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1 Introduction

We are interested in the time-harmonic Maxwell equations in and near a compos-
ite material with boundary conditions modeling electromagnetic field radiated by an
electromagnetic pulse (EMP). An electromagnetic pulse is a short burst of electro-
magnetic energy. It may be generated by a natural occurrence such like a lightning
strike, meteoric EMP, EMP caused by geomagnetic Storm or nuclear EMP. This fo-
cuses on what happens over a period of time of a millisecond during the peak of the
first return stroke. We study the electromagnetic pulse caused by this lightning strike.
This is the first step of a larger study which goal is to understand the behavior of the
electromagnetic field and its interaction with a composite material.

EMP interference is generally damaging to electronic equipment. A lightning strike
can damage physical objects such as aircraft structures, either through heating ef-
fects or disruptive effects of the very large magnetic field generated by the current.
Structures and systems require some form of protection against lightning. Every
commercial aircraft is struck by lightning at least once a year on average. Aircraft
lightning protection is a major concern for aircraft manufacturers. Increasing its use
of composite materials, up to 53% for the latest Airbus A350, and 50% for the Boe-
ing B787, aircrafts offer increased vulnerability facing lightning. Earlier generation
aircrafts, whose fuselages were predominantly composed of aluminum, behave like a
Faraday cage and offer maximum protection for the internal equipment. Currently,
in aircrafts, composite materials consisting of a resin enclosing carbon fibers have
significant advantages in terms of weight gain and therefore fuel saving. Yet,because
aluminium conducts 100 to 1000 times more than composite, we lose the Faraday
effect. Modern aircrafts have seen also the increasing reliance on electronic avionics
systems instead of mechanical controls and electromechanical instrumentation. For
these reasons, aircraft manufacturers are very sensitive to lightning protection and
pay special attention to aircraft certification through testing and analysis.

There are two types of lightning strikes to aircraft: the first one is the interception
by the aircraft of a lightning leader. The second one, which makes about 90% of the
cases, is when the aircraft initiates the lightning discharge by emitting two leaders
when it is found in the intense electric field region produced by a thundercloud, our
approach applies in this case. When the aircraft flies through a cloud region where the
atmospheric electric field is large enough, an ionized channel, called a positive leader,
merges from the aircraft in the direction of the ambient electric field. Laroche et al
[15], at an altitude of 6000m, observed an atmospheric electric field close to 50 kV/m
inside the storm clouds, 100kV/m to the ground. When upward leader connects with
the downward negative leader of the cloud, a return stroke is produced and a bright
return stroked wave travels from aircraft to cloud. The lightning return strokes ra-
diate powerful electromagnetic fields which may cause damage to aircraft electronic

2



equipment. Our work is devoted to the study of the electromagnetic waves propaga-
tion in the air and in the composite material. In this artificial periodic material, the
electromagnetic field satisfies the Maxwell equations.

We evaluate the electromagnetic field within and near a periodic structure when the
period of this microstructure is small compared to the wavelength of the electro-
magnetic wave. Our model is composed by air above the composite fuselage and
we study the behavior of the electromagnetic wave in the domain filled by the com-
posite material, representing the skin aircraft, and the air. We build the 3D model,
under simplifying assumptions, using linear time-harmonic Maxwell equations and
constitutive relations for electric and magnetic fields. Composite materials consist of
conducting carbon fibers, distributed as periodic inclusions in a matrix (epoxy resin).
We impose a magnetic permeability µ0 uniform and an electrical permittivity ε = ε0ε

?,
where ε? is the relative permittivity depending of the medium. In the future, we will
enrich this model by adding complexity and we will consider non uniform magnetic
permeability and electrical permittivity.

Now, we account for some characteristic values. In the first place we focus on the
boundary conditions as we consider them as the source. Then, we use on the upper
frontier, the magnetic field induced by the peak of the current of the first return
stroke

Hd =
I

2πr
, (1)

with current intensity I = 200 kA and r the radius of the lightning strike, this is the
worst aggression that can suffer an aircraft, and we deduce a characteristic electric
field E = 20 kV/m. In our model we consider that we have very conductive - but not
perfect conductors - carbon fibers and an epoxy resin whose conduction depends on
its doping rate. The conductivity of the air is non-linear. Air is a strong insulator [29]
with conductivity of the order of 10−14 S.m−1 but beyond some electric solicitation,
the air loses its insulating nature and locally becomes suddenly conductive. The
ionization phenomenon is the only cause that can make the air conductor of electricity.
The ionized channel becomes very conductive.

Our mathematical context is periodic homogenization. We consider a microscopic
scale ε, which represents the ratio between the diameter of the fiber and thickness
of the composite material. So, we are trying to understand how the microscopic
structure affects the macroscopic electromagnetic field behavior. Homogenization of
Maxwell equations with periodically oscillating coefficients was studied in many pa-
pers. N. Wellander homogenized linear and non-linear Maxwell equations with per-
fect conducting boundary conditions using two-scale convergence in [26] and [27]. N.
Wellander and B. Kristensson homogenized the full time-harmonic Maxwell equation
with penetrable boundary conditions and at fixed frequency in [28]. The homog-
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enized time-harmonic Maxwell equation for the scattering problem was done in F.
Guenneau, S. Zolla and A. Nicolet [12]. Y. Amirat and V. Shelukhin perform two-
scale homogenization time-harmonic Maxwell equations for a periodical structure in
[5]. They calculate the effective dielectric ε and effective electric conductivity σ. They
proved that homogenized Maxwell equations are different in low and high frequen-
cies. The result obtained by two-scale convergence approach takes into account the
characteristic sizes of skin thickness and wavelength around the material.

On of the parameter we account for in our model: δ = 1√
ω σµ0

, where σ is the
characteristic conductivity and ω the order of the magnitude of the pulsation shares

much with the definition of theoretical thickness skin δ =
√

2
ωσµ0

. The thickness

skin is the depth at which the surface current moves to a factor of e−1. Indeed,
at high frequency, the skin effect phenomenon appears because the current tends to
concentrate at the periphery of the conductor. On the other side, at low frequencies
the penetration depth is much greater than the thickness of the plate which means
that a part of the electric field penetrates the composite plate. We use the theory of
two-scale convergence introduced by G. Nguetseng [21] and developed by G. Allaire
[2].

The paper is organized as follows : in Section 2 we specify the geometry of the model
and the dimensionless equations converting the problem into an equivalent one with
which we work in the following sections. In Section 3 we perform the mathematical
analysis of the model. In particular, we introduce the weak formulation of the problem
for the electric field and we regularize it using divergence term. We establish the
existence and uniqueness result for the regularized Maxwell equations thanks to Lax-
Milgram Theorem. We conclude this section by estimate of the electric field. The
last section is devoted to the homogenization of the problems for electric field using
the two-scale convergence concept.

2 Modeling

This section is dedicated to the complete mathematical model we will study in this
paper. First, we consider a problem that seems relevant with the perspective of
propagation of the electromagnetic field in the air and in the skin of aircraft fuselage
made of composite material. Secondly, we make a scaling of this model and finally
we operate simplifications. If desired, the reader can go directly to the mathematical
analysis knowing that the problem to be studied is given by (65), (70) equipped with
boundary conditions (68), (69).
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2.1 Notations and setting of the problem

We consider set Ω̃ = {(x̃, ỹ, z̃) ∈ R3, ỹ ∈ (−L, d)} for L and d two positive constants,

with two open subsets Ω̃a and P̃ (see Figure 1). The air fills Ω̃a and we consider that
the composite material, with two materials periodically distributed, stands in domain
P̃ .

We assume that the thickness L of the composite material is much smaller than
its horizontal size. We denote by e the lateral size of the basic cell Ỹ e of the periodic
microstructure of the material. The cell is composed of a carbon fiber in the resin.
We define now more precisely the material, introducing:

P̃ = {(x̃, ỹ, z̃) ∈ R3/− L < ỹ < 0}, (2)

which is the domain containing the material. Now we describe precisely the basic
cell. For this we first introduce the following cylinder with square base:

Z̃e = [−e
2
,
e

2
]× [−e, 0]× R, (3)

We consider α such that 0 < α < 1, and R̃e = α e
2
. We set

D̃e = {(x̃, ỹ) ∈ R2/(x̃2 + (ỹ +
e

2
)2) < (R̃e)2}. (4)

We define the cylinder containing the fiber as (see fig 1):

C̃e = D̃e × R. (5)

Then the part of the basic cell containing the matrix is

Ỹ e
R = Z̃e \ C̃e, (6)

and by definition, the basic cell Ỹ e is the couple

(Ỹ e
R, C̃

e). (7)

The composite material results from a periodic extension of the basic cell. More
precisely the part of the material that contains the carbon fibers is

Ω̃c = P̃ ∩ {(ie, je, 0) + C̃e, i ∈ Z, j ∈ Z−}, (8)

where the intersection with P̃ limits the periodic extension to the area where stands
the material. Set {(ie, je, 0) + C̃e, i ∈ Z, j ∈ Z−} is a short notation for

{(x̃, ỹ, z̃) ∈ R3,∃i ∈ Z,∃j ∈ Z−,∃(xb, yb, zb) ∈ C̃e; x̃ = xb + ie, ỹ = yb + je, z̃ = zb}.
(9)
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In the same way the part of the material that contains the resin is

Ω̃r = P̃ ∩ {(ie, je, 0) + Ỹ e
R}, (10)

or equivalently

Ω̃r = P̃ ∩ {(ie, je, 0) + Z̃e \ C̃e} = (R× (−L, 0)× R)\Ω̃c. (11)

So the geometrical model of our composite material is couple (Ω̃c, Ω̃r). Now, it
remains to set the domain that contains the air:

Ω̃a = {(x̃, ỹ, z̃)/0 ≤ ỹ < d}. (12)

We consider that d is of the same order as L and we introduce the upper frontier
Γ̃d = {(x̃, ỹ, z̃)/ỹ = d} of domain Ω̃. On this frontier we will consider that the

electric field and magnetic field are given. We also introduce the lower frontier Γ̃L =
{(x̃, ỹ, z̃)/ỹ = −L} with those definitions we have Ω̃a∩P̃ = ∅, Ω̃c∩Ω̃r = ∅, P̃ = Ωr∪Ωc,

Ω̃ = Ωa ∪ P̃ = Ωa ∪ Ωr ∪ Ωc, and for any (x̃, ỹ, z̃) ∈ ∂Ω̃ = Γ̃d ∪ Γ̃L and, we write ñ,

the unit vector, orthogonal to ∂Ω̃ and pointing outside Ω̃. We have :

ñ = e2 on Γ̃d

ñ = −e2 on Γ̃L.
(13)

In the following we need to describe what happens at the interfaces between resin
and carbon fibers, and resin and air. So we define Γra = {(x̃, ỹ, z̃) / ỹ = 0} and Γcr
the boundary of the set defined by (9).

2.2 Maxwell equations

In Ω̃, we now write a PDE model that has to do with electromagnetic waves radi-
ated from return stroke. We are well aware that the model we write is a simplified
one. Nonetheless, it seems to be well dimensioned for our problem which consists in
making homogenization. It is well known (see Maxwell [17]) the propagation of the
electromagnetic field is described by the Maxwell equations which write:

−∂D̃
?

∂t
+∇×H̃? = J̃?, (14)

∂B̃?

∂t
+∇×Ẽ? = 0, (15)

∇·D̃? = ρ̃?, (16)

∇·B̃? = 0, (17)

in R× Ω̃.
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Figure 1: The global domain
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In (14)-(17), ∇× and ∇· are the curl and divergence operators. Ẽ?(t, x, y, z) is

the electric field, H̃?(t, x, y, z) the magnetic field, D̃?(t, x, y, z) the electric induction,

B̃?(t, x, y, z) the magnetic induction and ρ̃?(t, x, y, z) is the charges density (see T.
Abboud and I. Terrasse [1]).

System of Maxwell equations ((14) - (17)) is completed by the constitutive laws

which are given in R× Ω̃ by :

D̃? = ε0ε
?Ẽ?, (18)

B̃? = µ0H̃
?. (19)

where µ0 and ε0 are the permeability and permittivity of free space. ε? is the relative
permittivity of the domains defined by

ε?|Ω̃a = 1, ε?|Ω̃r = εr, ε
?
|Ω̃c

= εc, (20)

where εr and εc are positives constants. In order to account for energy transfer between
the electromagnetic compartment and the propagation of the electric charges, we take
for granted the Ohmic law, in R× Ω̃

J̃? = σẼ?, (21)

where σ is the electric conductivity. Its value depends on the location:

σ|Ω̃a = σa, σ|Ω̃r = σr, σ|Ω̃c = σc, (22)

where Ω̃a, Ω̃r and Ω̃c were defined in (12), (10) and (8).

2.3 Boundary conditions

For mathematical as well as physical reasons we have to set boundary conditions on
Γ̃d and Γ̃L. On Γ̃d we will write conditions that translate that Ẽ? and H̃? are given
by the source located in ỹ = d. The way we chose consists in setting:

Ẽ? × ñ = Ẽ?
d × ñ; H̃? × ñ = H̃?

d × ñ on R× Γ̃d, (23)

where Ẽ?
d , H̃

?
d are functions defined on Γ̃d for any t ∈ R. On Γ̃L, we chose something

simple, i.e :

∇×Ẽ? × ñ = 0 on R× Γ̃L, (24)

that translate that Ẽ? does not vary in the ỹ-direction near Γ̃L.
Problem (14)-(21) supplemented with (23) and (24), is considered as containing

all physics we want to account for. In the following we will consider simplifications
of it.
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Figure 2: Left: The global microstructure in 2D. Right: Z-cell of the periodic struc-
ture.

2.4 Time-harmonic Maxwell equations

The first simplification we make, consists in considering the harmonic version of the
Maxwell equations (14)-(22). This simplification is used in many references studying
electromagnetic phenomena and especially for lightning applications [14], in spite of
the fact that it considers implicitly that every fields and currents are waves of the
form, for all ω̃ ∈ R :

a(x̃, ỹ, z̃) cos(−ω̃t+ φ(x̃, ỹ, z̃)) = <e[a(x̃, ỹ, z̃) expiω̃t expiφ(x̃,ỹ,z̃)], (25)

where ω̃ is the pulsation, φ(x̃, ỹ, z̃) is the phase shift of the wave and a(x̃, ỹ, z̃) is its

amplitude. In particular, it supposes Ẽ?
d , H̃

?
d in (23) are of the form, for all w̃ ∈ R:

Ẽ?
d(t, x̃, z̃) = <e(Ẽd(x̃, z̃) expiω̃t), (26)

H̃?
d(t, x̃, z̃) = <e(H̃d(x̃, z̃) expiω̃t), (27)

where Ẽd and H̃d take into account the amplitude and the phase shift of their cor-
responding fields. Taking (21) into account, the time-harmonic Maxwell equations,
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which describe the electromagnetic radiation, are written:

∇×H̃ − iω̃ε0ε?Ẽ = σẼ, Maxwell - Ampere equation (28)

∇×Ẽ + iω̃µ0H̃ = 0, Maxwell - Faraday equation (29)

∇·(ε0ε?Ẽ) = ρ̃, (30)

∇·(µ0H̃) = 0, (31)

where Ẽ?(t, x̃, ỹ, z̃) = <e(Ẽ(x̃, ỹ, z̃) expiω̃t) and H̃?(t, x̃, ỹ, z̃) = <e(H̃(x̃, ỹ, z̃) expiω̃t),

(x̃, ỹ, z̃) ∈ Ω̃. The magnetic field H̃ can be directly computed from the electric field

Ẽ

H̃ = − 1

iωµ0

∇×Ẽ. (32)

Now, for the electric approach, taking the curl of equation (32) yields an expression

of ∇×H̃ in term of ∇×∇×Ẽ. Inserting ∇×H̃ in (28) we get the following equation
for the electric field:

∇×∇×Ẽ + (−ω̃2µ0ε0ε
? + iω̃µ0σ)Ẽ = 0 in Ω̃. (33)

Taking the divergence of the equation (28) yields the natural gauge condition:

∇·[(iω̃ε0ε? + σ)Ẽ] = 0 in Ω̃. (34)

Notice that iω̃ε0 +σ is equal to iω̃ε0 +σa in Ω̃a, to iω̃ε0εr +σr in Ω̃r and to iω̃ε0εc+σc
in Ω̃c, those quantities being all nonzero. Then (34) is equivalent to:

∇·Ẽ|Ωa = 0 in Ω̃a, ∇·Ẽ|Ωr = 0 in Ω̃r, ∇·Ẽ|Ωc = 0 in Ω̃c. (35)

with the transmission conditions

(iω̃ε0 + σa)Ẽ|Ω̃a .ñ = (iω̃ε0εr + σr)Ẽ|Ω̃r .ñ on Γ̃ra,

(iω̃ε0εr + σr)Ẽ|Ω̃r .ñ = (iω̃ε0εc + σc)Ẽ|Ω̃c .ñ on Γ̃cr.
(36)

Summarizing, we finally obtain the PDE model:

∇×∇×Ẽ + (−ω̃2µ0ε0ε
? + iω̃µ0σ)Ẽ = 0 in Ω̃. (37)

According to the tangential trace of the Maxwell-Faraday equation (29) we obvi-
ously obtain that using boundary condition (23), is equivalent to using:

∇×Ẽ × e2 = −iω̃µ0H̃d(x̃, z̃)× e2 on Γ̃d (38)

where H̃d is defined in (27) and where we used (13). And on Γ̃L we have the following
boundary condition:

∇×Ẽ × e2 = 0 on Γ̃L. (39)
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2.5 Scaling

In this subsection we propose a rescaling of system ((37)-(39)), we will consider a
set of characteristic sizes related to our problem. Physical factors are then rewritten
using those values leading to a new set of dimensionless and unitless variables and
fields in which the system is rewritten. The considered characteristic sizes are : ω the
characteristic pulsation, σ the characteristic electric conductivity, E the characteristic
electric magnitude, H the characteristic magnetic magnitude. We also use the already
introduced thickness L of the plate P̃ . We then introduce the dimensionless variables:
x = (x, y, z) with x = x̃

L
, y = ỹ

L
, z = z̃

L
and fields E, H and σ that are such that

E(ω,x) =
1

E
Ẽ(ωω, Lx, Ly, Lz),

H(ω,x) =
1

H
H̃(ωω, Lx, Ly, Lz),

σ(x) =
1

σ
σ̃(Lx, Ly, Lz),

(40)

Taking (22) into account, σ also reads:

σ(x) =
σa
σ

if 0 ≤ Ly ≤ d, (41)

σ(x) =
σr
σ

if (Lx, Ly, Lz) ∈ Ω̃r, (42)

σ(x) =
σc
σ

if (Lx, Ly, Lz) ∈ Ω̃c. (43)

Doing this gives the status of units to the characteristic sizes. Since, for instance:

∂E

∂x
(ω,x) =

L

E

∂Ẽ

∂x̃
(ωω, Lx, Ly, Lz), (44)

using those dimensionless variables and fields and taking (41)-(43) into account, equa-
tion (37) gives:

E ∇×∇×E(ω,x)−
(L2

ω2

c2
ε?ω2 + iσ ω ωL

2
µ0σ(x, ω)

)
EE(ω, x, y, z) = 0, (45)

for any (ω,x) such that (ωω, Lx, Ly, Lz) ∈ Ω̃. Now we exhibit

λ =
2πc

ω
, (46)

which is the characteristic wave length and

δ =
1√
ω σµ0

, (47)

11



which is the characteristic skin thickness. Using those quantities equation (45) reads,
for any (ω,x) ∈ Ω:

∇×∇×E(ω,x) + (−4π2L
2

λ
2 ω2 + i

L
2

δ
2

σa
σ
ω)E(ω,x) = 0 when 0 ≤ Ly ≤ d,

∇×∇×E(ω,x) + (−4π2L
2

λ
2 εr ω

2 + i
L

2

δ
2

σr
σ
ω)E(ω,x) = 0 when (Lx, Ly, Lz) ∈ Ω̃r,

∇×∇×E(ω,x) + (−4π2L
2

λ
2 εc ω

2 + i
L

2

δ
2

σc
σ
ω)E(ω,x) = 0 when (Lx, Ly, Lz) ∈ Ω̃c.

(48)

In the following expressions, L
λ

and L
δ

appearing in the equations above will be rewrit-
ten in terms of a small parameter ε.

The boundary conditions are written

∇×E(ω,x)× e2 = −iωωµ0
L

E
H̃d(Lx, Lz)× e2 when (Lx, Ly, Lz) ∈ Γ̃d,

∇×E(ω,x)× e2 = 0 when (Lx, Ly, Lz) ∈ Γ̃L.

(49)

The characteristic thickness of the plate L is about 10−3m and the size of the
basic cell e is about 10−5m. Since e is much smaller than the thickness of the plate
L, it is pertinent to assume the ratio e

L
equals a small parameter ε:

e

L
∼ 10−2 = ε. (50)

Then, in what concerns the characteristic pulsation ω, in the tables below we consider
several values. The lightning is seen as a low frequency phenomenon. Indeed, energy
associated with radiation tracers and return stroke are mainly burn by low and very
low frequencies (from 1kHz to 300kHz). Components of the frequency spectrum are
however observed beyond 1GHz (see [16]). So, in the case when we want to catch low
frequency ie we consider ω = 100 rad/s, (in our study we will consider ω = 106rad/s),
for medium frequency we set ω = 1010 rad/s and for high frequency phenomena
ω = 1012 rad/s. Then, concerning the characteristic electric conductivity it seems
to be reasonable to take for σ the value of the effective electric conductivity of the
composite material. Yet this choice implies to compute a coarse estimate of this
effective conductivity at this level.

For this we take into account that the composite material is composed of carbon fibers
and epoxy resin. The resin can be doped, which increases strongly its conductivity,
or not. The tables below summarize the cases when the resin is doped and also when
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the resin is not doped. We also account for the fact there is not only one effective
electric conductivity but a first one in the fiber direction : the effective longitudinal
electric conductivity (in cases 1, 2, 5 and 6 of the tables below), and a second effective
electric conductivity, in the direction transverse to the fibers (considered in cases 3, 4,
7 and 8). In this context, we consider the basic model which is based on the electrical
analogy and the law of mixtures. It corresponds to the Wiener limits: the harmonic
average and the arithmetic average. The effective values are the extreme limits of the
conductivity of the composite introduced by Wiener in 1912 see S. Berthier p 76 [7].
The effective longitudinal electric conductivity corresponding of the upper Wiener
limit is expressed by the equation:

σ = σlong = fc σc + (1− fc) σr, (51)

where fc = πα
2

4
is the volume fraction of the carbon fiber.

The effective transverse electric conductivity corresponding of the lower Wiener
limit is expressed by

σ = σtrans =
1

fc
σc

+ (1−fc)
σr

. (52)

For the computation, we take values close to reality. We consider composite materials
with similar proportions of carbon and resin, this means that α is close to 1

2
. When

the resin is not doped σr ∼ 10−10S.m−1 is much smaller than σc ∼ 40000S.m−1.
Then, σ = σlong is close to πα

2

4
σc ∼ σc and σ = σtrans is close to σr

(1−π α2
4

)
∼ σr.

Now, we express the electric conductivity of the air in terms of σ, we consider
two possibilities. The first one is relevant for a situation with a ionized channel. The
second one of situation with a strong atmospheric electric field but without a ionized
channel. In this situation air is not ionized and has a low conductivity. All possible
situations are gathered in the tables below. Cases 5 to 8 are associated with the
first situation with air conductivity σa being σlightning = 4242S.m−1 for an ionized
lightning channel see [13]. Cases 1 to 4, to the second one, with σa = 10−14S.m−1.

All calculations of the different cases of the tables are detailed in Annex A. In our
study we consider the case 6 for ω = 106 rad.s−1, which corresponds to the air ionized,
a resin doped and the effective longitudinal electric conductivity of the carbon fibers.

As it is well known the tables confirm that at high frequencies the thickness of
the plate is much greater than the skin depth. This one depends on σ and ω and
decreases strongly for high conductivity or high frequencies. For ω = 1010 rad.s−1 and
σ = 4∗104 S.m−1, the effective conductivity in the direction of the carbon fibers, which
the skin effect phenomenon appears. Indeed, for high frequencies ω = 1012rad.s−1

and when σ is the effective conductivity is in direction of the carbon fibers i.e. in high
conductivity, δ = 10−4 m. In low frequencies and low conductivity δ is large so the
electromagnetic wave can penetrate the composite material. The high conductivity
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case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 106 106 106 106 106 106 106 106

σ(S.m−1) 40000 40000 10−10 10−3 40000 104 10−10 10−3

δ(m) 0, 1 0, 1 107 103 0, 1 0, 1 107 103

σc(S.m
−1) σ σ σ

ε7
σ
ε4

σ σ σ
ε7

σ
ε4

σr(S.m
−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S.m
−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ

ε5
σ
ε2

4πL
2

λ
2 ε9 ε9 ε9 ε9 ε9 ε9 ε9 ε9

L
2

δ
2 ε2 ε2 ε10 ε7 ε2 ε2 ε10 ε7

Table 1: for ω = 100rad.s−1.

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 103 103 103 103 103 103 103 103

σ(S.m−1) 40000 40000 10−10 10−3 40000 40000 10−10 10−3

δ(m) 10−3 10−3 105 10 10−3 10−3 105 10
σc(S.m

−1) σ σ σ
ε7

σ
ε5

σ σ σ
ε7

σ
ε5

σr(S.m
−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S.m
−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ

ε5
σ
ε2

4πL
2

λ
2 ε5 ε5 ε5 ε5 ε5 ε5 ε5 ε5

L
2

δ
2 1 1 ε8 ε5 1 1 ε8 ε5

Table 2: for ω = 106rad.s−1.

14



case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1

σ(S.m−1) 40000 40000 10−10 10−3 40000 40000 10−10 10−3

δ(m) 10−5 10−5 103 10−1/2 10−5 10−5 103 10−1/2

σc(S.m
−1) σ σ σ

ε7
σ
ε4

σ σ σ
ε7

σ
ε4

σr(S.m
−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S.m
−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ

ε5
σ
ε2

4πL
2

λ
2 ε ε ε ε ε ε ε ε

L
2

δ
2

1
ε2

1
ε2

ε6 ε3 1
ε2

1
ε2

ε6 ε3

Table 3: for ω = 1010rad.s−1.

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

σ(S.m−1) 40000 40000 10−10 10−3 40000 40000 10−10 10−3

δ(m) 10−6 10−6 1 10−3/2 10−6 10−6 1 10−3/2

σc(S.m
−1) σ σ σ

ε7
σ
ε4

σ σ σ
ε7

σ
ε4

σr(S.m
−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S.m
−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ

ε5
σ
ε2

4πL
2

λ
2 1 1 1 1 1 1 1 1

L
2

δ
2

1
ε3

1
ε3

ε3 ε 1
ε3

1
ε3

ε3 ε

Table 4: for ω = 1012rad.s−1.
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limits the penetration of the electromagnetic wave to a boundary layer whose depth
is about δ.

Now, we will discuss on the values of E and ρ. It seems that the density of
electrons in a ionized channel is about 1010 part.m−3. Hence we take ρ = 1010. When
the air is not ionized, the charge density is much smaller, and we choose: ρ = 1.

For the boundary conditions, in the context of the case 6 and ω = 106 rad/s, we
consider the peak of the current of the first return stroke. Then the magnetic field
magnitude H is Hd given by (1).

Then the dimensionless boundary conditions (38) writes:

∇×E(x, ω)× e2 = −iωωµ0
L

E
HdHd(x, z)× e2, (53)

where HdHd(x, z) = H̃d(Lx, Lz) and where ωµ0
L
E
Hd being of order 1, with the char-

acteristic electric field E = 20 kV/m.

From the physical spatial coordinates (x̃, ỹ, z̃) ∈ Ω̃ we define y = (ξ, ν, ζ) with
ξ = x̃

e
, ν = ỹ

e
, ζ = z̃

e
or equivalently ξ = x

ε
, ν = y

ε
, ζ = z

ε
. And we now introduce Y ,

the basic cell. It is built from: Z = [−1
2
, 1

2
]× [−1, 0]×R and the set C = D×R with

the disc D defined by:

D = {(ξ, ν) ∈ R2 /ξ2 + (ν +
1

2
)2 < R2}, (54)

and R = α
2
. The set Ωc is then defined as:

Ωc = {(i, j, 0) + C, i ∈ Z, j ∈ Z−}. (55)

We denote Yr as Yr = Z\C and then the set

Ωr = {(i, j, 0) + Yr, i ∈ Z, j ∈ Z−}. (56)

Then unit cell Y is defined as Y = (Yr, C). Finally, we define the domain Ωa:

Ωa = {y = (ξ, ν, ζ) / ν > 0}. (57)

Using this, we will give a new expression of the sets in which the variables range in
equations (48). We see the following:

(Lx, Ly, Lz) ∈ Ω̃r ⇔

{
(Lx, Ly, Lz) ∈ P̃ ,
(L
e
x, L

e
y, L

e
z) ∈ Ωr,

(58)

i.e.

(Lx, Ly, Lz) ∈ Ω̃r ⇔
{

(Lx, Ly, Lz) ∈ P̃ ,
(x
ε
, y
ε
, z
ε
) ∈ Ωr.

(59)
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In the same way:

(Lx, Ly, Lz) ∈ Ω̃c ⇔
{

(Lx, Ly, Lz) ∈ P̃ ,
(x
ε
, y
ε
, z
ε
) ∈ Ωc,

(60)

and:

0 ≤ Ly ≤ d⇔
{
y ∈ R2

Ly ≤ d,
(61)

or

(Lx, Ly, Lz) ∈ Ω̃a ⇔
{
Ly ≤ d
(x
ε
, y
ε
, z
ε
) ∈ Ωa.

(62)

We define:

Σε(y) = Σε(ξ, ν, ζ) =


Σε
a in Ωa,

Σε
r in Ωr,

Σε
c in Ωc,

(63)

where Σε
a = σa

σ
L
2

δ
2 ,Σε

r = σr
σ
L
2

δ
2 and Σε

c = σc
σ
L
2

δ
2 have their expressions in term of ε

given from Tables above depending on the case we are interested in. The detail of this
expressions are in appendix B. The model that we present is the case ω = 106 rad.s−1,
η = 5, Σε

a = ε, Σε
r = ε4 and Σε

c = 1.

Defining also mapping

ψε : R3 → R3

(x, y, z) 7→ (
x

ε
,
y

ε
,
z

ε
),

(64)

we can set Ωε
a as ψ−1

ε (Ωa)∩ (R× [0, d
L

]×R), Ωε
r as ψ−1

ε (Ωr)∩ P̃ and Ωε
c as ψ−1

ε (Ωc)∩ P̃ .

We also define the boundaries Γd = {x ∈ R3, y = d
L
} and ΓL = {x ∈ R3, y = −L}

and interfaces Γra = {x ∈ R3, y = 0} and Γεcr = ∂Ωc. Hence equation (48) reads:

∇×∇×Eε + (−ω2εηε? + i ω σε(x, y, z))Eε = 0 in Ω, (65)
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where Ω = Ωε
a ∪ Ωε

r ∪ Ωε
c = {x ∈ R3,−1 < y < d

L
} does not depend on ε. Only its

partition in Ωε
a, Ωε

r and Ωε
c is ε-dependent where

σε(x, y, z) = Σε(
x

ε
,
y

ε
,
z

ε
), (66)

with Σε given by (63) and

εη =
4π2L

2

λ2
, (67)

with the value of η ≥ 0 extracted from Tables, and where we replace E by Eε, to
clearly state that it depends on ε.

Equation (65) is provided with the following boundary conditions:

∇×Eε × e2 = −iωHd(x, z)× e2 on Γd, (68)

coming from (53). And, coming from (49),

∇×Eε × e2 = 0 on ΓL. (69)

From (65) we can deduce the condition on the divergence of Eε which can be written
in two ways. As previously in (34), (35) and (36) we obtain:

∇·[(−ω2εηε? + iωσε)Eε] = 0 in Ω, (70)

which will be preferentially used with (65) and its second one is

∇·Eε
|Ωεa = 0 in Ωε

a, ∇·Eε
|Ωεr = 0 in Ωε

r, ∇·Eε
|Ωεc = 0 in Ωε

c, (71)

with the transmission conditions on the interfaces Γra and Γεcr

(−ω2εη + iωΣε
a) E

ε
|Ωεa · n|Ωεa = (−ω2εηεr + iωΣε

r) E
ε
|Ωεr · n|Ωεr on Γra,

(−ω2εηεr + iωΣε
r) E

ε
|Ωεr · n|Ωεr = (−ω2εηεc + iωΣε

c) E
ε
|Ωεc · n|Ωεc on Γεcr.

(72)

Before treating mathematically the question we are interested in, we make a last
simplification. Since it seems clear that physical relevant phenomena occur in the
upper part of the plate. The boundary condition on the lower boundary of the plate
has very little influence on the physics of what happens in the upper part, we consider
that the lower boundary of Ω is located in y = −∞ in place of y = −1, making the
second boundary condition useless. Besides, as L and d are of the same order it seems
reasonable to set Γd = {x ∈ R3, y = 1} and consequently

Ω = {x ∈ R3, y < 1} = Ωε
a ∪ Ωε

r ∪ Ωε
c, with,

Ωε
a = ψ−1

ε (Ωa),
Ωε
r = ψ−1

ε (Ωr),
Ωε
c = ψ−1

ε (Ωc),

(73)

with ψε defined in (64). We have that the border of Ω is Γd. In the following section
we will establish existence and uniqueness results.
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3 Mathematical analysis of the models

3.1 Preliminaries

We are going to make precise the variational formulation. First of all, we need to
introduce the following functional spaces. We have the standard function spaces
L2(Ωε) = [L2(Ωε)]3

H(curl,Ω) = {u ∈ L2(Ω) : ∇×u ∈ L2(Ω)},
H(div,Ω) = {u ∈ L2(Ω) : ∇·u ∈ L2(Ω)},

(74)

with the usual norms:

‖u‖2

H(curl,Ω)
= ‖u‖2

L2(Ω) + ‖∇×u‖2
L2(Ω),

‖u‖2

H(div,Ω)
= ‖u‖2

L2(Ω) + ‖∇·u‖2
L2(Ω).

(75)

They are well known Hilbert spaces.

We use in this paper, the trace spaces H−
1
2 (curl,Γd) and H−

1
2 (div,Γd) defined by

H−
1
2 (curl,Γd) = {u ∈ H−

1
2 (Γd,R3), (n · u)|Γd = 0, curlΓdu ∈ H−

1
2 (Γd,R3)}, (76)

H−
1
2 (div,Γd) = {u ∈ H−

1
2 (Γd,R3), (n · u)|Γd = 0, divΓdu ∈ H−

1
2 (Γd,R3)} (77)

where the surface divergence divΓdu and the surface rotation curlΓdu are defined by

(divΓdu, V )L2(Γd) = −(u,∇ΓdV )L2(Γd,R3), ∀ V ∈ C1(Γd)

curlΓdu = n · (∇× u|Γd)
(78)

and the surface gradient ∇ΓdV is defined by the orthogonal projection of ∇ on Γd, n
denotes the outward unit vector normal to Γd.

Finally we recall the trace theorems, see J.C Nédélec [19] for the demonstration,
stating that the traces mappings

γT : H(curl,Ω) −→ H−
1
2 (curl,Γd), that assigns any u ∈ H(curl,Ω) its tangential

components n× (u× n), is continuous and surjective, that is:

‖γT (u)‖
H− 1

2 (curl,Γd)
≤ CγT ‖u‖H(curl,Ω)

, ∀u ∈ H(curl,Ω)

γt : H(curl,Ω) −→ H−
1
2 (div,Γd), that assigns any u ∈ H(curl,Ω) its tangential

components u× n, is continuous and surjective:
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‖γt(u)‖
H− 1

2 (div,Γd)
≤ Cγt‖u‖H(curl,Ω)

, ∀u ∈ H(curl,Ω).

Moreover, H−
1
2 (div,Γd) is the dual of H−

1
2 (curl,Γd) and one has the Green’s formula:∫

Ω

(∇×u · V − u · ∇×V )dx = 〈u× n, VT 〉Γd ∀(u, V ) ∈ H(curl,Ω). (79)

We define the next space:

X(Ω) = {u ∈ H(curl,Ω) | ∇·u|Ωεa ∈ L
2(Ωε

a),∇·u|Ωεr ∈ L
2(Ωε

r), ∇·u|Ωεc ∈ L
2(Ωε

c)}.
(80)

Our variational space is:

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωσε|Ωεa)u|Ωεa · e2 = (−ω2εηεr + iωσε|Ωεr)u|Ωεr · e2,

(−ω2εηεr + iωσε|Ωεr)u|Ωεr · n
ε
|Ωεr = (−ω2εηεc + iωσε|Ωεc)u|Ωεc · n

ε
|Ωεc .

(81)

Finally

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωΣε
a)u|Ωεa · e2 = (−ω2εηεr + iωΣε

r)u|Ωεr · e2,

(−ω2εηεr + iωΣε
r)u|Ωεr · n

ε
|Ωεr = (−ω2εηεc + iωΣε

c)u|Ωεc · n
ε
|Ωεc}.

(82)

This space is equipped with the norm

‖u‖2
Xε(Ω) = ‖u‖2

L2(Ω)
+‖∇·u|Ωεa‖

2
L2(Ωεa) +‖∇·u|Ωεr‖

2
L2(Ωεr)

+‖∇·u|Ωεc‖
2
L2(Ωεc)

+‖∇×u‖2
L2(Ω)

.

3.2 Weak formulation

Now, we introduce the variational formulation of our problem (65), (68) and (69) for
the electric field. Integrating (65) over Ω and using the Green’s formula and (68) we
obtain ∫

Ω

∇×Eε · ∇×V dx +

∫
Ωεa

(−ω2εη + iωΣε
a)E

ε · V dx

+

∫
Ωεc

(−ω2εηεc + iωΣε
c)E

ε · V dx +

∫
Ωεr

(−ω2εηεr + iωΣε
r)E

ε · V dx

=

∫
Γd

(∇×Eε × e2) · V T dσ

=

∫
Γd

−iωHd × e2 · V T dσ

(83)
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where V is the complex conjugate of V and VT = (e2 × V ) × e2. We introduce the
sesquilinear form depending on parameters η and ε:

For Eε, V ∈ Xε(Ω),

aε,η(Eε, V ) =

∫
Ω

∇×Eε · ∇×V dx +
∑
i=a,r,c

∫
Ωεi

(−ω2εηεi + iωΣε
i ) E

ε · V dx.
(84)

Hence, the weak formulation of (65), (68) and (69) that we will use is the following:
Find Eε ∈ Xε(Ω) such as ∀ V ∈ Xε(Ω) we have :

aε,η(Eε, V ) = −iω
∫

Γd

Hd × e2 · V T dσ.
(85)

Integrating by parts in the variational formulation (83), we find the following trans-
mission problem:

∇×∇×Eε + (−ω2εη + i ω Σε
a)E

ε = 0 in Ωε
a,

∇×∇×Eε + (−ω2εηεr + i ω Σε
r)E

ε = 0 in Ωε
r,

∇×∇×Eε + (−ω2εηεc + i ω Σε
c)E

ε = 0 in Ωε
c.

Eε
|Ωεa
× e2 = Eε

|Ωεr
× n|Ωεr on Γra,

Eε
|Ωεr
× n|Ωεr = Eε

|Ωεc
× n|Ωεc on Γεcr,

∇×Eε
|Ωεa
× e2 = ∇×Eε

|Ωεr
× n|Ωεr on Γra,

∇×Eε
|Ωεr
× n|Ωεr = ∇×Eε

|Ωεc
× n|Ωεc on Γεcr,

(86)

where e2 is the unit outward normal to Ωε
a, n|Ωεr is the unit outward normal to Ωε

r

and n|Ωεc is the unit outward normal to Ωε
c. We refer to Annex C for the proof that

transmission problem (86) is equivalent to ((65), (68), (69), (71)).

3.3 Regularized Maxwell equations for the electric field

The sesquilinear form aε,η is not coercive on Xε(Ω), so we regularize it adding terms
involving the divergence of Eε in Ωε

a, Ωε
r and Ωε

c. Thanks to the additional terms,
existence and uniqueness of the regularized variational formulation solution will be
established by the Lax-Milgram theory. Let s be an arbitrary positive number, we
define the regularized formulation of problem (85):

Find Eε ∈ Xε(Ω) such that for any V ∈ Xε(Ω)

aε,ηR (Eε, V ) = aε,η(Eε, V ) + s

∫
Ωεa

∇·Eε∇·V dx

+ s

∫
Ωεr

∇·Eε∇·V dx + s

∫
Ωεc

∇·Eε∇·V dx

= −iω
∫

Γd

Hd × e2 · V T dσ.

(87)
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For any ε > 0 and any η ≥ 0, sesquilinear form aε,ηR (., .) is continuous over Xε(Ω)
thanks to the continuity conditions. We will show that it is also coercive. The
following proposition was inspired by article [9] Lemma 1.1.

Proposition 3.1. For any ε > 0, for any η ≥ 0 and for any s > 0, there exists a
positive constant ω0 which does not depend on ε and such that for all ω ∈ (0, ω0),
there exists a positive constant C0 depending on εr, εc, s, ω but not on ε such that:

∀ Eε ∈ Xε(Ω), <[exp(−iπ
4

) aε,ηR (Eε, Eε)] ≥ C0‖Eε‖Xε(Ω) (88)

Proof. We have:

<[exp(−iπ
4

) aε,ηR (Eε, Eε)] = aεR(Eε, Eε)−
∫

Ωεa

ω2εη|Eε|2 dx

−
∫

Ωεr

ω2εηεr|Eε|2 dx−
∫

Ωεc

ω2εηεc|Eε|2 dx.
(89)

with

aεR(Eε, Eε) =

∫
Ω

|∇×Eε|2 dx + s

∫
Ωεa

|∇·Eε|2 dx

+ s

∫
Ωεr

|∇·Eε|2 dx + s

∫
Ωεc

|∇·Eε|2 dx

+

∫
Ωεa

ωΣε
a|Eε|2 dx +

∫
Ωεr

ωΣε
r|Eε|2 dx

+

∫
Ωεc

ωΣε
c|Eε|2 dx.

(90)

We have the following estimate:

|aεR(Eε, Eε)| ≥ min{1, ω, s}(‖∇×Eε‖2
L2(Ω) + ‖∇·Eε‖2

L2(Ωεa) + ‖∇·Eε‖2
L2(Ωεr)

+ ‖∇·Eε‖2
L2(Ωεc)

+ ‖Eε‖2
L2(Ω)).

(91)

Then we have:

| aεR(Eε, Eε)| ≥ min{1, ω, s}‖Eε‖2
Xε(Ω). (92)

Returning to formulation (88), for η ≥ 0, since max(Σε
a,Σ

ε
r,Σ

ε
c) > εη, inequality

(88) is valid with C0 = min{1, ω, s} as soon as ω2 min{1, εr, εc} < min{1, ω, s} or

ω <
√

min{1,ω,s}
min{1,εr,εc} . This ends the proof of Proposition 3.1.

Thanks to Proposition 3.1 we can state the existence and uniqueness of the solution
to regularized problem (87).
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Theorem 3.2. Under the assumptions of Proposition 3.1, there exists a unique so-
lution Eε to regularized problem (87).

Proof. The sesquilinear form aε,ηR is continuous, bounded, coercive thanks to Propo-
sition 3.1 and the right hand side is continuous on Xε(Ω), then problem (87) has a
unique solution in Xε(Ω) thanks to the Lax-Milgram Lemma.

3.4 Existence, uniqueness and estimate

Theorem 3.3. For any ε > 0, for any η ≥ 0, there exists a positive constant ω0

which does not depend on ε and such that for all ω ∈ (0, ω0), there exists a unique
solution of (86) or ((65), (68), (69), (71)).

Proof. We show that for an appropriate choice of s that Eε satisfies all equations
(86) or ((65), (68), (69), (71)). It is obvious that any solution of (86) or of ((65),
(68), (69),(71)) is also solution to (87). Indeed, since from (86) or from ((65), (68),
(69),(71)) we have ∇·Eε

|Ωεa
= 0, ∇·Eε

|Ωεr
= 0, ∇·Eε

|Ωεc
= 0, the additional terms

s
∫

Ωεa
∇·Eε∇·V dx + s

∫
Ωεr
∇·Eε∇·V dx + s

∫
Ωεc
∇·Eε∇·V dx cancel in (87).

Uniqueness follows from that if Eε
1 and Eε

2 are two solutions to (65) with the
boundary condition (69) their difference eε = Eε

2 −Eε
1 satisfies the problem (65) with

(69). Then it comes∫
Ω

|∇×eε|2 dx +

∫
Ωεa

(−ω2εη + iωΣε
a)|eε|2 dx

+

∫
Ωεc

(−ω2εηεc + iωΣε
c)|eε|2 dx +

∫
Ωεr

(−ω2εηεr + iωΣε
r)|eε|2 dx

= 0.

(93)

Taking the imaginary part of the expression we get
∫

Ωεa
ωΣε

a|eε|2 dx+
∫

Ωεc
ωΣε

c|eε|2 dx+∫
Ωεr
ωΣε

r|eε|2 dx = 0 and then eε = 0.

Let us consider the reciprocal assertion, according to the same proof of S. Hassani,
S. Nicaise, A. Maghnouji in [23], we define H1

0 (Ωε
c,∆) the subspace of ψ ∈ H1

0 (Ωε
c)

such that ∆(ψ) ∈ L2(Ωε
c).

Let Eε
s be the solution of the regularized formulation (87). In (87) we take a test

function V = ∇ψ where ψ ∈ H1
0 (Ωε

c,∆), extended by zero outside Ωε
c. We get:∫

Ωεc

s∇·Eε
s∇·(∇ψ) dx +

∫
Ωεc

(−ω2εηεc + iωΣε
c)E

ε
s · ∇ψ dx = 0. (94)

By Green’s formula, ∀ψ ∈ H1
0 (Ωε

c,∆), we obtain:∫
Ωεc

∇·Eε
s(∆ψ +

ω2εηεc − iωΣε
c

s
ψ) dx = 0. (95)
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Thus, if we choose s such that ω2εηεc−iωΣεc
s

is not an eigenvalue of (∆dir,Ω
ε
c): the

Laplacian operator in Ωε
c with Dirichlet condition on its boundary, then for all ϕ ∈

L(Ωε
c)

2 there exists ψ ∈ H1
0 (Ωε

c,∆) solution of

∆ψ +
ω2εηεc − iωΣε

c

s
ψ = ϕ. (96)

Then, we conclude that

∇ · Eε
s|Ωεc

= 0. (97)

A similar argument in Ωε
a yields ∇·Eε

s|Ωεa
= 0 for s such that ω2εη−iωΣεa

s
is not an eigen-

value of (∆dir,Ω
ε
a). In the same way, we obtain in Ωε

r, ∇·Eε
s|Ωεr

= 0 with s such that
ω2εηεr−iωΣεr

s
is not an eigenvalue of (∆dir,Ω

ε
r).

Hence ∇·Eε
s = 0 in Ωε

c, this cancels the additional term s
∫

Ωεc
∇·Eε

s∇·V dx in (87).

In the same way, ∇·Eε
s = 0 in Ωε

r and ∇·Eε
s = 0 in Ωε

a cancel s
∫

Ωεr
∇·Eε

s∇·V dx and

s
∫

Ωεa
∇·Eε

s∇·V dx in (87). So, (87) becomes (83). Applying Green’s formula, we find

(65).

Theorem 3.4. Under the assumptions of Theorem 3.2, Eε ∈ Xε(Ω) solution of (87)
satisfies

‖Eε‖Xε(Ω) ≤ C (98)

with C =
CγtCγT
C0 ‖Hd‖H(curl,Ω)

Proof. The sesquilinear form aε,ηR (Eε, V ) is coercive, weak formulation (87) becomes:

C0‖Eε‖2
Xε(Ω) ≤ <(exp(−iπ

4
)aε,ηR (Eε, Eε))

≤ | exp(−iπ
4

) · aε,ηR (Eε, Eε)| = |aε,ηR (Eε, Eε)|

≤ |
∫

Γd

−iωHd × e2 · Eε
T dσ|

≤ ‖Hd × e2‖H− 1
2 (div,Γd)

‖Eε
T‖H− 1

2 (curl,Γd)

≤ CγtCγT ‖Hd × e2‖H(curl,Ω)
‖Eε‖

H(curl,Ω)

(99)

where Eε
T = e2 × (Eε × e2) and the continuous dependence of the trace norm with

C =
CγtCγT
C0 ‖Hd‖H(curl,Ω) gives:

‖Eε‖2
Xε(Ω) ≤ C‖Eε‖

H(curl,Ω)
≤ C‖Eε‖Xε(Ω). (100)

24



4 Homogenization

With the aim to obtain a convergence result for the problem (65), (68) and (69), we
propose an approach based on two-scale convergence. This concept was introduced
by G. Nguetseng [21], [22] and specified by G. Allaire [2], [3] which studied properties
of the two-scale convergence. M. Neuss-Radu in [20] presented an extension of two-
scale convergence method to the periodic surfaces. Many authors applied two-scale
convergence approach D. Cionarescu and P. Donato [8], N. Crouseilles, E. Frénod, S.
Hirstoaga and A. Mouton [10], Y. Amirat, K. Hamdache and A. Ziani [4] and also
A. Back, E. Frénod [6]. This mathematical concept were applied to homogenize the
time-harmonic Maxwell equations S. Ouchetto, O. Zouhdi and A. Bossavit [24], H.E.
Pak[25].

In our model, the parallel carbon cylinders are periodically distributed in direction
x and z, as the material is homogenous in the y direction, we can consider that
the material is periodic with a three directional cell of periodicity. In other words,
introducing Z = [−1

2
, 1

2
] × [−1, 0]2, function Σε given by (63) is naturally periodic

with respect to (ξ, ζ) with period [−1
2
, 1

2
]× [−1, 0] but it is also periodic with respect

to y with period Z.
Now, we review some basis definitions and results about two-scale convergence.

4.1 Two-scale convergence

We first define the function spaces{
H#(curl,Z) = {u ∈ H(curl,R3) : u is Z-periodic}
H#(div,Z) = {u ∈ H(div,R3) : u is Z-periodic}

(101)

and where H(curl,R3) and H(div,R3) are defined by (74) with Ωε replaced by R3.
We introduce

L2
#(Z) = {u ∈ L2(R3), u is Z-periodic}, (102)

and

H1
#(Z) = {u ∈ H1(R3), u is Z-periodic}, (103)

where H1(R3) is the usual Sobolev space on R3. First, denoting by C0
#(Z) the space

of functions in C0(R3) and Z-periodic, C0
0(R3) the space of continuous functions over

R3 with compact support, we have the following definitions:

Definition 4.1. A sequence uε(x) in L2(Ω) two-scale converges to u0(x,y) ∈
L2(Ω,L2

#(Z)) if for every V (x,y) ∈ C0
0(Ω, C0

#(Z))

lim
ε→0

∫
Ω

uε(x) · V (x,x/ε) dx =

∫
Ω

∫
Z
u0(x,y) · V (x,y) dxdy. (104)
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Proposition 4.2. If uε(x) two-scale converges to u0(x,y) ∈ L2(Ω,L2
#(Z)), we have

for all v(x) ∈ C0(Ω) and all w(y) ∈ L2
#(Z)

lim
ε→0

∫
Ω

uε(x) · v(x)w(
x

ε
) dx =

∫
Ω

∫
Z
u0(x,y) · v(x)w(y) dxdy. (105)

Theorem 4.3. (Nguetseng). Let uε(x) ∈ L2(Ω). Suppose there exists a constant
c > 0 such that for all ε

‖uε‖L2(Ω) ≤ c.

Then there exists a subsequence of ε (still denoted ε) and u0(x,y) ∈ L2(Ω,L2
#(Z))

such that:

uε(x) � u0(x,y). (106)

Proposition 4.4. Let uε(x) be a sequence of functions in L2(Ω), which two-scale
converges to a limit u0(x,y) ∈ L2(Ω,L2

#(Z)). Then uε(x) converges also to u(x) =∫
Z
u0(x,y)dy in L2(Ω) weakly. Furthermore, we have

lim
ε→0
‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Y ) ≥ ‖u‖L2(Ω). (107)

Remark 4.5. : - For any smooth function u(x,y), being Z-periodic in y, the asso-
ciated sequence uε(x) = u(x, x

ε
) two-scale converges to u(x,y).

- Any sequence uε that converges strongly in L2(Ω) to a limit u(x), two-scale
converges to the same limit u(x).

- If uε admits an asymptotic expansion of the type uε(x) = u0(x,x/ε)+εu1(x,x/ε)+
ε2u2(x,x/ε) + ... , where the functions ui(x,y) are smooth and Z-periodic in y, two-
scale convergence allows to identify the first term of the expansion u0(x,y) with the

two-scale limit of uε and the two-scale limit of
uε(x)−u0(x,x

ε
)

ε
with u1(x,y) see (Frénod,

Raviart and Sonnendrucker [11]).

Proposition 4.6. Let uε(x) in L2(Ω). Suppose there exists a constant c > 0 such
that for all ε

‖uε‖L2(Ω) ≤ c.

Up to a subsequence, uε(x) two-scale converges to u0(x,y) ∈ L2(Ω,L2
#(Z)) such that:

u0(x,y) = u(x) + ũ0(x,y), (108)

where ũ0(x,y) ∈ L2(Ω,L2
#(Z)) satisfies∫

Z
ũ0(x,y) dy = 0, (109)

and u(x) =

∫
Z
u0(x,y) dy is a weak limit in L2(Ω).
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Proof. uε(x) is bounded in L2(Ω), then by application of Theorem 4.3, we get the
first part of the proposition. Furthermore by defining ũ0 as

ũ0(x,y) = u0(x,y)−
∫
Z
u0(x,y)dy, (110)

we obtain the decomposition of u0.

Defining ∇x = ( ∂
∂x

; ∂
∂y

; ∂
∂z

), ∇y = ( ∂
∂ξ

; ∂
∂ν

; ∂
∂ζ

), we have

Proposition 4.7. Let uε(x) be bounded in H(curl,Ω). Then, up to a subsequence,
there exists a function u1 ∈ L2(Ω, H#(curl,Z)) such that

∇×uε(x) � ∇x × u0(x,y) +∇y × u1(x,y), (111)

where u0 is given by Proposition 4.6.

Proof. From Theorem 4.3, since uε and ∇×uε are bounded in L2(Ω) then, up to
a subsequence, they two-scale converge to u0(x,y) ∈ L2(Ω,L2

#(Z)) and η0(x,y) ∈
L2(Ω,L2

#(Z)). So we have for all V (x,y) ∈ C0
0(Ω;C0

#(Z)):

lim
ε→0

∫
Ω

uε(x) · V (x,x/ε) dx =

∫
Ω

∫
Z
u0(x,y) · V (x,y)dxdy, (112)

lim
ε→0

∫
Ω

∇×uε(x) · V (x,x/ε) dx =

∫
Ω

∫
Z
η0(x,y) · V (x,y)dxdy. (113)

Next, by integration by parts, we have:∫
Ω

∇×uε(x) · V (x,x/ε) dx =

∫
Ω

uε(x) · (∇x × V (x,x/ε) +
1

ε
∇y × V (x,x/ε)) dx.

(114)

If we choose a test function V ∈ C0
0(Ω,C0

#(Z)) such that ∇y×V = 0, passing to the
limit in the left-hand side (113) we get∫

Ω

∇x × uε(x) · V (x,x/ε) dx→
∫

Ω

∫
Z
u0(x,y) · ∇x × V (x,y) dxdy

=

∫
Ω

∫
Z
∇x × u0(x,y) · V (x,y) dxdy.

(115)

This means that with the difference between (113) and (115):∫
Ω

∫
Z

[η0(x,y)−∇x × u0(x,y)] · V (x,y) dxdy = 0, (116)

27



for all functions V ∈ C1
0(Ω) with ∇y × V = 0. It follows that function η0(x,y) −

∇x × u0(x,y) is orthogonal to functions with zero rotational in L2(Ω,H#(curl),Z).
This implies that there exists a function u1 ∈ L2(Ω,H#(curl,Z)) such that

∇y × u1(x,y) = η0(x,y)−∇x × u0(x,y). (117)

Thus

∇×uε(x) � ∇x × u0(x,y) +∇y × u1(x,y). (118)

Proposition 4.8. Let uε be a bounded sequence in H(curl,Ω). Then a subsequence
uε can be extrated from ε such that, letting ε→ 0

uε(x) � u(x) +∇yΦ(x,y). (119)

where Φ ∈ L2(Ω,H1
#(Z)) is a scalar-valued function and where u ∈ L2(Ω). And we

have

∇×uε(x) ⇀ ∇x × u(x) weakly in L2(Ω). (120)

where u(x) is given by Proposition 4.6.

Proof. Proof of (119), for any V (x,y) ∈ C1
0(Ω,C1

#(Z)), we have∫
Ω

∇×uε(x) · V (x,
x

ε
) dx =

∫
Ω

uε(x){∇x × V (x,
x

ε
) +

1

ε
∇y × V (x,

x

ε
)} dx. (121)

Multiplying by ε we have

ε

∫
Ω

∇×uε(x) · V (x,
x

ε
) dx =

∫
Ω

uε(x){ε∇x × V (x,
x

ε
) +∇y × V (x,

x

ε
)} dx. (122)

Taking the two-scale limit as ε→ 0 we obtain

0 =

∫
Ω

∫
Z
u0(x,y) · ∇y × V (x,y) dxdy, (123)

which implies that ∇y × u0(x,y) = 0. Thus u0(x,y) is a gradient with respect to
the variable y for some scalar function Φ(x,y). And according to Proposition (4.6)
u0(x,y) can be written as u0(x,y) = u(x) +∇yΦ(x,y), where u(x) =

∫
Z u0(x,y)dy

for some scalar function Φ(x,y).
Next, we choose a test function V (x) ∈ L2(Ω). Integration by parts yields:

lim
ε→0

∫
Ω

∇×uε(x) · V (x) dx = lim
ε→0

∫
Ω

uε(x) · ∇×V (x) dx

=

∫
Ω

∫
Z
u0(x,y) dy · ∇×V (x) dx

=

∫
Ω

∇×u(x) · V (x) dx.

(124)
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These results are important properties of the two-scales convergence. We note
that the usual concepts of convergence do not preserve information concerning the
micro-scale of the function. However, the two-scale convergence preserves information
on the micro-scale.

4.2 Homogenized problem

We will explore in this section the behavior of electromagnetic field Eε using the two-
scale convergence to determine the homogenized problem. We place in the context of
the case 6 with δ > L and ω = 106rad.s−1, then we have η = 5 and Σε

a = ε, Σε
r = ε4,

Σε
c = 1 which gives the following equation:

∇×∇×Eε − ω2ε5k(ε)Eε + iω[(1εC(
x

ε
) + ε41εR(

x

ε
))1{y<0} + ε1{y>0}]E

ε = 0, (125)

where for a given set A, 1A stands for the characteristic function of A and where
1εA(x) = 1A(x

ε
), hence 1εC and 1εR are the characteristic functions of the sets filled by

carbon fibers and by resin. And where k(ε) = (εc1
ε
C(x) + εr1

ε
R(x))1{y<0} + 1{y>0}.

Remark 4.9. We recall that εc and εr are respectively the relative permittivity of the
carbon fibers and the resin. You should not confused with the microscopic scale ε.

On this purpose, we have the following Theorem:

Theorem 4.10. Under assumptions of Theorem 3.4, sequence Eε solution of (87)
or (86) or ((65), (68), (69), (71)) converges to E(x) ∈ L2(Ω) which is the unique
solution of the homogenized problem:

θ1∇x ×∇x × E(x) + iωθ2E(x) = 0 in Ω,

θ1∇x × E(x)× e2 = −iωHd × e2 on Γd,

∇x × E(x)× e2 = 0 on ΓL.

(126)

with θ1 =
∫
Z Id +∇yχ(y) dy and θ2 =

∫
Z 1C(y)(Id +∇yχ(y)) dy.

And where the scalar function χ is the unique solution, up to an additive constant
in the Hilbert space of Z periodic functions H1

#(Z), of the following boundary value
problem 

4y(χ(y)) = 0 in Z\∂ΩC ,

[
∂χ

∂n
] = −nj on ∂ΩC ,

[χ] = 0 on ∂ΩC .

(127)

where [f ] is the jump across the surface of ∂ΩC, nj, j = {1, 2, 3} is the projection on
the axis ej of the normal of ∂ΩC.
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Proof. Step 1: Two-scale convergence. Due to the estimate (98), Eε is bounded
in L2(Ω). Hence, up to a subsequence, Eε two-scale converges to E0(x,y) belonging
to L2(Ω,L2

#(Z)). That means for any V (x,y) ∈ C1
0(Ω,C1

#(Z)), we have:

lim
ε→0

∫
Ω

Eε(x) · V (x,
x

ε
) dx =

∫
Ω

∫
Z
E0(x,y) · V (x,y) dydx. (128)

Step 2: Deduction of the constraint equation. We multiply the equation
(125) by oscillating test function V ε(x) = V (x, x

ε
) where V (x,y) ∈ C1

0(Ω,C1
#(Z)):∫

Ω

∇×Eε(x) · (∇x × V ε(x,
x

ε
) +

1

ε
∇y × V ε(x,

x

ε
)) + [−ω2ε5k(ε)

+ iω(
(
1εC(

x

ε
) + ε41εR(

x

ε
)
)
1{y<0} + ε1{y>0})]E

ε · V ε(x,
x

ε
) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V (x, 1, z, ξ,
1

ε
, ζ))× e2 dσ.

(129)

Integrating by parts, we get:∫
Ω

Eε(x) · (∇x ×∇x × V ε(x,
x

ε
) +

1

ε
∇y ×∇x × V ε(x,

x

ε
)

+
1

ε
∇x ×∇y × V ε(x,

x

ε
) +

1

ε2
∇y ×∇y × V ε(x,

x

ε
)) + [−ω2ε5k(ε)

+ iω
(
1εC(

x

ε
) + ε41εR(

x

ε
)
)
1{y<0} + ε1{y>0}]E

ε(x) · V ε(x,
x

ε
) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V (x, 1, z, ξ,
1

ε
, ζ))× e2 dσ.

(130)

Now we multiply (130) by ε2 and we pass to the two-scale limit, applying Theorem
4.3 we obtain: ∫

Ω

∫
Z
E0(x,y)

(
∇y ×∇y × V (x,y)

)
dydx = 0. (131)

We deduce the constraint equation for the profile E0:

∇y ×∇y × E0(x,y) = 0. (132)

Step 3. Looking for the solutions to the constraint equation. Multiplying
Equation (132) by E0 and integrating by parts over Z leads to∫

Z
∇y ×∇y × E0(x,y)E0(x,y) dy =

∫
Z
|∇y × E0(x,y)|2 dy = 0. (133)

We deduce that equation (133) is equivalent to

∇y × E0(x,y) = 0, (134)
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Moreover a solution of (134) is also solution of (132). So (132) and (134) are equiva-
lent.

Hence, from Proposition (119) we conclude that E0(x,y) can be decomposed as

E0(x,y) = E(x) +∇yΦ0(x,y). (135)

Step 4. Equations for E(x) and Φ0(x,y). The divergence equation of (125) is
multiplied with V (x, x

ε
) = εv(x)ψ(x

ε
), where v ∈ C1

0(Ω) and ψ ∈ H1
#(Z). Theorem

4.3 and integration by parts yields for all ψ ∈ H1
#(Z) and v ∈ C1

0(Ω)

lim
ε→0

∫
Ω

∇·{−ω2ε5k(ε)Eε(x) + iω[(1εC(
x

ε
) + ε41εR(

x

ε
))1{y<0} + ε1{y>0}]E

ε(x)}εv(x)ψ(
x

ε
) dx

= − lim
ε→0

∫
Ω

{−ω2ε5k(ε)Eε(x) + iω[1εC(
x

ε
) + ε41εR(

x

ε
))1{y<0}

+ ε1{y>0}]E
ε} · (ε∇v(x)ψ(

x

ε
) + v(x)∇yψ(

x

ε
)) dx

= −
∫

Ω

∫
Z
v(x)∇yψ(y) · [iω1C(y)E0(x,y)] dydx = 0.

(136)

from which it follows that

∇y · [iω1C(y)E0(x,y)] = 0. (137)

with E0 given by the decomposition (119). So we obtain the local equation

∇y · [iω1C(y){E(x) +∇yΦ0(x,y)}] dy = 0. (138)

The potential Φ0 may be written on the form

Φ0(x,y) =
3∑
j=1

χj(y)ej · E(x) = χ(y) · E(x), (139)

From (135) and (139), we get:

E0(x,y) = (Id +∇yχ(y))E(x). (140)

Inserting E0 in (138) we obtain

∇y · [iω1C(y)(Id +∇yχ(y)] = 0. (141)

Now, we build oscillating test functions satisfying constraint (135) and use them
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in weak formulation (130). We define test function V (x,y) = α(x) + ∇yβ(x,y),
V (x,y) ∈ C1

0(Ω,C1
#(Z)) and we inject in (130) test function V ε = V (x, x

ε
), which

gives: ∫
Ω

Eε(x) ·
(
∇x ×∇x × V (x,

x

ε
) +

2

ε
∇x ×∇y × V (x,

x

ε
)

+
1

ε2
∇y ×∇y × V (x,

x

ε
)
)

+ [−ω2ε5k(ε) + iω(
(
1εC(

x

ε
)

+ ε41εR(
x

ε
)
)
1{y<0} + ε1{y>0})]E

ε(x) · V (x,
x

ε
) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V ‡(x, 1, z, ξ, ζ))× e2 dσ,

(142)

with V (x, 1, z, ξ, ν, ζ) = V ‡(x, 1, z, ξ, ζ) the restriction on V which does not depend
on ν. The term containing the constraint, the third one, disappears. Passing to the
limit ε→ 0 and replacing the expression of V by the term α(x) +∇yβ(x,y), we have

∇x ×∇y × V (x,y) = ∇x ×∇y × [α(x) +∇yβ(x,y)]

= ∇x ×∇y × (α(x)) +∇x ×∇y × (∇yβ(x,y))

= ∇x ×∇y × (∇yβ(x,y)).

(143)

Since ∇y × (∇y) = 0, the term 2
ε
∇x × ∇y × ∇yβ(x,y)) vanishes. Therefore, (142)

becomes:∫
Ω

∫
Z
E0(x,y) · ∇x ×∇x × (α(x) +∇yβ(x,y))

+ iω1C(y)E0(x,y) · (α(x) +∇yβ(x,y) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × (α(x, 1, z) +∇yβ(x, 1, z, ξ, ζ)))× e2 dσ.

(144)

Now in (144) we replace expression E0 giving by (140). We obtain∫
Ω

∫
Z

(Id +∇yχ(y))E(x) ·
(
∇x ×∇x × (α(x) +∇yβ(x,y))

+ iω1C(y)(Id +∇yχ(y))E(x)) · (α(x) +∇yβ(x,y)) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × (α(x, 1, z) +∇yβ(x, 1, z, ξ, ζ)))× e2 dσ.

(145)

Taking α(x) = 0 in (145), we obtain∫
Ω

∫
Z

(Id+∇yχ(y))∇x ×∇x × E(x)∇yβ(x,y)

+ iω1C(y)(Id +∇yχ(y))E(x) · ∇yβ(x,y)dydx = 0.

(146)
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Integrating by parts∫
Ω

∫
Z
−∇y · {(Id +∇yχ(y))∇x ×∇x × E(x)}β(x,y)

− iω∇y · {1C(y)(Id +∇yχ(y))E(x)}β(x,y) dydx = 0.

(147)

And since ∇y · {1C(y)(Id +∇yχ(y))E(x)} = 0 we obtain∫
Ω

∫
Z
−∇y · {(Id +∇yχ(y))∇x ×∇x × E(x)}β(x,y) dydx = 0. (148)

which gives the cell problem

∇y · [Id +∇yχ(y)] = 0. (149)

From (141) and (149), the scalar function χ is the unique solution, thanks to Lax-
Milgram Lemma, up to an additive constant in the Hilbert space of Z periodic func-
tion H1

#(Z) of the following boundary value problem
4y(χ(y)) = 0 in Z\∂ΩC ,

[
∂χ

∂n
] = −nj on ∂ΩC ,

[χ] = 0 on ∂ΩC .

(150)

where [f ] is the jump across the surface of ∂ΩC , nj, j = {1, 2, 3} is the projection on
the axis ej of the normal of ∂ΩC .

Remark 4.11. (150) can be seen as an electrostatic problem. Solving (141) and
(149) reduces to look for a potential induced by surface density of charges. Then χ is
this potential induced by the charges on the interface of carbon fiber.

Setting β(x,y) = 0 in (145) and integrating by parts, we get∫
Ω

∫
Z

(Id +∇yχ(y))∇x ×∇x × E(x) · α(x)

+ iω1C(y)(Id +∇yχ(y))E(x)α(x) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × α(x, 1, z))× e2 dσ.

(151)

which gives the following well posed problem for E(x)
θ1∇x ×∇x × E(x) + iωθ2E(x) = 0 in Ω,

θ1∇x × E(x)× e2 = −iωHd × e2 on Γd,

∇x × E(x)× e2 = 0 on ΓL.

(152)

with θ1 =
∫
Z Id +∇yχ(y) dy and θ2 =

∫
Z 1C(y)(Id +∇yχ(y)) dy.

This concludes the proof of Theorem (126).
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5 Conclusion

We presented in this paper the homogenization of time harmonic Maxwell equation
by the method of two-scale convergence. We started by studying the time harmonic
Maxwell equations with coefficients depending of ε. We remind that λ is the wave
length, δ is the skin length, L is thickness of the medium and e the size of the basic cell
and then ε = e

L
is the small parameter. We find for low frequencies the macroscopic

homogenized Maxwell equations depending on the volume fraction of the carbon fibers
and we find also the microscopic equation.

6 Annexes

A Presentation of all cases of tables 1, 2, 3 and 4

- The case 1 corresponds to the air not ionized, a resin not doped and σ is the
effective electric conductivity in the direction of the carbon fibers. We have for the
effective electric conductivity σ = σc ∼ 40000S.m−1, the resin conductivity is about
σr ∼ 10−10S.m−1 and the conductivity in the air is about 10−14S.m−1. So when we
want to calculate the ratio in (41)-(43) depending on ε we get: σr

σ
∼ ε7 and σa

σ
∼ ε9.

- In case 2, the air is not ionized, the resin is doped and σ is the effective conduc-
tivity is in direction of carbon fibers. We have like the case 1 σ = σc ∼ 40000S.m−1.
The resin conductivity is about σr ∼ 10−3S.m−1 and the conductivity in the air is
about 10−14S.m−1. So σr

σ
∼ ε4 and σa

σ
∼ ε9.

- In case 3, the air is not ionized, the resin is not doped and σ is the effective
conductivity is orthogonal to the fibers. σ = σr ∼ 10−10S.m−1. The carbon fiber con-
ductivity is about σc ∼ 104S.m−1 and the conductivity in the air is about 10−14S.m−1.
σc
σ
∼ 1

ε7
and σa

σ
∼ ε2.

- Case 4 corresponds to the air non ionized, the resin doped and σ is the ef-
fective conductivity orthogonal to the fibers. The effective electric conductivity is
σ = σr ∼ 10−3S.m−1. The carbon fiber conductivity is about σc ∼ 40000S.m−1 and
the conductivity in the air is about 10−14S.m−1. σc

σ
∼ 1

ε4
and σa

σ
∼ ε6.

- In case 5, the air is ionized, the resin is not doped and σ is the effective conduc-
tivity is in the direction of the carbon fibers. This one is equal σ = σc ∼ 40000S.m−1,
the resin conductivity is about σr ∼ 10−10S.m−1 and the conductivity in the air is
now about 4242S.m−1. σr

σ
∼ ε7 and σa

σ
∼ ε.

- Case 6 corresponds to the air ionized, the resin doped and σ is the effective
conductivity in direction of the carbon fibers. This one is equal σ = σc ∼ 40000S.m−1,
the resin conductivity is about σr ∼ 103S.m−1 and the conductivity in the air is now
about 4242S.m−1. σr

σ
∼ ε4 and σa

σ
∼ ε.

- Case 7 corresponds to the air ionized, the resin not doped and σ is the effec-
tive conductivity orthogonal to the fibers. The effective conductivity is σ = σr ∼

34



10−10S.m−1, the carbon fibers conductivity is about σc ∼ 40000S.m−1 and the con-
ductivity in the air is now about 4242S.m−1. σc

σ
∼ 1

ε7
and σa

σ
∼ 1

ε6
.

- Case 8 corresponds to the air ionized, the resin doped and σ is the effective con-
ductivity orthogonal to the fibers. The effective conductivity is σ = σr ∼ 10−3S.m−1,
the carbon fibers conductivity is about σc ∼ 40000S.m−1 and the conductivity in the
air is now about 4242S.m−1. σc

σ
∼ 1

ε4
and σa

σ
∼ 1

ε2
.

B Structure of the equations depending of ε

For ω = 100rad.s−1, we have

Case 1

η = 9 and Σε
a = ε11, Σε

r = ε9, Σε
c = ε2. (153)

Case 2

η = 9 and Σε
a = ε11, Σε

r = ε6, Σε
c = ε2. (154)

Case 3

η = 9 and Σε
a = ε12, Σε

r = ε10, Σε
c = ε3. (155)

Case 4

η = 9 and Σε
a = ε13, Σε

r = ε7, Σε
c = ε3. (156)

Case 5

η = 9 and Σε
a = ε3, Σε

r = ε9, Σε
c = ε2. (157)

Case 6

η = 9 and Σε
a = ε3, Σε

r = ε6, Σε
c = ε2. (158)

Case 7

η = 9 and Σε
a = ε5, Σε

r = ε10, Σε
c = ε3. (159)

Case 8

η = 9 and Σε
a = ε5, Σε

r = ε7, Σε
c = ε3. (160)
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For ω = 106rad.s−1

Case 1

η = 5 and Σε
a = ε9, Σε

r = ε7, Σε
c = 1. (161)

Case 2

η = 5 and Σε
a = ε9, Σε

r = ε4, Σε
c = 1. (162)

Case 3

η = 5 and Σε
a = ε10, Σε

r = ε8, Σε
c = ε. (163)

Case 4

η = 5 and Σε
a = ε11, Σε

r = ε5, Σε
c = 1. (164)

Case 5

η = 5 and Σε
a = ε, Σε

r = ε7, Σε
c = 1. (165)

Case 6

η = 5 and Σε
a = ε, Σε

r = ε4, Σε
c = 1. (166)

Case 7

η = 5 and Σε
a = ε3, Σε

r = ε8, Σε
c = ε. (167)

Case 8

η = 5 and Σε
a = ε3, Σε

r = ε5, Σε
c = 1. (168)

For ω = 1010rad.s−1

Case 1

η = 1 and Σε
a = ε7, Σε

r = ε5, Σε
c = 1

ε2
. (169)

Case 2

η = 1 and Σε
a = ε7, Σε

r = ε2, Σε
c = 1

ε2
. (170)

Case 3

η = 1 and Σε
a = ε8, Σε

r = ε6, Σε
c = 1

ε
. (171)
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Case 4

η = 1 and Σε
a = ε9, Σε

r = ε3, Σε
c = 1

ε
. (172)

Case 5

η = 1 and Σε
a = 1

ε
, Σε

r = ε5, Σε
c = 1

ε2
. (173)

Case 6

η = 1 and Σε
a = 1

ε
, Σε

r = ε2, Σε
c = 1

ε2
. (174)

Case 7

η = 1 and Σε
a = 1

ε
, Σε

r = ε6, Σε
c = 1

ε
. (175)

Case 8

η = 1 and Σε
a = ε, Σε

r = ε3, Σε
c = 1

ε
. (176)

For ω = 1012rad.s−1

Case 1

η = 0 and Σε
a = ε6, Σε

r = ε4, Σε
c = 1

ε3
. (177)

Case 2

η = 0 and Σε
a = ε6, Σε

r = ε, Σε
c = 1

ε3
. (178)

Case 3

η = 0 and Σε
a = ε5, Σε

r = ε3, Σε
c = 1

ε4
. (179)

Case 4

η = 0 and Σε
a = ε7, Σε

r = ε, Σε
c = 1

ε3
. (180)

Case 5

η = 0 and Σε
a = 1

ε2
, Σε

r = ε4, Σε
c = 1

ε3
. (181)

Case 6

η = 0 and Σε
a = 1

ε2
, Σε

r = ε, Σε
c = 1

ε3
. (182)

Case 7

η = 0 and Σε
a = 1

ε2
, Σε

r = ε3, Σε
c = 1

ε4
. (183)

Case 8

η = 0 and Σε
a = 1

ε
, Σε

r = ε, Σε
c = 1

ε3
. (184)
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C The transmission Maxwell problem

Taking a test function V ∈ C1(Ω) with compact support in Ωε
c, in weak formulation

(85) associated with the problem ((65), (68), (69)). Since∫
Ω

∇×Eε
|Ωεc · ∇×V dx = 〈∇×∇×Eε

|Ωεc , V 〉Ωεc , (185)

we deduce the third equation in (86). Similarly, taking V ∈ C1(Ω) with compact
support respectively in Ωε

r and Ωε
a, we obtain the first and the second equation in

(86). Now, since E|Ωεa ∈ H(curl,Ωε
a) and E|Ωεr ∈ H(curl,Ωε

r), let V ∈ C1
0(Ωε

a

⋃
Ωε
r)

integrating by parts we get∫
Ωεa

⋃
Ωεr

E · ∇×V dx =

∫
Ωεa

E|Ωεa · ∇×V dx +

∫
Ωεr

E|Ωεr · ∇×V dx

=

∫
Ωεa

∇×E|Ωεa · V dx +

∫
Ωεr

∇×E|Ωεr · V dx

+

∫
Γra

(E|Ωεa × e2 − E|Ωεr × n|Ωεr) · V ds.

(186)

Since on every point of Γra e2 = −n|Ωεr the assumed continuity require

E|Ωεa × e2 = E|Ωεr × n|Ωεr , (187)

we obtain the fourth relation in (86). With the same argument on Γεcr, we obtain the
last relation in (86). This shows that (85) implies (86). And, if Eε is solution to (86)

following that for any regular set Ω̂ in Ω the Stokes’s formula gives, for more details
see p 57, 58 of P. Monk’s book [18]:

∀ E, V ∈ H(curl, Ω̂)

∫
Ω̂

∇×E · V − E · ∇×V dx = 〈E × nΩ̂, VT 〉∂Ω̂ (188)

H(curl, Ω̂) has the same definition as H(curl,Ω) with Ω replaced by Ω̂ and where

VT = (n× V )× n, and nΩ̂ is the unit outward normal of ∂Ω̂. For all V ∈ H(curl,Ω),
V|Ωεr ∈ H(curl,Ωε

r), V|Ωεa ∈ H(curl,Ωε
a) and V|Ωεc ∈ H(curl,Ωε

c). Hence, fixing any E ′ ∈
H(curl,Ω) according to the second equation in (86), we have ∇×Eε

|Ωεr
∈ H(curl,Ωε

r)

then applying (188) in Ωε
r with E = ∇×Eε

|Ωεr
and V we get∫

Ωεr

∇×Eε
|Ωεr · ∇×V dx =

∫
Ωεr

∇×∇×Eε
|Ωεr · V dx + 〈∇×Eε

|Ωεr × n|Ωεr , VT 〉Γra

+ 〈∇×Eε
|Ωεc × n|Ωεc , VT 〉Γεcr .

(189)

Doing the same for Ωε
c, we have∫

Ωεc

∇×Eε
|Ωεc · ∇×V dx =

∫
Ωεc

∇×∇×Eε
|Ωεc · V dx + 〈∇×Eε

|Ωεc × n
ε
|Ωεc , VT 〉Γεcr . (190)
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Finally for Ωε
a, we have∫

Ωεa

∇×Eε
|Ωεa · ∇×V dx =

∫
Ωεa

∇×∇×Eε
|Ωεa · V dx + 〈∇×Eε

|Ωεa × e2, VT 〉Γd

− 〈∇×Eε
|Ωεa × e2, VT 〉Γεra .

(191)

Summing the relations above since in every point of Γra n|Ωεr = −e2 and in every
point of Γεcr n|Ωεc = −n|Ωεr , it comes∫

Ω

∇×Eε · ∇×V dx =

∫
Ω

∇×∇×Eε · V dx+ < [∇×Eε × n], VT >Γra

+ 〈[∇×Eε × n], VT 〉Γcr − iω
∫

Γd

Hd × nε · V T dσ.
(192)

According to (85) and the first, second and third equations in (86) we have

〈∇×Eε
|Ωεc × n|Ωεc , VT 〉Γεcr − 〈∇×E

ε
|Ωεr × n|Ωεr , VT 〉Γεcr

+ 〈∇×Eε
|Ωεr × n|Ωεr , VT 〉Γra + 〈∇×Eε

|Ωεa × e2, VT 〉Γra = 0,
(193)

for all V ∈ H(curl,Ω) which causes the last two equalities in (86) and concludes the
first part of the proof.

Reciprocally, integrating by parts (86) we have:

∀ V ∈ Xε(Ω),

∫
Ω

∇×Eε · ∇×V dx +

∫
Ωεa

(−ω2εη + iωΣε
a)E

ε · V dx

= −iω
∫

Γd

Hd × nε · V T dσ,

(194)

and

∀ V ∈ Xε(Ω),

∫
Ω

∇×Eε · ∇×V dx +

∫
Ωεr

(−ω2εηεr + i ωΣε
r)E

ε · V dx = 0, (195)

and

∀ V ∈ Xε(Ω),

∫
Ω

∇×Eε · ∇×V dx +

∫
Ωεc

(−ω2εηεc + i ωΣε
c)E

ε · V dx = 0. (196)

By adding these three integrals, we get the variational formulation (85) associated
with the problem ((65), (68), (69)).
Taking the divergence of the first three equations of (86) we get (71).
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