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NEW RESULTS ON THE VIBRATING STRING 
WITH A CONTINUOUS OBSTACLE 

A. BAMBERGERt AND M. SCHATZMANt.:t: 

Abstract. We give an explicit formula which describes the solution of the problem of the linear elastic 
string vibrating against a plane obstacle without loss of energy. This formula allows us to prove continuous 
dependence on the initial data; a regularity result in some bounded variation spaces is given. A numerical 
scheme is deduced from the explicit formula. 

Finally we prove the weak convergence of a subsequence of solutions of the penalized problem to a 
"weak" solution (i.e. one which does not necessarily conserve energy) of the problem with an obstacle when 
the obstacle is arbitrary; when the obstacle is plane, all the sequence strongly converges to the solution of the 
obstacle problem which conserves the energy. 

1. Introduction. 
1.1. Presentation of the problem and the results. This paper aims to give some new 

results on vibrating strings with obstacles. The model is the same as in [5], but as it 
appears necessary to elucidate several points of the modelization which was exposed 
there, we shall give it from the beginning. 

We consider the small transverse vibrations of a string that is constrained to be on 
one side of a material obstacle. Let the transverse displacement at time t of the material 
point of the string with coordinate x be denoted by u(x, t). If the string were free, i.e., if 
there was no obstacle, then u would satisfy the wave equation 

D u=uu-uxx=O. 

We assume that the obstacle has position <p( x ). We translate the requirement that the 
string stay on one side of the obstacle into the inequality 

(1) u(x,t)><p(x) 'rJx,t. 

When the string does not touch the obstacle, its motion satisfies the wave equation, and 
thus 

(2) supp 0 u C { (X, t): U (X, t) = <p (X)} . 

We require that the string does not stick to the obstacle; this can be translated as 

(3) Du>O, 

which means that the obstacle does not exert a downward force on the string. 
Notice that (3) is essentially equivalent to subsonic propagation of interactions. To 

see this, let t =a( x) be a curve which separates a region iJt on the half-plane ~ X (0, oo) 
in two open regions iJt + and iJt- where Du vanishes. Suppose that u+ = ul0e+ and 
u- =ul0,- are sufficiently smooth, and that 

(4) 

(5) 

U ±(X, a( X))= <p( X), 

u±(x,t)><p(x) 'rJ(x,t)EiJt. 
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Then we can compute Du in the sense of distributions, with \[1 a test function: 

au a\[1 au a\[1 
( D u' \[1) == - (at ' at ) + ( ax ' ax ) 

( 6) = ![ ( a~t+- a~t- ) (x, a(x )) + (a;;- a;x- ) (x,a(x ))a'(x)] o/( x, a(x )) dx. 

Relation (4) can be differentiated with respect to x, and implies 

(7) ( au+ au- ) ' ( au+ au- ) --- (x a(x )) ==-a (x) --- (x a(x )). ax ax ' at at ' 
Introducing (7) into (8), we get 

(Du,o/)= f( a~t+- a~t- )(x,a(x))(l-a'2(x))o/(x,a(x))dx. 

But hypotheses (4) and (5) ensure that 

au+ au-
Tt (x, a(x )) >0 and Tt (x, a(x )) <0. 

Therefore, Du is nonnegative if and only if la'l is almost everywhere smaller than 1. 
It is not enough to suppose that conditions (1), (2) and (3) are satisfied, as nothing 

has been said of the evolution of the energy of the string during the collision with the 
obstacle. 

The hypothesis that will be made is that the energy is conserved. This requirement 
should be analysed from a mathematical point of view as follows: The condition must 
be local, because the propagation properties of hyperbolic equations suggest it, and it 
must be satisfied wherever in the x, t half-plane the free wave equation is satisfied. 
Thus, multiplying by aujat the relation 

( 8) D u == 0 on 0l , 

where 0l is an open region such that (8) is satisfied, we obtain a relation in divergence 
form: 

(9) i_(laul2+1aul2)-_l_(2au au)==o in0l. 
at at ax ax at ax 

The operations by which we deduce (9) out of (8) are valid if au;at and au;ax are 
locally square-integrable in R X (0, oo ). 

The energy condition we shall impose is 

(10) ;t (I ~~ r + I ;: n -aax ( 2 ~~ ;: ) = o 
in the sense of distribution on R X (0, oo ). 

We could alternatively write it as 

(11) 

Here, the first component of the vector field Su is the energy density flux, and the 
second component of the vector field Su is the energy density. 

Notice that (10) cannot be deduced by multiplying (3) by aujat, as au;at must be 
expected to be discontinuous on the support of Du. 
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For initial conditions such that the free solution corresponding to them is locally 
of bounded energy, it was proved in [5] that the Cauchy problem (1)-(3) and (11) 
possesses a unique solution if the function <p is convex. 

The approach which led to condition (11) is essentially a mathematical one; from 
the mechanical point of view, one would like to know if (11) implies that the velocity of 
the string after collision is the opposite of the velocity of the string before collision. The 
answer is affirmative, but one has to give a meani~g to 

au au . 
(12) a~(x,t+O)=- a~(x,t-0) 1f (x,t) E supp Du. 

This was the purpose of [1, part V], where it was shown that if 

(13) 

(14) 

a is Lipschitz continuous on R, with Lipschitz 
constant 1, and o>O on R, 

~~Jiux(x, t )1 2 
+ iu1(x, t)n dx< C( a, b) \i a>O, \i b>O, \i t<b 

and if (3) is satisfied, then right and left derivatives can be defined almost everywhere 
on the noncharacteristic parts of the curve t = o( x ). 

Moreover, if (11) holds, then for all a satisfying (13), we have: 

(15) I a;tu (x,a(x nl= I a;tu (x,a(x nl a.e. on {X: la'( X )I< I}. 

We shall prove in §2 the followi1;1g explicit formula in the case of the plane obstacle. 
Let w be the free solution of the wave equation 

Dw=O ' 
w( X, 0) == u0 ( X), 
W1 (X, 0) == U 1 (X ) . 

Let the obstacle be <p == 0, and let the backward wave cone be 

def 
Tx~t == { (x 1

, 11
): O<t 1 <t-lx- X

11}. 

Let us denote by r- the negative part of a number r- == sup(- r, 0). Then the 
solution of the problem (1)-(3) and (11) is given by 

u ( x, t) == w ( x, t ) + 2 sup { ( w ( x 1, t I)) - : ( x 1, t 1) E r;, 1} • 

This formula shortens considerably a previous proof [2] of continuous dependence 
on data, and is the key for the numerical scheme studied in §3. We shall give in §4 a 
regularity theorem in spaces of bounded variation, in the case of a general concave 
obstacle. 

In §5, we shall consider the functions uA which solve the problem 

Du~-~ (u~-<p)-=0, 
(16) uA(x,O)==u0(x), 

OUA 
Tt(x,O)==u1(x). 

In the first half of this section, we shall prove a weak convergence result, which does 
not depend on the shape of cp nor on the regularity of the initial data. The limit 
function will satisfy a set of energy inequalities instead of ( 11 ). 
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In the second half, we shall assume that the obstacle is plane, and that du0j dx and 
u1 are locally of bounded variation. Then the solution of (16) converges strongly in 
H1~(1R X IR +), and its limit is the unique solution of (1)-(3) and (11). 

1.2. Notation and summary of previous results. We shall use throughout this paper 
the following notation and definitions: 

V is the set of functions u such that 

{17) ~~Jiux(x,t )1
2 
+ iu1(x, t)n dx<C(a,b )< + oo 'V a,b, 'V t<b. 

w is the free solution of the wave equation: 

Dw==O 
' 

(18) w(x,O) ==u0(x ), 

W1 (X, 0) == U I (X) . 

If we denote the closure of a set A by cl A, we define a set E by 

E == cl { (X, t ) : W (X, t ) < cp (X ) } . 

I is the domain of influence defined by 

(19) /== U { Tx~t: (x, t) EE}, 

where Tx~t is the forward wave cone {(x',t'):t'>t+lx-x'l}, and the boundary of I, 
called the line of influence, is given by 

a I== { (X, t): t == T( X)}, 
(20) 

where T is Lipschitz continuous with Lipschitz constant 1 

(see [5,proposition II.3] for the proof of this claim). The backward wave cone Tx~t is 
{ (X'' t ') : 0 < t' < t -I X -X' I}. 

(21) 

The characteristic coordinates ~ and 1J are given by 

-x+t 
,== 

fi 
with the notation z(~,1J)==z((~-1J)/ti,(~+1J)/fi) for all functions of two variables x 
and t. 

(22) 

(10) 

(23) 

We shall call problem (P00
) the following problem: 

Given u0 EH1~(1R), u1 ELfoc(IR) satisfying the compatibility condition 

u0(x) ><p(x ), 

u 1 ( x) > 0 a .e. on { x : u 0 ( x) == <p ( x) } ; 

find u in V such that 

(a) u><p, 
(b) supp Du C {(x, t): u(x, t) == <p(x)}, 
(c) D u>O; 

a ( 2 2 ) a ( )-at ux +ut + ax -2uxut -0 

in the sense of distributions in IR X IR + ; 

u(x,O) ==u0(x ), 

au at (x, 0) == u1(x ). 
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The precise statement of the results of existence and uniqueness in [5] is as follows: 
THEOREM 0. Problem (P

00
) possesses a unique solution u if cp" is nonnegative. 

Moreover, this solution u is the unique solution of the linear problem 

uEV, 

D ul{(x, t): t:;6T(x)} == 0, 
au au 

{24) at ( X,T(x) +0) =-at (x, T(x) -0) a.e. on { x: T(x) >0& i'T'(x )I< 1}, 

u(x,O)==u0(x), 
au at (x, 0) == u1(x ). 

If p. is the measure defined by 

(25) 

then the solution of (19) is given by the sum of the free solution wand of a convolution 

(26) 

where t9 is the elementary solution of the wave equation with support in the positive 
light cone: 

(27) on { ( x, t) : t > I xI } , 
elsewhere. 

It will be useful to consider the problems (Px,t), which are just (P
00

) restricted to the 
backward wave cone r;,t, with initial data given on [x-t,x+t]. Clearly, u is a solution 
of (P 00 ) if and only if it is a solution of (Px,t) for all x E IR, t>O. The first result on the 
convergence of the penalty method for the string with an obstacle was proved by A. 
Bamberger [3]. 

An explicit formula for the string with a point obstacle was obtained by L. Amerio 
in [1] and by M. Schatzman in [6], with a different argument. 

Continuous dependence on the data and convergence of the penalty method for 
the point obstacle are proved in [6]. See also the results of C. Citrini [4], where 
regularity assumptions are relaxed. 

2. The explicit formula. Continuous dependence on the initial data. 
2.1. The explicit formula for the infinite string. In the case of the zero obstacle 

(and more generally, the plane obstacle), the solution of (P
00

) can be expressed by an 
explicit formula. We denote by r- == sup(r, 0) the negative part of a number. 

THEOREM 1. The unique solution of ( P oo) when cp == 0 is given by 

(28) u( x, t) == w( x, t) + 2 sup [ w( x', t')]- . 
(x', t') E Tx-.t 

Remark 2. If the obstacle is plane, i.e., if cp(x) == ax + /3, then (28) can be gener
alized to 

(29) u( x, t) == w( x, t) + 2 sup [ w( x' t')- cp( x')]- . 
(x', t') E Tx-.t 

To deduce (29) from (28) it is enough to consider u- cp, and notice that D cp == 0. 
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The proof of Theorem 1 comes in several steps. The first step is the following 
result: 

LEMMA 3. The set where sup{[ w(x', t')]-: (x', t') E Tx~t} does not vanish is the 
interior of the domain of influence I. 

Proof. If w(x', t')<O for some (x', t') in the backward cone Tx-o then (x, t) belongs 
to the forward cone Tx-+; 1,, the vertex of which is in the interior of E. Thus (x, t) is in the 

' interior of I. Conversely, if ( x, t) belongs to the interior of I, then there exists a point 
(x', t') in the interior of E such that (x, t) belongs to the interior of Tx+;,t'· We can choose 
this (x', t') such that w(x', t') is strictly negative, because the set of (x', t') such that 
w(x', t')<O is dense in the interior of E. Therefore, sup(x',t')ET~~J w(x', t')]- >0. D 

Let us define 

(30) k (X, t ) == inf { W (X', t ') : (X', t ') E T;, 1} • 

Then, thanks to Lemma 3, we have, if u is defined by (28), 

31 U X t == ( ) ( ) { 
w( x, t) for t < ,-( x), 

' w( x, t)- 2k( x, t) fort>,-( x). 

LEMMA 4. Let u0 and u1 satisfy the compatibility conditions (22), and let I be 
nonempty. Then the function k satisfies 

(32) D k==O in the interior of I. 

Proof. Let us extend w to the whole plane R X R, by solving the (backward) wave 
equation 

(33) 
w(x,O)==u0(x), 

W1 ( X, 0) == U 1 (X ) , 

Dw==O fort<O,xER. 

The assumption that I is not empty implies that, on the line of influence, 

w ( X' ,. (X ) ) == 0 if I,.' (X ) I< 1 ' 

W1 ( x, ,. ( x)) < 0 a .e. on { x : I,.' ( x) I< 1 } . 

We shall prove that w(x,t)>O for t<,-(x), by essentially the same argument as in 
[5, Thm. IV.2]. For the convenience of the reader, let us sketch it here. 

Let U== {x: w(x,,-(x))><p(x)} == U;]a;,b;[, where the open sets ]a;,bJ are the 
connected components of U. Then [5, Lemma 11.6] tells us that 

( 34) T (X) == min ( T (a i) + X - a i , T ( b i ) + b i - X) V X E (a i , b i ] • 

Therefore if we set 

(35) 

t.- a;+,-(a;) 
c:;l fi ' 

_ -a;+,-(a;) 
71;- fi ' 

1:.~== b;+T(b;) 
c:;l fi ' 
,_ -b;+,-(b;) 

71;- fi 

the line of influence in characteristic coordinates is such that 

(36) 
if ~ E ( ~;, ~; ) , 

if~==~;' 
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if Y is the multivalued mapping (see Fig. 1) defined by 

1JEY(~) ~ ~~11 =a( ~fi1J )· 

, / , , , : •.. ··~· ' ' \ \ 

"/ ...... ~Lj~l I 

/ / I 

~~~~ ............ E 
/ .. ···· : •.. ···· 
. ·-~--: ',, 
. ', . ', 
: ',' 

t 

I 

SJ~'',,, 
.. --- - ~,-- ..... 

15~/ ,· E ',,,:,, '·,, 
/ ' I 

/ ',,I 

_____ :_ ',, 

// _..///·': 
-~-------r----------1(> 

s. 
J 

......... bj ......... a.j4-' ~ 

"'J/ ,/_ ..... / 
... /····' 

FIG. l.The sets E and I, the influence line t==T(x), the intervals (a1, b1), and the characteristic coordinates, 

with the ~J' ~j, 111, 11}· 

Let w( ~' 11) == /( ~) + g( 11), where f and g are in H1~c(IR). From (35), we deduce/(~)+ 
g(11;)>0 for~;<~<~; and from (34), f(~)+g(11;)>0 for~;<~<~;. As we must have 
/( ~;) + g( 11;) == 0 == /( ~;) + g( 11;) == 0, by definition of U, ~i' ~;, 11; and 11;, then 

(37) 

Similarly, 

(38) 

On C, the complement of the set U;[~;,~;], we have 

(39) /'(~)<0 a.e. 

The simplest way to see this is to notice that Y is one-valued on C, and that 

/(~)+g(Y(~))==O one, 

/(~') + g(Y(~)) >0 for~'<~. 

Let us now evaluate/(~)+ g( 11 ). Suppose first that X( 11) == y-t( 11) is one-valued. Then 

ta) + g( 11) = g( 11) + /( x( 11 )) -Jx<'ll)lc/'( n df 
~ 

(40) 
- ~ [/(min(~;,x(11)))-/(max(~;,~))], 

i 
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where the summation is extended to the indices such that [ ~;,~;]intersects [~,X( 11 )]. We 
have: 

g( 11) +/(X( 11)) >0, 

lX('I)lcf'(~')df<O by (39). 
~ 

As X( 11) is one-valued, it is not contained in the interior of an interval [ ~;' ~;]. Thus 

min[ ~;, X( 11)) == ~; if [ ~;, ~;] n [~,X( 11)] ¥= 0 

and, if~ f£. [ ~;' ~;], the corresponding term in the sum vanishes. For~ in [ ~;' ~;], the term 
in the sum is/(~;)-/(~), which is not positive, by (37). Therefore, the expression ( 40) is 
nonnegative for ~<X(11). If we suppose that X(11)==[~1 ,~j], we have to study the 
expression 

g(1J)+/({f)-f 1tcf'a')df-~ [!(min(~;.~;))-J(maxai'~))], 
~ i 

and the result still holds, i.e., 

(41) 

Thanks to ( 41 ), we may redefine k as 

k ( x, t) == inf { w( x', t ') : t' < t -I x - x' I } , 
or still, in characteristic coordinates, 

(42) k ( ~, 11) == inf { /( ~ ') + g ( 11') : ~' < ~ & 11' < 11} . 

Then, it is immediate that 

(43) 

which proves the claim of Lemma 4. 0 
We shall now prove that u, defined by (28), satisfies the transmission condition 

(15) across the line of influence. 
LEMMA 5. Ifu is defined by (28), then almost everywhere on {x: IT'(x)l< 1} 

au au 
( 44) at (X, '1'( X)+ 0) =-at (X, T( X)- 0). 

Proof. Let A== { x: IT'(x )I< I}. Then, almost everywhere on A, by [1, A.2], 

(45) wx(x,T(x)) and w1(x,T(x)) exist. 

Let x be a point satisfying ( 45), and let us denote 

W x (X, T (X)) := a, W1 (X, T (X)) := b, T 1 (X) := m . 

Then 

a+mb==O, b<O 

and 

w( x', t') ==a( x'- x) + b( t'- T( x)) + e( x'- x, t'- T( x)), 

where e satisfies 

lim e( r' s ) - 0 
lrl+lsi~O lrl + lsl . 
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We have 

inf {a (X' - X ) + b ( t' - 'T (X ) ) : (X', t ') E Tx~ 1 } == b ( t - 'T (X ) ) , 

and therefore, 

( 46) b ( t - T ( x)) - sup { I e( x' - x, t' - t) I : T ( x ') < t' < t -I x - x' I } 

<k(x, t) <b( t-T(x )) + le(O, t-T(x ))1. 

As IT'(x)l<l, we have 

lim [sup { I e( x' - x, t' - t ) I : T ( x ') < t' < t -I x - x' I } I ( t- T ( x))] == 0, 
t t T(x) 

and we deduce from ( 46) that 

1
. u(x,t)-u(x,T(x)) _ ( ( )) 
tm ( ) - w1 x, T x 

t J- T( X) t - 'T X 

under the assumption ( 45). D 
Conclusion of the proof of Theorem 1. Lemmas 3, 4 and 5 imply that the function u 

defined by (28) solves the linear problem (24), up to the condition u E V. Therefore it 
remains to check this last condition. If we take into account the formula (43), let us 
show that k is in V. 

We know that/is in H1~(1R); let 

Then, we can compute the derivative of/(~) almost everywhere: 

(47) 
,... {0 if/(~)>/(~) or if f'( ~) >0, 
f'a) = f'a) if/a) =}(0 and if/'a)<O. 

We deduce from (47) that j is in H1~(1R). Similarly, g is in H1~c(IR). The function k 
which can be written as 

will therefore be in V, i.e., 

J~Jikx(x,t)i2 
+ ik1(x, t)n dx<C(a,b) Va,b, v t>O 

and thus u is in V. D 

2.2. Continuous dependence on the data. 
CoROLLARY 6. The map (u0 , u 1 )~ u which to an element of H1~c(IR) XLfoc(R) satisfy

ing the compatibility condition (22) associates the solution of ( P 
00

) is continuous from 
H1~(1R) XL Ioc(IR) equipped with the strong topology to 

equipped with the strong topology, for all finite p. 
Proof. We have at once the continuity from H1~c(IR) X Lfoc(IR) to C0 (1R X 1R +). 
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The topology on W1!;[([0,+oo); Lfoc(R))nLfoc([O,+oo); H1~c(R)) is defined by 
the seminorms for A,B>O 

qABp( U) = lu(O,O)I+ (foB[ f~A ( u~+ u;}(x,t) dx r/2
) l!P. 

The topology on H1~(R) X Lioc(R) is defined by the seminorms for A> 0 

It has been proved in [5, §IV.2] that for solutions of (P oo) with zero obstacle, 

au au au au 
( 48) ai (X, t) = ai (X + t, 0) , a 'I] (X, t) = a 'I] (X - t, 0) . 

Therefore 

J~)iul +iu/)(x,t}dx= J~)iul +lui)(x,t)dx 

(49) 

<f~A+~t(l ~0 
1

2 

+lul) dx \fA,t>O. 

Let qABoo be the seminorm 

(f A 2 2 ) l/2 
qABoo(v)==v(O,O)+esssup (lvxl +lv11 )(x,t)dx . 

tE[O,B] -A 

Then ( 49) implies 

(50) 

If ( u0, u}) is a sequence of initial data satisfying the compatibility condition (22) and 
converging to ( u0 , u 1) in H1~c(R) X Lioc(R), then, as a consequence of (50), 

(51) un ~ u in H1~(R X R +)weakly, 

and moreover, ( 48) implies that 

(52) f A aun 
2 fA au 

2 

-A a[(x,t) dx-" -A a~ (x,t) dx \ft,A>O 

(53) 
2 2 

f A aaun (x,t) dx-"fA aau (x,t) dx \ft,A>O. 
-A 11 -A 11 

Gathering (51), (52) and (53), we obtain 

(54) un~u in H1~(R XR+) strongly. 

Thanks to Fubini's theorem, one has from (54) 

(55) 

( u~( ·, t ), u~( ·, t)) ~( ux( ·, t ), u1( ·, t)) in ( LToc(R) )
2 

strongly, for almost all t>O. 

The relation (55) together with the estimate 

qABoo( un) <sup PA+B( u0 + u}) < + oo 
n 
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imply that un converges to u in the space W1!;{([0, + oo ); Lioc(IR)) n Lfoc([O, + oo ); 
H1~(1R)). D 

Remark 7. The mapping (u0 ,u 1 )~u is not continuous to W1~~([0, +oo); Lioc(IR)) 
n L~([O, + oo ); H1~(1R)) which is the space V defined in (17). 

Take for instance the sequence of initial data 

u~ == 1, 

As these do not depend on x, the solution of P00 is 

with the limit 

u(x,t)= { ~~: 

"f n 
1 t<n+I' 

"f > n 1 1-n+I' 

if t< 1' 
if t> 1. 

Then we may calculate qABoo( un- u) : 

qABoo( Un- U) == {O 
2/2A 

ifB<n:l, 

ifB> n:l. 

Thus if B>l, qABoo(un-u) does not tend to zero as n tends to infinity. 

2.3. Application of the explicit formula to the finite string with fixed ends. The 
explicit formula (29) will allow us to give a simple construction of the solution of (P1 ) 
where ( P1 ) is the problem of the vibrating string with fixed ends, and obstacle <p == - K 
<0. The only modification with respect to (P

00
) we shall require is that u be in the 

space L00(0, T; HJ(O, L )) n W1
' 00(0, T; L 2(0,L )) for all T>O. 

In fact, u will be in the space 

L 00
( (0, oo); HJ(O, L)) n W 1

'
00

( (0, oo); L 2(0, L)) 

because we can integrate (10) on any rectangle [O,L]X[O,T], and we get the energy 
equality for arbitrary times T: 

(56) foL(Iux<x,T)I 2 +lu1(x,T)ndx= foL(I ~o 1
2 

+iul) dx. 

Let us define 

( ( 
d 2 ) ) 1/2 

e= foL I ;o I +iul dx . 

Then 

iu( x, t)- u(O, t )I= I fox ux( x', t) dx'i<eVx, 

and similarly 

lu(x,t)-u(L,t)l<e/L-x. 

11



Let a==K 2je 2
• Then 

(57) VtE[O,oo), VxE[O,a)U(L-a,L], u(x,t)>-K, 

and Du cannot be supported in the strips ([0, a) U (L- a,L ]) X [0, oo) (cf. Fig. 2). Let 
us extend the initial conditions u0 , u1 to the interval [ -a,L+a] by: 

U; ( -X) == - U; (X) if X E [ -a, 0] , i == 0, 1 , 

u;(L+x)==-u;(L-x) ifxE[O,a], i==O,l. 

r 
I 

R2. 
c r'f+30() 

I 
I 

R1 
1 (L L ) :I,r+O( 

--_-(X----+-o----+tX------c----c=-o< L L+D< -~ 
FIG. 2. The geometric construction used for the explicit formula in the case of the vibrating string with fixed 

ends, and a constant negative obstacle. 

Then the corresponding free solution w is defined on the cone T£12,L;2+a' with the 
property that 

w(O,t)==O, 

Let u be defined on Ti12,L;2+a by (29); then for x==O, t<a, 

(58) u(O, t) == w(O, t) + 2 sup { [ w( x', t') + K]-}. 
To~ 

But, w(O, t) == 0, and T0,1 is included in the strip [-a, a] X [0, oo ), so that w > - K on this 
strip, and thus u(O, t) = 0 on [0, a]. Analogously, u( L, t) == 0 on [0, a]. 

(59) 

Therefore, (58) defines the solution of (P1) on T£12,L;2+a n ([0, L] X [0, oo )). 
Let us define by induction the solution of ( P1) on the region R n given by 

Rn= { (x, t) E [O,L) X [0, oo): ~ + (2n -l)a-lx- ~ l<t 

<~ + (2n+ l)a-lx- ~ I}. 
We shall denote by on the function 

an(x)=~+(2n-l)a-lx-~l ifxE[O,L], 

on(x)==on( -x), on(L+x)==on(L-x) if xE[O,a]. 

12



Suppose we know u(x, an(x )) for x E [0, L ]. Let 

wn(x,an(x))==u(x,an(x)) if xE[O,L], 

wn(x,an(x))== -u( -x,an( -x)) if xE[ -a,O], 

wn(x,an(x))== -u(2L-x,an(2L-x)) if xE[L;L+a], 
(60) 

The function wn is defined in the region 

an(x)<t<(2n+ l)a+ ~ -lx- ~I' 

Let us notice that the symmetry of the initial conditions in (60) implies 

(61) wn(O,t)==wn(L,t)==O for (2n-1)a<t<(2n+ 1)a. 

Moreover, as u(x, an(x )) >-K, \f x E [0, L ], and as u satisfies the energy condition (10), 
we shall have 

wn(x, t) >-K for an(x) <t<(2n + 1)a + -lxl 
(62) 

or for an(x)<t<(2n+ 1)a+ -IL-xJ. 
Let 

( 63) u( x, t) == wn( x, t) + 2 sup[ ( wn( x', t') + K)-: an( x') < t' < t -Jx- x'J]. 

Thanks to (61) and (62), u satisfies the boundary conditions. Therefore it solves the 
problem of the string with an obstacle on Rn, and the induction can be pursued. 

3. A numerical scheme. 
3.1. A numerical scheme in a backward cone for the zero obstacle. Let there be 

given initial data u0 and ut on the interval [- T, T]. We seek an approximation to the 
problem (Po,r) on the backward cone T0~r· 

Let h == T jn be a step, and let us define discretized initial data u0 and u~ by the 
following formula, where u3 is an affine interpolation, and u~ is piecewise constant: 

1 
u~( x) = h [ u0((p + 1 )h)- u0( ph )](x-ph)+ u0( ph) 

h( )-_!_j(p+I)h ( ')d ' 
Ut X - h Ut X X 

ph 

ifxE[ph,(p+1)h], 

(64) 
ifxE[ph,(p+1)h]. 

The corresponding free solution wh is given by 

wh(x, t) = ~ [ u~(x+ t) + u~(x- t) + ~~~ 1uf{x') dx']. 

Let us define 

(65) W;~1 =wh( ( i / )h, ( i;j )h) for O<i;j <n-1 i /I· 
Then w;71 satisfies the finite difference relation 

(66) - h - - h + -h - h 
W;,j- W;,j-t W;-t,j- W;-t,j-t• 
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Let us define a function at1 on our mesh by 

(67) -h - -h +2 {( -h )-. ''<. ''<. ''+ ''>0} u;,1-wi,J max w;',J' .z _z,J -}, z J _ . 

We could define at1 alternatively by 

(68) -h _ -h 2K- h u .. -w . . - .. , 
l,j l,j l,j 

{69) 
-h- . ( -h -h -(-h)-) 

K;,1-rmn K;-t,J,Ki,J-t' wi,J , 

K-h -o ·f- <'< ;,-;- 1 n_z_n. 

Notice that i(h is not the discretization of k, the correction term in characteristic 
coordinates, but the discretization of k.l i' where i is the set I in characteristic coordi
nates. 

THEOREM 8. Let u be the solution of (Po,r) with zero obstacle, and let at1 be defined 
by (67). Then: 

(70) 

where C depends only on the initial conditions. 
M ore over, we have the following bounds on the (approximate) characteristic deriva

tives: 

(71) 

(72) 
1 ( "+l)h 

1-h - -h 1<- f -} ( - )( ') d ' ui,J ui,J-1 -2 . Uox ul x x . 
-jh 

Proof. Let us first evaluate w;71- w(x', t') when (x', t') is in the characteristic 
square centered on ((i-j)h/2, (i + j)h/2), with sides of length h/2, i.e., 

2i-lh '+' 2i+lh d 
2 

<x t < 
2 

an -2}-lh< '- '<-2j+lh· 
2 -X t- 2 . 

w(x' t')-w.h.==w(x' t')-wh( i-j h i+j h) 
' l ,) ' 2 ' 2 

=~ [ u0(x'+t')-u~(ih)+uo(x'-t')-u~( -jh) 

+ £~~~:'u 1 (y)dy- f:huf(y)dy], 

i.e., 

14



We may then deduce from 

{73) iw(x',t')-Wi7ji</I (J:T(u~x+uf}dx r/2 

that 

jsup{ ( W;~J-: i'<i,j'<j,i+ j>O} -sup{ [ w(x',t')r: O<t'<t-lx- x'l} j 

(74) 

Let us note that w;~J == w(( i-j)h/2, ( i + j)h/2), because the approximation (64) is 
very particular. 

This, in turn, gives 

(7s) IlJ~juL-u( i / h, i;j h )j<V2h (J:/u~x+uf)dx f12 

This completes the proof of (70). 
We now turn to proving (71) and (72). Let us note first that if 

k-h - . { -h .. ,< .. ,< .. ,+ .,>0} 
; ,J- rmn W;' ,J' . 1 - 1, 1 --1, 1 1 - , 

we can write ft1 alternatively as 

(76) k-h - . { -h .. ,< .. ,< ·} 
;,1-rmn w;',J' .1 -1,1 -J , 

because we know from ( 41) that w;~1 > 0 for i + j < 0, as long as we suppose that the 
domain of influence is not empty. 

Relation (76) implies that 

(77) 

where 

(78) 

and 

(79) 

Thus, (68) can be written as 

u~1 == w;~1 + 2[ jh( i) + gh( J)]-

if T is not empty. If jh(i)+ gh(j)>O, then/h(i-1)+ gh(j)>O, and (71) is immediate. 
Suppose now that 

(80) 

We have two cases. In the first case, 

(81) 

Then, necessarily 

(82) 
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and thus, 

a~,J- a~-1,J== fh( i) + gh(J)- 2/h( i)- 2gh( J)- fh( i -I)- gh(J) 

==- [!h(i)+gh(J)+Jh(i-1)+gh(J)]. 

Thanks to (80) and (82), we get 

lu~,J- a~-1,1!< l!h( i) + gh( J)l+ lth( i -1) + gh(J)I 

< l!h( i) -jh( i -1 )I. 
(83) 

In the second case, 

jh(i-1) + gh(j)<O. 

If jh(i -1) == jh(i), we have immediately 

(84) 
1

-h _-h 1<1/h(•)-/h(•-1)1 ui,J U;- 1,1- z z • 

If jh(i -1)> jh(i), then, we have (82), and 

(85) 

a~,1 - a~_ 1 ,1 == fh( i) + gh(J)- 2/h( i)- 2gh( J)- fh( i -I)-gh(J) + 2/h( i -1) + 2gh( J) 

==2/h(i-I)-jh(i)-jh(i-I), 

and, thanks to (82) we have 

la~,J- a~-1,JI< l!h( i)-!h( i -I )I. 
From (83), (84) and (85), we deduce 

1 'h 

1-h - -h I< I h - h I==- ll ( + )( ') d I ui,J ui-1,}- wi,J wi-1,} 2 (i-1)h Uox u1 x x . 

The proof of (72) is analogous. D 
We can deduce from (71) and (72) an energy inequality. Let i 0 , } 0 be given such 

that -n<i0 ,j0 <n and i0 +j0 >0. Then we have 

io 1 Jo 1 2 

"" -la~. -a~ 1 ·I+ "" -la~ .-a~ . 11 . ~ h z,Jo z- ,Jo . ~ h zo,J zo,J-
l= -10 + 1 1= -10 + 1 (86) 

3.2. A numerical scheme for the string with fixed ends and a constant obstacle. We 
shall use here the inductive construction of §2.3, which we discretize. 

Let u0 and u1 be given on [O,L], and let 

(87) 

where the obstacle is cp( x) == - K < 0. 
Let n be an even integer, and let the step be h == Ljn; let n0 be the largest integer 

such that n0 h<a. 
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We discretize the initial data as in (64) for O<p<n, and we extend them as 
periodic and odd functions: 

uh(x)=={-u~(-x) for-n 0 h<x<O, r==0,1, 

r -u~(2L-x) for nh<x<(n+n 0 )h, r==O, 1. 

We define wo,h by 

(88) 

and let 

(89) 

Let 

w0 ,h(x, 0) == u~(x ), 

awo,h 
at (x,O)==u?(x), 

D WO,h == 0 in 1(-;,/2)h ,(nj2+no)h' 

w.O'.h==wO,h _) h _) h (
i-' i+') 

l,j 2 ' 2 . 

(90) U~1 =wiy +2 sup{ ( Wi~/+ K f: i' <i,j' <j, i' + j'>O} 

h '< + '< '+ '>0 w ere l-n n0 ,]-n0 , 1 ]- • 

Let us define a subset Rm,h of l. X l. by 

(91) Rm,h == [ n + (2m -1 )n 0 , n + (2m + 1 )n 0 ] X [ -n + (2m -1 )n 0 , (2m -1 )n 0] 

U [(2m -1)n0 , n + (2m + 1)n 0] X [(2m -1)n0 , (2m + 1)n0]. 

The region Rm,h is the discretized equivalent (in i,j coordinates) of the region Rm 
defined by (59).We define wm,h on the lower boundary of Rm,h by 

(92) 

w.m.,h== 
l,j 

u':l. 
l,j 

u~ . 
l,j 

w.~,h 
j,l 

for i==n+ (2m-1)n 0 , -n+ (2m-1)n 0 <j<(2m-1)n0 , 

for}== (2m-1)n 0 , (2m-1)n 0 <i<n+ (2m-1)n 0 , 

fori== (2m-1)n 0 , (2m-1)n 0 <J<(2m+ 1)n 0 , 

wnm+.J,-n+i for (2m-1)no+n<i<(2m+ 1)no+n,j== -n+(2m-1)n, 

and in Rm,h, we have 

(93) w.m.,h==w.m,h .+w.m.,h -w.m,h. for (i,J'), (i-1,]'-1) in Rm,h. 
l,J z-1,] z,J-1 z-1,)-1 

Then, we shall define u~1 on Rm,h n {(i,j): O<(i-J)/2 <n} by 

(94) UL=W/J•h+2suP{ ( wi~j?+ K r: i'<i,j'<j and (i',j') ERm,h}. 

Of course (94) is the discretization of ( 63). 
THEOREM 9. Let uh be defined by (93), and let u be the solution of(P1 ) on [O,L] with 

obstacle - K. Then 

(95) maxlu~ .-u( i-j h i+j h)l<cm+ 1 'h 
. . ',J 2 ' 2 - V n 
l ,) 
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for (i,j) in the region Rm,h defined by (91), where C depends only on the initial conditions. 
Moreover, we have the following bounds on the (approximate) characteristic derivatives: 

(96) 
1

- h - h I 1 lih ( ) ( ') d , U;J·-u;-11.<2 Uox+u1 x x' 
' ' (i-I)h 

1

-h -h I< 1 f( -j+ l)h( )( ') d , 
ui,J-ui,J-1 -2 -Jh Uox-u1 x x ' 

if u0 and u1 are extended to alliR by periodicity and imparity. 
Proof. We shall replace the number a defined in (87) by n 0 h; for this new value of 

a, we can perform the construction of the solution of P1 as in 2.3, and we shall compare 
wm and w[:J'h on the regions Rm and Rm,h. 

Thanks to Theorem 8, the relation (95) is verified for m==O and C>(2f~!a(u5x+ 
ul) dx )112

, and the relation (96) is satisfied in R 0 • 

(97) 

Suppose that for a certain constant C, (95) and (96) are satisfied in Rm- 1,h. 

Then we have 

l

w.m.,h-wm( i-j h i+j h)i<cm fh 
l,J 2 ' 2 - yn 

for i,j on the lower boundary of Rm,h which is the upper boundary of Rm- 1,h. 
Then we have 

(98) 

because Wq'h (respectively wm(((i-j)j2)h,((i+j)/2)h)) is the sum of at most five 
terms w;~j' (respectively wm(((i'-j')/2)h, ((i' + j')/2)h )) with i', j' on the lower 
boundary of Rm,h (respectively (((i'-j')/2)h, ((i' + j')/2)h )) on the lower boundary of 
Rm). 

If we now evaluate the difference w[:J'h- wm(x', t') when (x', t') is in the character
istic square centered on ((i-})/2)h, ((i + })/2)h with sides of length h.fi, we have 

{99) 1Wt/-wm(x',t')i<5Cm[h+lwm( i / h, i;j h) -wm(x',t')l, 

but we have for P1 the equivalent of ( 48), i.e., 

au au 1 
~(x,t) = ~(x+t,O) = l2 (u0 x+u 1)(x-t,O), 

au au 1 all (x,t) = all (x-t,O) = l2 (u 0x -u1)(x-t,O) , 

if u0 and u1 are extended to all of IR by imparity and periodicity. 
Therefore 

(100) 
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Relation (100) allows us to evaluate wm(((i-J)/2)h, ((i + J)/2)h)- wm(x', t'), 

(101) lwm( i / h, i;j h) -wm(x',t'),<J2h (f~a+a(u5x+uf)dx r12
. 

Let us denote by E the number, which has the dimension of an energy: 

-JL+a( 2 2) E- -a Uox+ul dx. 

Gathering relations (97), (99) and (101), we obtain: 

!u~.1 -u( i / h, i;j h) I<( 15Cm+2J2E )fh. 

Therefore, if we choose C== 15 + 2{2 E, we have 

15Cm+2/2E <cm+I. 

The proof of (96) is immediate. D 
Remark. For (i,j) in Rm,h, we have 

i+j 2 >(2m-1)n0 , 

and thus 

(( 
i+j ) ) 3 1 +m< Th j2n 0 h + 2· 

Therefore, if (((i-j)/2)h,((i+J)/2)h) converges to (x,t) ash goes to zero, we have 
from (95): 

'
a~.-u(i jh i+jh),<ctf2ac 312 fh 

z ,J 2 , 2 - 1 1 V rt 

for all C1 > C, and for all h small enough. 

4. Regularity in spaces of functions of locally bounded variation. This section is 
dedicated to proving the following result of regularity for an arbitrary concave obstacle 
cp. 

THEOREM 10. Let u0 and u1 be elements of H1~c(IR) and Lfoc(IR) respectively, such 
that 

(102) 
du0 dx and u1 are locally of bounded variation. 

Suppose that u0 and u1 satisfy the compatibility condition (22), and that the obstacle is 
concave. 

Then for all11, the function 

a a 
~~~(t11) 

defined on [ -1J, + oo) is locally of bounded variation, and analogously, for all ~ the 
function 

a a 
11~a 11 a.11) 

defined on [- ~' + oo) is locally of bounded variation. 
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Proof. We retain the notation of §2.1 : 

U=={x:w(x,T(x))>O}== U ]a;,b;[; 
i 

(35) 

(36) 

We have the following representation of the solution: 

(lo3) a(~, 
11

) =={~a)+ g( 11) for.,< Y((~), 
/( ~) + g( 11) for 11 > Y ~), 

with the transmission conditions: 

(104) 

(105) 

/( ~) + g(Y( ~)) =/( ~) + g(Y( ~)) =<p[ ~-X(~) l, 
f' ( ~) + g' ( Y( ~)) == [ /' ( ~) + g' ( Y( ~))] 
if Y is one-valued and 0> Y'( ~) >- oo. 

If we differentiate (104) with respect to~ on C, we get 

(Io6) !'( ~) + Y'( ~)g'(Y( ~)) = J'( ~) + Y'a)g'(Y( n) = k <p'[ ~-X( n] (1- Y'( n) 

(notice that Y is decreasing on C, and therefore almost everywhere differentiable). For 
Y'(~)==O, we deduce from (106) that 

(107) f'(O=f'(O= k <p'a- Ya)). 

For O>Y'(~)>-oo, we deduce from (105) and (106) that f'(~)+/'(~)==/Icp'(~
Y( ~)),which contains (107). Therefore, we have 

(108) /'(~)+/'(~)==ficp'(~- Y(~)) a.e. on C, 

and differentiating (104) on cc, 
(109) /'( ~) == /'( ~) a.e. on cc. 
Let us denote by h the function 

(110) 
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where 11 is fixed throughout the end of this proof, and let ~0 ==sup{~' EX( TJ) }. Then, for 
~<~0 , h(~)==f(~) and ~0 does not belong to any interval(~;'~~). 

To evaluate the total variation of h on a given bounded interval I== [a, b ], we have 
to estimate 

(Ill) 

TV( h : I) == TV( h; In (- oo, ~0 )) + TV( h; C n ( ~0 , + oo)) 

+TV( h; cc n ( ~0 , + oo )) + lh( ~0 +0)- h( ~o -0)1 

+ }: [/h(~;+o)-h(~;-o)/+/h(~;+O)-h(~;-0)/]. 
{ i : ~0 :s:;~;:s:;b} 

According to (108) and (109), we have: 

TV( h; In (- oo, ~0 )) + TV( h; C n ( ~0 , + oo)) + TV( h; cc n ( ~0 , + oo)) 

(112) 
<TV(!;I)+TV( f2cp'( ~-~U)) -j(~);I) 0 

By hypothesis, <p" is positive, therefore <p' is increasing; as~~(~- Y(~))//2 is increas
ing, the right-hand side of (112) is bounded. 

The term lh(~0 +0)-h(~0 -0)I is bounded, because (102) ensures that f, and 
therefore/, is locally bounded. 

The remaining term in (Ill) is the sum 

(113) ~ (lh(~~+o)-h(~~-o)l+lh(~;+O)-h(~;-0)1], 
{ i : ~0 :s:;~;:s:;b} 

which could possibly contain an infinite number of terms. Using (108) and (109), we 
can write the terms of (113) as 

(114) 

/U;+o)+Ja;-o)-/2cp'( ~i~11~ -o) + Ja;+o)+Ja;-o)-/2cp'( ~;~11 ; +o) 0 

But we have the following inequalities, deduced from the definition of the line of 
influence and of the intervals [ ~i' ~;]: 

(115) 

/(~.-0)- - 1 cp'( ~;-TJ; -o) ==a-:-<o 
l /2 /2 l ' 

!(~ 1 +0)- kcp'( ~~~1J; +o) =ai>O, 

f(~;-o)- kcp'( ~;~11; -o) =b;-<o, 

/(~~+o)- -
1 cp'( ~~- 11 ; +o) ==b:<o 

l /2 /2 l • 
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We can estimate (114) by 

la( +ail+ lb/ +bil + k [ cp'( ~i~1li +0) -cp'( ~i~1li -0) 
(116) 

+ cp' ( ~; ~11; +O) -cp' ( ~:~11; -0) l· 
But 

la:+ a-:-1 + lb-!- + b-:-1 <la-!-+ a-:-1 + lb-!-- a""!- I+ la-!-+ a-:-1 +la-:-- b-:-1 l l l l l l l l l l l l ' 

and using the sign conditions ( 115), 

lai +ai-l+ lb;+ +b;-1 <2lai +ail+ lb;+ -ail+ lb;- +ail 

(117) <4rv( Ja)- k cp'( ~-go); [~i'~;1). 
Carrying (117) and (116) into (113), we obtain: 

~ [lh(~; +O) -h(~; -o)l + lh(~;+O) -h(~;-O)I] 
{i: ~o~~;~b} 

(118) 

Here, ~0 ==sup{~; : ~; < b}. The same argument holds for the other characteristic deriva
tive. The proof of Theorem 10 is complete; notice that we have proved, in fact, that 
locally, TV((au;a~) ( ·, 11 ), I) is a bounded function of YJ, for all bounded/. D 

Remark 11. It is not true that under hypothesis (102), (au;a~)( ·, t) or (au;a~)( ·, t) 
are of bounded variation for all t. 

, To see it, let us consider the following example. Let 

(119) ( ) 
{
A-t-a(x+t)4sin-+

1 
w x,t == x t 

A-t 

iflx+tl<b, 

if lx+tl>b. 

We choose b such that sin(1/b)==O, and a such that the curve 

(120) t==A -a(x+ t)4
sin -+

1 
X t 

always has a slope less than 1, for lx+tl<b. For this purpose, we differentiate (120) 
with respect to x: 

t' ==4a(1 + t')(x+ t )3
sin -+

1 
-a(x+ t )2

cos -+
1 

· (1 + t'), 
X t X t 

and so, 

(121) 

Clearly lt'l can be made smaller than 1 if a is sufficiently small. 
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Then we choose A large enough to have 

w(x,O) =A -ax4 sin _!_ >0 for jxl <b. 
X 

Obviously, du0/ dx-== wx(x, 0) and u1 -== w1(x, 0) are locally of bounded variation. 
Thanks to (12I), the line of influence is given by (I20). We shall now see that 

(au;a'tJ)( ·,A) is not of bounded variation. The straight line t=A crosses the line of 
influence infinitely many times, at the points 

x= _I_- A for 1-I-1 <b, n ElL, 
nw nw 

and we have 

au a
11

(x,A)= 

-I 

+I 

ifxE( (2k! 2)'1T -A, (2k!l)'IT -A), k>O 

orifxE( (2k~l) -A, (2k~ 2) -A), k<O, 

ifxE( (2k!l)'IT -A, 2!'1T -A), k>O 

or if xE ( 2!'1T -A, (fk! l)'IT -A), k<O. 

This function is not of bounded variation on any interval containing zero. 

5. Convergence of the penalty method. 
5.1. Weak convergence. This paragraph is dedicated to a general (and unfor

tunately coarse!) study of the penalized problem 

Dux-~ (ux-cp)-=0, 

(I22) u~J X, 0)-== u0 ( X), 
aux 
Tt(x,O)==u1(x), 

where r--== sup(- r, 0), and cp is an arbitrary continuous function of x, and u0 , u1 satisfy 
the compatibility condition (22). The parameter A is positive, and will tend to zero. 

Let us mention that (I22) always possesses a unique solution; to see this, it is 
enough to write (122) in the form of an integral equation, and to use Picard iterations. 

PROPOSITION I2. We have the following estimates for the solution ux of (I22): 

Jb[l aux ( 1

2 

I aux 1

2 

( aux aux ) ] a Tt x,a(x)) + ax (x,a(x)) +2 TtTx (x,a(x))a 1(x) dx 

(I23) 

for all Lipschitz continuous o with Lipschitz constant I such that o > 0 on (a, b), o( a)-== 
o(b)-==0; 

( 124) 1- ~ ( u x ( x 1 , 11
) - cp ( X 1

))-dx 1 dt 1 < C ( x, t, u0 , u 1 ) 

Tx,t 

where C does not depend on A. 
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Proof. (i) Estimate (123). We have the identity 

( 
1 ( )-) auA DuA- i\ uA -cp Tt 

_ a ( auA auA) 1 a (I auA 1
2 

I auA 1
2 

1 (( )-)2) _ - ax - Tt ax + 2 at ax + ax + i\ UA -cp -O. 

Integrating on the region {(x, t): a<x<b and O<t<o(x)}, we obtain the identity 

~h[l a~" (x, a(x ))12 +I aa:" (x,a(x ))12 

( a u A a u A ) ( 1 ( ) - ) 2] +2a'(x) Tt ax x,a(x))+ A (u"(x,a(x))-<p(x) dx 

= ~b(l ~0 
1

2 

+lul) dx, 

noting that ( uA(x, 0)- cp(x ))- == 0 for all x. From here, (123) is immediate. 
(ii). Estimate ( 124). 
We integrate D uA == (1/i\)( uA- <p )- on the backward cone Tx~t: 

1 Du" dx' dt' 
rx-,t 

f x+t( auA ) = x-t Tt(x',t-lx-x'l)-u 1(x',O) dx' 

l t( auA auA ) - -(x+t-t' t')- -(x-t+t') dt' 
0 ax ' ax 

== fx [ au" ( x', t-lx- x'l) + au" ( x', t-lx-x'l)] dx' 
x-t at ax 

f x+t[ auA 1 auA ] fx+t 1 + -(x ,t-lx-x'l)- -(x',t-lx-x'l) dx'- u1(x )dx'. 
X at ax x-t 

Let o( x') == t -lx-x'l· Then 

JT_ Du"( x', t') dx' dt' 
x,t 

< fx+ t[ aau" ( x', a( x')) +a'( x') aauA ( x'' o( x') )] dx' + fx+ flu) ( x') I dx', x-t t X x-t 
and using the Schwarz inequality and (123), we obtain 

1 1 _ [Jx+t[ auA auA ]2 ] 112 
r;:;-; r;,,A (u"-<p) dx'dt' < x-t Tt(x',a(x'))+a'(x') ax (x',a(x')) dx' y2t 

( 
+t 2 ) 1/2 

+ i~t lu1(x')l dx' /2i 

D 
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We need definitions of left and right traces of the characteristic derivatives of a 
function u. 

The following results were proved in [5]: let u be in V (cf. Def. (17)), such that Du 
is a positive measure. Then the function 

a a 
11~¥(~,11) 

~ [a,b] 

is increasing from [-a, oo) to L 2(a,b) for all a,b, and similarly 

a a 
~~-a (~,11) 

11 [c,d] 

is increasing from [ -c, oo) to L 2(c,d) for all c,d. 
We define 

a -r a-
a~ a.1!)= li~ a~ a.11+h), 

a_, a-
a~ (t11)= ~~a~ (t11-h), 

a -r a-
au ( ~' 11 ) == lim a u ( ~ + h ' 11 ) ' 

11 hiO 11 

(125) 

a_, a-
_au (~,11)== lim au (~-h,11). 

11 h -J-0 11 

The functions au' ;a~ and aa';a~ are defined for all~ not belonging to the null set N~, 
and for all11 larger than -~; analogously, the functions aar ;a11 and aa';a11 are defined 
for all11 not belonging to the null set N

11 
and for all ~ larger than -71. 

[5, Prop. V.2 and Cor. V.4] tell us that 

aa~ ( · , o ( · ) ) E Lioc ( R ; ( 1 + o ') dx) , 

~ ~ ( · , o ( · ) ) EL ioc ( R ; ( 1 - o ') dx) , 

au' af ( . , 0 ( · ) ) EL ioc ( {X : o (X) > 0} , ( 1 + o ') dx), 

au' a:;} ( · , o ( · ) ) EL ioc ( {X : o (X) > 0}, ( 1 - o ') dx) . 

Note that the above traces are not continuous functions of u. We have the following 
example: 

Then 

1 
I+- -t 

n 
un(x,t)== ( 1 ) 

t- 1+~ 

if t< 1 + _!_' 
n 

if t> 1 + _!_. 
n 

au' 1 
-a[(x, 1)= {i 't:J X' 

au' 1 
a~n (x, 1)=- {i 't:/ x , 't:J n . 

25



We may now state the following result of weak convergence of the penalization: 
THEOREM 13. Given initial conditions u0 EL\oc(IR) and u1 ELioc(IR) such that u0 >cp 

and u1 >0 almost everywhere on the set { x: u0(x) == cp(x) }, there exists a function u such 
that 

(126) 

(127) 

(128) 

(129) 

(130) 

uEV, 

u>cp, 

Du>O, 

supp D u C { ( x, t) : u ( x, t) == cp ( x) } , 

Jb[ aur 
2 

aur 
2 l 

a a[(x,a(x)) (1+a'(x))+ a:;;-(x,a(x)) (1-a'(x)) dx 

<~b( lul + 1 ~:0 n dx, 

Jb[ au' 
2 

au' 
2 l 

a a[(x,a(x)) (1+a'(x))+a:q(x,a(x)) (1-a'(x)) dx 

<~a( lul +I ~0 n dx, 

for all Lipschitz continuous functions o, with Lipschitz constant 1, such that o( a)== o( b)== 0, 
o > 0 on (a, b), 

(131) u(x,O)==u0(x), 

(132) 

au at (X, 0) == U 1 (X) if U o (X) > cp (X), 

I ~ ~ ( x, 0) I < u 1 ( x) if u0 ( x) = cp ( x). 

Proof. From estimates (123) and (124), we can see that we can extract a subse
quence u

11 
such that 

(133) u11 ~u weakly* in V. 

The weak* topology on V is defined by the semi-norms 

j ufi + j uxf2 + j utf3 

where f 1, f2 and f3 are in L 1(1R + ; L 2(1R)) with compact support in IR X [0, oo ). We deduce 
from (133) that 

(134) u11~u in C 0 (1R X IR +) with the compact topology. 

Possibly with a new extraction 

1 
(135) - ( u - cp) ~ v weakly in M(IR X IR +) the set of measures on IR X IR +. 

J.L IL 

Therefore 

(136) Du==v>O. 
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Relation (123) gives a bound on ((up. -cp)-)2/J.L in L\oc and thus 

u>cp. 

To check (129), let (x0 , t0 ) be a point such that u(x0 , t0 )>cp(x0 ); thanks to (134) 
we can find a neighborhood U of (x0 ,t0 ) and a J.Lo such that up.(x,t)-cp(x) 
>-i(u(x0 ,t0 )-cp(x0 )) 'VJ.L<J.L 0 , for all (x,t)E U. 

Therefore 

D uP. I u== 0 for J.L < J.Lo, 

and in the limit D ulu==O. This proves (129). 
To prove (130), let (J be given, and e0 be a positive number. Let us define for lel <e0 

(137) 
{

(J(x)+e 

(Je( x) == x- a+ e- e0 

-x+b-e +e 0 

if x E [a + e0 , b- e0 ] , 

if xE[a+e0 -e,a+e0 ], 

if x E [ b- e0 , b + e- e0 ]. 

Then (123) implies 

f e" fb-eo[ aup. ( 
2 

au 
2 l 

-e'de a+eo ay x,o.(x)) {1+o;(x))+ a:{x,o.(x)) (1-o;(x)) dx 

(138) 

But the left-hand side term of (138) can be written as 

f b-eo fo(x)+e"{ au 
2 

au 
2 

} dx a:(x,t) (1+o'(x))+ ~ (x,t)(1-o'(x)) dt, a+e0 o(x)-e' ~ 11 

and we can take a weak limit in this double integral, thanks to (133). 
Thus we can rewrite (138) without the index J.L: 

(139) 

f e" fb-eo[ au 
2 

au 
2 l -e'de a+.o iil{x,o.(x)) {1+o;(x))+ a'IJ {x,o.(x)) {1-o;(x)) dx 

<(e'+e") ~~~:o(l ~0 12 

+iul) dx. 

Taking e' == 0 in ( 139) and letting e" tend to zero, we obtain 

f b-e [ a u r 
2 a u r 

2 l 0 ae(x,o(x)) (1+o'(x))+ -a (x,(J(x)) (1-(J'(x)) dx a+e0 ~ 11 

<~~~:o(l ~0 1
2 

+iul) dx. 

Letting e0 go to zero, we obtain the first relation of ( 130). If we take e" == 0 and let e' 
and then e0 tend to zero, we obtain the second relation of (130). 
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The initial condition (131) is obviously satisfied. It remains to check (132). For this 
purpose, let us take, in (137), o(x)==O on [a,b]. Then, ultimately we get 

b au' au' b Uo 2 

[ 
2 2] ( d 2 ) ~ a[(x,O) + a;(x,O) dx<~ ldxl +lu11 dx. 

Using the identity 

a u, 2 a u, 2 I du 0 12 I a u 12 
a~ (x,O) + a., (x,O) = dx + af(x,O+O) , 

which takes into account (131), we have 

l al au 1

2 Jb 2 b at(x,O+O) dx< a lu11 dx. 

As a and b are arbitrary, we have eventually 

I~~ (x,O+O)I <lu1(x)l a.e. on R. 

When u0(x)>cp(x), we have the first part of (132), as locally, v== D u==O. D 
We shall now study the relation between the strong convergence of auA;ax and 

auA;at, and the verification of the energy condition (11). 
LEMMA 14. Let uA be a sequence of solutions of (122), converging weakly* to a 

solution u of (126)- (132). Then, u satisfies the energy condition (11) if and only if auA;at 
and auAjax converge to au;at and au;ax respectively, strongly in Lfoc(IR X [0, oo )). 

Proof. Notice first that as ((up,- cp)- I J.L) • 1 K converges to v · 1 K in M(IR X IR +) 
weakly, for all compact K, and as (up,- cp)- converges to zero uniformly on compact 
sets, then 

(140) 

for any compact set K. 
Let oh(x') == h -lx-x'l· Then we have the identity, for any function v, 

2 2 

f
x jt+x-x' av fx+t 'lt-x+x' av ' ' ' = dx' 2 at(x',t') dt'+ dx 2 a(x ,t) dt. 

x-t 0 ~ x 0 11 

If the limit of the sequence up, satisfies (11), then the value of (141) for v == u is 

(142) 

The value of (141) for v ==up, is 

(143) j
1
dhjx+h (I duo 1

2 

+ lul) dx -j _!_ ( ( u"- <p)- )
2 
dx' dt · 

o x - h dx o::; t' ::; t --1 x- x 'I J.L 
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And according to (140), the limit of (143) is (142). Therefore, as au~-t;a~ (resp. au~-t/aTJ) 
converges weakly to au;a~ (resp. au;aTJ) in Lioc([O, oo)XIR+), and 

au 2 au 2 a 2 a 2 

lim j -~' dx' dt' + j -~' dx' dt' = j ~ dx' dt' + j ~ dx' dt' 
p,~O Ax,t a~ Bx,t a11 Ax,t a~ Bx,t a11 

where Ax,t== {(x', t') E Tx~1/x' <0}, Bx,t== Tx~1\Ax,n we can conclude that the conver
gence of aui-L;a~ and auJ.t/aTJ to au;a~ and au;aTJ is strong. 

Conversely, if au~-t;a~ (resp. au~-t/aTJ) converges strongly to au;a~ (resp. au;aTJ), 
then it is straightforward to pass to the limit in ( 11 ). 0 

5.2. Strong convergence when the obstacle is zero and the initial characteristic 
derivatives are of bounded variation. The first step in this study is to notice that if w is 
an affine function, then the penalized solution converges to the solution of ( P oo) which 
conserves the energy. 

LEMMA 15. Let there be given initial conditions 

(144) 
u(x,O)==a-bx>O on [x 0 -t0 ,x0 +t0 ], 

u1(b,O)== -c<O, 

and suppose that the free solution w( x, t) ==a- bx- et is such that 

w(x0 ,t0 )<0. 

Then the solution ux of (122) with initial conditions (144) is given by 

a-bx-ct for bx+ct<a, 

../A(c2-b2) sin ct+bx-a 
(145) ux(x,t)== /X(c2-b2) 

for a<bx + ct<a+w/X( c2
- b2

) , 

bx + ct-a-w/X( c2
- b2

) forbx+ct>a+w/X(c 2 -b2
). 

Therefore ux converges strongly in H 1(Tx- 1 ) to the solution of(Px 1 ). 
0' 0 o, 0 

Proof. Let us compute the solution of (Px 1 ): 
0' 0 

E == { ( x , t) E Tx- 1 : a- bx- et< 0} . o, 0 

We see at once that the slope of the line a== bx +et is smaller than 1, in absolute value. 
Therefore I== E, and 

(146) u ( x, t ) == { a - bx - et 
bx+ct-a 

if a-bx-ct>O, 
if a-bx-ct<O. 

Let us look for the solution of (122) with initial conditions (144) under the form 

ux ( x, t) == fx ( bx +et). 

Then fx must satisfy the ordinary differential equation 

with the initial conditions 

( c2- b2 )!"- !___ r = 0 
X 

fx(a)==O, fx(a)==-1. 

This problem can be solved immediately and gives (145). Clearly the limit of the 
sequence ux is u, and Lemma 14 allows us to conclude the proof. D 
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Remark 16. Suppose we replace the function r- by a function lf; such that 

\f; (X ) == 0 if X > 0, 

l/;(x) >0 if x<O, 

l/; is continuous, strictly decreasing on (- oo, 0), 

l/;(- 00) == 00. 

Then the penalized problem 

o U1.- ~ 1[1( u1.- <p) = o, 
ilx(x,O)==u 0(x), 

aax 
Tt(x,O) ==u 1(x) 

can be studied as above; we get Theorem 14 with almost no change in the proof. 
Moreover, a phase plane analysis shows easily that in the case of initial data (144) the 
limit of ux is the function (146). We chose the specific penalization (122) because of its 
simplicity. We need an integral solution of the linear Klein-Gordon equation with 
initial values given on a curve t == o( x ). This is the object of the next lemma. 

LEMMA 17. Let w be a solution of the wave equation on the set S == { ( x, t) I o( x) < t < 
t0 -lx-x0 1} where o is a Lipschitz continuous function with Lipschitz constant I. 

Then the unique solution on S of the problem 

1 
Du+ A u==O, 

(147) u(x,o(x )) ==w(x,o(x )), 

au aw at ( x, o ( x)) == at ( x, o ( x)) a. e. on { x : I o ' ( x) I < 1 } 

is given by 

1 ( /(t-t')
2
-(x-x')

2 
) 

(148) u(x,t)=w(x,t)-
2 
j -~0 ~ w(x',t')dx' dt', 
snTx,t A 

where 

(149) 

is the Bessel function ~0 • 
Proof. We verify that if w is a solution of the wave equation in the whole plane and 

if 

then 

w(x,t)=={
0

( ) w x,t 

if t<o(x ), 

if t>o(x ), 

(D w,<p) =-J w(x, a(x ))( <p1(x, a(x )) +a'(x )<pAx, a(x )) ) dx 

+ J [ W1 ( x, a( x)) + a' ( x) wAx, a ( x))] <p ( x, a ( x)) dx. 
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Solving (147) amounts to finding a solution of 

( 0 u+ ~ u) l{(x,l): t>a(x)} =0, 

u( X' t) I {(x,t): t~a(x)} == 0, 

u(x,o(x )) ==w(x,o(x )), 

au ow at ( x, o ( x)) == Tt ( x, o ( x)) a .e. on { x : I o ' ( x) I < 1 } , 

which can be written as 

(150) - 1 ~ u==w- -(9*U 
A. 

where t9 is the elementary solution of the wave equation defined by 

&(x,t)={} if t> X, 

elsewhere. 

The convolution equation (150) has a unique solution given by 

(151) 

By a simple inductive calculation in characteristic coordinates, we obtain: 

(152) 

Therefore 

(153) 

Together with (153), formula (151) gives (149). D 
We can now state the theorem of convergence for penalized solutions: 
THEOREM 18. Let u0 and u1 be such that 

(154) 
du 0 dx and u 1 are locally of bounded variation 

and suppose that they satisfy the compatibility condition (122). Then the solution ux of 
(122) converges to the solution of(P

00
) when A. goes to zero. 

Proof. Let us first notice that on le, the complement of the domain of influence, 
we have, if u is the solution of (P): 

Du==O ' 
Therefore 
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and, in particular, 

(155) 

where we recall that T, the line of influence, is Lipschitz continuous, with Lipschitz 
constant 1. 

We shall now use assumption (154) to obtain more information about the line of 
influence. We need the following notation (see Fig. 3): 

(156) 

Q 1 == { (X' t): X> I tl}' 

Q2 == {(x,t):t<lxl}, 

Q3 == {(x,t):x< -ltl}, 

Q4 == {(x,t):t:S-Ixl}. 

We shall denote 

(157) 
aw . aw -a (x,t: Q;)== hm -a (x+h,t+k). 

t (h,k)~O t 
(h,k)EQ; 

Thanks to (154), (aw;at)(x,t; Q;) is defined for 1 <i<4, and we have the formula 

(158) 

with notation as in (125). We have analogous formulae for the three other limits. 
LEMMA 19. Let x be such that T'(x) is defined and IT'(x )I< 1. Suppose that 

(159) 
aw 

max -a (x,t; Q;)<O. 
1:s;;:s;4 t 

Then there exists a neighborhood (x-e,x+e) of x such that lx'-xl<e~T'(x') has left 
and right limits at every point and IT'( x' + 0)1 < 1; moreover 

sup ~w (x',r(x'); Q;)< -1<0. 
1 ::;;::;4 t 

Proof. The hypothesis (159) implies that, in a neighborhood N of (x, T(x )) 

aw 
sup -(x',t'; Q;)< -1<0; 

1 <i<4 at 

therefore w(x', ·)is strictly decreasing for x' close enough to x, and moreover, if k is so 
chosen that w1( x, T( x )) + kwx( x, T( x )) < 0, then 

w(x+kh,T(x) +h) <0. 

Thus, there exists a unique solution to the problem 

(160) 
w(x',o(x')) ==0, 

max{lx- x'l, lo( x')- T( x )I) <a, where a is a small positive number. 
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FIG. 3. The regions Q;, i== 1,- · · ,4 of the (x, t)-plane. 

To prove that o is identical to 7' in an interval [x-a',x+a'] where a' may be smaller 
than a, we have to check that 

lo'(x')l < 1 a.e. on [x-a',x+a']. 

The function o is continuous indeed, as w is continuous and t' == o( x') is the unique 
solution of w(x', t')==O in N. We may not directly differentiate the relation w(x',o(x')) 
== 0, as we do not have the assumptions of the implicit function theorem. But, with the 
very same argument as in this theorem, and using notation (157) and its analogue for 
au;ax, we have 

w(x' +h,o(x+h )) ==w(x,o(x')) +wx(x',a(x'); Q1)h 

( 161 ) + W1 (X', 0 (X') ; Q 1 ) ( 0 (X' + h ) - CJ (X')) 

+e1(lhl+ jo(x' +h) -o(x')l) 

Here e1 is a function such that 

By a standard argument 

for all h such that ( h , o ( x' + h ) - o ( x ')) E Q 1 • 

1
. e1(k) _ 
1m k -0. 

k_,.O 

(162) lim [ o(x'+h)-o(x')] = _ wx(x',<J(x'); Q 1). 

h_,.o h w (x' o(x') · Q ) 
( h , o( X' + h) - 0' (X')) E Q 1 t ' ' 1 

The same result holds in the three other quadrants Q2 , Q3 and Q4 , and by choosing a' 
adequately small we shall have 

wx(x',o(x');Q;) I I _..;...__ ___ ___;,_ < 1- e for x- x' <a', 
W1 (X 1 , 0 (X 1) ; Q; ) 
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and thus 

( h, o( x' +h)- o( x')) E Q1 for h >0 small enough, 

(h,o(x'+h)-o(x')) EQ3 for h<O, lhl small enough, 

lo'(x')l < 1-e a.e. on [x-a',x+a'], 

T(x') == o(x'), and T' has right and left limits at all points of [x- a', x +a']. D 
Let us compare locally the solution of the linear Klein-Gordon equation (147) to 

the solution of an approaching problem with simpler initial data. Let 

Then: 

( ) - '( )- _ wx(xo,to) 
T x 0 -t0 , To x 0 -m-- ( ) , 

wt Xo' to 

T0(x) == t 0 + m(x- x0 ), 

Wo (X, t) == W1 (X O , tO) ( t- to) + W x (X o , to) (X -X o ) , 

u0 ( X, T0 ( X))=: w0 ( X, T0 ( X))== 0, 

auo ( ) - awo ( ( ) - ( Tt x,T0(x) - Tt x,T0 x) -w1 x 0 ,t0 ), 

S0 == { ( x, t) : t >To ( x) } . 

( )-v ( 2 ) ( ) • t-t0 -m(x-x0 ) u0 x,t - A. 1-m w1 x 0 ,t0 stn . 
VA.(1-m 2

) 

With the help of (148), we have 

U X (X, t) - U o (X, t) == w( X, t) - Wo (X, t) 

(163) 

• [ ( W • 1 s ) (X', t ') - ( W0 • 1 s 
0 

) (X', t ')] dx' dt'. 

Let us estimate (163) for x and t such that 

(164) lx- x0 1 + lt-t0l <C{X, 

and under the hypotheses that IT'(x0 )1 < 1 and that w1(x 0 , t0 ) and wx(x0 , t0 ) are well 
defined. Then 

lw(x, t)- w0(x, t )I <o(lx- x0 1 + lt- t0 l) == o( /X). 

To estimate the integral, let us first note that 

lw·1s-wo·1sol <lw-wol·1suso· 

This relation comes from the fact that, locally, w · 1 s' == - w- and w0 • 1 so== - w0 . We 
define new variables X and T by 

t-t'==T{X, x-x'==X/X. 
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Then the integral expression in (163) is estimated by 

But 

lw( x-X~ ,t-T~) -w0 ( x-X~ ,t-T~)I<o(lx-X~ -x01 +lt-T~ -t01), 
and we have to check that {(X,T)ETQri: (x-X/X,t-T/X)ESUS0 } is bounded. 
This set can be written as 

and using the fact that IT'(x0 )1< 1, this set is bounded under the condition (164). 
Thus, immediately, 

(165) !u(x,t)-u0(x,t)l ==o( ~). 

A consequence of (165) is that, for A sufficiently small, the solution u of (147) is 
negative on the set 

(166) 

This uses the fact that u1<0 on a neighborhood of x 0 , as was proved in Lemma 19. 
Therefore, on the set (166), the solution of the penalized problem (122) is the 

solution of the linear problem (147), for A small enough. We have thus, for (x, t) on the 
set (166): 

au,\ ( I ')- aw ( I ') 1 f aw ( I I 'I) d I -at X ,t --at X ,t - 2, -a X ,t- x-x X 
1\ (x',t-jx-x'I)ES t 

1 ( /(t-t')
2
-(x-x')

2 
) - ~ j % ~ (t-t')(w·Is)(x,t)dx'dt. 

2A A r;,t A 

Reasoning as for (165), we can prove under assumption (164) that 

( 
au,\ auo) Tt- Tt (x,t) ==o(1), 

or 

and, in particular 

(167) tim aau,\ (x0 ,t0 +(w-e)/A(1-m2
) )== +wt(xo,to)cos(w-e) 

,\~0 t 

On {X O : T 
1 (X O) < 1 and W1 (X O , T (X O) ; Q i) < 0, i == 1 , · · · , 4} . 
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Analogously, 

(168) lim aauA ( x 0 , t0 + ( ?T-e)JA(l- m2)) = wx(x0 , to)cos( ?T-e) 
x__.o x 

On {X o : T ' (X o) < 1 and W1 (X o , T (X o) ; Q i) < 0, i == 1 , · · · , 4} , 

and (167) and (168) in turn imply: 

(169) 

lim aaut.A ( x 0 , t0 + ('IT- e )JA(l- m2
) ) = w~( x 0 , t0 )cos( 'IT-e), 

x__.o c:; 

lim aau A ( X 0 ' t 0 + ( 'TT - e) J A ( 1 - m 2 ) ) == w 1J (X 0 ' t 0 ) cos( 'TT - e) . 
x__.o 11 

Therefore, the limit ii of u satisfies: 

au aw 
a~(x,T(x))==-a~(x,T(x)) a.e.on {x:IT'(x)l<1}. 

This proves that ii is indeed the solution of (P00 ). D 

6. Conclusion. There are still many open problems which can be conveniently 
listed at this point. The main one is to prove existence of an energy conserving solution 
when the obstacle is not assumed to be concave, as was the case in [5]. 

An obstruction to the proof of existence is that the lines of influence might cluster, 
and we do not know how to extend the solution after they have clustered. 

But there is a more fundamental problem: the whole model relies on the assump
tion that the motion is transverse: how well is this assumption satisfied when the 
obstacle is not parallel to the rest position of the string? A better model might be 
needed; it should be at the same time realistic and tractable. 

Another class of problems is the study of the qualitative properties of the system 
that we consider: periodicity, almost periodicity, for instance; for a first set of results in 
this direction, see [7]. 
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