d2.mii (a', kJ 

dkh = d2.h(o-' ,kh) 

with the effective stress defined as 

(]' .. 
t lj () .. =---
1) (1- d) 

(26) 

(27) 
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where c, c and ~ are respectively the total, elastic and plastic strains, 'A the plastic multiplier 

and kh the hardening parameter ( 0 ~ kh ~ 1 ). m and h are the flow vectors defined by : 

8f 
m .. ==-­

lJ a t 
(J'ij 

2 8f 8f 

3 aa~ . aa~ 
h==------

fis the yield surface and t; a function of the stress (Etse and Willam, 1994). 

(28) 

(29) 

with f1 and 12 the effective stress invariant and e the Lode angle function of the second and 

third stress invariant and ranging from [ -n/6 ; n/6]. The evolution of the plastic multiplier is 
finally given by: 

(30) 

This local problem is solved with an iterative procedure associated to a closest point 
projection algorithm (see Perez-Foguet et al, 2000). Figure 5 shows the evolution of the yield 

surface with an increasing hardening parameter kh for simple compression 

p == K1 .[:/;,~ == K 21:, where K 1 and K2 are two positive constants). 

1 2 
k 1 • 0 lode _ P 1/6 
k o 1 loo Pile 

- -kh = 0.2 lod = Pile 

0 

o ~~~~~~~~~~~~~~ 

-3 -2.5 -2 '"1 .5 -0.5 0 0.5 

Figure 5. Plastic yield surface. Evolution with the hardening parameter for simple compression (Lode = 

n/6). 
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As the hardening parameter has a limited value of 1, once it has reached this critical level, 
hardening is not allowed any more and the yield surface becomes a failure one (constant 
effective stress). 

Figure 6 gives the axial stress - strain curve for a loading in tension. As the development 
of damage is predominant during simple tension tests, the damage and plastic-damage models 
are almost equivalent. 

0 0.0004 0 .0 6 
'xi ,I ra1n 

Figure 6. Stress strain curve for simple tension test. Elastic plastic damage formulation. 

Cyclic compression is a second elementary test. Experimental results are taken from (Sinha 
et al, 1964). Figure 7 illustrates the numerical response for simple damage law (without any 
plasticity). With this type of relation, a zero stress corresponds to a zero strain. 

-nJ 
a.. 
-; -1 .5 1 o? 
till 
Of 

(ij -2 10
7 

·2.5 107 

···$~--:~·:.:::1"~~~---······: 
I I 
I I 
' I 

: : ' • • • .. • .. -.-. -- .. - L- ----- - -- ........ •- "'• ••• • • •• ... •.., iftl.- r~,lfl·· "' · 

-Simulation (da.m.age) 
- _, -·EXperiment 

~3 1 07 
!.-....1.--L.-L----t....-....J....._-=-t.........,L----L..-J-.....L.._....J......_..L.-...JL........L.----J--l_.....&.......l..........l 

-0.01 ~ 0 . 008 -0.006 -0.004 -0.002 0 
Axial strai 11 

Figure 7. Cyclic compression test. Elastic damage simulation. 
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The numerical response of the elastic plastic damage model is given in figure 8. Damage 
simulates the global softening behaviour of concrete while the plastic part reproduces 
quantitatively the evolution of the irreversible strains. Experimental and numerical unloading 
slopes are thus similar, contrary to the simple damage formulation response. If this difference 
could seem negligible, it is in fact essential if a correct value of the damage needs to be 
captured. The elastic damage model overestimates d whereas the full plastic damage 
constitutive law provides more acceptable results. 

m 
~ -1.5 07 

(:ll 
UlJ 

E -2 1o7 
UJ -

s2 .. 5 107 

-3 1 o7· 1..-....1.---L..--L..-__,__-'---.J....__JL-....ii.---I..,~~-~-.L.....I---~.._._ ......... ....._...I-...J 

-0.01 -0.008 -0.006 -0.004 -0.002 0 

Axi1al strain 

Figure 8. Cyclic compression test. Elastic plastic damage formulation. 

Figure 9 and 10 illustrates the differences between the two approaches tn term of 

volumetric behaviors. 

-51 or' 

I 

I 
I ---- ·------·-··. ---·--· -- ·--

-2.5 107 

-3 10 
•s0.0017 

1 

i 

-0.0012751 -0.000851 -0.000425 

Volumetric strai1 n 

0 

Figure 9. Cyclic compression test. Volumetric behaviour for elastic damage model. 
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Figure 10. Cyclic compression test. Volumetric behaviour for the plastic damage model. 

While, with the simple damage law, the volumetric strains keep negative values, the 
introduction of plasticity exhibits a change in the volumetric response from contractant 
(negative volumetric strains) to dilatant, a phenomenon which is experimentally observed (see 
Sfer et al, 2002 for example). 

The introduction of plasticity associated with the development of damage plays thus a key 
role in the numerical simulation of a cyclic compression test. Moreover, the volumetric 
response, that was totally misevaluated by the elastic damage model, is correctly simulated 
with the full formulation. In figure 11, numerical results are compared with experiment for 
different levels of confinement pressures in triaxial experiments (P = 0, 1.5, 4.5, 9, 30 and 60 
MPa). Simulations and experiment give similar results. The peak position is quantitatively 
well reproduced (except for 1.5 MP a ). 

The global evolution is also correct: the maximum of the axial stress increases with the 
pressure and the softening part is less and less significant. When the initial hydrostatic 
pressure takes higher values, the damage part of the model plays a minor role and plasticity 
effect becomes predominant. 

3.3 Damage Induced Anisotropy 

Microcracking is usually geometrically oriented as a result of the loading history on the 
material. In tension, microcracks are perpendicular to the tensile stress direction, in 
compression microcracks open parallel to the compressive stress direction. Although a scalar 
damage model, which does not account for directionality of damage, might be a sufficient 
approximation in usual applications, i.e. when tensile failure is expected with a quasi-radial 
loading path, damage induced anisotropy is required for more complex loading histories. The 
influence of crack closure is needed in the case of alternated loads: microcracks may close and 
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the effect of damage on the material stiffness disappears. Finally, plastic strains need to be 

incorporated in the formulation when the material unloads in compression. The following 

section describes a constitutive relation based on elasto-plastic damage which addresses these 
issues (Fichant et al. 1999). 

0 

-2 Hi 

l!h 

Ui 
- 1 

-2 0 

-ali 
8 

I 
·1 

en 
·1.2 

(b) 

·0.01 ·0.005 IC::: 

A ial strain 

ia , · n 

Figure 11. Triaxial test with increasing confinement. Axial stress - strain curves for low hydrostatic 
pressures. Straight lines (black markers) correspond to simulation, dotted lines (white markers) to 
experiment (on top (a) 0 MPa, (b) 1.5 MPa, (c) 4.5 MPa, (d) 9 MPa). 

3.3.1 Principle 

The model is based on the approximation of the relationship between the overall stress (latter 

simply denoted as stress) and the effective stress in the material defined here by the equation: 

t CO e t CO ~,..,damaged )-l 
G'·· = ··k1c or G'·· = ··kl c a 

lJ lJ kl lJ lJ klmn mn 
(31) 

h t . h r~ . e . h 1 . . d c damaged . h w ere aiJ Is t e e 1ect1ve stress component, &kf Is t e e astlc strain, an iJkl IS t e 

stiffness of the damaged material. We define the relationship between the stress and the 

effective stress along a finite set of directions of unit vectors n at each material point: 
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3 2 

a= (1- d(n) )nial~n 1 , r = (1- d(n)) L (a~n 1 - (nkak,n,) nj) (32) 
i=l 

a and r are the normal and tangential components of the stress vector respectively. d(n) is a 
scalar valued quantity which introduces the effect of damage in each direction ii . 

The basis of the model is the numerical interpolation of d (n) (called damage surface) 
which is approximated by its knowledge over a finite set of directions. The stress is solution of 
the virtual work equation: 

find aij such that V & ~ 

4
; aijc~ = J([(I-d(n))n*a;,n 1n, +(1-d(n))(a~nj -n*a;,n,n,)] c~nJ dO 

s 

(33) 

Depending on the interpolation of the damage variable d (n), several forms of damage induced 
anisotropy can be obtained. Here, it is defined by three scalars in three mutually orthogonal 
directions. It is the simplest approximation that yields anisotropy of the damaged stiffness of 
the material. The material is orthotropic with a possibility of rotation of the principal axes of 
orthotropy. 

The stiffness degradation occurs mainly for tensile loads. Hence, the evolution of damage 
will be indexed on tensile strains. The evolution of damage is controlled by a loading surface 
f, which is similar to Eq. (6): 

(34) 

X is an hardening softening variable which is interpolated in the same fashion as the damage 
surface. The initial threshold of damage is &d • The evolution of the damage surface is defined 
by an evolution equation inspired from that of an isotropic model: 

if fl(n·) = 0 and n .• d&~n • > 0 
l lj J 

. [c) I+ a(n"c'n ·)) • • l . . 
dd(n) = ( • e l ·r~ J exp(-a.(nj 8:nj -&d) ni d&:nj 

then n. & .. n . 
l lj J 

dz(n·) = ni·d&:n
1

• 

else dd(n"') = 0, dz(n"') = 0 

(35) 

* The model parameters are &d and a. Note that the vectors ii are the three principal directions 
of the incremental strains whenever damage grows. After an incremental growth of damage, 
the new damage surface is the sum of two ellipsoidal surfaces: the one corresponding to the 
initial damage surface, and the ellipsoid corresponding to the incremental growth of damage. 
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the new damage surface is the sum of two ellipsoidal surfaces: the one corresponding to the 
initial damage surface, and the ellipsoid corresponding to the incremental growth of damage. 

3.3.2 Coupling with plasticity 

Same as for the isotropic model, we decompose the strain increment in an elastic and plastic 
one. The evolution of the plastic strain is controlled by a yield function which is expressed in 
term of the effective stress in the undamaged material. We have implemented in this 
anisotropic damage model the yield function due to Nadai (1950). It is the combination of two 
Drucker-Prager functions F} and F2 with the same hardening evolution: 

(36) 

where J~ and /~ are the second invariant of the deviatoric effective stress and the first 

invariant of the effective stress respectively. w is the hardening variable and ( Ai, Bi) are four 

parameters ( i = 1, 2) which were originally related to the ratios of the tensile strength to the 
compressive strength denoted y and of the biaxial compressive strength to the uniaxial 

strength denoted f3 : 

c.!..::..l c P-1 c r c f3 
Al=·•jL.I+y' A2=;22P-I' BI=2;2I+y' fh.=;22P-I (37) 

These two ratios are constant in the model: f3 = 1.16 and r = 0.4. The evolution of the plastic 

strains is associated to these surfaces. The hardening rule is given by: 

r 
w =qp +w0 (38) 

where q and r are model parameters, w0 defines the initial reversible domain in the stress 

space, and p is the effective plastic strain. 

3.3.3 Crack closure effects 

A decomposition of the stress tensor into a positive and negative part is introduced again: 
a =(a) + +(a)- , where < a> +, and < a > _ are the positive and negative parts of the stress 

tensor. The relationship between the stress and the effective stress defined in Eq. (31) of the 
model is modified: 

(39) 

de (n) is a new damage surface which describes the influence of damage on the response of 

the material in compression. Since this new variable refers to the same physical state of 
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degradation as in tension, de (n) is directly deduced from d(n ). It is defined by the same 
interpolation as d(n) and along each principal direction i, we have the relation: 

( l
a 

d. 1-8 .. d~ = I ( l 'l) , i E [ 1, 3] (38) 

a is a model parameter. The constitutive relations contain 6 parameters in addition to the 
Young's modulus of the material and the Poisson's ratio. Their determination benefits from the 
fact that in tension, plasticity is negligible. Once the evolution of damage in tension has been 
fitted, the remaining parameters are fitted from a compression test. Figure 12 shows a typical 
uniaxial compression-tension response of the model corresponding to a concrete with a tensile 
strength of 3 MP a and a compressive strength of 40 MP a. 

-s ~ 

L...S · 1! .. 

· 20 . 

- 25 , 

30 , L-----~----~----~------~----~----~ 

0 . 

Figure 12. Uniaxial tension-compression response of the anisotropic model (longitudinal ( 1 ), transverse 
(2) and volumetric (v) strains as functions of the compressive stress) 

3.4 Non Local Damage 

We turn now attention to structural computations with the isotropic damage model. It is well 
known that when strain softening is encountered (see. Fig. 3 for instance), some difficulties 
arts e. 

Physically, after microcracking has taken place in the first part of the inelastic behavior of 
concrete, a macroscopic mechanism develops in the form of a damage band. The strains tend 
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to localize in a specific area of finite dimension (macrocrack) but the model predicts this 

dimension to be zero, with a vanishing energy dissipation at failure. The stress response of a 

material point cannot be described locally but has also to consider its neighbourhood in order 

to take into account microcracks interaction (Askes, 2000). Mathematically (Benallal et a/, 

1993, Peerlings et a/, 1996 ), when a material point enters the softening regime, the type of the 

governing equations changes from elliptic to hyperbolic. The mathematical description 

becomes ill-posed since the initial and boundary conditions that are meaningful for the elliptic 

problem are usually not relevant for the hyperbolic part. Numerically, the local formulation of 

the problem yields a response which is dependant on the smoothness and the orientation of the 

mesh. Let us consider for example a bar with a variable section under tensile loading whose 

boundary conditions are given in figure 13. In the damage distribution in figure 14 (a), damage 

localises only in the most loaded element. If we consider the extreme case of an infinitely fine 

mesh, this geometrical localisation in a single element yields a fracture without energy 

dissipation. The local formulation thus exhibits a mesh dependency problem and a 

regularisation technique has to be added in order to achieve a mesh independent result and 

damage localisation over several finite elements (Fig. 14b ). 

Figure 13. Boundary conditions 

Figure 14. Damage distribution (a) local simulation (b) non local simulation. Clear zones correspond to 

damaged one. 

It is now established that non locality, in a gradient or integral format, is mandatory for a 

proper, consistent, modelling of fracture (see e.g. de Borst et al. 1993). It avoids the 

difficulties encountered upon material softening and strain localisation. Within a single 

approach, it encompasses both crack initiation (for which continuum models are very well 
fitted) and crack propagation (for which discrete fracture approaches have been developed). 

We shall describe in the following integral and gradient non local damage models. 
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3.4.1 Integral Model 

Consider for instance the scalar damage model in which evolution of damage is controlled by 
the equivalent strain i:~ introduced by Mazars. The :erinciple of nonlocal continuum models 
with local strains is to replace the equivalent strain & with its average (Pijaudier-Cabot and 
Bazant, 1987): 

-
1 f - f &(x) = lf/(s)c(s + x)ds with V,.(x) = lf/(s)ds 

Vr(x) 
n n 

(39) 

where n is the volume of the structure, V,.(x) is the representative volume at point x, and 
lf/(S) is the weight function, for instance: 

(40) 

le is the internal length of the non local continuum. 8 replaces the equivalent strain in the 
evolution of damage. In particular, the loading function becomes f(e,K) = &- K. As we will 

see in section 3.5, it should be noticed that this model is easy to implement in the context of 
explicit, total strain models. Its extension to plasticity and to implicit incremental relations is 
awkward. The local tangent stiffness operator relating incremental strains to incremental 
stresses becomes non symmetric, and more importantly its bandwidth can be very large due to 
non local interactions. This is one of the reasons why gradient damage models have become 
popular over the past few years. 

3.4.2 Gradient damage model 

A simple method to transform the above non local model to a gradient model is to expand the 
equivalent strain into Taylor series truncated for instance to the second order: 

- - oc(x) 0'2 &(x) s2 

&(x + s) = &(x) + a s + &2 2! + ..... (41) 

Substitution in Eq. (39) and integration with respect to variable s yields: 

- - 2 2-&(x) =&(x)+ c V &(x) (42) 

where c is a parameter which depends on the type of weight function in Eq. (39). Its 
dimension is m 

2 
and it can be regarded as the square of an internal length. Substitution of the 

new expression of the non local equivalent strain in the non local damage model presented 
above yields a gradient damage model. Computationally, this model is still delicate to 
implement because it requires higher continuity in the interpolation of the displacement field. 

19



This difficulty can be solved if an implicit format of the gradient damage model is used. Eq. 
( 42) is replaced with 

- 2 2- -c(x)-c V c(x)==c(x) (43) 

Here, the definition of the non local equivalent strain is implicit. It is the solution of a 
Fredholm equation. As shown by Peerlings et al. ( 1996), the implicit form is in fact an exact 
representation of the integral relation devised by Pijaudier-Cabot and Bazant ( 1987), provided 
a specific exponential weight function is used. 

3.4.3 Extension of the Gradient Approach 

In the anisotropic damage models described in section 3.3, the evolution of damage is 
directional. The evolution of damage is also directional in the microplane-based models and in 
the smeared crack models. The extension of the gradient damage model to anisotropy, or to 
any strain-based damage model, can be performed in a very systematic way (Godard, 2001, 
2003). The Fredholm equation is written for each strain component Enn : 

(44) 

Therefore, a non local (gradient type) strain tensor is computed within each iteration. It is from 
this tensor that an equivalent strain can be computed, or that directional damage growth can be 
devised depending on the type of damage model that is implemented. This extended form of a 
gradient model has been implemented in the general purpose finite element code 
"Code Aster" at EDF. 

···············•• ······ ··~ 
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640mm 

Figure 15. Bending beam. 
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3.5 Computer implementation of damage models 

Since the major effect of damage is a secant stiffness reduction when microcracking 
progresses, a non-linear computational procedure based on the secant material stiffness seems 

quite appropriate. This type of algorithm is also widely used when an integral non local 

damage model is implemented. The major reason is that the tangent stiffness operator (in the 

case of loading) is far from being straightforward because of non locality. 
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0 
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Figure 16. Comparison between two non local approaches for different values of the internal length 

parameter. 

Figure 17. Distribution of damage. Dark zones correspond to damaged one (D = I for black zones, 

O<D<l for grey zones and D = 0 for white zones) 

The integral relation due to the non local term is discretised according to the finite element 

mesh used for the analysis and an usual quadrature rule is employed for its evaluation. In finite 

element calculations, the weight function is chopped off: the weights that are less than 0.001 
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are set to zero. The actual volume of integration does not span over the entire volume of 1he 
solid and the calculation of the integrals requires less computer time and memory as the 
number of neighbouring integration points is reduced. It should be kept in mind, however, that 
the secant stiffness algorithm presents serious difficulties, mainly there is no proof of 
convergence of such an algorithm. In large scale finite element computations, a standard 
Newton-Raphson algorithm is highly preferable, as convergence is more robust. Such an 
algorithm relies on the derivation of the consistent tangent stiffness of the material response. 

The implementation of the scalar damage model, coupled to the gradient approach is 
different. The equilibrium equations and the Fredholm equations are solved as a coupled 
problem. The non local strain tensor can be discretised according to the same finite element 
grid as the displacements. For a better robustness, a standard Newton-Raphson algorithm is 
used with a consistent tangent operator that ensures quadratic convergence, if properly 
implemented. 

In order to illustrate results with the integral and gradient damage models, we consider the 
classical case of a three point bending beam containing a notch. Two different meshes are used 
(a COARse 890 element and a MEDium 1938 element). Figure 15 shows the beam geometry. 
Figure 16 presents the comparison between the non local integral and regularised approaches 
for the medium mesh (se is equal to the square root of c). Choosing the appropriate non local 
parameters, the two techniques are almost equivalent. Figure 1 7 presents the damage 
distribution in the half beam for the gradient model. One can see that it is mesh independent. 

3.6 Model calibration 

The calibration of the model parameters in the non local (integral or gradient) damage model 
is facing the difficulty of getting at the same time the parameters involved in the evolution of 
damage K 0 , A

1 
, B

1 
, and the internal length le . The first set is a point-wise piece of 

information while the influence of the internal length appears in a boundary value problem 
with non homogeneous strains (by definition, & = & ). It follows that it is not possible to 
calibrate the model parameters in the damage evolution law, without considering the 
computation of a complete boundary value problem up to failure. Hence the model parameter 
calibration has to rely on an inverse analysis technique. 

The model parameters are optimised so that computational results are as close as possible 
to the experimental results. The optimisation process used here is based on a Levenberg-

Marquardt algorithm, which performs the minimisation of the following functionnal 3(P): 

(45) 

where Rexpi is the experimental response for test i ( i E [1,3 ]), and Ri (P) is the numerical 

response corresponding to the vector of model parameters P . As we will see next, the 
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calibration cannot be performed on a single set of experimental data, e.g. three point bend 
experiments. One possibility is to perform the calibration from several experiments, and for 
instance size effect test data. 

3.6.1 Size effect tests 

Three point bend experiments have been carried out by Le Bellego et al. (2000) on notched 
geometrically similar specimens of various height D = 80, 160, and 320 mm, of length L = 4D, 
and of thickness b = 40 mm kept constant. The length-to-height ratio is LID = 4, the span-to­
height ratio is //D = 3, and the notch length is D/1 0 (Fig. 18). These are mortar specimens with 
a water-cement ratio of 0.4 and a cement-sand ratio 0.46 (all by weight). The maximal sand 
grain size is da = 3mm. Experimental and computational data will be also interpreted with the 
help of Bazant's size effect law, in one of its simplest form (Bazant and Planas, 1998). The 
nominal strength is obtained with the formula: 

3 Fl 
a-=-----

2 b(0.9D) 2 

where F is the peak load. The size effect law reads: 

30 

0 3 = 320 mm 
r-----~ 0 2 = 160 mm 
"-------~ 0 1 = 80 mm 

Figure 18. Geometry of the three point bend size effect tests 

(46) 

(47) 

D0 is a characteristic size, ;;' is the tensile strength of the material, and B is a geometry -

related parameter. 
Figure 19 shows the size effect law in a log-log plot. It can be seen that the nominal value 

of the material strength decreases as the size of the beam increases. This is typical of a damage 
process in which the process zone is size independent (controlled by the internal length) 
compared to the structure. For very small sizes, the process zone covers all the specimen and a 
material strength criterion is expected, while for infinitely large specimens the process zone 
size is negligible and Linear Elastic Fracture Mechanics should apply. 
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The calibration of the model parameters from inverse analysis relies first on an accurate 
finite element representation of each size of specimen. Experience shows that the accuracy of 
the finite element discretisation in the fracture process zone depends on the ratio of the size of 
the finite element to the internal length. Therefore, geometrically similar finite element meshes 
should not be used for the calibration. In order to avoid some possible mesh bias, the finite 
element size in the process zone should be kept constant and small enough compared to the 
internal length (at least one third of the internal length). Obviously, the internal length is not 
known a priori and this requirement is checked at the end of the calibration. 

1 

a/Btr 

1-- si~e effect law 

• , experim,ents 

0! 1 ~~..-1 ~~~.J.......II....J....L.JI...L.L..-.........__-l...........b......I.......I...__-~LJ,JI 
0!1 1 

D/[b 

10 

Figure 19. Experimental results of size effect in three point bend tests. 

The optimisation technique has to start from an initial set of model parameters obtained 
from a manual (trial and error) calibration. This manual process depends on the exact form of 
the constitutive relation. Therefore, it is difficult to devise a general technique. Still it can be 
carried out in a rather systematic way as follow: first the model parameters are fitted such that 
the load deflection curve of one size of specimen is correctly described (usually the medium 
size). As an initial guess, the internal length lies between 3d a and 5 d a, where d a is the 

maximum aggregate size of concrete according to Bazant and Pijaudier-Cabot (1989). The 
initial damage threshold and the parameters in the equation controlling the damage growth are 
varied only (in fact, the Young's modulus of the material could be obtained as well from the 
initial stiffness of the beam). Then, the internal length is adjusted, the other parameters being 
kept constant, so that the numerical responses for the three specimen sizes are as close as 
possible to the experimental results. This process requires many calculations, each trial 
iteration involves three finite element computations. Figure 20 shows such a fit obtained 
manually. 
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Figure 20. Manual fit of the damage parameters from size effect tests. 

Because there are experimental errors and because the above calibration process is based 
on a variation of the internal length which is disconnected to the variation of the other model 
parameters, there are several sets of model parameters which may provide an acceptable fit of 
the tests data. By acceptable, we mean that the numerical responses are as much as possible 
within the extreme curves due to experimental dispersion (or within an arbitrary distance from 
them). The difference between these sets ought to be magnified. For this purpose, the size 
effect method is quite useful (see Le Bellego et al. 2003). 
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Figure 21. Interpretation of quasi-identical fits on the size effect plot. 

Figure 21 shows how several fits obtained manually with different values of the internal 
length can be distinguished on the size effect plot. 
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Figure 22. Automatic calibration of the model parameters on the middle size experiment for different -

fixed- internal lengths. 

For each set of model parameters, the constants in the size effect law have been fitted and the 
plot on Fig. 21 has been constructed. It is clear on this figure that none of them are consistent 
with the experimental data. While the quality of the fit is quite hard to decide upon on load -
deflexion curves, it is much easier to examine it on the size effect plot. 
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Figure 22. Automatic calibration of the model parameters. The dotted lines are the model responses and 

the plain lines are, for each size, the minimum and maximum curves obtained from the experimental 

data. 
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In order to exemplify the lack of objectivity of the model calibration (i.e. the lack of 
uniqueness of the result) when a single size of beam is used as the experimental data set, Fig. 
22 shows the results of the automatic calibration on the middle size specimen. Three fixed 
different values of the internal length have been considered. For each one, the optimisation has 
been performed yielding different values of the damage parameters. The computed responses 
are the same, in good agreement with the experimental data. Bending of notched beams is 
quite often used for parameter identification because it is relatively easy to perform compared 
to tensile tests that are very sensitive to boundary conditions (Carmeliet, 1999). This figure 
shows that the model cannot be calibrated from inverse analysis of a single load deflexion 
curve. 

Figure 23 shows the result of the optimisation from the three sizes of specimens 
simultaneously. Compared to the manual fit in Fig. 20, the present set of model parameter 
provides computational results that are closer to the experiments. We tried to change the initial 
set of model parameter in order to investigate its stability. Overall, the final sets did not differ 
very much. The largest difference was found on the internal length, which lied between 40 mm 
and 50 mm. 

3.7 Closure 

Continuous damage mechanics is a theory which aims at describing the mechanical effect of 
cracking and void growth in an elastic material. Isotropic and anisotropic damage models have 
been presented in this chapter. There is a rather generic technique which permits a rational 
derivation of damage models, given a level of anisotropy which is defined a priori. In order to 
be more representative of the concrete mechanical response, damage must be coupled to 
plasticity. A simple, and classical, technique is to assume that the plastic part of the model is 
written in term of the effective stress. The same applies to the modelling of rock masses. 

Strain-softening, which is typical of concrete and rocks, induces spurious strain 
localisation. Integral or gradient damage model are solutions to circumvent this problem. A 
central issue is the calibration of the model parameters, and in particular the experimental 
determination of the internal length. This can be achieved from size effect test data with the 
help of inverse analysis of structural responses. It is important, however, to underline that a 
proper calibration cannot be achieved from the fit of a single experiment. Size effect 
experiments on geometrically similar specimens, or bending and pure tension tests are 
required. 
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