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1) INTRODUCTION

Let us consider a manifold X of dimension n with local coordinates x = (x i ) = (x 1 , ..., x n ), tangent bundle T , cotangent bundle T * , vector bundle S q T * of q-symmetric covariant tensors and vector bundle ∧ r T * of r-skewsymmetric covariant tensors or r-forms. The group of isometries y = f (x) of the non-degenerate metric ω with det(ω) = 0 on X is defined by the nonlinear first order system of general finite Lie equations in Lie form:

ω kl (f (x))∂ i f k (x)∂ j f l (x) = ω ij (x)
Linearizing at the identity transformation y = x, we may introduce the corresponding Killing operator T → S 2 T * : ξ → Dξ = L(ξ)ω = Ω, which involves the Lie derivative L and provides twice the so-called infinitesimal deformation tensor of continuum mechanics when ω is the Euclidean metric. We may consider the linear first order system of general infinitesimal Lie equations in Medolaghi form, also called system of Killing equations:

Ω ij ≡ (L(ξ)ω) ij ≡ ω rj (x)∂ i ξ r + ω ir (x)∂ j ξ r + ξ r ∂ r ω ij (x) = 0
which is in fact a family of systems only depending on the geometric object ω and its derivatives. Introducing the Christoffel symbols γ, we may differentiate once and add the operator L(ξ)γ = Γ ∈ S 2 T * ⊗ T with the well known Levi-Civita isomorphism j 1 (ω) = (ω, ∂ x ω) ≃ (ω, γ) in order to obtain the linear second order system of general infinitesimal Lie equations in Medolaghi form:

Γ k ij ≡ (L(ξ)γ) k ij ≡ ∂ ij ξ k + γ k rj (x)∂ i ξ r + γ k ir (x)∂ j ξ r -γ r ij (x)∂ r ξ k + ξ r ∂ r γ k ij (x) = 0
We have thus linearized a nonlinear differential algebraic system in order to obtain a linear system with coefficients in the differential field Q(ω, ∂ω, ...) along the idea of E. Vessiot [START_REF] Vessiot | Sur la Théorie des Groupes Infinis[END_REF]. This system is formally integrable if and only if ω has a constant Riemannian curvaure. Similarly, introducing the Jacobian determinant ∆(x) = det(∂ i f k (x)), the group of conformal transformations of the metric ω may be defined by the nonlinear first order system of general finite Lie equations in Lie form:

ωkl (f (x))∆ -2 n (x)∂ i f k (x)∂ j f l (x) = ωij (x)
while introducing the metric density ωij = | det(ω) | -1 n ω ij ⇒ det(ω) = ±1 as a new geometric object, rather than by eliminating a conformal factor as usual. The conformal Killing operator ξ → Dξ = L(ξ)ω = Ω may be defined by linearization as above and we obtain the first order system of general infinitesimal Lie equations in Medolaghi form, also called system of conformal Killing equations: Ωij ≡ ωrj (x)∂ i ξ r + ωir (x)∂ j ξ r -2 n ωij (x)∂ r ξ r + ξ r ∂ r ωij (x) = 0 as a system with coefficients in the differential field Q(ω, ∂ ω, ...). We may introduce the trace tr(Ω) = ω ij Ω ij with standard notations and obtain therefore tr(

Ω) = 0 because Ωij = | det(ω) | -1 n (Ω ij - 1 
n ω ij tr(Ω)). This system becomes formally interable if and only if the corresponding Weyl tensor vanishes.

The reader may look at [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF][START_REF] Northcott | An Introduction to Homological Algebra[END_REF][START_REF] Northcott | Lessons on Rings Modules and Multiplicities[END_REF][START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF] for finding examples of Lie groups or Lie pseudogroups of transformations along the approach initiated by E. Vessiot in 1903 [START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF].

In classical elasticity, the stress tensor density σ = (σ ij = σ ji ) existing inside an elastic body is a symmetric 2-tensor density introduced by A. Cauchy in 1822. Integrating by parts the implicit summation - 1 2 σ ij Ω ij , we obtain the Cauchy operator σ → ∂ r σ ir + γ i rs σ rs = f i . When ω is the euclidean metric, the corresponding Cauchy stress equations can be written as ∂ r σ ir = f i where the right member describes the local density of forces applied to the body, for example gravitation. With zero second member, we study the possibility to "parametrize " the system of PD equations ∂ r σ ir = 0, namely to express its general solution by means of a certain number of arbitrary functions or potentials, called stress functions. Of course, the problem is to know about the number of such functions and the order of the parametrizing operator. For n = 1, 2, 3 one may introduce the Euclidean metric ω = (ω ij = ω ji ) while, for n = 4, one may consider the Minkowski metric. A few definitions used thereafter will be provided later on.

When n = 2, the stress equations become ∂ 1 σ 11 + ∂ 2 σ 12 = 0, ∂ 1 σ 21 + ∂ 2 σ 22 = 0. Their second order parametrization σ 11 = ∂ 22 φ, σ 12 = σ 21 = -∂ 12 φ, σ 22 = ∂ 11 φ has been provided by George Biddell Airy (1801Airy ( -1892) ) in 1863 [START_REF] Adler | Über die Mach-Lippmannsche Analogie zum zweiten Hauptsatz[END_REF]. It can be simply recovered in the following manner:

∂ 1 σ 11 -∂ 2 (-σ 12 ) = 0 ⇒ ∃ϕ, σ 11 = ∂ 2 ϕ, σ 12 = -∂ 1 ϕ ∂ 2 σ 22 -∂ 1 (-σ 21 ) = 0 ⇒ ∃ψ, σ 22 = ∂ 1 ψ, σ 21 = -∂ 2 ψ σ 12 = σ 21 ⇒ ∂ 1 ϕ -∂ 2 ψ = 0 ⇒ ∃φ, ϕ = ∂ 2 φ, ψ = ∂ 1 φ
We get the linear second order system:

   σ 11 ≡ ∂ 22 φ = 0 -σ 12 ≡ ∂ 12 φ = 0 σ 22 ≡ ∂ 11 φ = 0 1 2 1 • 1 •
which is involutive with one equation of class 2, 2 equations of class 1 and it is easy to check that the 2 corresponding first order CC are just the stress equations.

When constructing a long prismatic dam with concrete as in [START_REF] Chyzak | OreModules: A symbolic package for the study of multidimensional linear systems[END_REF][START_REF] Cosserat | Théorie des Corps Déformables[END_REF] or in the Introduction of [START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF], we may transform a problem of 3-dimensional elasticity into a problem of 2-dimensional elasticity by supposing that the axis x 3 of the dam is perpendicular to the river with Ω ij (x 1 , x 2 ), ∀i, j = 1, 2 and Ω 33 = 0 because of the rocky banks of the river are supposed to be fixed. We may introduce the two Lamé constants (λ, µ) and the Poisson coefficient ν = λ/2(λ + µ) in order to describe the usual constitutive relations of an homogeneous isotropic medium as follows (care: n = 3 ⇒ n = 2): 

←-3

Airy

←-1

Taking into account the formula (5.1.4) of [START_REF] Foster | A Short Course in General relativity[END_REF] for the linearization of the only component of the Riemann tensor at ω when n = 2 and substituting the Airy parametrization, we obtain: It remains to exhibit an arbitrary homogeneous polynomial solution of degree 3 and to determine its 4 coefficients by the boundary pressure conditions on the upstream and downstream walls of the dam. Of course, the Airy potential φ has nothing to do with the perturbation Ω of the metric ω and the Airy parametrization is nothing else but the formal adjoint of the Riemann operator, linearization of the Riemann tensor at ω, expressing the second order compatibility conditions (CC) of the inhomogeneous system Dξ = Ω. Also, as we discover at once, the origin of elastic waves is shifted by one step backwards, from the right square to the left square of the diagram. Indeed, using inertial forces f = ρ ∂ 2 ξ/∂t 2 for a medium with mass ρ per unit volume in the right member of Cauchy stress equations because of Newton law, we discover the existence of two types of elastic waves, namely the longitudinal and transversal waves with different speeds v T < v L that are really existing because they are responsible for earthquakes [START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF]:

   ∇. ξ = 0 ⇒ µ△ ξ = f ⇒ v T = µ ρ ∇ ∧ ξ = 0 ⇒ (λ + 2µ)△ ξ = f ⇒ v L = λ+2µ ρ
It is this comment that pushed the author to use the formal adjoint of an operator, knowing already that an operator and its (formal) adjoint have the same differential rank. In the case of the conformal Killing operator, the second order CC are generated by the Weyl operator, linearization of the Weyl tensor at ω when n ≥ 4. The particular situation n = 3 will be studied and its corresponding 5 third order CC are not known after one century [START_REF] Pommaret | Partial Differential Control Theory[END_REF]. Finally, the Bianchi operator describing the CC of the Riemann operator does not appear in this scheme.

Summarizing what we have just said, the study of elastic waves in continuum mechanics only depends on group theory because it has only to do with one differential sequence and its formal adjoint, combined together by means of constitutive relations. We have proved in many books [33,34,] and in [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | François Cosserat and the Secret of the Mathematical Theory of Elasticity[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF] that the situation is similar for Maxwell equations, a result leading therefore to revisit the mathematical foundations of both General Relativity (GR) and Electromagnetism (EM), thus also of Gauge Theory (GT).

The first motivation for studying the methods used in this paper has been a 1000$ challenge proposed in 1970 by J. Wheeler in the physics department of Princeton University while the author of this paper was a student of D.C. Spencer in the closeby mathematics department:

Is it possible to express the generic solutions of Einstein equations in vacuum by means of the derivatives of a certain number of arbitrary functions like the potentials for Maxwell equations ?.

During the next 25 years and though surprising it may look like, no progress has been made towards any solution and we found the negative solution of this challenge in 1995 [START_REF] Oberst | The Computation of Purity Filtrations over Commutative Noetherian Rings of Operators and their Applications to Behaviours[END_REF]. Then, being already in contact with M.P. Malliavin as I gave a seminar on the "Deformation Theory of Algebraic and Geometric Structures " [START_REF] Lippmann | Extension du Principe de S. Carnot à la Théorie des Pénomènes électriques[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF], I presented in 1995 a seminar at IHP in Paris, proving the impossibility to parametrize Einstein equations, a result I just found. One of the participants called my attention on a recently published translation from japanese of the 1970 master thesis of M. Kashiwara that he just saw on display in the library of the Institute [START_REF] Kolchin | Differential Algebra and Algebraic groups[END_REF]. This has been the true starting of the story because I discovered that the duality involved in the preceding approach to physics was only a particular example of a much more sophisticated framework having to do with homological algebra [START_REF] Airy | On the Strains in the Interior of Beams[END_REF][START_REF] Bjork | Analytic D-Modules and Applications[END_REF][START_REF] Mach | Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF].

Let us explain this point of view by means of an elementary example. With

∂ 22 ξ = η 2 , ∂ 12 ξ = η 1 for D, we get ∂ 1 η 2 -∂ 2 η 1 = ζ for the CC D 1 . Then ad(D 1 ) is defined by µ 2 = -∂ 1 λ, µ 1 = ∂ 2 λ while ad(D) is defined by ν = ∂ 12 µ 1 + ∂ 22 µ 2 but the CC of ad(D 1 ) are generated by ν ′ = ∂ 1 µ 1 + ∂ 2 µ 2 .
Using operators, we have the two differential sequences:

ξ D -→ η D1 -→ ζ ν ad(D) ←-µ ad(D1) ←-λ ւ ν ′
where D 1 generates the CC of D in the upper sequence but ad(D) does not generate the CC of ad(D 1 ) in the lower sequence, even though D 1 • D = 0 ⇒ ad(D) • ad(D 1 ) = 0, contrary to what happened in the previous diagram. We shall see that this comment brings the need to introduce the first extension module ext 1 (M ) of the differential module M determined by D.

In the meantime, following U. Oberst [START_REF] Mach | Prinzipien der Wärmelehre[END_REF][START_REF] Maxwell | On Reciprocal Figures, Frames and Diagrams of Forces[END_REF], a few persons were trying to adapt these methods to control theory and, thanks to J.L. Lions, I have been able to advertise about this new approach in a european course, held with succes during 6 years [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF] and continued for 5 other years in a slightly different form [START_REF] Poincaré | Sur une Forme Nouvelle des Equations de la Mécanique[END_REF]. By chance I met A. Quadrat, a good PhD student interested by control and computer algebra and we have been staying alone because the specialists of Algebraic Analysis were pure mathematicians, not interested at all by applications. As a byproduct, it is rather strange to discover that the impossibility to parametrize Einstein equations, that we shall prove in Section 4, has never been acknowledged by physicists but can be found in a book on control because it is now known that a control system is controllable if and only if it is parametrizable [START_REF] Poincaré | Sur une Forme Nouvelle des Equations de la Mécanique[END_REF][START_REF] Pommaret | Localization and Parametrization of Linear Multidimensional Control Systems[END_REF].

The following example of a double pendulum will prove that this result, still not acknowledged today by engineers, is not evident at all. For this, let us consider two pendula of respective length l 1 and l 2 attached at the ends of a rigid bar sliding horizontally with a reference position x(t). If the pendula move with a respective (small) angle θ 1 (t) and θ 2 (t) with respect to the vertical, it is easy to prove from the Newton principle that the equations of the movements does not depend on the respective masses m 1 and m 2 of the pendula but only depend on the respective lengths and gravity g along the two formulas:

d 2 x + l 1 d 2 θ 1 + gθ 1 = 0, d 2 x + l 2 d 2 θ 2 + gθ 2 = 0
where d = d t is the standard time derivative. It is experimentally visible and any reader can check it with a few dollars, that the system is controllable, that is the angles can reach any prescribed (small) values in a finite time when starting from equilibrium, if and only if l 1 = l 2 and, in this case, we have the following (injective) 4 th order parametrization:

-l 1 l 2 d 4 φ -g(l 1 + 2 )d 2 φ -g 2 φ = x, l 2 d 4 φ + gd 2 φ = θ 1 , l 1 d 4 φ + gd 2 φ = θ 2
0f course, if l 1 = l 2 = l, the system cannot be controllable because, setting θ = θ 1 -θ 2 , we obtain by substraction ld 2 θ + gθ = 0 and thus θ(0) = 0, dθ(0) = 0 ⇒ θ(t) = 0.

We end this Introduction explaining on a simple example why the second extension module ext 2 (M ) must also be considered, especially in the study of Einstein equations, though surprising it may look like. To make a comparison, let us consider the following well known Poincaré sequence:

∧ 0 T * d -→ ∧ 1 T * d -→ ∧ 2 T * d -→ ... d -→ ∧ n-1 T * d -→ ∧ n T * → 0
where d : ω = ω I dx I → ∂ i ω I dx i ∧ dx I is the exterior derivative. When n = 3, we have:

∧ 0 T * d -→ ∧ 1 T * d -→ ∧ 2 T * d -→ ∧ 3 T * → 0 ⇔ φ grad -→ ξ curl -→ η div -→ ζ → 0 0 ← ∧ 3 T * ad(d) ←-∧ 2 T * ad(d) ←-∧ 1 T * ad(d) ←-∧ 0 T * ⇔ 0 ← θ div ←-ν curl ←-µ grad ←-λ
From their definition it follows that div is parametrized by curl while curl is parametrized by grad. Also, in local coordinates, we have ad(div) = -grad, ad(curl) = curl, ad(grad) = -div and the adjoint sequence is also the Poincaré sequence up to the sign. Let us nevertheless consider the new (minimal) parametrization of div obtained by setting ξ 3 = 0, namely [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF][START_REF] Pommaret | Arnold's Hydrodynamics Revisited[END_REF]:

d 2 ξ 3 -d 3 ξ 2 = η 1 , d 3 ξ 1 -d 1 ξ 3 = η 2 , d 1 ξ 2 -d 2 ξ 1 = η 3 ⇒ -d 3 ξ 2 = η 1 , d 3 ξ 1 = η 2 , d 1 ξ 2 -d 2 ξ 1 = η 3
If we define the differential rank of an operator by the maximum number of differentially independent second member, this is clearly an involutive differential operator with differential rank equal to 2 because (ξ 1 , ξ 2 ) can be given arbitrarily and thus (η 1 , η 2 ) can be given arbitrarily or, equivalently, because the differential rank of div is of course equal to 1 as div has no CC. Now, the involutive system d 3 ξ 2 = 0, d 3 ξ 1 = 0, d 1 ξ 2 -d 2 ξ 1 = 0 canot be parametrized by one arbitrary function because both ξ 1 and ξ 2 are autonomous in the sense that they both satisfy to at least one partial differential equation (PDE). Accordingly, we discover that div can be parametrized by the curl through 3 arbitrary functions (ξ 1 , ξ 2 , ξ 3 ) where ξ 3 may be given arbitrarily, the curl being itself parametrized by the grad, but div can also be parametrized by another operator with less arbitrary functions or potentials which, in turn, cannot be parametrized again. Such a situation is similar to the one met in hunting rifles that may have one, two or more trigger mechanisms that can be used successively. It happens that the possibility to have one parametrization of div is an intrinsic property described by the vanishing of ext 1 (M ) where the differential module M is determined by grad while the property to have two successive parametrizations is an intrinsic property described by the vanishing of ext 1 (M ) as we just said plus the vanishing of ext 2 (M ), and so on. It follows that certain parametrizations are " better " than others and no student should even imagine the minimal parametrization of div that we have presented above. A similar procedure has been adopted by J.C. Maxwell [START_REF] Lippmann | Über die Analogie zwischen Absoluter Temperatur un Elektrischem Potential[END_REF] and G. Morera [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF] when they modified the parametrization of the Cauchy stress equations obtained by E. Beltrami in 1892 (See [START_REF] Arnold | Méthodes Mathématiques de la Mécanique Classique, Appendice 2 (Géodésiques des métriques invariantes à gauche sur des groupes de Lie et hydrodynamique des fluides parfaits)[END_REF][START_REF] De Broglie | Thermodynamique de la Particule isolée[END_REF][START_REF] Choquet-Bruhat | Introduction to General Relativity, Black Holes and Cosmology[END_REF][START_REF] Pommaret | Group Interpretation of Coupling Phenomena[END_REF][START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF][START_REF] Pommaret | Macaulay Inverse Systems revisited[END_REF] for more details).

We now treat the case dim(X) = 3 as the case dim(X) = n = 2p + 1 ≥ 5 will need much more work (See [START_REF] Pommaret | Differential Galois Theory[END_REF] for more details). Let us introduce the so-called contact 1-form α = dx 1 -x 3 dx 2 and consider the Lie pseudogroup Γ ⊂ aut(X) of (local) transformations preserving α up to a function factor, that is Γ = {f ∈ aut(X)|j 1 (f ) -1 (α) = ρα} where again j q (f ) is a symbolic way for writing out the derivatives of f up to order q and α transforms like a 1-covariant tensor. It may be tempting to look for a kind of "object " the invariance of which should characterize Γ. Introducing the exterior derivative dα = dx 2 ∧ dx 3 as a 2-form, we obtain the volume 3-form α ∧ dα = dx 1 ∧ dx 2 ∧ dx 3 . As it is well known that the exterior derivative commutes with any diffeomorphism, we obtain sucessively:

j 1 (f ) -1 (dα) = d(j 1 (f ) -1 (α)) = d(ρα) = ρdα + dρ ∧ α ⇒ j 1 (f ) -1 (α ∧ dα) = ρ 2 (α ∧ dα)
As the volume 3-form α ∧ dα transforms through a division by the Jacobian determinant ∆ = ∂(f 1 , f 2 , f 3 )/∂(x 1 , x 2 , x 3 ) = 0 of the transformation y = f (x) with inverse x = f -1 (y) = g(y), the desired object is thus no longer a 1-form but a 1-form density ω = (ω 1 , ω 2 , ω 3 ) transforming like a 1-form but up to a division by the square root of the Jacobian determinant. We obtain the nonlinear differential algebraic system of general finite Lie equations in Lie form:

ω k (y)( ∂(y 1 , ..., y n ) ∂(x 1 , ..., x n ) ) -1 2 y k i = ω i (x)
It follows that the infinitesimal contact transformations are vector fields ξ ∈ T = T (X) the tangent bundle of X, satisfying the 3 so-called first order system of general infinitesimal Lie equations in Medolaghi form:

Ω i ≡ (L(ξ)ω) i ≡ ω r (x)∂ i ξ r -(1/2)ω i (x)∂ r ξ r + ξ r ∂ r ω i (x) = 0
When ω = (1, -x 3 , 0), we obtain the special involutive system (See below for details):

∂ 3 ξ 3 + ∂ 2 ξ 2 + 2x 3 ∂ 1 ξ 2 -∂ 1 ξ 1 = 0, ∂ 3 ξ 1 -x 3 ∂ 3 ξ 2 = 0, ∂ 2 ξ 1 -x 3 ∂ 2 ξ 2 + x 3 ∂ 1 ξ 1 -(x 3 ) 2 ∂ 1 ξ 2 -ξ 3 = 0
with 2 equations of class 3 and 1 equation of class 2, a result leading thus to only 1 compatibility conditions (CC) for the second members. Equivalently, we have the system:

   Ω 3 ≡ ξ 1 3 -x 3 ξ 2 3 = 0 Ω 2 ≡ ξ 1 2 -x 3 ξ 2 2 + 1 2 x 3 (ξ 1 1 + ξ 2 2 + ξ 3 3 ) -ξ 3 = 0 Ω 1 ≡ ξ 1 1 -x 3 ξ 2 1 -1 2 (ξ 1 1 + ξ 2 2 + ξ 3 
3 ) = 0 For an arbitrary ω, we may ask about the differential conditions on ω such that all the equations of order r + 1 are only obtained by differentiating r times the first order equations, exactly like in the special situation just considered where the system is involutive. We notice that, in a symbolic way, ω ∧ dω is now a scalar c(x) providing the zero order equation ξ r ∂ r c(x) = 0 and the condition is c(x) = c = cst. The integrability condition (IC) is the Vessiot structure equation:

I(j 1 (ω)) ≡ ω 1 (∂ 2 ω 3 -∂ 3 ω 2 ) + ω 2 (∂ 3 ω 1 -∂ 1 ω 3 ) + ω 3 (∂ 1 ω 2 -∂ 2 ω 1 ) = c
involving the only structure constant c like the Riemannian structure. For ω = (1, -x 3 , 0), we get c = 1. If we choose ω = (1, 0, 0) leading to c = 0, we may define Γ = {f ∈ aut(X)|j 1 (f ) -1 (ω) = ω} with infinitesimal transformations satisfying the involutive system:

∂ 3 ξ 3 + ∂ 2 ξ 2 -∂ 1 ξ 1 = 0, ∂ 3 ξ 1 = 0, ∂ 2 ξ 1 = 0
with again 2 equations of class 3 and 1 equation of class 2. The equivalence problem j 1 (f ) -1 (ω) = ω cannot be solved even locally because this system cannot have any invertible solution. Indeed, studying the system j 1 (g) -1 (ω) = ω, we have to solve:

∂g 1 ∂y 2 + y 3 ∂g 1 ∂y 1 = 0, ∂g 1 ∂y 3 = 0 ⇒ ∂g 1 ∂y 1 = 0, ∂g 1 ∂y 2 = 0,
∂g 1 ∂y 3 = 0 by using crossed derivatives.

Using now the definition of contact transformations, we have the three equations:

(L(ξ)α) i ≡ α r ∂ i ξ r + ξ r ∂ r α i = ρ(x)α i
Eliminating the arbitrary factor ρ(x), we obtain the two linearly independent infinitesimal Lie equations:

   α 2 α r ∂ 3 ξ r -α 3 α r ∂ 2 ξ r + (α 2 ∂ r α 3 -α 3 ∂ r α 2 )ξ r = 0 α 3 α r ∂ 1 ξ r -α 1 α r ∂ 3 ξ r + (α 3 ∂ r α 1 -α 1 ∂ r α 3 )ξ r = 0
which are nevertheless not in the Medolaghi form because the 1-form α is not a geometric object.

Multiplying on the left the first equation by the test function λ 1 and the second by the test function λ 2 and integrating by part, we obtain for example, separating the terms involving only λ 1 from the terms involving only λ 2 :

   ξ 1 → -∂ 3 (α 1 α 2 λ 1 ) + ∂ 2 (α 1 α 3 λ 1 ) + (α 2 ∂ 1 α 3 -α 3 ∂ 1 α 2 )λ 1 ξ 2 → ... ξ 3 → -∂ 3 (α 2 α 3 λ 1 ) + ∂ 2 ((α 3 ) 2 λ 1 ) + (α 2 ∂ 3 α 3 -α 3 ∂ 3 α 2 )λ 1
and:

   ξ 1 → -∂ 1 (α 1 α 3 λ 2 ) + ∂ 3 ((α 1 ) 2 λ 2 ) + (α 3 ∂ 1 α 1 -α 1 ∂ 1 α 3 )λ 2 ξ 2 → ... ξ 3 → -∂ 1 ((α 3 ) 2 λ 2 ) + ∂ 3 (α 1 α 3 λ 2 ) + (α 3 ∂ 3 α 1 -α 1 ∂ 3 α 3 )λ 2
that we may rewrite respectively as:

   -(α 1 α 2 )∂ 3 λ 1 + (α 1 α 3 )∂ 2 λ 1 -(α 1 (∂ 2 α 3 -∂ 3 α 2 ) -α 2 (∂ 3 α 1 -∂ 1 α 3 ) -α 3 (∂ 1 α 2 -∂ 2 α 1 ))λ 1 ... -(α 2 α 3 )∂ 3 λ 1 + (α 3 ) 2 ∂ 2 λ 1 + 2α 3 (∂ 2 α 3 -∂ 3 α 2 )λ 1 and:    -(α 1 α 3 )∂ 1 λ 2 + (α 1 ) 2 ∂ 3 λ 2 + 2α 1 (∂ 3 α 1 -∂ 1 α 3 )λ 2 ... -(α 3 ) 2 ∂ 1 λ 2 + (α 1 α 3 )∂ 3 λ 2 + 2α 3 (∂ 3 α 1 -∂ 1 α 3 )λ 2
Multiplying each first row on the left by -α 3 , then each third row on the left by α 1 in order to eliminate the derivatives of λ, adding and collecting the results, we discover that λ 2 strikingly disappears and we only obtain for the kernel of the adjoint operator:

α 3 [α 1 (∂ 2 α 3 -∂ 3 α 2 ) + α 2 (∂ 3 α 1 -∂ 1 α 3 ) + α 3 (∂ 1 α 2 -∂ 2 α 1 )]λ 1 = 0 that is α 3 I(j 1 (α))λ 1 =0
and all the possible permutations. As α = 0, then one at least of the three components must not vanish and may even be supposed to be equal to 1 because α is defined uo to a function factor. We get therefore I(j 1 (α))λ = 0, that is cλ = 0 whenever the system is formally integrable. We let the reader treat directly the standard case with α 3 = 0 (care):

α = dx 1 -x 3 dx 2 ⇒ ∂ 3 ξ 1 -x 3 ∂ 3 ξ 2 = 0, ∂ 2 ξ 1 -x 3 ∂ 2 ξ 2 + x 3 (∂ 1 ξ 1 -x 3 ∂ 1 ξ 2 )-ξ 3 = 0 ⇒ c = 1 ⇒ λ = 0
Though it is rather surprising at first sight, let us now explain why we shall need non trivial homological algebra in order to understand the previous results. Indeed, the last system R 1 is neither formally integrable nor involutive, even though it has an involutive symbol g 1 defined by:

ξ 1 3 -x 3 ξ 2 3 = 0, ξ 1 2 -x 3 ξ 2 2 + x 3 ξ 1 1 -(x 3 ) 2 ξ 2 1 = 0
It is now easy to check that the system R

1 ⊂ J 1 (T ) defined by the 3 PD equations:

   Φ 3 ≡ ξ 3 3 + ξ 2 2 + 2x 3 ξ 2 1 -ξ 1 1 = 0 Φ 2 ≡ ξ 1 3 -x 3 ξ 2 3 = 0 Φ 1 ≡ ξ 1 2 -x 3 ξ 2 2 + x 3 ξ 1 1 -(x 3 ) 2 ξ 2 1 -ξ 3 = 0 1 2 3 1 2 3 1 2 •
is involutive with 2 equations of class 3 and 1 equation of class 2. Taking into account the relations

Φ 1 = Ω 2 + x 3 Ω 1 , Φ 2 = Ω 3 , Φ 3 = -2Ω
1 and substituting, we obtain the only first order CC:

d 3 Φ 1 -d 2 Φ 2 -x 3 d 1 Φ 2 + Φ 3 = 0 ⇔ (d 2 Ω 3 -d 3 Ω 2 ) -x 3 (d 3 Ω 1 -d 1 Ω 3 ) + Ω 1 = 0
and we recognize the linearization of the Vessiot structure equation, following exactly the same procedure as the one used previously for the linearization of the constant Riemannian curvature. However, in this new framework, we shall now prove and illustrate the following Lemma and striking Theorem (See next Sections for the definitions):

LEMMA 1.1: A (formally) surjective linear differential operator D defined over a differential field K is defining a projective and thus torsion-free differential module M if and only if its (formal) adjoint is (formally) injective.

Proof: In this specific situation, let us consider the finite free presentation over D = K[d]:

0 → F 1 D -→ F 0 p -→ M → 0
If M is projective, then it is well known that that such a sequence splits (See [START_REF] Airy | On the Strains in the Interior of Beams[END_REF][START_REF] Bjork | Analytic D-Modules and Applications[END_REF][START_REF] Hu | Introduction to Homological Algebra[END_REF][START_REF] Mach | Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF] for more details or [START_REF] Kunz | Introduction to Commutative Algebra and Algebraic Geometry[END_REF], Lemma 3.3, p 212). Then, applying hom D (•, D) we get again the new splitting sequence:

0 ← F 1 * D * ←-F 0 * p * ←-M * ← 0
and obtain ker(ad(D)) = 0 in the operator sense or rather coker(D * ) = 0 in the module sense. Conversely,we have already exhibited the long exact dual sequence:

0 ← N ← F 1 * D * ←-F 0 * p * ←-M * ← 0
Accordingly, if N = 0, as the dual F * of a free differential module F is again a free differential module, thus a projective module, this sequence splits and M * is thus a projective module. Applying again hom D (•, D), we have the commutative and exact diagram:

0 → F 1 D -→ F 0 p -→ M → 0 ↓ ↓ ↓ 0 → F 1 * * D * * -→ F 0 * * p * * -→ M * * → 0
Using the isomorphism F ≃ F * * when F has finite rank over D, we obtain an isomorphism

M ≃ M * * . As M * is projective because F * 0 ≃ F * 1 ⊕ M * , then M * * is also projective and thus M is projective. Q.E.D.

EXAMPLE 1.2:

In the preceding contact situation, the system R 1 is defined by 2 equations only while the system R

(1) 1

is defined by 3 equations that we have provided. Accordingly, with

K = Q(x 1 , x 2 , x 3 ) and D = K[d] = K[d 1 , d 2 , d 3 ]
, we obtain the free presentation 0 → D 2 → D 3 → M → 0 and we have seen that c = 0 ⇒ λ = 0. The parametrization:

ξ 1 = φ -x 3 ∂ 3 φ, ξ 2 = -∂ 3 φ, ξ 3 = ∂ 2 φ + x 3 ∂ 1 φ ⇒ φ = α(ξ) ⇒ L(ξ)α = ∂ 1 φ α
by means of an arbitrary function φ is well known and proves that M ≃ D. On the contrary, if we choose ω = (1, 0, 0), then the system of special Medolaghi equations that we have exhibited shows that ξ 1 is a torsion element and this system cannot be parametrized.

THEOREM 1.3:

The possibility to parametrize the system of general Medolaghi equations only depends on the structure constant c.

Proof: For any geometric object ω of order q and the corresponding system R q (ω) of general Medolaghi equations, let us now define an equivalence relation ω ∼ ω ⇔ R q (ω) = R q (ω). In the contact situation, we have first to study when we have ωr ξ r i -1 2 ωi ξ r r = 0 ⇔ ω r ξ r i -1 2 ω i ξ r r . Though it looks like to be a simple algebraic problem, one needs an explicit computation or computer algebra and we prefer to use another more powerful technique ( [START_REF] Pommaret | Differential Galois Theory[END_REF], p 688). Introducing the completely skewsymmetrical symbol ǫ = (ǫ i1i2i3 ) where ǫ i1i2i3 = 1 if (i 1 i 2 i 3 ) is an even permutation of (123) or -1 if it is an odd permutation and 0 otherwise, let us introduce the skewsymmetrical 2-contravariant density ω ij = ǫ ijk ω k . Then one can rewrite the system of general infinitesimal Lie equations R 1 (ω) as :

-ω rj (x)ξ i r -ω ir (x)ξ j r - 1 2 ω ij (x)ξ r r + ξ r ∂ r ω ij (x) = 0
and we may exhibit a section ξ i r = ω is A rs with A rs = A sr and thus ξ r r = 0. It is important to notice that det(ω) = 0 when n = 2p + 1, contrary to the Riemann or symplectic case and ω cannot therefore be used in order to raise or lower indices. As we must have R0

1 = R 0 1 where the isotropy R 0 1 is defined by the short exact sequence 0 → R 0 1 → R 1 π 1 0
→ T → 0, the same section must satisfy (ω rj ω is + ωir ω js )A rs = 0, ∀A rs = A sr , and we must have (ω rj ω is + ωir ω js )+(ω sj ω ir + ωis ω jr ) = 0. Setting s = j, we get ωrj

ω ij = ωij ω rj ⇒ ωij (x) = a(x)ω ij (x).
Substituting and substracting, we get ω ij (x)ξ r ∂ r a(x) = 0 ⇒ a(x) = a = cst = 0 because ω = 0 and one of the components at least must be nonzero. Accordingly, the normalizer

N (Θ) = {ξ ∈ T | L(ξ)ω = Aω, Ac = 0} and Θ is of codimension 1 in its normalizer if c = 0 or N (Θ) = Θ if c = 0.
For example, in the case of a contact structure with c = 1, we have N (Θ) = Θ but, when ω = (1, 0, 0) ⇒ c = 0, we have to eliminate the constant A among the equations

∂ 3 ξ 3 + ∂ 2 ξ 2 -∂ 1 ξ 1 = -2A, ∂ 3 ξ 1 = 0, ∂ 2 ξ 1 = 0
and we may add the infinitesimal generator x i ∂ i of a dilatation providing A = -1 2 . As we have already seen, the parametrization is only existing for c = 0. This is an "open property " because ω = aω, a = cst ⇒ c = a 2 c and thus any nonzero value of c can be reached because a = 0.

Q.E.D.

However, no one of the previous results can be extended to an arbitrary n = 2p + 1 ≥ 5.

It is clear from the beginning of this Introduction that an isometry is a solution of a nonlinear system in Lie form [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF][START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF] and that we have linearized this system at the identity transformation in order to study elastic waves. However, in general, no explicit solution may be known but most nonlinear systems of OD or PD equations of mathematical physics (constant riemannian curvature is a good example in [START_REF] Eisenhart | Riemannian Geometry[END_REF]) are defined by differential polynomials. This is particularly clear for riemannian, conformal, complex, contact, symplectic or unimodular structures on manifolds [START_REF] Pommaret | Partial Differential Control Theory[END_REF]. Hence, in Section 2 we shall provide the main results that exist in the formal theory of systems of nonlinear PD equations in order to construct a formal linearization. The proof of many results is quite difficult as it involves delicate chases in 3-dimensional diagrams [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF][START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF]. In physics, the linear system obtained may have coefficients in a certain differential field and we shall need to revisit differential algebra in Section 3 because Spencer and Kolchin never clearly understood that their respective works could be combined. It will follow that the linear systems will have coefficients in a differential field K and we shall have to introduce the ring

D = K[d] = K[d 1 , ..., d n ]
of differential operators with coefficients in K, which is even an integral domain. This fact will be particularly useful in order to revisit differential duality in Section 4 before applying it to the study of conformal structures in Section 5, caring separately about the cases n = 3, n = 4 and n ≥ 5, then to contact structures in Section 6, caring also separately about the cases n = 3 and n ≥ 5, finally concluding in the last Section 7.

2) DIFFERENTIAL GEOMETRY

If X is a manifold with local coordinates (x i ) for i = 1, ..., n = dim(X), let E be a fibered manifold over X with dim X (E) = m, that is a manifold with local coordinates (x i , y k ) for i = 1, ..., n and k = 1, ..., m simply denoted by (x, y), projection π : E → X : (x, y) → (x) and changes of local coordinates x = ϕ(x), ȳ = ψ(x, y). If E and F are two fibered manifolds over X with respective local coordinates (x, y) and (x, z), we denote by E× X F the fibered product of E and F over X as the new fibered manifold over X with local coordinates (x, y, z). We denote by f : X → E : (x) → (x, y = f (x)) a global section of E, that is a map such that π • f = id X but local sections over an open set U ⊂ X may also be considered when needed. Under a change of coordinates, a section transforms like f (ϕ(x)) = ψ(x, f (x)) and the derivatives transform like:

∂ f l ∂ xr (ϕ(x))∂ i ϕ r (x) = ∂ψ l ∂x i (x, f (x)) + ∂ψ l ∂y k (x, f (x))∂ i f k (x)
We may introduce new coordinates (x i , y k , y k i ) transforming like:

ȳl r ∂ i ϕ r (x) = ∂ψ l ∂x i (x, y) + ∂ψ l ∂y k (x, y)y k i
We shall denote by J q (E) the q-jet bundle of E with local coordinates (x i , y k , y k i , y k ij , ...) = (x, y q ) called jet coordinates and sections

f q : (x) → (x, f k (x), f k i (x), f k ij (x), ...) = (x, f q (x)) transforming like the sections j q (f ) : (x) → (x, f k (x), ∂ i f k (x), ∂ ij f k (x), ...) = (x, j q (f )(x))
where both f q and j q (f ) are over the section f of E. It will be useful to introduce a multi-index µ = (µ 1 , ..., µ n ) with length | µ |= µ 1 + ... + µ n and to set µ

+ 1 i = (µ 1 ..., µ i-1 , µ i + 1, µ i+1 , ..., µ n ). Finally, a jet coordinate y k µ is said to be of class i if µ 1 = ... = µ i-1 = 0, µ i = 0.
As the background will always be clear enough, we shall use the same notation for a vector bundle or a fibered manifold and their sets of sections [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF]. We finally notice that J q (E) is a fibered manifold over X with projection π q while J q+r (E) is a fibered manifold over J q (E) with projection π q+r q , ∀r ≥ 0 [, , ]. DEFINITION 2.1: A (nonlinear) system of order q on E is a fibered submanifold R q ⊂ J q (E) and a global or local solution of R q is a section f of E over X or U ⊂ X such that j q (f ) is a section of R q over X or U ⊂ X. DEFINITION 2.2: When the changes of coordinates have the linear form x = ϕ(x), ȳ = A(x)y, we say that E is a vector bundle over X. Vector bundles will be denoted by capital letters C, E, F and will have sections denoted by ξ, η, ζ. In particular, we shall denote as usual by T = T (X) the tangent bundle of X, by T * = T * (X) the cotangent bundle, by ∧ r T * the bundle of r-forms and by S q T * the bundle of q-symmetric covariant tensors. When the changes of coordinates have the form x = ϕ(x), ȳ = A(x)y + B(x) we say that E is an affine bundle over X and we define the associated vector bundle E over X by the local coordinates (x, v)

changing like x = ϕ(x), v = A(x)v. DEFINITION 2.3: If the tangent bundle T (E) has local coordinates (x, y, u, v) changing like ūj = ∂ i ϕ j (x)u i , vl = ∂ψ l ∂x i (x, y)u i + ∂ψ l ∂y k (x, y)v k
, we may introduce the vertical bundle V (E) ⊂ T (E) as a vector bundle over E with local coordinates (x, y, v) obtained by setting u = 0 and changes vl = ∂ψ l ∂y k (x, y)v k . Of course, when E is an affine bundle over X with associated vector bundle E over X, we have V (E) = E × X E. With a slight abuse of language, we shall set E = V (E) as a vector bundle over E.

For a later use, if E is a fibered manifold over X and f is a section of E, we denote by f -1 (V (E)) the reciprocal image of V (E) by f as the vector bundle over X obtained when replacing (x, y, v) by (x, f (x), v) in each chart. A similar construction may also be done for any affine bundle over E. Loking at the transition rules of J q (E), we deduce easily the following results: PROPOSITION 2.4: J q (E) is an affine bundle over J q-1 (E) modeled on S q T * ⊗ E E but we shall not specify the tensor product in general.

PROPOSITION 2.5:

There is a canonical isomorphism V (J q (E)) ≃ J q (V (E)) = J q (E) of vector bundles over J q (E) given by setting v k µ = v k ,µ at any order and a short exact sequence:

0 → S q T * ⊗ E → J q (E) π q q-1 -→ J q-1 (E) → 0
of vector bundles over J q (E) allowing to establish a link with the formal theory of linear systems.

PROPOSITION 2.6:

There is an exact sequence:

0 → E jq+1 -→ J q+1 (E) D -→ T * ⊗ J q (E)
where

Df q+1 = j 1 (f q ) -f q+1 is over f q with components (Df q+1 ) k µ,i = ∂ i f k µ -f k µ+1i
is called the (nonlinear) Spencer operator. As J q+1 (E) ⊂ J 1 (J q (E)), there is an induced exact sequence:

0 → E jq -→ J q+1 (E) D1 -→ T * ⊗ J q (E)/S q+1 T * ⊗ E where D 1 is called the first Spencer operator. DEFINITION 2.7: If R q ⊂ J q (E) is a system of order q on E, then R q+1 = ρ 1 (R q ) = J 1 (R q ) ∩ J q+1 (E) ⊂ J 1 (J q (E)
) is called the first prolongation of R q and we may define the subsets R q+r . In actual practice, if the system is defined by PDE Φ τ (x, y q ) = 0 the first prolongation is defined by adding the PDE

d i Φ τ ≡ ∂ i Φ τ + y k µ+1i ∂Φ τ /∂y k µ = 0. accordingly, f q ∈ R q ⇔ Φ τ (x, f q (x)) = 0 and f q+1 ∈ R q+1 ⇔ ∂ i Φ τ + f k µ+1i (x)
∂Φ τ /∂y k µ = 0 as identities on X or at least over an open subset U ⊂ X. Differentiating the first relation with respect to x i and substracting the second, we finally obtain:

(∂ i f k µ (x) -f k µ+1i (x))∂Φ τ /∂y k µ = 0 ⇒ Df q+1 ∈ T * ⊗ R q
and the Spencer operator restricts to D : R q+1 → T * ⊗ R q . We set R

(1)

q+r = π q+r+1 q+r (R q+r+1 ).
DEFINITION 2.8: The symbol of R q is the family g q = R q ∩ S q T * ⊗ E of vector spaces over R q . The symbol g q+r of R q+r only depends on g q by a direct prolongation procedure. We may define the vector bundle F 0 over R q by the short exact sequence 0 → R q → J q (E) → F 0 → 0 and we have the exact induced sequence 0 → g q → S q T * ⊗ E → F 0 .

Setting a τ µ k (x, y q ) = ∂Φ τ /∂y k µ (x, y q ) whenever | µ |= q and (x, y q ) ∈ R q , we obtain:

g q = {v k µ ∈ S q T * ⊗ E | a τ µ k (x, y q )v k µ = 0}, | µ |= q, (x, y q ) ∈ R q ⇒ g q+r = ρ r (g q ) = {v k µ+ν ∈ S q+r T * ⊗ E | a τ µ k (x, y q )v k µ+ν = 0}, | µ |= q, | ν |= r, (
x, y q ) ∈ R q In general, neither g q nor g q+r are vector bundles over R q .

On ∧ s T * we may introduce the usual bases {dx I = dx i1 ∧ ... ∧ dx is } where we have set I = (i 1 < ... < i s ). In a purely algebraic setting, one has: PROPOSITION 2.9: There exists a map δ :

∧ s T * ⊗ S q+1 T * ⊗ E → ∧ s+1 T * ⊗ S q T * ⊗ E which restricts to δ : ∧ s T * ⊗ g q+1 → ∧ s+1 T * ⊗ g q and δ 2 = δ • δ = 0. Proof: Let us introduce the family of s-forms ω = {ω k µ = v k µ,I dx I } and set (δω) k µ = dx i ∧ ω k µ+1i . We obtain at once (δ 2 ω) k µ = dx i ∧ dx j ∧ ω k µ+1i+1j = 0 and a τ µ k (δω) k µ = dx i ∧ (a τ µ k ω k µ+1i ) = 0. Q.E.D.
The kernel of each δ in the first case is equal to the image of the preceding δ but this may no longer be true in the restricted case and we set: DEFINITION 2.10: Let B s q+r (g q ) ⊆ Z s q+r (g q ) and H s q+r (g q ) = Z s q+r (g q )/B s q+r (g q ) with H 1 (g q ) = H 1 q (g q ) be the coboundary space im(δ), cocycle space ker(δ) and cohomology space at ∧ s T * ⊗ g q+r of the restricted δ-sequence which only depend on g q and may not be vector bundles. The symbol g q is said to be s-acyclic if H 1 q+r = ... = H s q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and finite type if g q+r = 0 becomes trivially involutive for r large enough. In particular, if g q is involutive and finite type, then g q = 0. Finally, S q T * ⊗ E is involutive for any q ≥ 0 if we set S 0 T * ⊗ E = E. Having in mind the example of xy x -y = 0 ⇒ xy xx = 0 with rank changing at x = 0, we have: PROPOSITION 2.11: If g q is 2-acyclic and g q+1 is a vector bundle over R q , then g q+r is a vector bundle over R q , ∀r ≥ 1.

Proof: We may define the vector bundle F 1 over R q by the following ker/coker exact sequence where we denote by h 1 ⊆ T * ⊗ F 0 the image of the central map:

0 → g q+1 → S q+1 T * ⊗ E → T * ⊗ F 0 → F 1 → 0
and we obtain by induction on r the following commutative and exact diagram of vector bundles over R q :

0 0 0 0 ↓ ↓ ↓ ↓ 0 → g q+r+1 → S q+r+1 T * ⊗ E → S r+1 T * ⊗ F 0 → SrT * ⊗ F 1 ↓ δ ↓ δ ↓ δ ↓ δ 0 → T * ⊗ g q+r → T * ⊗ S q+r T * ⊗ E → T * ⊗ SrT * ⊗ F 0 → T * ⊗ S r-1 T * ⊗ F 1 ↓ δ ↓ δ ↓ δ 0 → ∧ 2 T * ⊗ g q+r-1 → ∧ 2 T * ⊗ S q+r-1 T * ⊗ E → ∧ 2 T * ⊗ S r-1 T * ⊗ F 0 ↓ δ ↓ δ ∧ 3 T * ⊗ S q+r-2 T * ⊗ E = ∧ 3 T * ⊗ S q+r-2 T * ⊗ E
where all the maps have been given after Definition 2.9. The image of the central map of the top row is h r+1 = ρ r (h 1 ) and a chase proves that h 1 is (s -1)-acyclic whenever g q is s-acyclic by extending the diagram. The proposition finally follows by upper-semicontinuity from the relation:

dim(g q+r+1 ) + dim(h r+1 ) = m dim(S q+r+1 T * ) Q.E.D.
LEMMA 2.12: If g q is involutive and g q+1 is a vector bundle over R q , then g q is also a vector bundle over R q . In this case, changing linearly the local coordinates if necessary, we may look at the maximum number β of equations that can be solved with respect to v k n...n and the intrinsic number α = m -β indicates the number of y that can be given arbitrarily.

Using the exactness of the top row in the preceding diagram and a delicate 3-dimensional chase, we have (See [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF] and [START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF],p336 for the details): THEOREM 2.13: If R q ⊂ J q (E) is a system of order q on E such that g q+1 is a vector bundle over R q and g q is 2-acyclic, then there is an exact sequence:

R q+r+1 π q+r+1 q+r -→ R q+r κr -→ S r T * ⊗ F 1
where κ r is called the r-curvature and κ = κ 0 is simply called the curvature of R q .

We notice that R q+r+1 = ρ r (R q+1 ) and R q+r = ρ r (R q ) in the following commutative diagram:

R q+r+1 π q+r+1 q+1 -→ R q+1 ↓ π q+r+1 q+r ↓ π q+1 q R (1) q+r π q+r q -→ R (1) q ∩ ∩ R q+r π q+r q -→ R q
We also have R

(1)

q+r ⊆ ρ r (R (1) 
q ) because we have successively:

R (1) q+r = π q+r+1 q+r (R q+r+1 ) = π q+r+1 q+r (J r (R q+1 ) ∩ J q+r+1 (E)) ⊆ J r (π q+1 q )(J r (R q+1 )) ∩ J q+r (E) = J r (R (1) q ) ∩ J q+r (E) = ρ r (R (1)
q ) while chasing in the following commutative 3-dimensional diagram:

J r (R q+1 ) -→ J r (J q+1 (E)) ր ↓ ր R q+r+1 -→ J q+r+1 (E) ↓ ↓ J r (R q ) -→ J r (J q (E)) ր ↓ ր R q+r -→ J q+r (E)
with a well defined map J r (π q+1 q ) : J r (J q+1 (E)) → J r (J q (E)). We finally obtain the following crucial Theorem and its Corollary (Compare to [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF], p 72-74 or [START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF], p 340 to [START_REF] Gröbner | Über die Algebraischen Eigenschaften der Integrale von Linearen Differentialgleichungen mit Konstanten Koeffizienten[END_REF]): THEOREM 2.14: Let R q ⊂ J q (E) be a system of order q on E such that R q+1 is a fibered submanifold of J q+1 (E). If g q is 2-acyclic and g q+1 is a vector bundle over R q , then we have R

(1)

q+r = ρ r (R (1)
q ) for all r ≥ 0. DEFINITION 2.15: A system R q ⊂ J q (E) is said to be formally integrable if π q+r+1 q+r : R q+r+1 → R q+r is an epimorphism of fibered manifolds for all r ≥ 1 and involutive if it is formally integrable with an involutive symbol g q . We have the following useful test [START_REF] Gröbner | Über die Algebraischen Eigenschaften der Integrale von Linearen Differentialgleichungen mit Konstanten Koeffizienten[END_REF][START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF][START_REF] Pommaret | Relative Parametrization of Linear Multidimensional Systems[END_REF]: COROLLARY 2.16: Let R q ⊂ J q (E) be a system of order q on E such that R q+1 is a fibered submanifold of J q+1 (E). If g q is 2-acyclic (involutive) and if the map π q+1 q : R q+1 → R q is an epimorphism of fibered manifolds, then R q is formally integrable (involutive). This is all what is needed in order to study systems of algebraic ordinary differential (OD) or partial differential (PD) equations.

3) DIFFERENTIAL ALGEBRA

We now present in an independent manner two OD examples and two PD examples, among the best ones we know, showing the difficulties met when studying differential ideals and ask the reader to revisit them later on while reading the main Theorems. As only a few results will be proved, the interested reader may look at [START_REF] Northcott | An Introduction to Homological Algebra[END_REF][START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF] for more details and compare to [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF][START_REF] Kumpera | Lie Equations[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF]. d x is a formal derivation, we may set d x y = y x , d x y x = y xx and so on in order to introduce the differential ring A = k[y, y x , y xx , ...] = k{y}. We consider the (proper) differential ideal a ⊂ A generated by the differential polynomial P = y 2

EXAMPLE 3.1: If k = Q, y is a differential indeterminate and
x -4y. We have d x P = 2y x (y xx -2) and a cannot be a prime differential ideal. Hence, looking for the "solutions " of P = 0, we must have either y x = 0 ⇒ y = 0 or y xx = 0 and thus y = (x+c) 2 where c should be a "constant " with no clear meaning. However, we have successively: 

P ∈ a ⇒ y x (y xx -2) ∈ a ⇒ y x y xxx + y xx (y xx -2) ∈ a ⇒ (y x ) 2 y xxx ∈ a ⇒ yy xxx ∈ a ⇒ yy xxxx + y x y xxx ∈ a ⇒ y x (y xxx ) 2 ∈
) 2 + (y xxx ) 4 ∈ a ⇒ 3y xx (y xxx ) 2 y xxxx + (y xxx ) 4 ∈ a ⇒ -6y x y xxx (y xxxx ) 2 = (y xxx ) 4 ∈ a ⇒ (y xxx ) 5 ∈ a ⇒ y xxx ∈ rad(a)
and thus a is neither prime nor perfect, that is equal to its radical, but rad(a) is perfect as it is the intersection of the prime differential ideal generated by y with the prime differential ideal generated by y 2

x -4y and y xx -2, both containing y xxx .

EXAMPLE 3.2:

With the notations of the previous Example, let us consider the (proper) differential ideal a ⊂ A generated by the differential polynomial P = y 2 x -4y 3 . We have d x P = 2y x (y xx -6y 2 ) and a cannot be prime differential ideal. Hence, looking for the "solutions " of P = 0, we must have either y x = 0 ⇒ y = 0 or y 2

x -4y 3 = 0 and y xx -6y 2 = 0. However, we have successively:

P ∈ a ⇒ y x (y xx -6y 2 ) ∈ (a) ⇒ (y x ) 2 (y xx -6y 2 ) 2 ∈ a ⇒ 4y 3 (y xx -6y 2 ) 2 ∈ a ⇒ y xx (y xx -6y 2 ) + y x (y xxx -12yy x ) ∈ a ⇒ y xx (y xx -6y 2 ) 2 ∈ a ⇒ (y xx ) 2 (y xx -6y 2 ) 2 -12y 2 y xx (y xx -6y 2 ) 2 + 36y 4 (y xx -6y 2 ) 2 ∈ a ⇒ (y xx -6y 2 ) 4 ∈ a ⇒ y xx -6y 2 ∈ rad(a)
and thus a is neither prime or perfect as before but rad(a) is the prime differential ideal generated by y 2

x -4y 

∈ a ⇒ Q = d 2 P 2 -d 1 P 1 + d 1 P 2 = (y 11 -1)y 111 ∈ a ⇒ d 1 Q = (y 111 ) 2 + (y 11 -1)y 1111 ∈ a ⇒ ((y 111 ) 3 ∈ a ⇒ y 111 ∈ rad(a)
and thus a is neither prime nor perfect but rad(a) is a perfect differential ideal and even a prime differential ideal p because we obtain easily from the last section that the resisual differential ring k{y}/p ≃ k[y, y 1 , y 2 , y 11 ] is a differential integral domain. Its quotient field is thus the differential field K = Q(k{y}/p) ≃ k(y, y 1 , y 2 , y 11 ) with the rules:

d 1 y = y 1 , d 1 y 1 = y 11 , d 1 y 11 = 0, d 2 y = y 2 , d 2 y 1 = y 11 , d 2 y 11 = 0
as a way to avoid looking for solutions. The formal linearization is the linear system R 2 ⊂ J 2 (E) obtained in the last section where it was defined over R 2 , but not over K, by the two linear second order PDE:

Y 22 -y 11 Y 11 = 0, Y 12 -Y 11 = 0
changing slightly the notations for using the letter v only when looking at the symbols. It is at this point that the problem starts because R 2 is indeed a fibered manifold with arbitrary parametric jets (y, y 1 , y 2 , y 11

) but R 3 = ρ 1 (R 2
) is no longer a fibered manifold because the dimension of its symbol changes when y 11 = 1. We understand therefore that there should be a close link existing between formal integrability and the search for prime differential ideals or differential fields. The solution of this problem has been provided as early as in 1983 for studying the "Differential Galois Theory " but has never been acknowledged and is thus not known today ( [START_REF] Northcott | An Introduction to Homological Algebra[END_REF][START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF]). The idea is to add the third order PDE y 111 = 0 and thus the linearized PDE Y 111 = 0 obtaining therefore a third order involutive system well defined over K with symbol g 3 = 0. We invite the reader to treat similarly the two previous examples and to compare. 

EXAMPLE 3.4: If k = Q as before,
P 1 , P 2 ∈ a ⇒ d 2 P 2 -d 1 P 1 + y 11 d 1 P 2 = 0 ⇒ R 2 involutive ⇒ y 222 -( y 
., ∂ n ) such that ∂ i (a + b) = ∂ i a + ∂ i b, ∂ i (ab) = (∂ i a)b + a∂ i b
that can be extended to derivations of the ring of quotients Q(A) by setting ∂ i (a/s) = (s∂ i a -a∂ i s)/s 2 , ∀0 = s, a ∈ A. We shall suppose from now on that A is even an integral domain and use the differential field K = Q(A). For example, if x 1 , ..., x n are indeterminates over Q, then Q

[x] = Q[x 1 , ..., x n ] is a differential ring for the standard (∂ 1 , ..., ∂ n ) with quotient field Q(x).
If K is a differential field as above and (y 1 , ..., y m ) are indeterminates over K, we transform the polynomial ring K{y} = lim q→∞ K[y q ] into a differential ring by introducing as usual the formal derivations Proof: If d is one of the derivations, we have a r-1 da = 1 r da r ∈ {a r } and thus:

d i = ∂ i + y k µ+1i ∂/∂y k µ and we shall set K < y >= Q(K{y}). DEFINITION 3.6: We say that a ⊂ K{y} is a differential ideal if it is stable by the d i , that is if d i a ∈ a,
(r -1)a r-2 (da

) 2 + a r-1 d 2 a ∈ {a r } ⇒ a r-2 (da) 3 ∈ {a r }, ... ⇒ (da) 2r-1 ∈ {a r } Q.E.D.
LEMMA 3.8: If a ⊂ K{y}, we set a q = a ∩ K[y q ] with a 0 = a ∩ K[y] and a ∞ = a. We have in general ρ r (a q ) ⊆ a q+r and the problem will be to know when we may have equality.

We shall say that a differential extension L = Q(K{y}/p) is a finitely generated differential extension of K and we may define the evaluation epimorphism K{y} → K{η} ⊂ L with kernel p where η or ȳ is the residual image of y modulo p. If we study such a differential extension L/K, by analogy with Section 2, we shall say that R q or g q is a vector bundle over R q if one can find a certain number of maximum rank determinant D α that cannot be all zero at a generic solution of p q defined by differential polynomials P τ , that is to say, according to the Hilbert Theorem of Zeros, we may find polynomials A α , B τ ∈ K{y q } such that :

α A α D α + τ B τ P τ = 1
In particular the following Lemma will be used in the next important Theorem: LEMMA 3.9: If p is a prime differential ideal of K{y}, then, for q sufficiently large, there is a polynomial D ∈ K[y q ] such that D / ∈ p q and : Dp q+r ⊂ rad(ρ r (p q )) ⊂ p q+r , ∀r ≥ 0 THEOREM 3.10: (Primality test) Let p q ⊂ K[y q ] and p q+1 ⊂ K[y q+1 ] be prime ideals such that p q+1 = ρ 1 (p q ) and p q+1 ∩ K[y q ] = p q . If the symbol g q of the algebraic variety R q defined by p q is 2-acyclic and if its first prolongation g q+1 is a vector bundle over R q , then p = ρ ∞ (p q ) is a prime differential ideal with p ∩ K[y q+r ] = ρ r (p q ), ∀r ≥ 0.

COROLLARY 3.11: Every perfect differential ideal of {y} can be expressed in a unique way as the non-redundant intersection of a finite number of prime differential ideals.

COROLLARY 3.12: (Differential basis) If r is a perfect differential ideal of K{y}, then we have r = rad(ρ ∞ (r q )) for q sufficiently large. If L = Q(K{y}/p), M = Q(K{z}/q) and N = Q(K{y, z}/r) are such that p = r ∩ K{y} and q = r ∩ K{z}, we have the two towers K ⊂ L ⊂ N and K ⊂ M ⊂ N of differential extensions and we may therefore define the new tower K ⊆ L ∩ M ⊆< L, M >⊆ N . However, if only L/K and M/K are known and we look for such an N containing both L and M , we may use the universal property of tensor products an deduce the existence of a differential morphism

L⊗ K M → N by setting d(a ⊗ b) = (d L a) ⊗ b + a ⊗ (d M b) whenever d L | K = d M | K = ∂.
The construction of an abstract composite differential field amounts therefore to look for a prime differential ideal in L⊗ K M which is a direct sum of integral domains [START_REF] Northcott | An Introduction to Homological Algebra[END_REF]. DEFINITION 3.15: A differential extension L of a differential field K is said to be differentially algebraic over K if every element of L is differentially algebraic over K. The set of such elements is an intermediate differential field K ′ ⊆ L, called the differential algebraic closure of K in L. If L/K is a differential extension, one can always find a maximal subset S of elements of L that are differentially transcendental over K and such that L is differentially algebraic over K < S >. Such a set is called a differential transcedence basis and the number of elements of S is called the differential transcendence degree of L/K. THEOREM 3.16: The number of elements in a differential basis of L/K does not depent on the generators of L/K and his value is dif f trd(L/K) = α. Moreover, if K ⊂ L ⊂ M are differential fields, then dif f trd(M/K) = dif f trd(M/L) + dif f trd(L/K). THEOREM 3.17: If L/K is a finitely generated differential extension, then any intermediate differential field K ′ between K and L is also finitely generated over K. EXAMPLE 3.18: With k = Q, let us introduce the manifolds X with local coordinate x and Y with local coordinates (y 1 , y 2 ). We may consider the algebraic Lie pseudogroup Γ ⊂ aut(Y ) of (local, invertible) transformations of Y preserving the 1-form y 2 dy 1 , that is to say made up by transformations ȳ = g(y) solutions of the Pfaffian system ȳ2 dȳ 1 = y 2 dy 1 . Equivalently, we have to look for the invertible solutions of the algebraic first order involutive system R 1 ⊂ J 1 (Y × Y ) defined over k(y 1 , y 2 ) by the first order involutive system of algebraic PD equations in Lie form:

ȳ2 ∂ ȳ1 ∂y 1 = y 2 , ȳ2 ∂ ȳ1 ∂y 2 = 0 ⇒ ∂(ȳ 1 , ȳ2 ) ∂((y 1 , y 2 ) = 1
By chance one can obtain the generic solution ȳ1 = g(y 1 ), ȳ2 = y 2 /(∂g(y 1 )/∂y 1 ) where g is an arbitrary function of one variable. Now, if we introduce a function y = f (x) and consider the corresponding transformations of the jets (y 1 , y 2 , y 1 x , y 2 x , ...), we obtain the only generating differential invariant Φ ≡ ȳ2 ȳ1

x = y 2 y 1 x . Hence, setting K = k < y 2 y 1 x > and L = k < y 1 , y 2 >, we have the tower of differential extensions k ⊂ K ⊂ L. As any intermediate differential field K ⊂ K ′ ⊂ L is finitely generated, let us consider K ′ = k < y 2 y 1

x , y 2 x >. Then:

ȳ2 x ∂ ȳ2 ∂y 1 y 1 x + ∂ ȳ2 ∂y 2 ⇒ ∂ ȳ2 ∂y 1 = 0, ∂ ȳ2 ∂y 2 = 1 ⇒ ȳ1 = y 1 + cst, ȳ2 = y 2
allows to define a Lie subpseudogroup Γ ′ ⊂ Γ with generating differential invariants y 1 x , y 2 in such a way that, if we set K" = k < y 1

x , y 2 >, we have the strict inclusions K ⊂ K ′ ⊂ K" and it does not seem possible to obtain a differential Galois correspondence between algebraic subpseudogroups and intermediate differential fields, similar to the classical one. We have explained in [START_REF] Northcott | An Introduction to Homological Algebra[END_REF] how to overcome this problem but this is out of the scope of this paper. It is finally important to notice that the fundamental differential isomorphism [START_REF] Assem | Algèbres et Modules[END_REF][START_REF] Beltrami | Osservazioni sulla Nota Precedente[END_REF][START_REF] Northcott | An Introduction to Homological Algebra[END_REF]:

Q(L⊗ K L) ≃ Q(L⊗ k(y) k[Γ])
is the Hopf dual of the projective limit of the action graph isomorphisms between fibered manifolds:

A q × X A q ≃ A q × Y R q
of fibered dimension 2(q + 2). The corresponding automorphic system y 2 y 1 x = ω in Lie form where ω is a geometric object as in the Introduction and its prolongations has been introduced as early as in 1903 by E. Vessiot [START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF][START_REF] Pommaret | Einstein and Lanczos Potentials revisited[END_REF] as a way to study principal homogeneous spaces (PHS) for Lie pseudogroups, namely if y = f (x) is a solution and ȳ = f (x) is another solution, then there exists one and only one transformation ȳ = g(y) of Γ such that f = g • f . This is all what is needed in order to study systems of infinitesimal Lie equations defined, like the classical and conformal Killing systems, over Q < ω > where ω is a geometric object solution of a system of algebraic Vessiot structure equations (constant riemannian curvature, zero Weyl tensor).

4) DIFFERENTIAL DUALITY

Let A be a unitary ring, that is 1, a, b ∈ A ⇒ a + b, ab ∈ A, 1a = a1 = a and even an integral domain (ab = 0 ⇒ a = 0 or b = 0) with field of fractions K = Q(A). However, we shall not always assume that A is commutative, that is ab may be different from ba in general for a, b ∈ A.

We say that

M = A M is a left module over A if x, y ∈ M ⇒ ax, x + y ∈ M, ∀a ∈ A or a right module M B over B if the operation of B on M is (x, b) → xb, ∀b ∈ B.
If M is a left module over A and a right module over B with (ax)b = a(xb), ∀a ∈ A, ∀b ∈ B, ∀x ∈ M , then we shall say that M = A M B is a bimodule. Of course, A = A A A is a bimodule over itself. We define the torsion submodule t(M ) = {x ∈ M | ∃0 = a ∈ A, ax = 0} ⊆ M and M is a torsion module if t(M ) = M or a torsion-free module if t(M ) = 0. We denote by hom A (M, N ) the set of morphisms f : M → N such that f (ax) = af (x). We finally recall that a sequence of modules and maps is exact if the kernel of any map is equal to the image of the map preceding it.

When A is commutative, hom(M, N ) is again an A-module for the law (bf )(x) = f (bx) as we have (bf )(ax) = f (bax) = f (abx) = af (bx) = a(bf )(x). In the non-commutative case, things are more complicate and, given A M and A N B , then hom A (M, N ) becomes a right module over B for the law (f b)(x) = f (x)b. DEFINITION 4.1: A module F is said to be free if it is isomorphic to a (finite) power of A called the rank of F over A and denoted by rk A (F ) while the rank rk A (M ) of a module M is the rank of a maximum free submodule F ⊂ M . It follows from this definition that M/F is a torsion module. In the sequel we shall only consider finitely presented modules, namely finitely generated modules defined by exact sequences of the type F 1 d1 -→ F 0 p -→ M -→ 0 where F 0 and F 1 are free modules of finite ranks m 0 and m 1 often denoted by m and p in examples. A module P is called projective if there exists a free module F and another (projective

) module Q such that P ⊕ Q ≃ F . PROPOSITION 4.2: For any short exact sequence 0 → M ′ f -→ M g -→ M " → 0, we have the relation rk A (M ) = rk A (M ′ ) + rk A (M "), even in the non-commutative case.
The following proposition will be used many times in Section 5, in particular for exhibiting the Weyl tensor from the Riemann tensor ( [START_REF] Airy | On the Strains in the Interior of Beams[END_REF],p 73)( [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF],p 33) : PROPOSITION 4.3: We shall say that the following short exact sequence splits if one of the following equivalent three conditions holds:

0 -→ M ′ u ←- f -→ M v ←- g -→ M ′′ -→ 0
• There exists a monomorphism v : M ′′ → M called lift of g and such that g

• v = id M ′′ .
• There exists an epimorphism u : M → M ′ called lift of f and such that u

• f = id M ′ . • There exist isomorphisms ϕ = (u, g) : M → M ′ ⊕ M ′′ and ψ = f + v : M ′ ⊕ M ′′ → M that are inverse to each other and provide an isomorphism M ≃ M ′ ⊕ M ′′ with f • u + v • g = id M and thus ker(u) = im(v).
These conditions are automatically satisfied if M " is free or projective.

Using the notation M * = hom A (M, A), for any morphism f : M → N , we shall denote by [START_REF] Poincaré | Sur une Forme Nouvelle des Equations de la Mécanique[END_REF], Corollary 5.3, p 179). We may take out M in order to obtain the deleted sequence ... Let A be a differential ring, that is a commutative ring with n commuting derivations {∂ 1 , ..., ∂ n }, that is

f * : N * → M * the morphism which is defined by f * (h) = h • f, ∀h ∈ hom A (N, A) and satisfies rk A (f ) = rk A (im(f )) = rk A (f * ), ∀f ∈ hom A (M, N )(See
* 2 ←-F * 1 d * 1 ←-F * 0 ←-0.
∂ i ∂ j = ∂ j ∂ i = ∂ ij , ∀i, j = 1, ..., n while ∂ i (a+b) = ∂ i a+∂ i b and ∂ i (ab) = (∂ i a)b+a∂ i b, ∀a, b ∈ A.
We shall use thereafter a differential integral domain A with unit 1 ∈ A whenever we shall need a differential field If we introduce differential indeterminates y = (y 1 , ..., y m ), we may extend µ by ȳk µ when there can be a confusion. Introducing the two free differential modules F 0 ≃ D m0 , F 1 ≃ D m1 , we obtain equivalently the free presentation

Q ⊂ K = Q(A) of coefficients, that is a field (a ∈ K ⇒ 1/a ∈ K) with ∂ i (1/a) = -(1/a 2 )∂ i a,
d i y k µ = y k µ+1i to Φ τ ≡ a τ µ k y k µ di -→ d i Φ τ ≡ a τ µ k y k µ+1i + ∂ i a τ µ k y k µ for τ =
F 1 d1 -→ F 0 p -→ M → 0 of order q when d 1 = D = Φ • j q .
It follows that M can be endowed with a quotient filtration obtained from that of D m which is defined by the order of the jet coordinates y q in D q y. We shall suppose that the system R q = ker(Φ) is formally integrable. We have therefore the inductive limit

0 = M -1 ⊆ M 0 ⊆ M 1 ⊆ ... ⊆ M q ⊆ ... ⊆ M ∞ = M with d i M q ⊆ M q+1 which is the dual of the projective limit R = R ∞ → ... → R q → R 0 → 0 if we set R = hom K (M, K) with R q = hom K (M q , K) and DR q+1 ⊆ T * ⊗ R q .
This is the main reason for using a differential field K because hom K (•, K) transform any short exact sequence into a short exact sequence. We have in general D r I s ⊆ I r+s , ∀r ≥ 0, ∀s < q with I r = I ∩ D r y.

More generally, introducing the successive CC as in the preceding Section while changing slightly the numbering of the respective operators, we may finally obtain the free resolution of M , namely the exact sequence ...

d3 -→ F 2 d2 -→ F 1 d1 -→ F 0 p -→ M -→ 0 
where p is the canonical projection. Also, with a slight abuse of language, when D = Φ • j q is involutive, that is to say when R q = ker(Φ) is involutive, one should say that M has an involutive presentation of order q or that M q is involutive.

REMARK 4.5:

In actual practice, one must never forget that D = Φ • j q acts on the left on column vectors in the operator case and on the right on row vectors in the module case. For this reason, when E is a (finite dimensional) vector bundle over X, we may apply the correspondence E,K) between jet bundles and left differential modules in order to be able to use the double dual isomorphism E ≃ E * * in both cases. We shall say that

J ∞ (E) ↔ D⊗ K E * : J q (E) ↔ D q ⊗ K E * with π q+1 q : J q+1 (E) → J q (E) ↔ D q ⊂ D q+1 and E * = hom K (
D(E) = D ⊗ K E * = ind(E * )
is the the left differential module induced by E * . Hence, starting from a differential operator E D -→ F , we may obtain a finite presentation D⊗ K F * D * -→ D⊗ K E * → M → 0 and conversely, keeping the same operator matrix if we act on the right of row vectors. This comment becomes particularly useful when dealing with the Poincaré sequence in electromagnetism (n = 4) or even as we already saw in the Introduction (n = 3).

Roughly speaking, homological algebra has been created in order to find intrinsic properties of modules not depending on their presentations or even on their resolutions and we now exhibit another approach by defining the formal adjoint of an operator P and an operator matrix D: P and ad(P Q) = ad(Q)ad(P ), ∀P, Q ∈ D. Such a definition can be extended to any matrix of operators by using the transposed matrix of adjoint operators and we get: < λ, Dξ >=< ad(D)λ, ξ > + div (...) from integration by part, where λ is a row vector of test functions and <> the usual contraction. We quote the useful formulas rk D (D) = rk D (ad(D)) as in ( [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF], p 339-341 or [START_REF] Oberst | The Computation of Purity Filtrations over Commutative Noetherian Rings of Operators and their Applications to Behaviours[END_REF]).

The following technical Lemma is crucially used in the next proposition: LEMMA 4.7: If f ∈ aut(X) is a local diffeomorphisms on X, we may set x = f -1 (y) = g(y) and we have the identity: Now, exactly like we defined the differential module M from D, we may define the differential module N from ad(D). For any other presentation of M with an accent, we have [START_REF] Kunz | Introduction to Commutative Algebra and Algebraic Geometry[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF]: THEOREM 4.10: The modules N and N ′ are projectively equivalent, that is one can find two projective modules P and P ′ such that N ⊕ P ≃ N ′ ⊕ P ′ and we obtain therefore

∂ ∂y k ( 1 ∆(g(y)) ∂ i f k (g(y)) ≡ 0.
ext i D (N ) ≃ ext i D (N ′ ), ∀i ≥ 1.
THEOREM 4.11: The operator D is simply parametrizable if ext 1 (N ) = 0 and doubly parametrizable if ext 1 (N ) = 0 and ext 2 (N ) = 0. Moreover, we have the ker/coker long exact sequence:

0 → ext 1 (N ) → M ǫ -→ M * * → ext 2 (N ) → 0 where (ǫ(m))(f ) = f (m) whenever f ∈ M * and we have t(M ) = ext 1 (N ) = ker(ǫ).
Proof: We prove first that t(M ) ⊆ ker(ǫ). Indeed, if m ∈ t(M ), then one may find 0 = P ∈ D such that P m = 0 and thus f

(P m) = P f (m) = 0 ⇒ f (m) = 0 because D = K[d]
is an integral domain and thus t(M ) ⊆ ker(ǫ).

Let us now start with a free presentation of M = cocker(d 1 ):

F 1 d1 -→ F 0 p -→ M -→ 0
Applying hom D (M, D), we may define N D = coker(d * 1 ) and exhibit the following free resolution of N by right D-modules:

0 ←-N D ←-F * 1 d * 1 ←-F * 0 d * 0 ←-F * -1 d * -1 ←-F * -2 where M * = ker(d * 1 ) = im(d * 0 ) ≃ coker(d * -1
). The deleted sequence is:

0 ←-F * 1 d * 1 ←-F * 0 d * 0 ←-F * -1 d * -1 ←-F * -2
Applying again hom D (•, D) and using the canonical isomorphism F * * ≃ F for any free module F of finite rank, we get the sequence of left D-modules:

0 -→ F 1 d1 -→ F 0 d0 -→ F -1 d-1 -→ F -2 ↓ ց ↑ M ǫ -→ M * * ↓ ↑ 0 0
Denoting as usual a coboundary space by B, a cocycle space by Z and the corresponding cohomology by H = Z/B, we get the commutative and exact diagram:

0 -→ B 0 -→ F 0 -→ M -→ 0 ↓ ↓ ǫ 0 -→ Z 0 -→ F 0 -→ M * *
An easy chase provides at once

H 0 = Z 0 /B 0 = ext 1 D (N ) ≃ ker(ǫ).
It follows that ker(ǫ) is a torsion module and, as we already know that t(M ) ⊆ ker(ǫ) ⊆ M , we finally obtain t(M ) = ker(ǫ). Also, as B -1 = im(ǫ) and Z -1 ≃ M * * , we obtain

H -1 = Z -1 /B -1 = ext 2 A (N, A) ≃ coker(ǫ)
. Accordingly, a torsion-free (ǫ injective)/reflexive (ǫ bijective) module is described by an operator that admits respectively a single/double step parametrization.

Q.E.D.

We know turn to the operator framework; -→ η such that D 1 generates the CC of D and we shall say that D 1 is parametrized by D if such an operator D is existing. We finally notice that any operator is the adjoint of a certain operator because ad(ad(P )) = P, ∀P ∈ D and we get: THEOREM 4.13: (reflexivity test) In order to check whether M is reflexive or not, that is to find out a parametrization if t(M ) = 0 which can be again parametrized, the test has 5 steps which are drawn in the following diagram where ad(D) generates the CC of ad(D 1 ) and D ′ 1 generates the CC of D = ad(ad(D)) while ad(D -1 ) generates the CC of ad(D) and D ′ generates the CC of D -1 :

η ′ ζ ′ 5 D ′ ր D ′ 1 ր 4 φ D-1 -→ ξ D -→ η D1 -→ ζ 1 3 θ ad(D-1) ←- ν ad(D) ←-µ ad(D1) ←- λ 2 
D 1 parametrized by D ⇔ D 1 = D ′ 1 ⇔ ext 1 (N ) = 0 ⇔ ǫ injective ⇔ t(M ) = 0 D parametrized by D -1 ⇔ D = D ′ ⇔ ext 2 (N ) = 0 ⇔ ǫ surjective COROLLARY 4.14: In the differential module framework, if F 1 D1 -→ F 0 p -→ M → 0 is a fi- nite free presentation of M = coker(D 1 )
with t(M ) = 0, then we may obtain an exact sequence

F 1 D1 -→ F 0 D
-→ E of free differential modules where D is the parametrizing operator. However, there may exist other parametrizations

F 1 D1 -→ F 0 D ′ -→ E ′ called minimal parametrizations such that coker(D ′
) is a torsion module and we have thus rk D (M ) = rk D (E ′ ).

5) CONFORMAL STRUCTURE

We start this section with a general (difficult) result on the actions of Lie groups, covering at the same time the study of the classical and conformal Killing systems. For this, we notice that the involutive first Spencer operator D 1 :

C 0 = R q j1 → J 1 (R q ) → J 1 (R q )/R q+1 ≃ T * ⊗ R q /δ(g q+1 ) = C 1 of order one is induced by the Spencer operator D : R q+1 → T * ⊗ R q : ξ q+1 → j 1 (ξ q ) -ξ q+1 = {∂ i ξ k µ -ξ k µ+1i | 0 ≤| µ | q}. Introducing the Spencer bundles C r = ∧ r T * ⊗ R q /δ(∧ r-1 T * ⊗ g q+1 ), the first order involutive (r + 1)-Spencer operator D r+1 : C r → C r+1 is induced by D : ∧ r T * ⊗ R q+1 → ∧ r+1 T * ⊗ R q : α ⊗ ξ q+1 → dα ⊗ ξ q + (-1) r α ∧ Dξ q+1 .
We obtain therefore the canonical linear Spencer sequence ( [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF], p 150 or [START_REF] Pommaret | Relative Parametrization of Linear Multidimensional Systems[END_REF]): Proof: We may introduce a basis {θ τ = θ i τ (x)∂ i } of infinitesimal generators of the action with τ = 1, ..., dim(G) and the commutation relations [θ ρ , θ σ ] = c τ ρσ θ τ discovered by S. Lie giving the structure constants c of G (See [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF] and [START_REF] Pommaret | Partial Differential Control Theory[END_REF] for more details). Any element λ ∈ G can be written λ = {λ τ = cst}. " Gauging " such an element, that is to say replacing the constants by functions or, equivalently, introducing a map X → ∧ 0 T * ⊗ G : (x) → (λ τ (x)), we may obtain locally a map

0 -→ Θ jq -→ C 0 D1 -→ C 1 D2 -→ C 2 D3 -→ ...
∧ 0 T * ⊗ G → T : λ τ (x) → λ τ (x)θ k τ (x) or, equivalently, vector fields ξ = (ξ i (x)∂ i ) ∈ T of the form ξ k (x) = λ τ (x)θ k τ (x)
, keeping the index i for 1-forms. More generally, we can introduce a map :

∧ r T * ⊗ G → ∧ r T * ⊗ J q (T ) = λ → λ ⊗ j q (θ) = X q : λ τ (x) → λ τ (x)∂ µ θ k τ (x) = X k µ,I (x) 
dx I that we can lift to the element λ ⊗ j q+1 (θ) = X q+1 ∈ ∧ r T * ⊗ J q+1 (T ). It follows from the definitions that D r X q = DX q+1 by introducing any element of C r (T ) through its representative X q ∈ ∧ r T * ⊗ J q (T ). We obtain therefore the crucial formula:

D r X q = DX q+1 = D(λ ⊗ j q+1 (θ)) = dλ ⊗ j q (θ) + (-1) r λ ∧ Dj q+1 (θ) = dλ ⊗ j q (θ)
allowing to identify locally the Spencer sequence for j q with the Poincaré sequence. When the action is effective, the map ∧ 0 T * ⊗ G → J q (T ) is injective. We obtain therefore an isomorphism ∧ 0 T * ⊗ G → R q ⊂ J q (T ) when q is large enough allowing to exhibit an isomorphism between the canonical Spencer sequence and the tensor product of the Poincaré sequence by G when q is large enough in such a way that R q is involutive with dim(R q ) = dim(G) and g q = 0.

Q.E.D.

We now study what happens when n ≥ 3 because the case n = 2 has already been provided, proving that conformal geometry must be entirely revisited.

• n = 3: Using the euclidean metric ω, we have 6 components of Ω ∈ F 0 = S 2 T * with dim(F 0 ) = n(n + 1)/2 = 6 in the case of the classical Killing system/operator and obtain easily the n 2 (n 2 -1)/12 = 6 components of the second order Riemann operator, linearization of the Riemann tensor at ω. We have n 2 (n 2 -1)(n -2)/24 = 3 first order Bianchi identities ( [START_REF] Northcott | An Introduction to Homological Algebra[END_REF], p 625). Introducing the respective adjoint operators while taking into account the last Proposition and the fact that the extension modules do not depend on the resolution used (a difficult result indeed !), we get the following diagram where we have set ad(Riemann) = Beltrami for historical reasons [START_REF] Arnold | Méthodes Mathématiques de la Mécanique Classique, Appendice 2 (Géodésiques des métriques invariantes à gauche sur des groupes de Lie et hydrodynamique des fluides parfaits)[END_REF] and each operator generates the CC of the next one:

3 Killing -→ 6 Riemann -→ 6 Bianchi -→ 3 → 0 0 ← 3 Cauchy ←- 6 Beltrami ←- 6 ←- 3 
As in the Introduction where Airy = ad(Riemann), the Beltrami operator is now parametrizing the 3 Cauchy stress equations [START_REF] Arnold | Méthodes Mathématiques de la Mécanique Classique, Appendice 2 (Géodésiques des métriques invariantes à gauche sur des groupes de Lie et hydrodynamique des fluides parfaits)[END_REF] but it is rather striking to discover that the central second order operator is self-adjoint and can be given as follows: 

        0 0 0 d 33 -
       
The study of the conformal case is much more delicate. As F0 can be described by trace-free symmetric tensors, we have dim( F0 ) = dim(F 0 ) -1 = 5 and it remains to discover the operator that will replace the Riemann operator. Having in mind the diagram of Proposition 2.11 and the fact that dim(ĝ 2 ) = 3 while ĝ3 = 0 ⇒ ĝ4 = 0, we have successively:

• NO CC order 1: 0 → ĝ2 → S 2 T * ⊗ T → T * ⊗ F0 → F1 ⇒ 0 ⇒ dim( F1 ) = 3 -18 + 15 = 0. • NO CC order 2: 0 → ĝ3 → S 3 T * ⊗ T → S 2 T * ⊗ F0 → F1 ⇒ 0 ⇒ dim( F1 ) = 0 -30 + 30 = 0. • OK CC order 3: 0 → ĝ4 → S 4 T * ⊗ T → S 3 T * ⊗ F0 → F1 ⇒ 0 ⇒ dim( F1 ) = 0 -45 + 50 = 5.
Once again, the central third order operator is self-adjoint as can be easily seen by proving that the last 5 → 3 operator, obtained in [START_REF] Pommaret | Partial Differential Control Theory[END_REF] by means of computer algebra, can be chosen to be the transpose of the first 3 → 5 conformal Killing operator, just by changing columns. This result can also be obtained by using the fact that, when an operator/a system is formally integrable, the order of the generating CC is equal to the of prolongations needed to get a 2-acyclic symbol plus 1 ( [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF], p 120, [START_REF] Pommaret | Partial Differential Control Theory[END_REF]). In the present case, neither ĝ1 nor ĝ2 are 2-acyclic while ĝ3 = 0 is trivially involutive, so that (3 -1) + 1 = 3.

• n = 4: In the classical case, we may proceed as before for exibiting the 20 components of the second order Riemann operator and the 20 components of the first order Bianchi operator.

The study of the conformal case is much more delicate and still unknown. Indeed, the symbol ĝ2 is 2-acyclic when n ≥ 4 and 3-acyclic when n ≥ 5. Accordingly, the Weyl operator, namely the CC for the conformal Killing operator, is second order like the Riemann operator. However, when n = 4 only (care), the symbol ĥ2 of the Weyl system is not 2-acyclic while its first prolongation ĥ3 becomes 2-acyclic. It follows that the CC for the Weyl operator are second order, ... and so on.

For example, we have the long exact sequence:

0 → ĝ5 → S 5 T * ⊗ T → S 4 T * ⊗ F0 → S 2 T * ⊗ F1 → F2 → 0
and deduce that dim( F2 ) = (-0) + (56 × 4) -(35 × 9) + (10 × 10) = 9, a result that can be ckecked by computer algebra in a few milliseconds but is still unknown.

We shall finally prove below that the Einstein parametrization of the stress equations is neither canonical nor minimal in the following diagrams: obtained by using the fact that the Einstein operator is self-adjoint, where by Einstein operator we mean the linearization of the Einstein equations at the Minkowski metric, the 6 terms being exchanged between themselves [START_REF] Oberst | The Computation of Purity Filtrations over Commutative Noetherian Rings of Operators and their Applications to Behaviours[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF]. Indeed, setting

E ij = R ij -1 2 ω ij tr(R) with tr(R) = ω ij R ij , it
is essential to notice that the Ricci operator is not self-adjoint because we have for example:

λ ij (ω rs d ij Ω rs ) ad -→ (ω rs d ij λ ij )Ω rs
and ad provides a term appearing in -ω ij tr(R) but not in 2R ij because we have, as in (5.1.4) of [START_REF] Foster | A Short Course in General relativity[END_REF]:

tr(Ω) = ω rs Ω rs ⇒ tr(R) = ω rs d rs tr(Ω) -d rs Ω rs
The upper div induced by Bianchi has nothing to do with the lower Cauchy stress equations, contrary to what is still believed today while the 10 on the right of the lower diagram has nothing to do with the perturbation of a metric which is the 10 on the left in the upper diagram. It also follows that the Einstein equations in vacuum cannot be parametrized as we have the following diagram of operators recapitulating the five steps of the parametrizability criterion (See [START_REF] Oberst | The Computation of Purity Filtrations over Commutative Noetherian Rings of Operators and their Applications to Behaviours[END_REF][START_REF] Poincaré | Sur une Forme Nouvelle des Equations de la Mécanique[END_REF] for more details or [START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Localization and Parametrization of Linear Multidimensional Control Systems[END_REF] for a computer algebra exhibition of this result): These purely mathematical results question the origin and existence of gravitational waves.

We may summarize these results, which do not seem to be known, by the following differential sequences where the order of an operator is written under its arrow:

• n = 3: 3 -→ 1 5 -→ 3 5 -→ 1 3 → 0 • n = 4: 4 -→ 1 9 -→ 2 10 -→ 2 9 -→ 1 4 → 0 • n = 5: 5 -→ 1 14 -→ 2 35 -→ 1 35 -→ 2 14 -→ 1 5 → 0 THEOREM 5.2:
Recalling that we have F 1 = H 2 (g 1 ) = Z 2 (g 1 ) and F1 = H 2 (ĝ 1 ) = Z 2 (ĝ 1 ), we have the following commutative and exact "fundamental diagram II ":

0 ↓ 0 S 2 T * ↓ ↓ 0 -→ Z 2 (g 1 ) -→ H 2 (g 1 ) -→ 0 ↓ ↓ ↓ 0 -→ T * ⊗ ĝ2 δ -→ Z 2 (ĝ 1 ) -→ H 2 (ĝ 1 ) -→ 0 ↓ ↓ ↓ 0 -→ S 2 T * δ -→ T * ⊗ T * δ -→ ∧ 2 T * -→ 0 ↓ ↓ 0 0
The following theorem will provide all classical formulas of both Riemannian and conformal geometry in one piece but in a totally unusual framework not depending on any conformal factor: THEOREM 5.3: All the short exact sequences of the preceding diagram split in a canonical way, that is in a way compatible with the underlying tensorial properties of the vector bundles involved.

T * ⊗ T * ≃ S 2 T * ⊕ ∧ 2 T * ⇒ Z 2 (ĝ 1 ) = Z 2 (g 1 ) + δ(T * ⊗ ĝ2 ) ≃ Z 2 (g 1 ) ⊕ ∧ 2 T * ⇒ H 2 (g 1 ) ≃ H 2 (ĝ 1 ) ⊕ S 2 T *
Proof: First of all, we recall that:

g 1 = {ξ k i ∈ T * ⊗ T | ω rj ξ r i + ω ir ξ r j = 0} ⊂ ĝ1 = {ξ k i ∈ T * ⊗ T | ω rj ξ r i + ω ir ξ r j - 2 n ω ij ξ r r = 0} ⇒ 0 = g 2 ⊂ ĝ2 = {ξ k ij ∈ S 2 T * ⊗ T | nξ k ij = δ k i ξ r rj + δ k j ξ r ri -ω ij ω ks ξ r rs } Now, if (τ k li,j
) ∈ T * ⊗ ĝ2 , then we have:

nτ k li,j = δ k l τ r ri,j + δ k i τ r rl,j -ω li ω ks τ r rs,j
and we may set τ r ri,j = τ i,j = τ j,i with (τ i,j ) ∈ T * ⊗ T and such a formula does not depend on any conformal factor [START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF]. We have:

δ(τ k li,j ) = (τ k li,j -τ k lj,i ) = (ρ k l,ij ) ∈ B 2 1 ) ⊂ Z 2 (ĝ 1 ) with: Z 2 (ĝ 1 ) = {(ρ k l,ij ) ∈ ∧ 2 T * ⊗ ĝ1 ) | δ(ρ k l,ij ) = 0} ⇒ ϕ ij = ρ r r,ij = 0 δ(ρ k l,ji ) = ( (l,i,j) ρ k l,ij = ρ k l,ij + ρ k i,jl + ρ k j,li ) ∈ ∧ 3 T * ⊗ T
• The splitting of the lower row is obtained by setting (τ i,j

) ∈ T * ⊗ T * → ( 1 2 (τ i,j + τ j,i )) ∈ S 2 T * in such a way that (τ i,j = τ j,i = τ ij ) ∈ S 2 T * ⇒ 1 2 (τ ij + τ ji ) = τ ij . Similarly, (ϕ ij = -ϕ ji ) ∈ ∧ 2 T * → ( 1 2 ϕ ij ) ∈ T * ⊗ T * and ( 1 2 ϕ ij -1 2 ϕ ji ) = (ϕ ij ) ∈ ∧ 2 T * .
• The most important result is to split the right column. For this, we first need to describe the monomorphism 0 → S 2 T * → H 2 (g 1 ) which is in fact produced by a diagonal north-east snake type chase. Let us choose (τ ij = τ i,j = τ j,i = τ ji ) ∈ S 2 T * ⊂ T * ⊗ T * . Then, we may find (τ k li,j ) ∈ T * ⊗ ĝ2 by deciding that τ r ri,j = τ i,j = τ j,i = τ r rj,i in Z 2 (ĝ 1 ) and apply δ in order to get

ρ k l,ij = τ k li,j -τ k k,lj,i
such that ρ r r,ij = ϕ ij = 0 and thus (ρ k l,ij ) ∈ Z 2 (g 1 ) = H 2 (g 1 ). We obtain:

nρ k l,ij
= δ k l τ r ri,j -δ k l τ r rj,i + δ k i τ r rl,j -δ k j τ r rli -ω ks (ω li τ r rs,j -ω lj τ r rs,i ) = (δ k i τ lj -δ k j τ li ) -ω ks (ω li τ sj -ω lj τ si ) Contracting in k and i while setting simply tr(τ ) = ω ij τ ij , tr(ρ) = ω ij ρ ij , we get:

nρ ij = nτ ij -τ ij -τ ij + ω ij tr(τ ) = (n -2)τ ij + ω ij tr(τ ) = nρ ji ⇒ ntr(ρ) = 2(n -1)tr(τ )
Substituting, we finally obtain

τ ij = n (n-2) ρ ij - n 2(n-1)(n-2
) ω ij tr(ρ) and thus the tricky formula:

ρ k l,ij = 1 (n -2) (δ k i ρ lj -δ k j ρ li ) -ω ks (ω li ρ sj -ω lj ρ si )) - 1 (n -1)(n -2) (δ k i ω lj -δ k j ω li )tr(ρ)
Contracting in k and i, we check that ρ ij = ρ ij indeed, obtaining therefore the desired canonical lift H 2 (g 1 ) → S 2 T * → 0 : ρ k i,lj → ρ r i,rj = ρ ij . Finally, using Proposition 4.3, the epimorphism H 2 (g 1 ) → H 2 (ĝ 1 ) → 0 is just described by the formula:

σ k l,ij = ρ k l,ij - 1 (n -2) (δ k i ρ lj -δ k j ρ li -ω ks (ω li ρ sj -ω lj ρ si )) + 1 (n -1)(n -2) (δ k i ω lj -δ k j ω li )tr(ρ)
which is just the way to define the Weyl tensor. We notice that σ r r,ij = ρ r r,ij = 0 and σ r i,rj = 0 by using indices or a circular chase showing that Z 2 (ĝ 1 ) = Z 2 (g 1 ) + δ(T * ⊗ ĝ2 ). This purely algebraic result only depends on the metric ω and does not depend on any conformal factor. In actual practice, the lift H 2 (g 1 ) → S 2 T * is described by ρ k l,ij → ρ r i,rj = ρ ij = ρ ji but it is not evident at all that the lift H 2 (ĝ 1 ) → H 2 (g 1 ) is described by the strict inclusion σ k l,ij → ρ k l,ij = σ k l,ij providing a short exact sequence as in Proposition 4.3 because ρ ij = ρ r i,rj = σ r i,rj = 0 by composition. Q.E.D.

COROLLARY 5.4: When n ≥ 4, each component of the Weyl tensor is a torsion element killed by the Dalembertian whenever the Einstein equations in vacuum are satisfied by the metric. Hence, there exists a second order operator Q such that we have an identity:

2 • W eyl = Q • Ricci
Proof: According to Proposition 4.4, each extension module ext i (M ) is a torsion module, ∀i ≥ 1. It follows that each additional CC in D ′ 1 which is not already in D 1 is a torsion element as it belongs to this module. One may also notice that:

rk D (Einstein) = n(n + 1) 2 -n = n(n -1) 2 , rk D (Riemann) = n(n + 1) 2 -n = n(n -1) 2 
The differential ranks of the Einstein and Riemann operators are thus equal, but this is a pure coincidence because rk D (Einstein) has only to do with the div operator induced by contracting the Bianchi identities, while rk D (Riemann) has only to do with the classical Killing operator and the fact that the corresponding differential module is a torsion module because we have a Lie group of transformations having n + n(n-1) 2 = n(n+1) 2 parameters (translations + rotations). Hence, as the Riemann operator is a direct sum of the Weyl operator and the Einstein or Ricci operator according to the previous theorem, each component of the Weyl operator must be killed by a certain operator whenever the Einstein or Ricci equations in vacuum are satisfied. A direct tricky computation can be found in ( [START_REF] Bourbaki | Algèbre, Ch. 10[END_REF], p 206]) and ([18], exercise 7.7]).

Q.E.D.

REMARK 5.5: In a similar manner, the EM wave equations 2F = 0 are easily obtained when the second set of Maxwell equations in vacuum is satisfied, avoiding therefore the Lorenz (no "t") gauge condition for the EM potential. Indeed, let us start with the Minkowski constitutive law with electric constant ǫ 0 and magnetic constant µ 0 such that ǫ 0 µ 0 c 2 = 1 in vacuum:

F rs = 1 µ 0 ωri ωsj F ij ∼ ω ri ω sj F ij where ωij = | det(ω) | -1/n ω ij ⇒| det(ω) |= 1, F ∈ ∧ 2
T * is the EM field and the induction F is thus a contravariant skewsymmetric 2-tensor density. From the Maxwell equations we have: 

∂ r F ij + ∂ i F jr + ∂ j F ri = 0, ∇ r F ri = 0 ⇒ ∇ r F ri = 0 ⇒ 2F ij = ∇ r ∇ r F ij = ∇ r (∇ i F rj -∇ j F ri ) = 0
0 0 0 ↓ ↓ ↓ 0 10 -→ 16 → 6 → 0 ↓ ↓↑ ↓ 10 Riemann -→ 20 Bianchi -→ 20 → 6 → 0 ↓↑ ↓ ↓ 10 Einstein -→ 10 div -→ 4 → 0 ↓ ↓ ↓ 0 0 0
It follows that the 10 components of the Weyl tensor must satisfy a first order linear system with 16 equations, having 6 generating first order CC. The differential rank of the corresponding operator is thus equal to 16 -6 = 10 and such an operator defines a torsion module in which we have to look separately for each component of the Weyl tensor in order to obtain Corollary 5.4. The situation is similar to that of the Cauchy-Riemann equations when n = 2. Indeed, any complex transformation y = f (x) must be solution of the (linear) first order system y 2 2 -y 1 1 = 0, y 1 2 + y 2 1 = 0 of finite Lie equations though we obtain y 1 11 + y 1 22 = 0, y 2 11 + y 2 22 = 0, that is y 1 and y 2 are separately killed by the second order laplacian ∆ = d 11 + d 22 .

6) CONTACT STRUCTURE

Changing slightly the notations while setting α = 1, ..., p and ᾱ = α + p = p + 1, ..., 2p, we may consider the contact 1-form χ = dx np α=1 x ᾱdx α ⇒ χ ∧ (dχ) p = ( 1 ) p+1 p!dx 1 ∧ ... ∧ dx n = 0 where the exterior power of dχ is taken p times. As before, we obtain the injective parametrization:

ξ α = - ∂φ ∂x ᾱ , ξ ᾱ = ∂φ ∂x α + x ᾱ ∂φ ∂x n , ξ n = φ -x β ∂φ ∂x β ⇒ φ = i(ξ)χ ⇒ L(ξ)χ =
∂φ ∂x n χ From now on, considering χ as a 1-form density as we did before, we may consider φ as a density section of a vector bundle E with dim(E) = 1 and we obtain the defining system in the Medolaghi form with n equations:

χ r (x)∂ i ξ r - 1 p + 1 χ i ∂ r ξ r + ξ r ∂ r χ i = 0
We have seen that this system is involutive when n = 3 but let the reader check as a difficult exercise that this system is not even formally integrable when n ≥ 5.

We may define the linear first order operator C = A • j 1 : E → T and the linear first order operator D = B • j 1 : T → F 0 by the two rows of the following commutative and exact diagram:

0 → Q 2 → J 2 (E) ρ1(A) → J 1 (T ) B → F 0 → 0 ↓ ↓ ↓ ↓ 0 → Q 1 → J 1 (E) A → T → 0 
where Q 1 = ker(A) ⊂ J 1 (E) and its symbol K 1 ⊂ T * ⊗E is easily seen to be involutive with dim(K r+1 ) = 1. As the parametrizing operator C is injective with a lift ξ → i(ξ)χ = φ, we obtain Q

1 = π 2 1 (Q 2 ) = 0 and thus Q 1 is not formally integrable. However, using Theorem 2.14, we have Q

(1) r+1 = ρ r (Q (1) 1 ) = 0 and thus Q r+1 ≃ K r+1 ⇒ dim(Q r+1 ) = 1.
We obtain therefore at once:

dim(F 0 ) = 1 -(n + 1)(n + 2)/2 + n(n + 1) = n(n -1)/2
and dim(F 0 ) = 10 when n = 5 instead of the 5 equations we obtained with the 1-form density χ. Prolonging this diagram r-times by induction, we obtain the following commutative diagram:

0 0 0 0 ↓ ↓ ↓ ↓ 0 → K r+2 → S r+2 T * ⊗ E σr+1(A) -→ S r+1 T * ⊗ T σr (B) -→ S r T * ⊗ F 0 ↓ ↓ ↓ ↓ 0 → Q r+2 → J r+2 (E) ρr+1(A) -→ J r+1 (T ) ρr (B) -→ J r (F 0 ) ↓ ↓ ↓ ↓ 0 → Q r+1 → J r+1 (E) ρr (A) -→ J r (T ) ρr-1(B) -→ J r-1 (F 0 ) ↓ ↓ ↓ 0 0 0
Chasing in this diagram while cutting it in the middle by setting:

R r+1 = im(ρ r+1 (A)) ⊆ ker(ρ r (B)) = ρ r (R 1 ) ⇒ π r+1 r (R r+1 ) = R r ⇒ g r+1 ⊆ ρ r (g 1 )
we obtain successively:

dim(g r+1 ) = dim(R r+1 ) -dim(R r ) = (dim(J r+2 (E)) -dim(Q r+2 )) -(dim(J r+1 (E) -dim(Q r+1 )) = dim(J r+2 (E)) -dim(J r+1 (E)) = dim(S r+2 T * ) = (r + n + 1)!/(r + 2)!(n -1)! dim(ρ r (g 1 )) = dim(ker(σ r (B))) = dim(im(σ r+1 (A))) + 1 = (dim(S r+2 T * ) -1) + 1 = dim(S r+2 T * ) = dim(g r+1 )
It follows that g r+1 = ρ r (g 1 ) and thus R r+1 = ρ r (R 1 ) by induction on r. Hence R 1 is an involutive first order system because it is already formally integrable and its symbol g 1 is involutuve because K 1 is involutive. Extending step by step the previous diagram on the right, we obtain: THEOREM 6.1: We have the locally exact Janet sequence where all the operators are first order and involutive but C which is first order but not formally integrable:

0 → E C -→ T D -→ F 0 D1 -→ F 1 D2 -→ ... Dn-2 -→ F n-2 → 0 
Proof: We recall that a differential sequence is locally exact, like the Poincaré sequence, if any (local) section of F r killed by D r+1 is the image of a (local) section of F r-1 by D r . To prove this result we just need to apply the Spencer operator D to the middle row of the preceding diagram when r is large enough. As it is known that all the resulting vertical Spencer sequences are locally exact (See [START_REF] Nordström | Einstein's Theory of Gravitation and Herglotz's Mechanics of Continua[END_REF][START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF][START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF][START_REF] Pommaret | Relative Parametrization of Linear Multidimensional Systems[END_REF] for more details), then the commutative diagram thus obtained is exact but perhaps the first purely algebraic column on the left which is an induced δ-sequence, exact because K 1 is involutive. For helping the reader we provide the upper part of this diagram:

0 0 0 ↓ ↓ ↓ 0 → E C -→ T D -→ F 0 → ... ↓ ↓ j r+2 ↓ j r+1 ↓ j r 0 → K r+2 → J r+2 (E) -→ J r+1 (T ) -→ J r (F 0 ) → ... ↓ -δ ↓ D ↓ D ↓ D 0 → T * ⊗ K r+1 → T * ⊗ J r+1 (E) → T * ⊗ J r (T ) → T * ⊗ J r-1 (F 0 ) → ...
Comparing to the Poincaré sequence, we get dim(F r ) = n!/(r + 2)!(n -r -2)! and it remains to find the geometric object providing D. For this, we may introduce the dual density ω = (ω ij ) of α = (α k1,...kn-2 ) = χ ∧ (dχ) p-1 in a symbolic way by introducing ǫ ∈ ∧ n T with | ǫ i1,...,in |= 1 and set ω ij = ǫ ijk1,...,kn-2 α k1,...,kn-2 . Using jet notations, we have the nonlinear system of finite Lie equations in Lie form: ω kl (y) ∂x i ∂y k ∂x j ∂y l ( ∂(y 1 , ..., y n ) ∂(x 1 , ..., x n ) )

-1 p+1 = ω ij (x)
We obtain therefore by linearization the involutive system R 1 in of general infinitesimal Lie equations in Medolaghi form:

-ω rj (x)∂ r ξ i -ω ir (x)∂ r ξ j -

1 p + 1 ω ij (x)∂ r ξ r + ξ r ∂ r ω ij (x) = 0
The Vessiot structure equations involve only one constant and become:

χ i (∂ j χ k -∂ k χ j ) + χ j (∂ k χ i -∂ i χ k ) + χ k (∂ i χ j -∂ j χ i ) = c σ ijk
where the 3-form density σ = (σ ijk ) is the dual of (ω) p-1 . Finally, as χ is proportional to the dual density of (ω) p , it may be expressed rationally in terms of ω. Linearizing as we did in Section 2 and with the Riemann tensor, we obtain D 1 with dim(F 1 ) = n(n -1)(n -2)/6 in a coherent way. Q.E.D.

We use the previous results in order to revisit the Hamilton-Jacobi equation and prove the need to use differential algebra for studying the nonlinear systems involved. This is a difficult problem indeed, in the sense that no classical approach by means of exterior calculus can be adapted as formal integrability or involution become crucial tools that cannot be avoided. Let z = f (t, x) be a solution of the non-linear PD equation z t + H(t, x, z, z x ) = 0 written with jet notations for the single unknown z. When dealing with applications, t will be time, x will be space, z will be the action and, as usual, we shall set p = z x for the momentum. It is important to notice that, in this general setting, H(t, x, z, p) cannot be called Hamiltonian as it involves z (See [START_REF] Northcott | An Introduction to Homological Algebra[END_REF] and in particular [START_REF] Northcott | Lessons on Rings Modules and Multiplicities[END_REF], p 506 for more details): The corresponding Lie pseudogroup is the pseudogroup Γ of contact transformations of (X, Z, P ) that reproduces the contact 1-form dZ -P dX up to a function factor. Closing this system, we obtain at once:

d X ∧ d Z ∧ d P = ( ρ ρ ) 2 dX ∧ dZ ∧ dP
Closing again, we discover that ρ/ ρ is in fact a function of (X, Z, P ), a result bringing the Lie pseudogroup of contact transformations and showing that no restriction must be imposed to H(t, x, z, p). Q.E.D.

It is quite more dificult to exhibit the equations of the above automorphic sytem and the corresponding equations of the Lie pseudogroup Γ in Lie form or even as involutive systems of PD equations. From what has been said, we obtain at least:

∂ Z ∂X -P ∂ X ∂X ∂ Z ∂Z -P ∂ X ∂Z = -P, ∂ Z ∂P -P ∂ X ∂P ∂ Z ∂Z -P ∂ X ∂Z = 0 ⇒ ∂ Z ∂P - P ∂ X ∂P = 0
for defining R 1 , that is to say: which is nothing else than the first order equation that can be obtained from the first and third among the previous 7 equations by using crossed derivatives in x/p. It follows that A

1 may be defined by 6 equations only and we have thus dim X (A 1 is an automorphic system for the involutive Lie groupoid R We finally show the link which is existing with differential algebra and the differential Galois theory because the Lie pseudogroup of contact transformations is an algebraic Lie pseudogroup. For this, using jet notations, let us consider the chain of strict inclusions of differential fields:

K = Q < Z x -P X x Z z -P X z , Z t -P X t Z z -P X z , Z p -P X p Z z -P X z >, L = Q < X, Z, P > ⇒ Q ⊂ K ⊂ L
Using the chain rule for derivatives, we let the reader prove as an exercise that each fraction is a differential invariant for the Lie pseudogroup Γ of contact transformations. Accordigly, L/K is a differential automorphic extension in the sense that the corresponding infinite dimensional model differential variety is a principal homogeneous space (PHS) for Γ. It is not so evident that:

∂(X, Z, P ) ∂(x, z, p) /( ∂Z ∂z -P ∂X ∂z

) 2 ∈ K
because it is also a differential invariant of Γ. The intermediate differential field K ⊂ K ′ ⊂ L with K ′ = K < Z z -P X z > is the differential field of invariants of the Lie subpseudogroup Γ ′ ⊂ Γ of strict or unimodular contact transformations preserving the contact form dZ -P dX and thus the volume 3-form dZ ∧dX ∧dP . We let the reader adapt the previous results to this particular case.

  Ω) ω + µ Ω, tr(Ω) = Ω 11 + Ω 22 ⇒ µ Ω = σ -λ 2(λ + µ) tr(σ) ω, tr(σ) = σ 11 + σ 22even though σ 33 = 1 2 λ(Ω 11 + Ω 22 ) = 1 2 λtr(Ω) ⇒ σ 33 = ν(σ 11 + σ 22 ) = 0. Let us consider the right square of the diagram below with locally exact rows:

  tr(R) ≡ d 11 Ω 22 + d 22 Ω 11 -2d 12 Ω 12 = 0 ⇒ µ tr(R) ≡ λ + 2µ 2(λ + µ) ∆∆φ = 0 ⇒ ∆∆φ = 0 where the linearized scalar curvature tr(R) is allowing to define the Riemann operator in the previous diagram, namely the only compatibility condition (CC) of the Killing operator. Using now the left square of the previous diagram, we may also substitute the Airy parametrization in the Cauchy stress equations and get, when f = g (gravity)(care: n=3): (λ + µ) ∇( ∇. ξ) + µ∆ ξ = f ∇ ⇒ (λ + 2µ)∆tr(Ω) = 0 ⇒ ∆tr(Ω) = 0 ⇒ ∆tr(σ) = 0 ⇒ ∆∆φ = 0

  11 ) 3 y 111 = 0, y 122 -(y 11 ) 2 y 111 = 0, y 112 -y 11 y 111 = 0, ... and thus dim(g q ) = 1, ∀q ≥ 1. As the symbol g 2 is involutive, there is an infinite number of parametric jets (y, y 1 , y 2 , y 11 , y 111 , ...) and thus k{y}/a ≃ k[y, y 1 , y 2 , y 11 , y 111 , ...] is a differential integral domain with d 2 y 2 = y 22 = 1 3 (y 11 ) 3 , d 2 y 11 = y 112 = y 11 y 111 , .... It follows that a = p is a prime differential ideal with rad(p) = p. The second order linearized system is: Y 22 -(y 11 ) 2 Y 11 = 0, Y 12 -y 11 Y 11 = 0 is now well defined over the differential field K = Q(k{y}/p) and is involutive. DEFINITION 3.5: A differential ring is a ring A with a finite number of commuting derivations (∂ 1 , ..

LEMMA 3 . 7 :

 37 ∀a ∈ a, ∀i = 1, ..., n. We shall also introduce the radical rad(a) = {a ∈ A | ∃r, a r ∈ a} ⊇ a and say that a is a perfect (or radical) differential ideal if rad(a) = a. If S is any subset of A, we shall denote by {S} the differential ideal generated by S and introduce the (non-differential) ideal ρ r (S) = {d ν a | a ∈ S, 0 ≤| ν |≤ r} in A. If a ⊂ A is differential ideal, then rad(a) is a differential ideal containing a.

EXAMPLE 3 . 13 :PROPOSITION 3 . 14 :

 313314 As K{y} is a polynomial ring with an infinite number of variables it is not noetherian and an ideal may not have a finite basis. With K = Q, n = 1 andd = d x , then a = {yy x , y x y xx , y xx y xxx , ...} ⇒ (y x ) 2 + yy xx ∈ a ⇒ rad(a) = {y x } is a prime differential ideal. If ζ is differentially algebraic over K < η > and η is differentially algebraic over K, then ζ is differentially algebraic over K. Setting ξ = ζ -η, it follows that, if L/Kis a differential extension and ξ, η ∈ L are both differentially algebraic over K, then ξ + η, ξη and d i ξ are differentially algebraic over K.

d2-→ F 1 d1-

 1 → F 0 -→ 0 and apply hom A (•, A) in order to get the sequence ...

  d

PROPOSITION 4 . 4 :

 44 The extension modules ext0 A (M ) = ker(d * 1 ) = hom A (M, A) = M * and ext i (M ) = ext i A (M ) = ker(d * i+1 )/im(d * i ), ∀i ≥ 1 do not depend on the resolution chosen and are torsion modules for i ≥ 1.

  in order to exhibit solved forms for systems of partial differential equations as in the preceding section. Using an implicit summation on multi-indices, we may introduce the (noncommutative) ring of differential operatorsD = A[d 1 , ..., d n ] = A[d] with elements P = a µ d µ such that | µ |< ∞ and d i a = ad i + ∂ i a.The highest value of |µ| with a µ = 0 is called the order of the operator P and the ring D with multiplication (P, Q) -→ P • Q = P Q is filtred by the order q of the operators with the filtration 0= D -1 ⊂ D 0 ⊂ D 1 ⊂ ... ⊂ D q ⊂ ... ⊂ D ∞ = D.Moreover, it is clear that D, as an algebra, is generated by A = D 0 and T = D 1 /D 0 with D 1 = A ⊕ T if we identify an element ξ = ξ i d i ∈ T with the vector field ξ = ξ i (x)∂ i of differential geometry, but with ξ i ∈ A now. It follows that D = D D D is a bimodule over itself, being at the same time a left D-module D D by the composition P -→ QP and a right D-module D D by the composition P -→ P Q with D r D s = D r+s , ∀r, s ≥ 0 in any case.

1 ,

 1 ..., p. Therefore, setting Dy 1 + ... + Dy m = Dy ≃ D m and calling I = DΦ ⊂ Dy the differential module of equations, we obtain by residue the differential module or D-module M = Dy/DΦ, introducing the canonical projection Dy p -→ M → 0 and denoting the residue of y k

DEFINITION 4 . 6 :

 46 Setting P = a µ d µ ∈ D ad ←→ ad(P ) = (-1) |µ| d µ a µ ∈ D, we have ad(ad(P )) =

PROPOSITION 4 . 8 :THEOREM 4 . 9 :

 4849 If we have an operator E D -→ F , we may obtain by duality an operator ∧ n T * ⊗ E * ad(D) ←-∧ n T * ⊗ F * . Now, with operational notations, let us consider the two differential sequences: where D 1 generates all the CC of D. Then D 1 • D ≡ 0 ⇐⇒ ad(D) • ad(D 1 ) ≡ 0 but ad(D) may not generate all the CC of ad(D 1 ) as we already saw in the Introduction. Passing to the module framework, we just recognize the definition of ext 1 (M ) when M is determined by D. As D = D D D is a bimodule, then M * = hom D (M, D) is a right D-module according to Lemma 3.1 and we may thus define a right module N D by the ker/coker long exact sequence 0 ←-N D ←-F * 1 D * ←-F * 0 ←-M * ←-0 but we have [6,36,43,51]: We have the side changing procedures M = D M → M D = ∧ n T * ⊗ A M and N D → N = D N = hom A (∧ n T * , N D ) with D ((M D )) = M and D (N D ) = N .

DEFINITION 4 . 12 :

 412 If a differential operator ξ D -→ η is given, a direct problem is to find generating compatibility conditions (CC) as an operator η D1 -→ ζ such that Dξ = η ⇒ D 1 η = 0. Conversely, given η D1 -→ ζ, the inverse problem will be to look for ξ D

Dn -→ C n -→ 0 PROPOSITION 5 . 1 :

 051 The Spencer sequence for the Lie operator describing the infinitesimal action of a Lie group G is (locally) isomorphic to the tensor product of the Poincaré sequence by the Lie algebra G = T e (G) where e ∈ G is the identity element. It follows that r+1 generates the CC of D r ⇔ ad(D r ) generates the CC of ad(D r+1 ), a result not evident at all.

  , we are facing only two possibilities, both leading to a contradiction: 1) If we use the operator S 2 T * Einstein -→ S 2 T * in the geometrical setting, the S 2 T * on the left has indeed someting to do with the perturbation of the metric but the S 2 T * on the right has nothing to do with the stress.2) If we use the adjoint operator ∧ n T * ⊗ S 2 T Einstein ←-∧ n T * ⊗ S 2 T in the physical setting, then ∧ n T * ⊗ S 2 T on the left has of course something to do with the stress but the ∧ n T * ⊗ S 2 T on the right has nothing to do with the perturbation of a metric.

REMARK 5 . 6 :

 56 Using Proposition 4.3 and the splittings of Theorem 5.3 for the second column, we obtain the following commutative and exact diagram:

DEFINITION 6 . 2 : 6 . 3 :

 6263 A complete integral z = f (t, x; a, b) is a family of solutions depending on two constant parameters (a, b) in such a way that the Jacobian condition ∂(z, p)/∂(a, b) = 0 whenever p = ∂ x f (t, x; a, b). Using the implicit function theorem, we may set THEOREM The search for a complete integral of the PD equation:

  z t + H(t, x, z, z x ) = 0 is equivalent to the search for a single solution of the automorphic system A 1 with n = 4, m = 3, obtained by eliminating ρ(t, x, z, p) in the Pfaffian system: dz -pdx + H(t, x, z, p)dt = ρ(dZ -P dX)

Proof:

  If z = f (t, x; a, b) is a complete integral, we have:dz -pdx + H(t, x, z, p)dt = ∂f ∂a da + ∂f ∂b dbUsing the implicit function theorem and the Jacobian condition, we may set: a = X(t, x, z, p), b = Z(t, x, z, p) ⇒ ρ(t, x, z, p) = ∂f ∂b , P (t, x, z, p) = ∂f ∂a / ∂f ∂b The converse is left to the reader.For another solution denoted wit a "bar", we have:dz -pdx + H(t, x, z, p)dt = ρ(d Z -P d X) ⇒ d Z -P d X = ρ ρ (dZ -P dX)

4 × 3 )

 43 -6 = 9. This result proves that the involutive system A[START_REF] Adler | Über die Mach-Lippmannsche Analogie zum zweiten Hauptsatz[END_REF] 

  a ⇒ 2y x y xxx y xxxx + y xx (y xxx ) 2 ∈ a ⇒ 2y x y xxx y xxxx = -y xx (y xxx ) 2 mod(a) ⇒ 4y xx y xxx y xxxx + 2y x (y xxxx ) 2 + 2y x y xxx y xxxxx + (y xxx ) 3 ∈ a ⇒ 4y xx (y xxx ) 2 y xxxx + 2y x y xxx (y xxxx ) 2 + 2y x (y xxx ) 2 y xxxxx + (y xxx ) 4 ∈ a ⇒ 4y xx (y xxx ) 2 y xxxx + 2y x y xxx (y xxxx

  3 and y xx -6y 2 . EXAMPLE 3.3: If k = Q as before, y is a differential indeterminate and (d 1 , d 2 ) are two formal derivations, let us consider the differential ideal generated by P 1 = y 22 -1 2 (y 11 ) 2 and P 2 = y 12 -y 11 in k{y}. Using crossed derivatives, we get successively: P 1 , P 2 ∈ a ⇒ y 112 -y 111 ∈ a, y 122 -y 11 y 111 ∈ a, y 222 -y 11 y 111

  y is a differential indeterminate and (d 1 , d 2 ) are two formal derivations, let us consider the differential ideal generated by P 1 = y 22 -1 3 (y 11 ) 3 and P 2 = y 12 -1 2 (y 11 ) 2 in k{y}. Using crossed derivatives, we get successively:

  Using now letters (x, z, p) instead of the capital letters (X, Z, P ) and (ξ, η, ζ) for the corresponding vertical bundles, we obtain by linearization the system of first order infinitesimal Lie equations:This system is not involutive as it is not even formally integrable. Using crossed derivatives in x/p, we obtain the only new first order equation: is involutive with two equations of class x solved with respect to ( ∂ξ ∂x , ∂η ∂x ) and one equation of class p solved with respecto ∂ξ ∂p , that is dim Y (R Accordingly, the non-linear system of Lie equations must become involutive by adding only one equation in Lie form, namely: Coming back to the original system and notations, we may suppose ∂Z ∂z -P ∂X ∂z = 0 and introduce the 7 = 3 + 4 equations:Starting now, the next results canot be obtained by exterior calculus and are therefore not known. Indeed, developping the 3 × 3 Jacobian determinant, the fourth equation provided can be written as:

										∂ξ ∂x		-p	∂η ∂x	-ζ + p(	∂ξ ∂z	-p	∂η ∂z	) = 0,	∂ξ ∂p	-p	∂η ∂p	= 0
																				∂η ∂x	-	∂ξ ∂z	+	∂ζ ∂p	+ 2p	∂η ∂z	= 0
	(1) and the resulting system R 1							(1) 1 ) = (3+3×3)-3 = 9.
																					∂( Z, X, P )
																					∂(Z,X,P ) Z ∂Z -P ∂ ( ∂ X ∂X ) 2	= 1
	and its linearization just provides:		
																	∂x	+	∂ξ ∂z	+	∂ζ ∂p	= 2(	∂ξ ∂z	-p	∂η ∂z	)
	that is exactly the previous equation.
	∂Z ∂x	-P	∂X ∂x	+ p(	∂Z ∂z	-P	∂X ∂z	) = 0,	∂Z ∂t	-P	∂X ∂t	-H(	∂Z ∂z	-P	∂X ∂z	) = 0,	∂Z ∂p	-P	∂X ∂p	= 0
		∂(Z, X, P ) ∂(z, x, p)		-(	∂Z ∂z	-P	∂X ∂z	) 2 = 0,	∂(Z, X, P ) ∂(z, p, t)	-	∂H ∂p	(	∂Z ∂z	-P	∂X ∂z	) 2 = 0, ...
				∂Z ∂x	.	∂(X, P ) ∂(x, p)	-		∂Z ∂x	.	∂((X, P ) ∂(z, p)	+	∂Z ∂p	.	∂(X, P ) ∂(z, x)	-(	∂Z ∂z	-P	∂X ∂z	) 2 = 0
	Using the previous equations in order to eliminate ∂Z ∂x and ∂Z ∂p , we obtain:
		∂Z ∂x	.	∂(X, P ) ∂(x, p)		+ p(	∂Z ∂z		-P	∂X ∂z	).	∂((X, P ) ∂(z, p)	-P	∂X ∂x	.	∂(X, P ) ∂(z, p)	+ P	∂X ∂p	.	∂(X, P ) ∂(z, x)	=
							(	∂Z ∂z	-P		∂X ∂z	)(	∂(X, P ) ∂(x, p)	+ p	∂(X, P ) ∂(z, p)	) = (	∂Z ∂z	-P	∂X ∂z	) 2
	and thus:																		
													∂(X, P ) ∂(x, p)	+ p	∂(X, P ) ∂(z, p)	) -(	∂Z ∂z	-P	∂X ∂z	) = 0
						∂ ∂X Z	-	P ∂ ∂X X	+ P (	∂ ∂Z Z	-	P ∂ ∂Z X	) = 0,	∂ ∂P Z	-	P ∂ ∂P X	= 0

 REMARK 4.15:The following chains of inclusions and short exact sequences allow to compare the main procedures used in the respective study of differential extensions and differential modules:

where F is a maximum free submodule of M , T = M/F is a torsion-module and M ′ = M/t(M ) is a torsion-free module.

The next examples open the way towards a new domain of research.

EXAMPLE 4.16: With n = 2, m = 3, K = Q, let us consider the first order nonlinear involutive system:

P 1 ≡ y 1 2 -y 3 y 1 1 = 0, P 2 ≡ y 2 2 -y 3 y 2 1 = 0 This system defines a prime differential ideal p ⊂ K{y} and the differential extension L = Q(K{y}/p) is differentially algebraic over K < y 3 > with parametric jets (y 1 , y 2 , y 1 1 , y 2 1 , y 1 11 , y 2 11 , ...). The linearized system D 1 Y = 0 over L is:

) and integrating by part, we get ad(D 1 )λ = µ the form:

Using only the parametric jets for y and λ in the PD equations provided, we get: 

course but also the additional zero order CC:

Setting Y = δy as the standard variational notation used by engineer, we obtain easily ω ∧ δω = 0 and ω cannot therefore admit an integrating factor, a result showing that K is its own differential algebraic closure in L. EXAMPLE 4.17:

) by eliminating the factor ρ(x) in the linear system L(ξ)α = ρ(x)α admits the injective parametrization -

It defines therefore a free differential module M ≃ D which is thus reflexive and even projective. Any resolution of this module splits, like the short exact sequence 0 → D 2 → D 3 → D → 0, and we shall prove in section 6 that the corresponding differential sequence of operators is locally exact like the Poincaré sequence ( [START_REF] Northcott | An Introduction to Homological Algebra[END_REF], p 684-691).

7) CONCLUSION

Whenever R q ⊆ J q (E) is an involutive system of order q on E, we may define the Janet bundles F r for r = 0, 1, ..., n by the short exact sequences:

We may pick up a section of F r , lift it up to a section of ∧ r T * ⊗ J q (E) that we may lift up to a section of ∧ r T * ⊗ J q+1 (E) and apply D in order to get a section of ∧ r+1 T * ⊗ J q (E) that we may project onto a section of F r+1 in order to construct an operator D r+1 : F r → F r+1 generating the CC of D r in the canonical linear Janet sequence ( [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF], p 145):

If we have two involutive systems R q ⊂ Rq ⊂ J q (E), the Janet sequence for R q projects onto the Janet sequence for Rq and we may define inductively canonical epimorphisms F r → Fr → 0 for r = 0, 1, ..., n by comparing the previous sequences for R q and Rq . A similar procedure can also be obtained if we define the Spencer bundles C r for r = 0, 1, ..., n by the short exact sequences:

We may pick up a section of C r , lift it to a section of ∧ r T * ⊗R q , lift it up to a section of ∧ r T * ⊗R q+1 and apply D in order to construct a section of ∧ r+1 ⊗ R q that we may project to C r+1 in order to construct an operator D r+1 : C r → C r+1 generating the CC of D r in the canonical linear Spencer sequence which is another completely different resolution of the set Θ of (formal) solutions of R q :

However, if we have two systems as above, the Spencer sequence for R q is now contained into the Spencer sequence for Rq and we may construct inductively canonical monomorphisms 0 → C r → Ĉr for r = 0, 1, ..., n by comparing the previous sequences for R q and Rq . When dealing with applications, we have set E = T and considered systems of finite type Lie equations determined by Lie groups of transformations and ad(D r ) generates the CC of ad(D r+1 ) while ad(D r ) generates the CC of ad(D r+1 ). We have obtained in particular C r = ∧ r T * ⊗ R q ⊂ ∧ r T * ⊗ Rq = Ĉr when comparing the classical and conformal Killing systems, but these bundles have never been used in physics. Therefore, instead of the classical Killing system R 2 ⊂ J 2 (T ) defined by Ω ≡ L(ξ)ω = 0 and Γ ≡ L(ξ)γ = 0 or the conformal Killing system R2 ⊂ J 2 (T ) defined by Ω ≡ L(ξ)ω = A(x)ω and Γ ≡ L(ξ)γ = (δ k i A j (x) + δ k j A i (x) -ω ij ω ks A s (x)) ∈ S 2 T * ⊗ T , we may introduce the intermediate differential system R2 ⊂ J 2 (T ) defined by L(ξ)ω = Aω with A = cst and Γ ≡ L(ξ)γ = 0, for the Weyl group obtained by adding the only dilatation with infinitesimal generator x i ∂ i to the Poincaré group. We have R 1 ⊂ R1 = R1 but the strict inclusions R 2 ⊂ R2 ⊂ R2 and we discover exactly the group scheme used through this paper, both with the need to shift by one step to the left the physical interpretation of the various differential sequences used. Indeed, as ĝ2 ≃ T * , the first Spencer operator R2

and thus projects by cokernel onto the induced operator T * → T * ⊗ T * . Composing with δ, it projects therefore onto T * d → ∧ 2 T * : A → dA = F as in EM and so on by using the fact that D 1 and d are both involutive or the composite epimorphisms Ĉr → Ĉr / Cr ≃ ∧ r T * ⊗ ( R2 / R2 ) ≃ ∧ r T * ⊗ ĝ2 ≃ ∧ r T * ⊗ T * δ -→ ∧ r+1 T * . The main result we have obtained is thus to be able to increase the order and dimension of the underlying jet bundles and groups, proving therefore that any 1-form with value in the second order jets ĝ2 (elations) of the conformal Killing system (conformal group) can be decomposed uniquely into the direct sum (R, F ) where R is a section of the Ricci bundle S 2 T * and the EM field F is a section of ∧ 2 T * as in [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | François Cosserat and the Secret of the Mathematical Theory of Elasticity[END_REF](Compare to [START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF]). The mathematical structures of electromagnetism and gravitation only depend on second order jets.