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Physic

Motivations

Propagation of the electromagnetic �eld resulting from a lightning
strike in and near a composite material. In particular, we focus on
composite material of an aircraft.

The latest aircraft Airbus A350 and Boeing B757 are made of
advanced materials such that composites, titanium and advanced
aluminium.

A revolutionary material. The advantages of composite material :
the weight. It is lighter than the metal and it is a strong and durable
material, insensitive to corrosion.
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Physic

Motivations

Traditionally, the old aircraft's fuselage was made of aluminum.
Aluminium conducts electricity one thousand more than composite.
Composite consists in carbon �bers enclosed in epoxy resin, and
therefore it is the resin that causes the composite to be less
conductive than aluminium.

A carbon fuselage is not a conductive as one made of metal. Modern
aircrafts have seen also the increasing reliance on electronic avionics
systems instead of mechanical controls and electromechanical
instrumentation. For these reasons, aircraft manufacturers are very
sensitive to lightning protection and pay special attention to aircraft
certi�cation through testing and analysis.
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The model

Modeling

It is composed by air above composite material. Composite consists
of electrical conducting carbon �bers distributed in periodic inclusion
in epoxy resin. We study the behavior of the EM �eld in this domain.

P̃ is the domain containing the material. And the periodic cell

Z̃ e = [−e

2
,
e

2
]× [−e, 0]× R, (1)

e is the lateral size of the basic cell of the periodic microstructure of
the material.
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The model

Modeling

The propagation of this �eld in the composite will be modeled by
Time-Harmonic Maxwell's equations.

∇× H̃ − i ω̃ε0ε
?Ẽ = σẼ , Maxwell - Ampere equation (2)

∇× Ẽ + i ω̃µ0H̃ = 0, Maxwell - Faraday equation (3)

∇ · (ε0ε?Ẽ ) = ρ̃, (4)

∇ · (µ0H̃) = 0, (5)

where Ẽ (t, x̃ , ỹ , z̃) = <e(Ẽ (x̃ , ỹ , z̃) expiω̃t)

µ0 the permeability of the vacuum,

ε = ε0ε
? the permittivity and ε? the relative permittivity with

ε? = εa in the air, εr in the resin, εc in the carbon.
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The model

3D model

We consider that carbon �bers are conductive but not perfect
conductor, σc = 40000 S .m−1.

Epoxy resin is not conductive. In our model, we doped the resin that
is to say we added black carbon or graphene. Then the electrical
conductivity of the resin increases from 10−12 to 10−3 S .m−1.

During the electrical solicitation of a lightning strike, the air
becomes suddenly conductive. The ionized channel of a lightning
strike is very conductive, we take σc = 4200 S .m−1.
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Homogenization

Homogenized problem

Homogenization has been developed for periodic structures. The
aim of Homogenization theory is to describe the average properties
of composite material at the macroscopic level, taking into account
their microscopic arrangement. ([A.Bensoussan, J. L.Lions,
G.Papanicolaou], [D.Cioranescu et P.Donato],
E.Sanchez-Palencia,...)
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The mathematical context

Periodic Homogenization

The macroscopic scale, which corresponds to the scale of
observation is represented by the variable x . The microscopic scale
is the characteristic scale of the environment, it corresponds to the
size of heterogeneities. The ratio between these two typical scales is
denoted ε, where ε is a small parameter. The variable describing
penomena on a microscopic scale is x

ε .
In our problem the carbon �bers are distributed periodically in the
resin. The size of the period, composed by carbon �ber and resin, is
small compared to the size of the plate, we denote ε their ratio.
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The mathematical context

Periodic Homogenization

For models describing phenomena at very small length scales, the
discretization to perform numerical simulation should be of smaller
length in comparison to the length scale of the model. The
computational cost of such simulation is very high. Sometimes, even
impossible. Homogenization can help approximate the solutions to
the Microscopic models.
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Time-harmonic Maxwell equations

The problem



∇×∇× Ẽ + (−ω̃2µ0ε0ε
? + i ω̃µ0σ)Ẽ = 0 in Ω̃.

∇× Ẽ × e2 = −i ω̃µ0H̃d(x̃ , z̃)× e2 on Γ̃d

∇× Ẽ × e2 = 0 on Γ̃L,

∇ · [(−ω̃2µ0ε0ε
? + i ω̃µ0σ)Ẽ ] = 0,

(6)

with H̃d , the magnetic �eld induced by the peak of the current of
the �rst return stroke.

e2, outward normal.
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Dimensional analysis

We non-dimensionalize the problem

We propose a rescaling of the system, we consider a set of
characteristic sizes related to our problem: ω the characteristic
pulsation, σ the characteristic electric conductivity, E the
characteristic electric magnitude and the characteristic thickness of
the plate L. Physical factors are then rewritten using those values.
We obtain a new set of dimensionless and unitless variables and
�elds in which the system is rewritten. With the dimensionless
variables: x = (x , y , z) with x = x̃

L
, y = ỹ

L
and z = z̃

L

Ẽ (ωω, Lx , Ly , Lz) = E (ω, x) ∗ E (7)

E : the unitless value and E : the characteristic value.

Taking the partial derivative with respect to x̃

∂E

∂x
(ω, x) =

L

E

∂Ẽ

∂x̃
(ωω, Lx , Ly , Lz), (8)
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Scaling

System into dimensionless variables

Substituting those dimensionless variables and �elds into equation
(6), we obtain:

∇×∇× E (ω, x) + (−4π2L
2

λ
2

ω2 + i
L
2

δ
2

σa
σ
ω)E (ω, x) = 0 for 0 ≤ Ly ≤ d ,

∇×∇× E (ω, x) + (−4π2L
2

λ
2

εr ω
2 + i

L
2

δ
2

σr
σ
ω)E (ω, x) = 0 for (Lx , Ly , Lz) ∈ Ω̃r ,

∇×∇× E (ω, x) + (−4π2L
2

λ
2

εc ω
2 + i

L
2

δ
2

σc
σ
ω)E (ω, x) = 0 for (Lx , Ly , Lz) ∈ Ω̃c .

with

λ =
2πc

ω
, (9)

which is the characteristic wave length and

δ =
1√

ω σµ0
, (10)

which is the characteristic skin thickness. δ corresponds to the order
of magnitude of the penetration length of the electric �eld in the
�ber.
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Scaling

System into dimensionless variables

with the boundary conditions

∇× E (ω, x)× e2 = −iωωµ0
L

E
HdHd(Lx , Lz)× e2 when (Lx , Ly , Lz) ∈ Γ̃d ,

∇× E (ω, x)× e2 = 0 when (Lx , Ly , Lz) ∈ Γ̃L.

where ωµ0
L
E
Hd being order 1 with the characteristic magnetic �eld

Hd = I
2πr , I = 200 kA is the current density and r the radius of the

lightning, and the characteristic electric �eld E = 20 kV/m.

The characteristic thickness of the plate L is about 10−3m and the
size of the basic cell e is about 10−5m. We de�ne the ratio e

L
equals

a small parameter ε:

e

L
∼ 10−2 = ε. (11)
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Scaling

System into dimensionless variables

Concerning the characteristic electric conductivity it seems to be
reasonable to take for σ the value of the e�ective electric
conductivity of the composite material.
The e�ective longitudinal electric conductivity, (the arithmetic
average), is expressed by the equation:

σ = σlong = fc σc + (1− fc) σr , (12)

where fc is the volume fraction of the carbon �ber.
The e�ective transverse electric conductivity, (the harmonic
average), is expressed by

σ = σtrans =
1

fc
σc

+ (1−fc )
σr

. (13)

In our study we consider the case for ω = 106 rad .s−1, which
corresponds to the air ionized, a resin doped and the e�ective
longitudinal electric conductivity of the carbon �bers.
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Scaling

Problem in ε

Rewriting the problem in terms of ε
∇×∇× E ε + (−ω2εηε? + i ω σε(x , y , z))E ε = 0 in Ω

∇× E ε × e2 = −iωHd(x , z)× e2 on Γd ,

∇× E ε × e2 = 0 on ΓL.

∇ · [(−ω2εηε? + iωσε)E ε] = 0 in Ω,

(14)

with εη = 4π2L
2

λ2 ,

σε(x , y , z) = Σε(
x

ε
,
y

ε
,
z

ε
)

 Σε
a in Ωa,

Σε
r in Ωr ,

Σε
c in Ωc ,

(15)

where Σε
a = σa

σ
L
2

δ
2 ,Σε

r = σr

σ
L
2

δ
2 and Σε

c = σc

σ
L
2

δ
2
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Mathematical analysis of the model

Weak formulation

Integrating (14) over Ω and using the Green's formula we obtain the
weak formulation

Find E ε ∈ Xε(Ω) such that for any V ∈ Xε(Ω)

aε,η(E ε,V ) =

∫
Ω

∇× E ε · ∇ × V dx

+

∫
Ωεa

(−ω2εη + iωΣε
a)E ε · V dx

+

∫
Ωεc

(−ω2εηεc + iωΣε
c)E ε · V dx +

∫
Ωεr

(−ω2εηεr + iωΣε
r )E ε · V dx

=

∫
Γd

(∇× E ε × e2) · V T dσ

=

∫
Γd

−iωHd × e2 · V T dσ
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Mathematical analysis of the model

Existence and unicity

With the variational space :

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωΣε
a)u|Ωεa · e2 = (−ω2εηεr + iωΣε

r )u|Ωεr · e2,
(−ω2εηεr + iωΣε

r )u|Ωεr · n
ε
|Ωεr = (−ω2εηεc + iωΣε

c)u|Ωεc · n
ε
|Ωεc }.
(17)

with the next space:

X(Ω) = {u ∈ H(curl,Ω) | Divu|Ωεa ∈ L2(Ωε
a),

Divu|Ωεr ∈ L2(Ωε
r ), Divu|Ωεc ∈ L2(Ωε

c)}.
(18)

equipped with the norm

‖u‖2Xε(Ω) = ‖u‖2L2(Ω) + ‖Divu|Ωεa ‖
2

L2(Ωεa ) + ‖Divu|Ωεr ‖
2

L2(Ωεr )

+ ‖Divu|Ωεc ‖
2

L2(Ωεc ) + ‖curlu‖2
L2(Ω).(19)
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Mathematical analysis of the model

Existence and unity of the solution

aε,η is not coercive, it is necessary to regularize it by adding terms
involving the divergence of E ε in Ωε

a, Ωε
r and Ωε

c , since the
continuity of the divergence is broken through the interfaces ∂Ωε

a,
∂Ωε

r and ∂Ωε
c .

we de�ne the regularized formulation of problem :

Find E ε ∈ Xε(Ω) such that for any V ∈ Xε(Ω)

aε,ηR (E ε,V ) = aε,η(E ε,V ) + s

∫
Ωεa

∇ · E ε∇ · V dx

+ s

∫
Ωεr

∇ · E ε∇ · V dx + s

∫
Ωεc

∇ · E ε∇ · V dx

= −iω
∫

Γd

Hd × e2 · V T dσ.

(20)

22 / 45

Hélène Canot, Emmanuel Frénod Method of Homogenization for the Study of the Propagation of Electromagnetic Waves in a Composite



Mathematical analysis of the model

Existence and unity of the solution

For any ε > 0 and any η ≥ 0, sesquilinear form aε,ηR (., .) is
continuous over Xε(Ω) thanks to the continuity conditions. It is also
coercive thanks to this proposition :

Proposition

For any ε > 0, for any η ≥ 0 and for any s > 0, there exists a positive
constant ω0 which does not depend on ε and such that for all
ω ∈ (0, ω0), there exists a positive constant C0 depending on εr , εc , s, ω
but not on ε such that:

∀ E ε ∈ Xε(Ω), <[exp(−i π
4

) aε,ηR (E ε,E ε)] ≥ C0‖E ε‖Xε(Ω) (21)

.
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Mathematical analysis of the model

Existence and unity of the solution

The sesquilinear form aε,ηR is continuous, bounded, coercive thanks
to the above proposition and the right hand side is continuous on
X ε(Ω), then regularized problem has a unique solution in X ε(Ω)
thanks to the Lax-Milgram Lemma.

The problems are equivalents for an appropriate choice of s, then the
terms s.div disappear.
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Part II : Homogenization
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Homogenization

Homogenized problem

We use two methods of homogenization : an asymptotic analysis
and the two-scale convergence, as ε goes to 0, which gives a
rigourous justi�cation of the homogenization result.

We study the following equation for Σε
a = ε, Σε

r = ε4 and Σε
c = 1

and η = 5

∇×∇× E ε − ω2ε5E ε + iω[(1εC (
x

ε
) + ε41εR(

x

ε
))1{y<0}

+ ε1{y>0}]E
ε = 0,

(22)

with the microscopic cell Z = [− 1

2
, 1
2

]× [−1, 0]2.

By these methods we can obtain cell problem and the homogenized
problem.
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Homogenization

Asymptotic expansion

If x and y = x
ε denote, respectively, the macroscopic and

microscopic variables, the asymptotic expansion method consists in
approaching the unknown E ε by the series, and resolve the new
problem in Ω×Z.:

E ε(x) = E0(x,
x

ε
) + εE1(x,

x

ε
) + ε2E2(x,

x

ε
) + ...., (23)

Plugging the asymptotic expansion in the equation, gathering the
coe�cients with the same power of ε, we get:

1

ε2∇y ×∇y × E0(x, xε )
+ 1

ε [∇y ×∇y × E1(x, xε )
+∇y ×∇x × E0(x, xε ) +∇x ×∇y × E0(x, xε )]
+...) = 0.

(24)

ε is small, εi can be neglected, then we extract a cascade of
equations

∇y ×∇y × E0(x, y) = 0
∇y ×∇y × E1(x, y)
+∇y ×∇x × E0(x, y) +∇x ×∇y × E0(x, y) = 0
....

(25)
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Homogenization

Asymptotic expansion

with the divergence equation

∇y ·
(
iω1C (y)E0(x, y)

)
= 0, (26)

and the boundary conditions{
( 1ε∇y × E0(x, y) +∇x × E0(x, y)
= −iωHd × n, x ∈ R3, y ∈ Z. (27)

Taking the �rst equation of the system and the divergence equation
to obtain : {

∇y ×∇y × E0(x, y) = 0,
∇y · {iω1C (y)E0(x, y)} = 0.

(28)
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Homogenization

Asymptotic expansion

Multiplying the �rst equation by E0 and integrating by parts over Z
leads to ∫

Z ∇y ×∇y × E0(x, y)E0(x, y) dy
=
∫
Z |∇y × E0(x, y)|2 dy

= 0.
(29)

We deduce that the equation is equivalent to

∇y × E0(x, y) = 0, (30)

for any y ∈ Z.
E0(x, y) can be decomposed as

E0(x, y) = E (x) +∇yΦ0(x, y), (31)

where Φ0(x, y) ∈ L2(Ω;H1

#(Z)) and where E (x) ∈ L2(Ω) is the
average of E0 over the y variable.
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Homogenization

Two-scale convergence

We show rigorously with two-scale convergence that the solution of
problem converge to the solution of the homogenized problem when
ε goes to 0.

Two-scale convergence was developed by G Allaire, G.Nguetseng
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Homogenization

The main theorem

Théorème

(Nguetseng). Let uε(x) ∈ L2(Ω). Suppose there exists a constant c > 0
such that for all ε

‖uε‖L2(Ω) ≤ c . (32)

Then there exists a subsequence of ε (still denoted uε) and
u0(x, y) ∈ L2(Ω,L2#(Z)) such that:

uε(x) two-scale converges to u0(x, y). (33)

we have for all v(x) ∈ C0(Ω) and all w(y) ∈ L2#(Z)

lim
ε→0

∫
Ω
uε(x) · v(x)w( xε ) dx

=
∫

Ω

∫
Z u0(x, y) · v(x)w(y) dxdy.

(34)
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Homogenization

We have

Théorème

(Estimate) For any ε > 0, for any η ≥ 0, there exists a positive constant
ω0 which does not depend on ε and such that for all ω ∈ (0, ω0),
E ε ∈ X ε(Ω) solution of the regularized problem, satis�es

‖E ε‖Xε(Ω) ≤ C (35)

with C =
CγtCγT
C0 ‖Hd‖H(curl,Ω).
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Homogenization

Théorème

Under assumptions of Theorem Estimate, sequence E ε solution of the
initial problem, converges to E (x) ∈ L2(Ω) which is the unique solution
of the homogenized problem:

θ1∇x ×∇x × E (x) + iωθ2E (x) = 0 in Ω,

θ1∇x × E (x)× e2 = −iωHd × e2 on Γd ,

∇x × E (x)× e2 = 0 on ΓL.

(36)

with θ1 =
∫
Z Id +∇yχ(y) dy and θ2 =

∫
Z 1C (y)(Id +∇yχ(y)) dy. And

where the scalar function χ is the unique solution, up to an additive
constant in the Hilbert space of Z periodic functions H1

#(Z), of
4y(χ(y)) = 0 in Z\∂ΩC ,

[
∂χ

∂n
] = −nj on ∂ΩC and [χ] = 0 on ∂ΩC .

(37)

where [f ] is the jump across the surface of ∂ΩC , nj , j = {1, 2, 3} is the
projection on the axis ej of the normal of ∂ΩC .
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Homogenization

Step 1: Two-scale convergence. Due to the estimate, E ε is
bounded in L2(Ω). Hence, up to a subsequence, E ε two-scale
converges to E0(x, y) belonging to L2(Ω,L2#(Z)). That means for

any V (x, y) ∈ C1

0
(Ω,C1

#(Z)), we have:

lim
ε→0

∫
Ω
E ε(x) · V (x, xε ) dx =

∫
Ω

∫
Z E0(x, y) · V (x, y) dydx. (38)

Step 2: Deduction of the constraint equation. We multiply
Equation by oscillating test function V ε(x) = V (x, xε ) where
V (x, y) ∈ C1

0
(Ω,C1

#(Z)):∫
Ω
∇×E ε(x) · (∇x × V ε(x, xε )) + 1

ε∇y × V ε(x, xε
)

+[−ω2ε5k(ε) + iω
(
1εC ( xε ) + ε41εR( xε )

)
1{y<0}

+ε1{y>0}]E
ε · V ε(x, xε ) dx

= −iω
∫

Γd
Hd × e2 · (e2 × V (x , 1, z , ξ, 1ε , ζ))× e2 dσ.

(39)
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Homogenization

Integrating by parts, we get:∫
Ω

E ε(x) · (∇x ×∇x × V ε(x,
x

ε
) +

1

ε
∇y ×∇x × V ε(x,

x

ε
)

+
1

ε
∇x ×∇y × V ε(x,

x

ε
) +

1

ε2
∇y ×∇y × V ε(x,

x

ε
)) + [−ω2ε5k(ε)

+ iω
(
1εC (

x

ε
) + ε41εR(

x

ε
)
)
1{y<0} + ε1{y>0}]E

ε(x) · V ε(x,
x

ε
) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V (x , 1, z , ξ,
1

ε
, ζ))× e2 dσ.

(40)

Now we multiply (40) by ε2 and we pass to the two-scale limit,
applying Theorem (Nguetseng) we obtain:∫

Ω

∫
Z
E0(x, y)

(
∇y ×∇y × V (x, y)

)
dydx = 0. (41)

We deduce the constraint equation for the pro�le E0:

∇y ×∇y × E0(x, y) = 0. (42)
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Homogenization

Step 3. Looking for the solutions to the constraint equation.

It is the same demonstration than asymptotic expansion then we
conclude that E0(x, y) can be decomposed as

E0(x, y) = E (x) +∇yΦ0(x, y). (43)

Step 4. Equations for E (x) and Φ0(x, y).
The divergence equation is multiplied with V (x, xε ) = εv(x)ψ( xε ),
where v ∈ C1

0
(Ω) and ψ ∈ H1

#(Z). Theorem Nguetseng and

integration by parts yields for all ψ ∈ H1

#(Z) and v ∈ C1

0
(Ω)

lim
ε→0

∫
Ω

∇ · {−ω2ε5k(ε)E ε(x) + iω[(1εC (
x

ε
) + ε41εR(

x

ε
))1{y<0} + ε1{y>0}]E

ε(x)}εv(x)ψ(
x

ε
) dx

= − lim
ε→0

∫
Ω

{−ω2ε5k(ε)E ε(x) + iω[1εC (
x

ε
) + ε41εR(

x

ε
))1{y<0}

+ ε1{y>0}]E
ε} · (ε∇v(x)ψ(

x

ε
) + v(x)∇yψ(

x

ε
)) dx

= −
∫

Ω

∫
Z
v(x)∇yψ(y) · [iω1C (y)E0(x, y)] dydx = 0.

(44)
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Homogenization

from which it follows that

∇y · [iω1C (y)E0(x, y)] = 0. (45)

with E0 given by the decomposition (43). So we obtain the local
equation

∇y · [iω1C (y){E (x) +∇yΦ0(x, y)}] dy = 0. (46)

The potential Φ0 may be written on the form

Φ0(x, y) =
3∑

j=1

χj(y)ej · E (x) = χ(y) · E (x), (47)

we get:
E0(x, y) = (Id +∇yχ(y))E (x). (48)

Inserting E0 in the divergence equation, we obtain

∇y · [iω1C (y)(Id +∇yχ(y)] = 0. (49)
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Homogenization

We build oscillating test functions satisfying the constraint and use
them in weak formulation. We de�ne test function
V (x, y) = α(x) +∇yβ(x, y), V (x, y) ∈ C1

0
(Ω,C1

#(Z)) and we inject
in (40) test function V ε = V (x, xε ), which gives:∫

Ω

E ε(x) ·
(
∇x ×∇x × V (x,

x

ε
) +

2

ε
∇x ×∇y × V (x,

x

ε
)

+
1

ε2
∇y ×∇y × V (x,

x

ε
)
)

+ [−ω2ε5k(ε) + iω(
(
1εC (

x

ε
)

+ ε41εR(
x

ε
)
)
1{y<0} + ε1{y>0})]E ε(x) · V (x,

x

ε
) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V ‡(x , 1, z , ξ, ζ))× e2 dσ,

(50)

with V (x , 1, z , ξ, ν, ζ) = V ‡(x , 1, z , ξ, ζ) the restriction on V which
does not depend on ν. The term containing the constraint, the third
one, disappears. Passing to the limit ε→ 0 and replacing the
expression of V by the term α(x) +∇yβ(x, y), we have

∇x ×∇y × V (x, y) = ∇x ×∇y × (α(x)) +∇x ×∇y × (∇yβ(x, y))

= ∇x ×∇y × (∇yβ(x, y)).

(51)
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Homogenization

Since ∇y × (∇y) = 0, the term 2

ε∇x ×∇y ×∇yβ(x, y)) vanishes.
Therefore, (50) becomes:∫

Ω

∫
Z
E0(x, y) · ∇x ×∇x × (α(x) +∇yβ(x, y))

+ iω1C (y)E0(x, y) · (α(x) +∇yβ(x, y) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × (α(x , 1, z) +∇yβ(x , 1, z , ξ, ζ)))× e2 dσ.

(52)

Now in (52) we replace expression E0 giving by (48). We obtain∫
Ω

∫
Z

(Id +∇yχ(y))E (x) ·
(
∇x ×∇x × (α(x) +∇yβ(x, y))

+ iω1C (y)(Id +∇yχ(y))E (x)) · (α(x) +∇yβ(x, y)) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × (α(x , 1, z) +∇yβ(x , 1, z , ξ, ζ)))× e2 dσ.

(53)
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Homogenization

Taking α(x) = 0 in weak formulation, we obtain∫
Ω

∫
Z

(Id+∇yχ(y))∇x ×∇x × E (x)∇yβ(x, y)

+ iω1C (y)(Id +∇yχ(y))E (x) · ∇yβ(x, y)dydx = 0.

(54)

Integrating by parts∫
Ω

∫
Z
−∇y · {(Id +∇yχ(y))∇x ×∇x × E (x)}β(x, y)

− iω∇y · {1C (y)(Id−∇yχ(y))E (x)}β(x, y) dydx = 0.

(55)

And since ∇y · {1C (y)(Id +∇yχ(y))E (x)} = 0 we obtain∫
Ω

∫
Z
−∇y · {(Id +∇yχ(y))∇x ×∇x × E (x)}β(x, y) dydx = 0.

(56)
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Homogenization

which gives the cell problem

∇y · [Id +∇yχ(y)] = 0. (57)

From (49) and (57), the scalar function χ is the unique solution,
thanks to Lax-Milgram Lemma, up to an additive constant in the
Hilbert space of Z periodic function H1

#(Z) of the following
boundary value problem

4y(χ(y)) = 0 in Z\∂ΩC ,

[
∂χ

∂n
] = −nj on ∂ΩC ,

[χ] = 0 on ∂ΩC .

(58)

where [f ] is the jump across the surface of ∂ΩC , nj , j = {1, 2, 3} is
the projection on the axis ej of the normal of ∂ΩC . (58) can be
seen as an electrostatic problem. Solving (49) and (57) reduces to
look for a potential induced by surface density of charges. Then χ is
this potential induced by the charges on the interface of carbon �ber.
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Homogenization

Setting β(x, y) = 0 in (53) and integrating by parts, we get∫
Ω

∫
Z

(Id +∇yχ(y))∇x ×∇x × E (x) · α(x)

+ iω1C (y)(Id +∇yχ(y))E (x)α(x) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × α(x , 1, z))× e2 dσ.

(59)

which gives the following well posed problem for E (x)
θ1∇x ×∇x × E (x) + iωθ2E (x) = 0 in Ω,

θ1∇x × E (x)× e2 = −iωHd × e2 on Γd ,

∇x × E (x)× e2 = 0 on ΓL.

(60)

with θ1 =
∫
Z Id +∇yχ(y) dy and θ2 =

∫
Z 1C (y)(Id +∇yχ(y)) dy.
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The model

Numerical simulations

Numerical simulations were done using FreeFem++, it is a software
to solve numerically partial di�erential equations (PDE) with �nite
elements methods.

We resolve cell problem using Lagrange P2 �nite elements.

Figure: Plot of chi1
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The model

Numerical simulations

Figure: Plot of chi2
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Thank you
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