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Sweeping processes with prescribed behaviour on jumps

Introduction

Sweeping processes are a class of evolution differential inclusions introduced by J.J. Moreau in a series of articles [START_REF] Moreau | Rafle par un convexe variable, I[END_REF][START_REF] Moreau | Rafle par un convexe variable, II[END_REF][START_REF] Moreau | Problème d'évolution associé à un convexe mobile dun espace hilbertien[END_REF][START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF] which culminated in the celebrated paper [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF], originating a research that is still active. The original formulation introduced in [START_REF] Moreau | Rafle par un convexe variable, I[END_REF][START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF] reads as follows. Let H be a real Hilbert space, a, b ∈ R, a < b, and, for every time t ∈ [a, b], let C(t) be a given nonempty, closed and convex subset of H such that the mapping t -→ C(t) is Lipschitz continuous when the family of closed subsets of H is endowed with the Hausdorff metric. One has to find a Lipschitz continuous function y : [a, b] -→ H such that

y(t) ∈ C(t) ∀t ∈ [a, b] , (1.1) 
-y ′ (t) ∈ N C(t) (y(t)) for L 1 -a.e. t ∈ [a, b], (1.2) 
y(0) = y 0 , (1.3) 
y 0 being a prescribed point in C(a). Here L 1 is the Lebesgue measure, and N C(t) is the exterior normal cone to C(t) at y(t) (all the precise definitions will be given in Section 2). When the interior of C(t) is nonempty, the process defined by (1.1)-(1.3) has a nice and useful geometricalmechanical interpretation which we recall from [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]: "the moving point u(t) remains at rest as long as it happens to lie in the interior of C(t); when caught up with the boundary of the moving set, it can only proceed in an inward normal direction, as if pushed by this boundary, so as to go on belonging to C(t)". Moreau was originally motivated by plasticity and friction dynamics (cf. [START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF][START_REF] Moreau | Application of convex analysis to the treatment of elastoplastic systems[END_REF][START_REF] Moreau | An introduction to unilateral dynamics[END_REF]), but now sweeping processes have found applications to nonsmooth mechanics (see, e.g., [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems -Shocks and Dry Friction[END_REF][START_REF] Kunze | An introduction to Moreau's sweeping processes[END_REF][START_REF] Paoli | Multibody Dynamics with Unilateral Constraints and Dry Friction: How the Contact Dynamics Approach May Handle Coulomb's Law Indeterminacies?[END_REF]), to economics (cf., e.g., [START_REF] Henry | An existence theorem for a class of differential equations with multivalued right-hand side[END_REF][START_REF] Cornet | Existence of slow solutions for a class of differential inclusions[END_REF][START_REF] Flam | Feasibility in finite time[END_REF]), to electrical circuits (see, e.g., [START_REF] Addy | A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics[END_REF][START_REF] Brogliato | Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems[END_REF][START_REF] Acary | Nonsmooth Modeling and Simulation for Switched Circuits[END_REF][START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF]), to crowd motion modeling (cf., e.g., [START_REF] Maury | A mathematical framework for a crowd motion model[END_REF][START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Maury | A discrete contact model for crowd motion[END_REF][START_REF] Maury | Handling Congestion in Crowd Motion Modeling[END_REF][START_REF] Maury | Congestion-driven dendritic growth[END_REF][START_REF] Marino | Measure sweeping processes[END_REF]), and to other fields (see, e.g., the references in the recent paper [START_REF] Moreau | Sweeping Process with Bounded Truncated Retraction[END_REF]).

In [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] the formulation (1.1)-(1.3) is extended to the case when the mapping t -→ C(t) is of bounded variation and right continuous in the following natural way: it is proved that there is a unique y ∈ BV r ([a, b] ; H), the space of right continuous H-valued functions of bounded variation, such that there exist a positive measure µ and a µ-integrable function v : 

where Dy denotes distributional derivative of y, which is a measure since y ∈ BV . A relevant particular case is provided by the case when C(t) = u(t)-Z, with u ∈ BV r ([0, T ] ; H), and Z ⊆ H closed, convex and nonempty, namely the sweeping process driven by a set with constant shape.

The resulting solution operator P : BV r ([a, b] ; H) -→ BV r ([a, b] ; H) associating with u the unique function y satisfying (1.4)-(1.7) with C(t) = u(t) -Z is called vector play operator (see, e.g., [START_REF] Krejčí | Vector hysteresis models[END_REF][START_REF] Krejčí | Hysteresis, Convexity and Dissipation in Hyperbolic Equations[END_REF][START_REF] Krejčí | Generalized variational inequalities[END_REF][START_REF] Recupero | The play operator on the rectifiable curves in a Hilbert space[END_REF][START_REF] Recupero | BV solutions of rate independent variational inequalities[END_REF][START_REF] Recupero | BV continuous sweeping processes[END_REF]) and has an important role in elasto-plasticity and hysteresis (cf., e.g., [START_REF] Krasnosel | Systems with Hysteresis[END_REF][START_REF] Visintin | Differential Models of Hysteresis[END_REF][START_REF] Brokate | Hysteresis and Phase Transitions[END_REF][START_REF] Krejčí | Hysteresis, Convexity and Dissipation in Hyperbolic Equations[END_REF][START_REF] Mielke | Evolution in rate-independent systems[END_REF][START_REF] Mielke | Rate Independent Systems, Theory and Applications[END_REF]).

The theoretical analysis of problem (1.4)-(1.7) has been expanded in various directions: the case of C continuous was first dealt in [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems -Shocks and Dry Friction[END_REF], the nonconvex case has been studied in several papers, e.g. [START_REF] Valadier | Quelques problémes d'entrainement unilatéral en dimension finie[END_REF][START_REF] Valadier | Lipschitz approximation of the sweeping (or Moreau) process[END_REF][START_REF] Valadier | Rafle et viabilité[END_REF][START_REF] Castaing | Evolution equations governed by the sweeping process[END_REF][START_REF] Castaing | Evolution problems associated with non-convex closed moving sets with bounded variation[END_REF][START_REF] Colombo | The sweeping process without convexity[END_REF][START_REF] Benabdellah | Existence of solutions to the nonconvex sweeping process[END_REF][START_REF] Colombo | Sweeping by a continuous prox-regular set[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF][START_REF] Bounkhel | Nonconvex sweeping process and prox-regularity in Hilbert space[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF][START_REF] Thibault | Regularization of nonconvex sweeping process in Hilbert space[END_REF][START_REF] Haddad | Reduction of sweeping process to unconstrained differential inclusion[END_REF][START_REF] Bernicot | Differential inclusions with proximal normal cones in Banach spaces[END_REF][START_REF] Sene | Regularization of dynamical systems associated with prox-regular moving sets[END_REF]; for stochastic versions see, e.g., [START_REF] Castaing | Version aléatoire de problème de raflee par un convexe variable[END_REF][START_REF] Castaing | Equations différentielles. Rafle par un convexe aléatoire à variation continue r . oite[END_REF][START_REF] Bernicot | Stochastic perturbations of sweeping process[END_REF][START_REF] Castaing | A Skorokhod problem governed by a closed convex moving set[END_REF], while periodic solutions can be found in [START_REF] Castaing | BV periodic solutions of an evolution problem associated with continuous moving convex sets[END_REF]. The continuous dependence properties of various sweeping problems are investigated, e.g., in [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF][START_REF] Brokate | On uniqueness in evolution quasivariational inequalities[END_REF][START_REF] Recupero | Sobolev and strict continuity of general hysteresis operators[END_REF][START_REF] Krejčí | Lipschitz continuous data dependence of sweeping processes in BV spaces[END_REF][START_REF] Recupero | BV solutions of rate independent variational inequalities[END_REF][START_REF] Recupero | A continuity method for sweeping processes[END_REF][START_REF] Klein | Recupero Hausdorff metric BV discontinuity of sweeping processes[END_REF][START_REF] Kopfová | BV-norm continuity of sweeping processes driven by a set with constant shape[END_REF], and the control problems are studied, e.g., in [START_REF] Colombo | Disctrete approximations of a controlled sweeping process[END_REF][START_REF] Colombo | Optimal control of the sweeping process: the polyhedral case[END_REF][START_REF] Colombo | The minimum time function for the controlled Moreau's sweeping process[END_REF].

When the moving set C jumps, the geometrical interpretation of the sweeping process (1.4)-(1.7) has to be revisited by analyzing the behaviour of the solution y at jump points t of C: at such points it can be showed (cf. [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]) that y(t) = y(t+) = Proj C(t) (u(t-)), where Proj is the classical projection operator, thus y instantaneously moves from C(t-) to C(t) = C(t+) along the shortest path which allows to satisfy the constraint (1.4). Although this is a very natural requirement of formulation (1.4)-(1.7), this is not the only one: let us see, for instance, two cases where a different behaviour can be prescribed at the jump points of C.

First let us consider the problem of extending the formulation (1.4)-(1.7) to the case of arbitrary moving sets C of bounded variation, not necessarily right continuous. Of course one could replace C(t) by C(t+) in the differential inclusions (1.6), but this would not take into account of the position of C(t) at a jump point t: it would be very natural, instead, to expect that for such t one should find y(t+) = Proj C(t+) (Proj C(t) (y(t-))).

Another situation is given by the play operator P: when a jump point t of the "input function" u ∈ BV r ([a, b] ; H) occurs, it would be very natural to expect that y(t+) would be the final point of the play operator driven by the segment (1 -σ)u(t-) + σu(+), σ ∈ [0, 1], in other words we would expect that y behaves as if u traversed the segment joining u(t-) and u(t+) with "infinite velocity" at every jump points t. Nevertheless it can be proved (cf. [START_REF] Recupero | BV solutions of rate independent variational inequalities[END_REF]Section 5.3] and [START_REF] Krejčí | Comparing BV solutions of rate independent processes[END_REF]) that in general the solution y = P(u) provided by (1.4)-(1.7) does not satisfy this property, which would be also natural if we recall that the play operator is rate independent, i.e.

P(u • ψ) = P(u) • ψ for every increasing surjective reparametrization of time ψ : [a, b] -→ [a, b].
The aim of this paper is to provide a general formulation which take into account of all these possible different behaviors at jumps point of the driving moving set C. To be more precise if t -→ C(t) is right continuous of bounded variation, we prove that there exists a unique function

y ∈ BV r ([a, b] ; H) such that y(t) ∈ C(t) = C(t+) for every t ∈ [a, b] and Dy = vµ, (1.8) v(t) + N C(t) (y(t)) ∋ 0 for µ-a.e. t ∈ [a, b], (1.9) 
y(t+) = g t (y(t-)) for every discontinuity point t of C, (1.10)

y(0) = y 0 , (1.11) 
where g t : C(t-) -→ C(t) is a family of functions prescribing the behaviour of y at every jump point t of C (a sort of family of "initial conditions at the jump points of the datum", but we actually consider a more general situation). The case of the arbitrary moving set C, not necessarily continuous, can be immediately deduced by taking g t = Proj C(t+) • Proj C(t) , the "double projection". The paper is organized as follows. In the next section we present some technical preliminaries and in Section 3 we state our main result. This result will be proved in Section 4 and finally in the last Section 5 we present some applications and consequences of our main results.

Preliminaries

In this section we recall the main definitions and tools needed in the paper. The set of integers greater than or equal to 1 will be denoted by N. Given an interval I of the real line R, if B(I) indicates the family of Borel sets in I, µ :

B(I) -→ [0, ∞] is a measure, p ∈ [1, ∞]
, and E is a Banach space, then the space of E-valued functions which are p-integrable with respect to µ will be denoted by L p (I, µ; E ) or simply by L p (µ; E ). We do not identify two functions which are equal µ-almost everywhere. The one dimensional Lebesgue measure is denoted by L 1 and the Dirac delta at a point t ∈ R is denoted by δ t . For the theory of integration of vector valued functions we refer, e.g., to [44, Chapter VI].

2.1.

Functions with values in a metric space. In this subsection we assume that (X, d) is a complete metric space, (

where we admit that d is an extended metric, i.e. X is a set and d : X ×X -→ [0, ∞] satisfies the usual axioms of a distance, but may take on the value ∞. The notion of completeness remains unchanged. The general topological notions of interior, closure and boundary of a subset A ⊆ X will be respectively denoted by int(A), cl(A) and ∂A. We also set d( We recall now the notion of BV function with values in a metric space (see, e.g., [START_REF] Ambrosio | Metric space valued functions of bounded variation[END_REF][START_REF] Ziemer | Weakly Differentiable Functions[END_REF]).

Definition 2.1. Given an interval I ⊆ R, a function f : I -→ X, and a subinterval J ⊆ I, the (pointwise) variation of f on J is defined by

V(f, J) := sup    m j=1 d(f (t j-1 ), f (t j )) : m ∈ N, t j ∈ J ∀j, t 0 < • • • < t m    .
If V(f, I) < ∞ we say that f is of bounded variation on I and we set BV(I; X) := {f : I -→ X : V(f, I) < ∞}.

It is well known that the completeness of X implies that every f ∈ BV(I; X) admits onesided limits f (t-), f (t+) at every point t ∈ I, with the convention that f (inf I-) := f (inf I) if inf I ∈ I, and f (sup I+) := f (sup I) if sup I ∈ I, and that Discont(f ) is at most countable. We set BV r (I; X) := {f ∈ BV(I; X) : f (t) = f (t+) ∀t ∈ I} and if I is bounded we have Lip(I; X) ⊆ BV(I; X).

Convex sets in Hilbert spaces. Throughout the remainder of the paper we assume that

H is a real Hilbert space with inner product (x, y) -→ x, y

x := x, x 1/2 , ( 2.2) 
and we endow H with the natural metric defined by d(x, y) := x -y , x, y ∈ H. We set C H := {K ⊆ H : K nonempty, closed and convex}.

If K ∈ C H and x ∈ H, then Proj K (x) is the projection on K, i.e. y = Proj K (x) is the unique point such that d(x, K) = x -y , and it is also characterized by the two conditions 

y ∈ K, x -y, v -y ≤ 0 ∀v ∈ K. If K ∈ C H and x ∈ K, then N K (x) denotes the (exterior) normal cone of K at x: N K (x) := {u ∈ H : u, v -x ≤ 0 ∀v ∈ K} = Proj -1 K (x) -x. (2.3) It is well known that the multivalued mapping x -→ N K (x) is monotone, i.e. u 1 -u 2 , x 1 -x 2 ≥ 0 whenever x j ∈ K, u j ∈ N K (x j ), j = 1,
: C H × C H -→ [0, ∞] is defined by d H (A, B) := max sup a∈A d(a, B) , sup b∈B d(b, A) , A, B ∈ C H . The metric space (C H , d H ) is complete (cf.
[19, Theorem II-14, Section II.3.14, p. 47]).

Differential measures.

We recall that a H-valued measure on I is a map µ :

B(I) -→ H such that µ( ∞ n=1 B n ) = ∞ n=1 µ(B n ) whenever (B n ) is a sequence of mutually disjoint sets in B(I). The total variation of µ is the positive measure    µ    : B(I) -→ [0, ∞] defined by    µ    (B) := sup ∞ n=1 µ(B n ) : B = ∞ n=1 B n , B n ∈ B(I), B h ∩ B k = ∅ if h = k .
The vector measure µ is said to be with bounded variation if Assume that µ : B(I) -→ H is a vector measure with bounded variation and let f : I -→ H and φ : I -→ R be two step maps with respect to µ, i.e. there exist

   µ    (I) < ∞.
f 1 , . . . , f m ∈ H, φ 1 , . . . , φ m ∈ H and A 1 , . . . , A m ∈ B(I) mutually disjoint such that    µ    (A j ) < ∞ for every j and f = m j=1 1 A j f j ,, φ = m j=1 1 A j φ j
, where 1 S is the characteristic function of a set S, i.e. 1 S (x) := 1 if x ∈ S and 1 S (x) := 0 if x ∈ S. For such step functions we define

I f, µ := m j=1 f j , µ(A j ) ∈ R and I φ dµ := m j=1 φ j µ(A j ) ∈ H. If St(    µ    ; H) (resp. St(    µ    )) is the set of H-valued (resp. real valued) step maps with respect to µ, then the maps St(    µ    ; H) -→ H : f -→ I f, µ and St(    µ    ) -→ H : φ -→ I φ dµ are linear and continuous when St(    µ    ; H) and St(    µ    ) are endowed with the L 1 -seminorms f L 1 (   µ   ;H) := I f d    µ    and φ L 1 (   µ   ) := I |φ| d    µ    .
Therefore they admit unique continuous extensions

I µ : L 1 (    µ    ; H) -→ R and J µ : L 1 (    µ    ) -→ H, and we set I f, dµ := I µ (f ), I φµ := J µ (φ), f ∈ L 1 (    µ    ; H), φ ∈ L 1 (    µ    ).
If ν is bounded positive measure and g ∈ L 1 (ν; H), arguing first on step functions, and then taking limits, it is easy to check that I f, d(gν) = I f, g d ν for every f ∈ L ∞ (µ; H). The following results (cf., e.g., [28, Section III.17.2-3, pp. 358-362]) provide a connection between functions with bounded variation and vector measures which will be implicitly used in the paper.

Theorem 2.1. For every f ∈ BV(I; H) there exists a unique vector measure of bounded variation µ f : B(I) -→ H such that 

µ f (]c, d[) = f (d-) -f (c+), µ f ([c, d]) = f (d+) -f (c-), µ f ([c, d[) = f (d-) -f (c-), µ f (]c, d]) = f (d+) -f (c+
: I -→ R be defined by V g (t) := V(g, [inf I, t] ∩ I). Then µ g = µ f and    µ f     = µ Vg = V(g, I).
The measure µ f is called Lebesgue-Stieltjes measure or differential measure of f . Let us see the connection with the distributional derivative. If f ∈ BV(I; H) and if f : R -→ H is defined by

f (t) :=      f (t) if t ∈ I f (inf I) if inf I ∈ R, t ∈ I, t ≤ inf I f (sup I) if sup I ∈ R, t ∈ I, t ≥ sup I , (2.4) 
then, as in the scalar case, it turns out (cf. [65, Section 2]) that µ f (B) = Df (B) for every B ∈ B(R), where Df is the distributional derivative of f , i.e.

- R ϕ ′ (t)f (t) dt = R ϕ dDf ∀ϕ ∈ C 1 c (R; R), C 1 c (R; R)
being the space of real continuously differentiable functions on R with compact support. Observe that Df is concentrated on I: Df (B) = µ f (B ∩ I) for every B ∈ B(I), hence in the remainder of the paper, if f ∈ BV(I, H) then we will simply write

Df := Df = µ f , f ∈ BV(I; H), (2.5) 
and from the previous discussion it follows that

Df =    Df    (I) = µ f = V(f, I) ∀f ∈ BV r (I; H).
(2.6)

Main result

We are now in position to state the main theorem of the paper.

Theorem 3.1. Assume that -∞ < a < b < ∞, C ∈ BV r ([a, b] ; C H ), y 0 ∈ C(a), S ⊆ ]a, b],
and that for every t ∈ S we are given a function g t : C(t-) -→ C(t) such that Lip(g t ) ≤ 1 and

t∈S g t -Id ∞,C(t-) < ∞. (3.1)
Then there exists a unique y ∈ BV r ([a, b] ; H) such that there is a measure µ

: B([a, b]) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) for which y(t) ∈ C(t) ∀t ∈ [a, b] , (3.2) 
Dy = vµ, (3.3) -v(t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ [a, b] S, (3.4) 
y(t) = g t (y(t-)) ∀t ∈ S, (3.5) 
y(a) = y 0 . (3.6) Moreover if a ≤ s < t ≤ b we have V(y, [s, t]) ≤ V(C, [s, t]) + r∈S∩[s,t] g r -Id ∞,C(r-) -d H (C(r-), C(r)) . (3.7) 
Finally if y 0,j ∈ C(a), j = 1, 2 and y j is the only function such that there is a measure

µ j : B([a, b[) -→ [0, ∞[ and a function v j ∈ L 1 (µ; H) for which (3.2)-(3.6
) hold with y, v, µ, y 0 replaced respectively by y j , v j , µ j , y 0,j , then

t -→ y 1 (t) -y 2 (t) 2 is nonincreasing.
In Section 5 we will show a series of results that can be deduced from Theorem 3.1.

Proofs

We start by recalling the existence and uniqueness result of classical sweeping processes due to J.J. Moreau (cf. [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]). 

Moreover V(y, [s, t]) ≤ V(C, [s, t]) ∀s, t ∈ [a, b[ , s < t. ( 4 
.5) Finally if y 0,j ∈ C(a), j = 1, 2 and y j is the only function such that there is a measure µ j : B([a, b]) -→ [0, ∞[ and a function v j ∈ L 1 (µ; H) for which (4.1)-(4.4) hold with y, v, µ, y 0 replaced respectively by y j , v j , µ j , y 0,j , then It is important to compare Theorem 4.1 to our main result, Theorem 3.1: it is possible to see that Theorem 3.1 includes the statement of Theorem 4.1 when g t : C(t-) -→ C(t) is given by the projection onto C(t), since in this case g t -Id ∞,C(t-) ≤ d H (C(t-), C(t)). The goal of our main theorem is to allow for different prescribed behaviors at points t ∈ S, and the proof will be based on a suitable combination of Theorem 4.1 with some explicit applications of the maps g t .

t -→ y 1 (t) -y 2 (t) 2 is nonincreasing. ( 4 
In the following Lemma we provide an integral formulation of the sweeping process. 

Lemma 4.1. Assume that -∞ < a < b < ∞, µ : B([a, b[) -→ [0, ∞[ is a measure, B ∈ B([a, b[), and µ(B) = 0. If C ∈ BV r ([a, b[ ; C H ), v ∈ L 1 (µ; H), y ∈ BV r ([
1 µ([t -h, t + h] ∩ B) [t-h,t+h]∩B ζ(τ ), v(τ ) d µ(τ ) = ζ t , v (t) 
[t-h,t+h]∩B y(τ ), v(τ ) d µ(τ ) ≤ [t-h,t+h]∩B ζ t , v(τ ) d µ(τ ).
Dividing this inequality by µ([t -h, t + h] ∩ B) and taking the limit as h ց 0 we get y(t)ζ t , v(t) ≤ 0. Therefore we have proved that

y(t) -z, v(t) ≤ 0 ∀z ∈ C(t), for µ-a.e. t ∈ B,
i.e. condition (i) holds. Now it is convenient to recall the notion of normalized arc-length parametrization for a metricspace-valued curve, provided by the following proposition (cf., e.g., [START_REF] Federer | Geometric Measure Theory[END_REF][START_REF] Recupero | BV solutions of rate independent variational inequalities[END_REF])

Proposition 4.1. Assume that (2.1) is satisfied and that f ∈ BV([a, b] ; X). We define ℓ f : [a, b] -→ [a, b] by ℓ f (t) :=        a + b -a V(f, [a, b]) V(f, [a, t]) if V(f, [a, b]) = 0 a if V(f, [a, b]) = 0 t ∈ [a, b] .
If X = H, a Hilbert space, and f ∈ BV r ([a, b] ; H), then there is a unique

f ∈ Lip([a, b] ; H) such that Lip( f ) ≤ V(f, [a, b])/(b -a) and f = u • ℓ f , (4.8) u(ℓ f (t-)(1 -λ) + ℓ f (t)λ) = (1 -λ)f (t-) + λf (t) ∀t ∈ [a, b] , ∀λ ∈ [0, 1] . (4.9)
The normalization factor in Definition 4.1 is not necessary in the proofs of our theorems but it is consistent and simplifies the statement of Theorem 5.4.

In the following lemma we show that we can take µ = Dℓ C , and in this case we have an explicit bound for the density of Dy with respect to Dℓ C . 

Lemma 4.2. Assume that -∞ < a < b < ∞, C ∈ BV r ([a, b[ ; C H ), y 0 ∈ C(c),
w(t) = lim hց0 1 Dℓ C ([t -h, t + h]) [t-h,t+h] w(τ ) dDℓ C (τ ) = lim hց0    Dy    ([t -h, t + h]) Dℓ C ([t -h, t + h]) = lim hց0 V(C, [a, b]) V(y, [t -h, t + h]) (b -a) V(C, [t -h, t + h]) ≤ V(C, [a, b]) b -a ,
and the lemma is completely proved, since Dℓ C ({0}) = 0.

Remark 4.1. The previous Lemma can also be proved by using the representation formula [START_REF] Recupero | Sweeping processes and rate independence[END_REF]Formula (69)].

Now we can prove our main result in the particular case when the behaviour of the solution is prescribed on a finite number of points. 

Lemma 4.3. Assume that -∞ < a < b < ∞, C ∈ BV r ([a, b[ ; C H ), y 0 ∈ C(a), S ⊆ ]a,
y(a) = y 0 . (4.18)
Moreover, if a ≤ s < t ≤ b, we have

V(y, [s, t]) ≤ V(C, [s, t]) + r∈F ∩[s,t] g r -Id ∞,C(r-) -d H (C(r-), C(r)) , (4.19 
) Proof. It is not restrictive to assume that g t -Id ∞,C(t-) = 0 for every t ∈ S. Let us set t 0 := a, t n := b and suppose that

one can take µ = Dℓ C + t∈S g t -Id ∞,C(t-) δ t , ( 4 
F = {t 1 , . . . , t n-1 } for some n ∈ N with a = t 0 < t 1 < • • • < t n-1 < t n = b. Let us call C j the restriction of C to the interval [t j-1 , t j ].
Observe that we have

ℓ C j (t) = t j-1 + t j -t j-1 V(C, [t j-1 , t j ]) V(C, [t j-1 , t]) = t j-1 + t j -t j-1 V(C, [t j-1 , t j ]) V(C, [a, b]) b -a (ℓ C (t) -ℓ C (t j-1 )) therefore Dℓ C j = t j -t j-1 V(C, [t j-1 , t j ]) V(C, [a, b]) b -a Dℓ C (4.22)
and by applying Theorem 4.1 and Lemma 4.2 we get that for every j ∈ {1, . . . , n} there is a unique y j ∈ BV r ([t j-1 , t j [ ; H) and a unique

v j ∈ L 1 (Dℓ C , [t j-1 , t j [ ; H) such that y j (t) ∈ C(t) ∀t ∈ [t j-1 , t j [ , (4.23 
)

Dy j = v j Dℓ C on B([t j-1 , t j [), (4.24) -v j (t) ∈ N C(t) (y j (t)) for Dℓ C -a.e. t ∈ [t j-1 , t j [, (4.25 
)

y j (t j-1 ) = y 0 if j = 1 g t j-1 (y j-1 (t j-1 -)) if j ∈ {2, . . . , n} , (4.26) 
and, using (4.12) and (4.22), we have

v j (t) ≤ t j -t j-1 V(C, [t j-1 , t j ]) V(f, [a, b]) b -a V(C, [t j-1 , t j ]) t j -t j-1 = V(f, [a, b]) b -a for Dℓ C -a.e. t ∈ ]t j-1 , t j [. (4.27) 
Now we define y : [a, b[ -→ H by setting (4.20). Observe that y is right continuous and satisfies (4.14), (4.17), and (4.18). Moreover µ is a positive measure, µ({0}) = 0, and thanks to right continuity of y we have that

y(t) := n j=1 1 [t j-1 ,t j [ (t)y j (t) (4.28) and µ : B([a, b[) -→ [0, ∞[ by
V(y, [s, t]) = n j=1    Dy    ([t j-1 , t j [ ∩ [s, t]) = n j=1 V(y, ]t j-1 , t j [ ∩ [s, t]) + t j ∈F ∩[s,t] y(t j ) -y(t j -) = n j=1 V(y j , ]t j-1 , t j [ ∩ [s, t]) + F ∩[s,t] g t j (y j (t j -)) -y j (t j -) ≤ V(C, [s, t]) + t∈F ∩[s,t] g t -Id ∞,C(t-) ,
hence y has bounded variation and (4.19) holds. Now we consider a set

B ∈ B([a, b[) such that µ(B) = 0. For every j ∈ {1, . . . , n} we have 0 = µ(B ∩ ]t j-1 , t j [) = Dℓ C (B ∩ ]t j-1 , t j [),
thus from (4.24) we infer that Dy j (B ∩ ]t j-1 , t j [) = 0, and, since y = y j on ]t j-1 , t j [, it follows that Dy = Dy j on B(]t j-1 , t j [), so that Dy(B ∩ ]t j-1 , t j [) = 0. We also have that 0 ). Let us also observe that for every t ∈ F we have

= µ(B ∩ {t j }) = g t j -Id ∞,C(t j -) δ t j (B) for every j ∈ {1, . . . , n -1}, thus Dy({t j }) = y(t j ) -y(t j -) = g t j (y(t j -)) -y(t j -)) = 0.
y(t) -y(t-) = Dy({t}) = {t} v dµ = Dℓ C ({t}) + g t -Id ∞,C(t-) v(t) ∀t ∈ F therefore v(t) = y(t) -y(t-) Dℓ C ({t}) + g t -Id ∞,C(t-) ≤ g t (y(t-)) -y(t-) g t -Id ∞,C(t-) ≤ 1 ∀t ∈ F, (4.29) 
thus formula (4.21) follows from (4.27). The uniqueness of y is a consequence of its construction.

We will need the following weak compactness theorem for measures [27, Theorem 5, p. 105], which we state in a form which is suitable to our purposes. Theorem 4.2. Let I ⊆ R be an interval and let M be a subset of the vector space of measures ν : B(I) -→ H with bounded variation endowed with the norm ν :=   ν   (I). Assume that M is bounded. Then M is weakly sequentially precompact if and only if there is a bounded positive measure µ :

B(I) -→ [0, ∞[ such that ∀ε > 0 ∃δ > 0 : B ∈ B(I), µ(B) < δ =⇒ sup ν∈M   ν   (B) < ε . (4.30) 
It is worthwhile to mention that the above theorem is concerned with the notion of weak convergence of measures (in duality with the space of linear continuous functionals on the space of measures) and not with weak-* convergence of measures (in duality with continuous functions). Anyway, if one does not want an equivalence but only an implication, it is clearly true that the same condition above also provides weakly-* sequential precompactness of M . Theorem 4.2 is stated in [27, Theorem 5, p. 105] as a topological precompactness result. An inspection in the proof easily shows that this is actually a sequential precompactness theorem, since an isometric isomorphism reduces it to the well-known Dunford-Pettis weak sequential precompactness theorem in L 1 (µ; H) (see, e.g., [START_REF] Diestel | Vector Measures[END_REF]Theorem 1,p. 101]).

We are now in position to prove the following theorem which immediately implies our main result Theorem 3.1. Proof. We may assume again that g t -Id ∞,C(t-) = 0 for every t ∈ S, thus from (4.31) it follows that S is at most countable, and we may assume it contains infinitely many elements, since the finite case is considered in Lemma 4. 

Theorem 4.3. Assume that -∞ < a < < ∞, C ∈ BV r ([a, b[ ; C H ), y 0 ∈ C(a), S ⊆ ]a,
y(t) = g t (y(t-)) ∀t ∈ S, (4.34) 
y n+1 (t) -y n (t) ≤ y n+1 (s n+1 ) -y n (s n+1 ) = g s n+1 (y n+1 (s n+1 -)) -Proj C(s n+1 ) (y n (s n+1 -)) = g s n+1 (y n (s n+1 -)) -Proj C(s n+1 ) (y n (s n+1 -) ≤ g s n+1 (y n (s n+1 -)) -y n (s n+1 -) + y n (s n+1 -) -Proj C(s n+1 ) (y n (s n+1 -)) ≤ g s n+1 -Id ∞,C(s n+1 -) + d H (C(s n+1 -), C(s n+1 )) ∀t ∈ [s n+1 , t h [ . ( 4 
y n+1 (t) -y n (t) ≤ g t h (y n+1 (t h -)) -g t h (y n (t h -)) ≤ y n+1 (t h -) -y n (t h -) = lim t→t h - y n+1 (t) -y n (t) ≤ g s n+1 -Id ∞,C(s n+1 -) + d H (C(s n+1 -), C(s n+1 )),
and iterating this procedure we get the same estimate for t ∈ [t k , t k+1 [ and h ≤ k < n, thus

y n+1 -y n ∞ ≤ g s n+1 -Id ∞,C(s n+1 -) + d H (C(s n+1 -), C(s n+1 )),
and 

∞ n=1 y n -y n+1 ∞ ≤ ∞ n=1 g s n+1 -Id ∞,C(s n+1 -) + d H (C(s n+1 -), C(s n+1 )) ≤ t∈S g t -Id ∞,C(t-) + V(C, [a, b[) < ∞ i.e.
   Dy n    (B) = B v n (t) dµ(t) ≤ B V(C, [a, b]) b -a dµ(t) = V(C, [a, b]) b -a µ(B) ∀B ∈ B([a,
(•) -y 2 (•) 2 ) ≤ 2 B S y 1 -y 2 , dD(y 1 -y 2 ) = 2 B S y 1 (t) -y 2 (t), v 1 (t) -v 2 (t) dµ(t) ≤ 0, (4.51) 
while if t ∈ S then we have

D( y 1 (•) -y 2 (•) 2 )({t}) = y 1 (t) -y 2 (t) 2 -y 1 (t-) -y 2 (t-) 2 = g t (y 1 (t-)) -g t (y 2 (t-)) -y 1 (t-) -y 2 (t-) 2 ≤ y 1 (t-) -y 2 (t-) -y 1 (t-) -y 2 (t-) 2 = 0, (4.52) 
therefore for every

B ∈ B([a, b[) we find D( y 1 (•) -y 2 (•) 2 )(B) = D( y 1 (•) -y 2 (•) 2 )(B S) + D( y 1 (•) -y 2 (•) 2 )(B ∩ S) = B S dD( y 1 (•) -y 2 (•) 2 ) + t∈B∩S D( y 1 (•) -y 2 (•) 2 )({t}) ≤ 0
which implies that t -→ y 1 (t) -y 2 (t) 2 is nonincreasing and leads to the uniqueness of the solution. As a consequence the whole sequence y n converges uniformly to y.

Applications

In this section we discuss some consequences and particular cases of Theorem 3.1.

and Lip(g r t ) ≤ 1 for every t ∈ S, and t∈S g l t -Id ∞,C(t-) < ∞ and t∈S g r t -Id ∞,C(t) < ∞. Therefore it follows that if C ∈ BV([a, b] ; C H ), then there exists a unique y ∈ BV([a, b] ; H) such that there is a measure µ : B([a, b]) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) for which (5.3), (5.4), and (5.7) hold together with -v(t) ∈ N C(t) (y(t))

for µ-a.e. t ∈ [a, b] S, (5.13) y(t) = g l t ((y(t-))), y(t+) = g r t (g l t ((y(t-))) ∀t ∈ S {a}.

(5.14)

Observe that in this case S is a fortiori at most countable and y may jump even when C does not jump. Proof. It is enough to apply Theorem 5.1 with g l t := Proj C(t+) and g r t := Proj C(t) . 5.3. The play operator. The play operator is the solution operator of the sweeping process driven by a moving set C(t) with constant shape, i.e. C(t) = u(t) -Z, where u ∈ BV r ([a, b] ; H) and Z ∈ C H . In the following result we restate here the existence Theorem 4.1 in this particular case by using the integral formulation of Lemma 4.1 and we collect some other well-known results (see also [START_REF] Krejčí | Generalized variational inequalities[END_REF], where the Young integral is used, and [35, Section 5] containing a slightly different integral formulation). 

  [a, b] -→ H satisfying y(t) ∈ C(t) ∀t ∈ [a, b] , t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ [a, b],(1.6)y(a) = y 0 ,

  In this case the equality µ :=    µ    (I) defines a norm on the space of measures with bounded variation (see, e.g. [28, Chapter I, Section 3]). If ν : B(I) -→ [0, ∞] is a positive bounded Borel measure and if g ∈ L 1 (I, ν; H), then gν will denote the vector measure defined by gν(B) := B g dν for every B ∈ B(I). In this case    gν    (B) = B g(t) dν for every B ∈ B(I) (see [28, Proposition 10, p. 174]). Moreover a vector measure µ is called ν-absolutely continuous if µ(B) = 0 whenever B ∈ B(I) and ν(B) = 0.

Theorem 4 . 1 .

 41 If -∞ < a < b < ∞, C ∈ BV r ([a, b[ ; C H ),and y 0 ∈ C(a), then there exists a unique y ∈ BV r ([a, b[ ; H) such that there is a measure µ : B([a, b[) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) for which y(t) ∈ C(t) ∀t ∈ [a, b[ , t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ ]a, b[, (4.3) y(a) = y 0 . (4.4)

. 6 )

 6 Concerning Theorem 4.1 let us observe that the existence and uniqueness of the solution y is proved in [60, Proposition 3b], while formula (4.5) is proved in [60, Proposition 2c]. Finally the last statement is proved in [60, Proposition 2b].

.

  The function z(τ) := 1 [a,b[∩[t-h,t+h] (τ )ζ(τ ) + 1 [a,b[ [t-h,t+h] (τ )y(τ ), τ ∈ [a,b[, is well defined for every sufficiently small h > 0, therefore z(τ ) ∈ C(τ ) for every τ ∈ [a, b[, thus taking z in condition (iii) we get

. 20 )

 20 and for such µ the function v satisfying (4.15)-(4.16) is unique up to µ-equivalence and we have v(t) ≤ max{1, V(C, [a, b])/(b -a)} for µ-a.e. t ∈ [a, b[. (4.21)

  Therefore we infer that Dy(B) = 0 whenever B ∈ B([a, b[) and µ(B) = 0, so that Dy is µ-absolutely continuous and by the vectorial Radon-Nikodym theorem [44, Corollary 4.2, Section VII.4, p. 204] there exists a unique (up to µ-equivalence) function v ∈ L 1 (µ; H) such that Dy = vµ. It follows that on B(]t j-1 , t j [) we have Dy j = Dy = vµ = v Dℓ C , thus v = v j for Dℓ C -a.e. t ∈ ]t j-1 , t j [ and v satisfies (4.16) thanks to (4.25

) = y 0 . ( 4 . 36 )Moreover ( 3 . 7 )

 43637 holds whenever a ≤ s < t ≤ b. Finally the function t -→ y 1 (t) -y 2 (t) 2 is nonincreasing whenever y 0,j ∈ C(a), j = 1, 2, and y j is the only function such that there is a measure µ j : B([a, b[) -→ [0, ∞[ and a function v j ∈ L 1 (µ; H) for which (4.32)-(4.36) hold with y, v, µ, y 0 replaced respectively by y j , v j , µ j , y 0,j .

5. 2 .Theorem 5 . 2 .

 252 Sweeping processes with arbitrary BV driving moving set. Another consequence of Theorem 5.1 is the existence and uniqueness theorem for sweeping processes with arbitrary BV driving moving set. Assume that -∞ < a < b < ∞, C ∈ BV([a, b] ; C H ) and y 0 ∈ H. Then there exists a unique y ∈ BV([a, b] ; H) such that there is a measure µ : B([a, b]) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) for which y(t) ∈ C(t), (5.15) Dy = vµ, (5.16)-v(t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ Cont(C),(5.17)y(t) = Proj C(t) (y(t-)), y(t+) = Proj C(t+) (y(t)) ∀t ∈ Discont(C) {a} (5.18) y(a) = Proj C(a) (y 0 ), y(a+) = Proj C(a+)(y(a)) .(5.19)Moreover V(y, [s, t]) ≤ V(C, [s, t]) whenever a ≤ s < t ≤ b.

Theorem 5 . 3 .. 22 )

 5322 Assume that -∞ < a < b < ∞, Z ∈ C H , u ∈ BV r ([a, b] ; H) and z 0 ∈ Z. Then there exists a unique y ∈ BV r ([a, b] ; H) such thaty(t) ∈ u(t) -Z ∀t ∈ [a, b] ,(5.20)[a,b]z(t) -u(t) + y(t), dDy(t) ≤ 0 for every µ-measurable z : [a, b] -→ Z,(5.21)u(0) -y(0) = z 0 . (5The solution operatorP : BV r ([a, b] ; H) × Z -→ BV r ([a, b] ; H) associating with (u, z 0 ) ∈ BV r ([a, b] ; H) × Z the unique function y = P(u, z 0 ) satisfying (5.20)-(5.22) is called play operator and it is rate independent, i.e. P(u • ψ, z 0 ) = P(u, z 0 ) • ψ ∀u ∈ BV r ([a, b] ; H) (5.23) whenever ψ ∈ C([a, b] ; [a, b]) is nondecreasing and surjective. We have that P(Lip([a, b] ; H)×Z) ⊆ Lip([a, b] ; H) and if u ∈ Lip([a, b] ; H) then P(z 0 , u) = y is the unique function satisfying (5.20), (5.22), and z(t) -u(t) -y(t), y ′ (t) ≤ 0 for L 1 -a.e. t ∈ [a, b] , ∀z ∈ Z. (5.24)

  ∞}, the set of X-valued Lipschitz continuous functions on Y. If E is a Banach space with norm • E and S ⊆ Y, we set f ∞,S := sup t∈S f (t) E for every function f : Y -→ E

	x, A) := inf a∈A d(x, a).
	If (Y, d Y ) is a metric space then the continuity set of a function f : Y -→ X is denoted by
	Cont(f ), while Discont(f ) := T Cont(f ). The set of continuous X-valued functions defined on
	Y is denoted by C(Y; X). For S ⊆ Y we write Lip(f, S) := sup{d(f (s), f (t))/d Y (t, s) : s, t ∈
	S, s = t}, Lip(f ) := Lip(f, Y), the Lipschitz constant of f , and Lip(Y; X) := {f : Y -→ X :
	Lip(f ) <

  2 (see, e.g., [9, Exemple 2.8.2, p.46]). We endow the set C H with the Hausdorff distance. Here we recall the definition.

Definition 2.2. The Hausdorff distance d H

  ). whenever c < d and the left hand side of each equality makes sense. Conversely, if µ : B(I) -→ H is a vector measure with bounded variation, and if f µ : I -→ H is defined by f µ (t) := µ([inf I, t[ ∩ I), then f µ ∈ BV(I; H) and µ fµ = µ.

Proposition 2.1. Let f ∈ BV(I; H), let g : I -→ H be defined by g(t) := f (t-), for t ∈ int(I), and by g(t) := f (t), if t ∈ ∂I, and let V g

  a, b[ ; H), and y(t) ∈ C(t) for every t ∈ [a, b[, then the following two conditions are equivalent.(i) -v(t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ B.Proof. Let us start by assuming that (i) holds and let z : [a, b[ -→ H be a µ-measurable function such that z(t) ⊆ C(t) for every t ∈ B. Then it follows that and integrating over B we infer condition (ii). Now assume that (ii) is satisfied and observe thatV = {(t, [t -h, t + h] ∩ B) : h > 0, t ∈ B} is a µ-Vitalirelation covering B according to the definition given in [30, Section 2.8.16, p. 151]. Recall that if f ∈ L 1 (µ, B; H) then there exists a µ-zero measure set Z such that f (B Z) is separable (see, e.g., [44, Property M11, p. 124]), therefore from (the proof) of [30, Corollary 2.9.9., p. 156] it follows that lim

	(ii)	
	y(t) -z(t), v(t) ≤ 0	∀t ∈ B,

B y(t) -z(t), v(t) d µ(t) ≤ 0 for every µ-measurable z :

[0, T ] -→ H such that z(t) ∈ C(t) for every t ∈ B. hց0 1 µ([t -h, t + h] ∩ B) [t-h,t+h]∩B f (τ ) -f (t) E dµ(τ ) = 0 for µ-a.e. t ∈ B.

(4.7)

In

[START_REF] Federer | Geometric Measure Theory[END_REF] 

the points s satisfying (4.7) are called µ-Lebesgue points of f on B with respect to the µ-Vitali relation V covering B. Let L be the set of µ-Lebesgue points for both τ -→ v(τ ) and τ -→ y(τ ), v(τ ) on B with respect to V, fix t ∈ B, and choose ζ t ∈ C(t) arbitrarily. Thanks to [19, Theorem III.9, p. 67] there exists a µ-measurable function ζ : [a, b[ -→ H such that ζ(t) = ζ t and ζ(τ ) ∈ C(τ ) for every τ ∈ [a, b[, therefore a straighforward computation shows that lim hց0

  and y is the only function such that there is a measure µ : B([a, b[) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) for which (4.1)-(4.4) hold. Then there is a unique (up to Dℓ C -equivalence) w ∈ L 1 (Dℓ C ; H) such that

	Dy = w Dℓ C ,	(4.10)
	and we have	
	y(t) -z(t), d(vµ)(t)	
	[a,b[	
	=	
	[a,b[	

-w(t) ∈ N C(t) (y(t))

for Dℓ C -a.e. t ∈ ]a, b[, (4.11) w(t) ≤ V(C, [a, b])/(b -a) for Dℓ C -a.e. t ∈ [a, b[. (4.12) Proof. The existence of a measure µ : B([a, b[) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) such that (4.1)-(4.4) hold is guaranteed by Theorem 4.1, which, by estimate (4.5), also implies that Dy is absolutely continuous with respect to Dℓ C and the existence and uniqueness of w is a consequence of the vectorial Radon-Nikodym theorem [44, Corollary 4.2, Section VII.4, p. 204]. From Lemma 4.1 we infer that that for every µ-measurable function z : [a, b[ -→ H such that z(t) ∈ C(t) for every t ∈ [a, b[ we have that [a,b[ y(t) -z(t), w(t) d Dℓ C (t) = [a,b[ y(t) -z(t), d(w Dℓ C )(t) = [a,b[ y(t) -z(t), d Dy(t) = y(t) -z(t), v(t) d µ(t) ≤ 0, therefore using again Lemma 4.1 we get (4.11). Finally using [30, Corollary 2.9.9., p. 156] as in formula (4.7) in the proof of Lemma 4.1, and exploiting estimate (4.5), we get that for Dℓ C -a.e. t ∈ ]a, b[ we have

  b[, and that for every t ∈ S we are given g t : H -→ C(t) such that t∈S g t -Id ∞,C(t-) < ∞. (4.13) If F ⊆ S is a finite set, then there exists a unique y ∈ BV r ([a, b[ ; H) such that there are a measure µ : B([a, b[) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) satisfying

	y(t) ∈ C(t)	∀t ∈ [a, b[ ,	(4.14)
	Dy = vµ,		(4.15)
	-v(t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ [a, b[ F ,	(4.16)
	y(t) = g t (y(t-))	∀t ∈ F,	(4.17)

  b[, and that for every t ∈ S we are given g t : C(t-) -→ C(t) such that Lip(g t ) ≤ 1 and Then there exists a unique y ∈ BV r ([a, b[ ; H) such that there is a measure µ : B([a, b[) -→ [0, ∞[ and a function v ∈ L 1 (µ; H) such that

		g t -Id ∞,C(t-) < ∞.	(4.31)
	t∈S		
	y(t) ∈ C(t)	∀t ∈ [a, b[ ,	(4.32)
	Dy = vµ,		(4.33)

-v(t) ∈ N C(t) (y(t)) for µ-a.e. t ∈ [a, b[ S,

  If S = {s n : n ∈ N}, we set S n := {s 1 , . . . , s n } for every n ∈ N and from Lemma 4.3 it follows that there is a uniquey n ∈ BV r ([a, b[ ; H) and a unique v n ∈ L 1 (µ; H) satisfyingRecall that S n+1 S n = {s n+1 } and assume that S n = {t 1 , . . . , t n } with t j-1 < t j for every j, and that t h-1 < s n+1 < t h for some h ∈ {2, . . . , n} (the cases s n+1 < t 1 and t n < s n+1 are dealt with similarly). Then y n+1 (t) = y n (t) for every t ∈ ]a, s n+1 [, while at t ∈ [s n+1 , t h [ the distance between y n and y n+1 can be estimated by using (4.6), Theorem 4.1, and (4.38)-(4.41) as follows:

	and		
	v n (t) ≤ V(C, [a, b])/(b -a)	for µ-a.e. t ∈ [a, b[.	(4.44)
		3. Let µ : B([a, b[) -→ [0, ∞[ be defined by
	µ = Dℓ C +	g t -Id ∞,C(t-) δ t .	(4.37)
		t∈S	
	y n (t) ∈ C(t)	∀t ∈ [a, b[ ,	(4.38)
	Dy n = v n µ,			(4.39)
	-v n (t) ∈ N C(t) (y n (t)) for µ-a.e. t ∈ [a, b[ S n ,	(4.40)
	y n (t) = g t (y n (t-))	∀t ∈ S n ,	(4.41)
	y n (a) = y 0 .			(4.42)
	Moreover if a ≤ s < t ≤ b we have		
	V(y n , [s, t]) ≤ V(C, [s, t]) +	g r -Id ∞,C(r-) -d H (C(r-), C(r)) < ∞	(4.43)
	r∈S∩[s,t]		

  .45) If h < n and t ∈ [t h , t h+1 [, from (4.6), (4.38)-(4.41), and (4.45), we infer that

  Conditions (4.35)-(4.36) are trivially satisfied because for every t ∈ S the sequence y n (t) is definitively constant, equal to g t (y(t-)). Let us observe that thanks to (4.44) we have that

y n is uniformly Cauchy and there exists y : [a, b[ -→ H such that y n → y uniformly on [a, b[. (4.46) Moreover y ∈ BV([a, b[ ; H) and (3.7) holds by (4.43) and the semicontinuity of the variation w.r.t. to the pointwise convergence, and y satisfies (4.32) by virtue of the closedness of C(t).

5.1. Sweeping processes with arbitrary BV driving set and prescribed behaviour on jumps. We first consider the case of a sweeping processes with prescribed behaviour on jumps, where the driving moving set is not assumed to be right continuous.

Theorem 5.1. Assume that -∞ < a < b < ∞, C ∈ BV ([a, b] ; C H ), y 0 ∈ H, and that for every t ∈ Discont(C) ∪ {a} we are given g l t : C(t-) -→ C(t) and g r t : C(t) -→ C(t+) such that Lip(g l t ) ≤ 1, Lip(g r t ) ≤ 1 ∀t ∈ Discont(C) {a} (5.1) and t∈Discont(C)

Then there exists a unique y ∈ BV([a, b] ; H) such that there is a measure

)

y(a) = g l a (y 0 ), y(a+) = g r a (a)(y(a)).

(5.7)

Proof. We can apply Theorem 3.1 with g t := g r t •g l t and find a unique function ŷ

Dŷ = v μ, (5.9)

for μ-a.e. t ∈ Cont(C), (5.10)

ŷ(a) = g r a (y 0 ).

(5.12)

Then the theorem is satisfied if we take y :

, µ := μ, and

(observe that the first condition in (5.2) ensures that y ∈ BV([a, b] ; H)).

Remark 5.1. Let us observe that we can actually prove a result which is more general than Theorem 5.1: indeed we can prescribe the behavior of the solution y(t) also on a countable set of points t where C is continuous. In order to do that we need to assume that the families

The restriction

and the strict metric 

is endowed with the strict topology d s in the domain, and with the L 1 (L 1 ; H)-topology in the codomain. We have

where u ∈ Lip([a, b] ; H) is the arc length reparametrization introduced in Proposition 4.1. In general P = P.

The meaning of the extension P and of formula (5.25) is clear: we reparametrize by the arc length the function u = u • ℓ u and we apply the play operator to the Lipschitz reparametrization u, which is a segment on the jump sets [ℓ u (t-), ℓ u (t+)]. Then we "throw away" the jump sets from P( u, z 0 ) by reinserting ℓ u and we obtain P(u, z 0 ) = P( u, z 0 ) • ℓ u . A further motivation to this procedure is the rate independence of P (but observe that ℓ u is not continuous) and we could also say that we are filling in the jumps of u with a segment traversed with "infinite velocity". The continuity property of P in Theorem 5.4 confirms this interpretation. Now we are going to show that P(u, z 0 ) can also be obtained as the solution of a sweeping processes with a suitable prescribed behaviour on jumps.

y(0) = y 0 .

(5.29)

, s < t, then we have

and V(P(u), [s, t]) ≤ V(u, [s, t]).

(5.31)

Proof. We set C(t) := u(t) -Z, y 0 := u(0) -z 0 , S := Discont(u), and g t (x) := P(seg u(t-),u(t) , u(t-) -x)(1), t ∈ S.

If t ∈ Discont(u) and x ∈ C(t-) then g t (x) is the solution of the sweeping process driven by K u (τ ) := (1 -τ )u(t-) -τ u(t) -Z, τ ∈ [0, 1], and having x as initial condition, thus from (4.5) we infer that V(P(seg u(t-),u(t) , u(t-) -x), [0, 1]) ≤ V(K u , [0, 1]) = u(t) -u(t-) and we have

which together with (3.7) implies (5.31). Moreover thanks to (4.6) we have that g t (x 1 )g t (x 2 ) ≤ x 1 -x 2 therefore we can apply Theorem 3.1 and infer the existence of a unique y satisfying (5.26)-(5.29). Now we show that (5.30) holds. Thanks to the chain rule [START_REF] Recupero | BV solutions of rate independent variational inequalities[END_REF]Theorem A.7] we have that DP(u, z 0 ) = w Dℓ u with

and if we set