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NEW RESULTS ON THE VIBRATING STRING WITH A CONTINUOUS OBSTACLE

We give an explicit formula which describes the solution of the problem of the linear elastic string vibrating against a plane obstacle without loss of energy. This formula allows us to prove continuous dependence on the initial data; a regularity result in some bounded variation spaces is given. A numerical scheme is deduced from the explicit formula.

Finally we prove the weak convergence of a subsequence of solutions of the penalized problem to a "weak" solution (i.e. one which does not necessarily conserve energy) of the problem with an obstacle when the obstacle is arbitrary; when the obstacle is plane, all the sequence strongly converges to the solution of the obstacle problem which conserves the energy.

Introduction.

1.1. Presentation of the problem and the results. This paper aims to give some new results on vibrating strings with obstacles. The model is the same as in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF], but as it appears necessary to elucidate several points of the modelization which was exposed there, we shall give it from the beginning.

We consider the small transverse vibrations of a string that is constrained to be on one side of a material obstacle. Let the transverse displacement at time t of the material point of the string with coordinate x be denoted by u(x, t). If the string were free, i.e., if there was no obstacle, then u would satisfy the wave equation D u=uu-uxx=O.

We assume that the obstacle has position <p( x ). We translate the requirement that the string stay on one side of the obstacle into the inequality (1) u(x,t)><p(x) 'rJx,t.

When the string does not touch the obstacle, its motion satisfies the wave equation, and thus (2) supp 0 u C { (X, t): U (X, t) = <p (X)} .

We require that the string does not stick to the obstacle; this can be translated as [START_REF] Curie | These d'etat[END_REF] Du>O, which means that the obstacle does not exert a downward force on the string. Notice that (3) is essentially equivalent to subsonic propagation of interactions. To see this, let t =a( x) be a curve which separates a region iJt on the half-plane ~ X (0, oo) in two open regions iJt + and iJtwhere Du vanishes. Suppose that u+ = ul0e+ and u-=ul 0 ,-are sufficiently smooth, and that [START_REF] Citrini | Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints[END_REF] (5)

U ±(X, a( X))= <p( X), u±(x,t)><p(x) 'rJ(x,t)EiJt. 

= ![ ( a~t+-a~t-) (x, a(x )) + (a;;-a;x-) (x,a(x ))a'(x)] o/( x, a(x )) dx.

Relation (4) can be differentiated with respect to x, and implies (7) ( au+ au-) ' ( au+ au-) ---(x a(x )) ==-a (x) ---(x a(x )). ax ax ' at at ' Introducing (7) into (8), we get (Du,o/)= f( a~t+-a~t-)(x,a(x))(l-a' 2 (x))o/(x,a(x))dx.

But hypotheses [START_REF] Citrini | Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints[END_REF] and [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF] ensure that au+ au-Tt (x, a(x )) >0 and Tt (x, a(x )) <0.

Therefore, Du is nonnegative if and only if la'l is almost everywhere smaller than 1.

It is not enough to suppose that conditions (1), (2) and [START_REF] Curie | These d'etat[END_REF] are satisfied, as nothing has been said of the evolution of the energy of the string during the collision with the obstacle.

The hypothesis that will be made is that the energy is conserved. This requirement should be analysed from a mathematical point of view as follows: The condition must be local, because the propagation properties of hyperbolic equations suggest it, and it must be satisfied wherever in the x, t half-plane the free wave equation is satisfied. Thus, multiplying by aujat the relation ( 8) D u == 0 on 0l , where 0l is an open region such that (8) is satisfied, we obtain a relation in divergence form: (9) i_(laul2+1aul2)-_l_(2au au)==o in0l.

at at ax ax at ax

The operations by which we deduce (9) out of (8) are valid if au;at and au;ax are locally square-integrable in R X (0, oo ).

The energy condition we shall impose is (10) ;t (I ~~ r + I ;: n -a ax ( 2 ~~ ;: ) = o in the sense of distribution on R X (0, oo ). We could alternatively write it as (11) Here, the first component of the vector field Su is the energy density flux, and the second component of the vector field Su is the energy density.

Notice that (10) cannot be deduced by multiplying (3) by aujat, as au;at must be expected to be discontinuous on the support of Du. For initial conditions such that the free solution corresponding to them is locally of bounded energy, it was proved in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF] that the Cauchy problem (1)-( 3) and (11) possesses a unique solution if the function <p is convex.

The approach which led to condition (11) is essentially a mathematical one; from the mechanical point of view, one would like to know if (11) implies that the velocity of the string after collision is the opposite of the velocity of the string before collision. The answer is affirmative, but one has to give a meani~g to au au .

(12) a~(x,t+O)=-a~(x,t-0) 1f (x,t) E supp Du.

This was the purpose of We shall prove in §2 the followi1;1g explicit formula in the case of the plane obstacle.

Let w be the free solution of the wave equation

Dw=O ' w( X, 0) == u 0 ( X), W 1 (X, 0) == U 1 (X ) .
Let the obstacle be <p == 0, and let the backward wave cone be def

Tx~t == { (x 1 , 1 1 ) : O<t 1 <t-lx-X 1 1}.
Let us denote by rthe negative part of a number r-== sup(-r, 0). Then the solution of the problem (1)-( 3) and ( 11) is given by

u ( x, t) == w ( x, t ) + 2 sup { ( w ( x 1 , t I)) -: ( x 1 , t 1 ) E r;, 1 } •
This formula shortens considerably a previous proof [2] of continuous dependence on data, and is the key for the numerical scheme studied in §3. We shall give in §4 a regularity theorem in spaces of bounded variation, in the case of a general concave obstacle.

In §5, we shall consider the functions uA which solve the problem Du~-~ (u~-<p)-=0,

(16) uA(x,O)==u 0 (x), OUA Tt(x,O)==u 1 (x).
In the first half of this section, we shall prove a weak convergence result, which does not depend on the shape of cp nor on the regularity of the initial data. The limit function will satisfy a set of energy inequalities instead of ( 11 ).

In the second half, we shall assume that the obstacle is plane, and that du 0 j dx and u 1 are locally of bounded variation. Then the solution of (16) converges strongly in H 1 ~(1R X IR +), and its limit is the unique solution of (1)-( 3) and (11).

1.2. Notation and summary of previous results. We shall use throughout this paper the following notation and definitions:

V is the set of functions u such that {17) ~~Jiux(x,t )1 2 + iu 1 (x, t)n dx<C(a,b )< + oo 'V a,b, 'V t<b.
w is the free solution of the wave equation:

Dw==O ' (18) w(x,O) ==u 0 (x ), W 1 (X, 0) == U I (X) .
If we denote the closure of a set A by cl A, we define a set E by

E == cl { (X, t ) : W (X, t ) < cp (X ) } .
I is the domain of influence defined by

(19) /== U { Tx~t: (x, t) EE},
where Tx~t is the forward wave cone {(x',t'):t'>t+lx-x'l}, and the boundary of I, called the line of influence, is given by a I== { (X, t):

t == T( X)}, ( 20 
)
where T is Lipschitz continuous with Lipschitz constant 1 (see [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF]proposition II.3] for the proof of this claim). The backward wave cone Tx~t is { (X'' t ') : 0 < t' < t -I X -X' I}.

(21)

The characteristic coordinates ~ and 1J are given by -x+t

,== fi with the notation z(~,1J)==z((~-1J)/ti,(~+1J)/fi) for all functions of two variables x and t.

(

) (10) 22 
We shall call problem (P 00 ) the following problem:

Given u 0 EH 1 ~(1R), u 1 ELfoc(IR) satisfying the compatibility condition u 0 (x) ><p(x ),

u 1 ( x) > 0 a .e. on { x : u 0 ( x) == <p ( x) } ; find u in V such that (a) u><p, (b) supp Du C {(x, t): u(x, t) == <p(x)}, (c) D u>O; a ( 2 2 ) a ( )- at ux +ut + ax -2uxut -0 in the sense of distributions in IR X IR + ; u(x,O) ==u 0 (x ), au at (x, 0) == u 1 (x ).
The precise statement of the results of existence and uniqueness in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF] The first result on the convergence of the penalty method for the string with an obstacle was proved by A.

Bamberger [START_REF] Curie | These d'etat[END_REF]. An explicit formula for the string with a point obstacle was obtained by L. Amerio in [1] and by M. Schatzman in [START_REF]Un probleme hyperbolique du 2eme ordre avec constraintes unilaterales: la corde vibrante avec obstacle ponctuel[END_REF], with a different argument.

Continuous dependence on the data and convergence of the penalty method for the point obstacle are proved in [START_REF]Un probleme hyperbolique du 2eme ordre avec constraintes unilaterales: la corde vibrante avec obstacle ponctuel[END_REF]. See also the results of C. Citrini [START_REF] Citrini | Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints[END_REF], where regularity assumptions are relaxed.

The explicit formula. Continuous dependence on the initial data.

2.1. The explicit formula for the infinite string. In the case of the zero obstacle (and more generally, the plane obstacle), the solution of (P 00 ) can be expressed by an explicit formula. We denote by r-== sup(r, 0) the negative part of a number. THEOREM 1. The unique solution of ( P oo) when cp == 0 is given by (28) u( x, t) == w( Proof. Let us extend w to the whole plane R X R, by solving the (backward) wave equation ( 33)

w(x,O)==u 0 (x), W 1 ( X, 0) == U 1 (X ) ,
Dw==O fort<O,xER.

The assumption that I is not empty implies that, on the line of influence, w ( X' ,. (X ) ) == 0 if I,.' (X ) I< 1 ' if Y is the multivalued mapping (see Fig. 1) defined by The simplest way to see this is to notice that Y is one-valued on C, and that

T (X) == min ( T (a i) + X -a i , T ( b i ) + b i -X) V X E (a i , b i ] • Therefore if we set (35)
1JEY(~) ~ ~~11 =a( ~fi1J )• , / , , , : •.. ••~• ' ' \ \ "/ ...... ~Lj~l I / / I ~~~~ . . . . . . . . . . . . E / .. •••• : •.. •••• . •-~-- : ',, . ', . ', : ',' t I 
/(~)+g(Y(~))==O one, /(~') + g(Y(~)) >0 for~'<~.
Let us now evaluate/(~)+ g( 11 ). Suppose first that X( 11) == y-t( 11) is one-valued. Then 

(1J)+/({f)-f 1 tcf'a')df-~ [!(min(~;.~;))-J(maxai'~))], ~ i
and the result still holds, i.e.,

Thanks to ( 41 ), we may redefine k as

k ( x, t) == inf { w( x', t ') : t' < t -I x -x' I } , or still, in characteristic coordinates, (42) 
k ( ~, 11) == inf { /( ~ ') + g ( 11') : ~' < ~ & 11' < 11} .
Then, it is immediate that (43) which proves the claim of Lemma 4. 0 We shall now prove that u, defined by (28), satisfies the transmission condition (15) across the line of influence.

LEMMA 5. Ifu is defined by (28), then almost everywhere on {x: IT'(x)l< 1} au au

( 44) at (X, ' 1' ( X)+ 0) =-at (X, T( X)-0). Proof. Let A== { x: IT'(x )I< I}. Then, almost everywhere on A, by [1, A.2], (45) 
wx(x,T(x)) and w 1 (x,T(x)) exist.

Let x be a point satisfying ( 45), and let us denote

W x (X, T (X)) := a, W 1 (X, T (X)) := b, T 1 (X) := m . Then a+mb==O, b<O and w( x', t') ==a( x'-x) + b( t'-T( x)) + e( x'-x, t'-T( x)),
where e satisfies lim e( r' s ) -0 lrl+lsi~O lrl + lsl .

We have

inf {a (X' -X ) + b ( t' -'T (X ) ) : (X', t ') E Tx~ 1 } == b ( t -'T (X ) ) ,
and therefore,

( 46) b ( t -T ( x)) -sup { I e( x' -x, t' -t) I : T ( x ') < t' < t -I x -x' I } <k(x, t) <b( t-T(x )) + le(O, t-T(x ))1. As IT'(x)l<l, we have lim [sup { I e( x' -x, t' -t ) I : T ( x ') < t' < t -I x -x' I } I ( t-T ( x))] == 0, t t T(x)
and we deduce from ( 46) that

1 . u(x,t)-u(x,T(x)) _ ( ( )) tm ( ) -w 1 x, T x t J-T( X) t -'T X
under the assumption ( 45). D Conclusion of the proof of Theorem 1. Lemmas 3, 4 and 5 imply that the function u defined by (28) solves the linear problem (24), up to the condition u E V. Therefore it remains to check this last condition. If we take into account the formula (43), let us show that k is in V.

We know that/is in H 1 ~(1R); let Then, we can compute the derivative of/(~) almost everywhere:

(47) , . . . {0 if/(~)>/(~) or if f'( ~) >0, f'a) = f'a) if/a) =}(0 and if/'a)<O.
We deduce from (47) that j is in H 1 ~(1R). Similarly, g is in H 1 ~c(IR). The function k which can be written as will therefore be in

V, i.e., J~Jikx(x,t)i 2 + ik 1 (x, t)n dx<C(a,b) Va,b, v t>O and thus u is in V. D 2.
2. Continuous dependence on the data.

CoROLLARY 6. The map (u 0 , u 1 )~ u which to an element of H 1 ~c(IR) XLfoc(R) satisfy- ing the compatibility condition (22) associates the solution of ( P 00 ) is continuous from H 1 ~(1R) XL Ioc(IR) equipped with the strong topology to equipped with the strong topology, for all finite p.

Proof. We have at once the continuity from H 1 ~c(IR) X Lfoc(IR) to C 0 (1R X 1R +). ) l!P.

The topology on H 1 ~(R) X Lioc(R) is defined by the seminorms for A> 0 It has been proved in [5, §IV.2] that for solutions of (P oo) with zero obstacle,

au au au au ( 48) ai (X, t) = ai (X + t, 0) , a 'I] (X, t) = a 'I] (X -t, 0) . Therefore J~)iul +iu/)(x,t}dx= J~)iul +lui)(x,t)dx (49) <f~A+~t(l ~0 1 2 +lul) dx \fA,t>O.
Let qABoo be the seminorm

(f A 2 2 ) l/2 qABoo(v)==v(O,O)+esssup (lvxl +lv 1 1 )(x,t)dx . tE[O,B] -A Then ( 49) implies (50) 
If ( u 0 , u}) is a sequence of initial data satisfying the compatibility condition (22) and converging to ( u 0 , u 1 ) in H 1 ~c(R) X Lioc(R), then, as a consequence of (50), (51) un~u in H 1 ~(R XR+) strongly.

un ~ u in H 1 ~(R X R +)
Thanks to Fubini's theorem, one has from (54) 

(55) ( u~( •, t ), u~( •, t)) ~( ux( •, t ), u 1 ( •, t)) in ( LToc(R) )

D

Remark 7. The mapping (u 0 ,u 1 )~u is not continuous to W 1 ~~([0, +oo); Lioc(IR))

n L~([O, + oo ); H 1 ~(1R)) which is the space V defined in (17).

Take for instance the sequence of initial data u~ == 1, As these do not depend on x, the solution of P 00 is with the limit u(x,t)= { ~~:

"f n 1 t<n+I' "f > n 1 1 -n+I' if t< 1' if t> 1.
Then we may calculate qABoo( un-u) :

qABoo( Un-U) == {O 2/2A ifB<n:l, ifB> n:l.
Thus if B>l, qABoo(un-u) does not tend to zero as n tends to infinity. 2.3. Application of the explicit formula to the finite string with fixed ends. The explicit formula (29) will allow us to give a simple construction of the solution of (P 1 ) where ( P 1 ) is the problem of the vibrating string with fixed ends, and obstacle <p == -K <0. The only modification with respect to (P 00 ) we shall require is that u be in the space L 00 (0, T; HJ(O, L )) n W 1 ' 00 (0, T; L 2 (0,L )) for all T>O.

In fact, u will be in the space L 00 ( (0, oo); HJ(O, L)) n W 1 ' 00 ( (0, oo); L 2 (0, L)) because we can integrate (10) on any rectangle [O,L]X[O,T], and we get the energy equality for arbitrary times T: (56) foL(Iux<x,T)I 

VtE[O,oo), VxE[O,a)U(L-a,L], u(x,t)>-K,
and Du cannot be supported in the strips ([0, a) U (L-a,L ]) X [0, oo) (cf. Fig. 2). Let us extend the initial conditions u 0 , u 1 to the interval [ -a,L+a] by:

U; ( -X) == -U; (X) if X E [ -a, 0] , i == 0, 1 , u;(L+x)==-u;(L-x) ifxE[O,a], i==O,l. r I R2.
c r'f+ 3 0()

I I R1 1 (L L ) :I,r+O( --_-(X----+-o----+tX------c----c=-o< L L+D< -~ FIG.
2. The geometric construction used for the explicit formula in the case of the vibrating string with fixed ends, and a constant negative obstacle.

Then the corresponding free solution w is defined on the cone T£ 12 ,L; 2 +a' with the property that w(O,t)==O, Let u be defined on Ti 12 ,L; 2 +a by (29); then for x==O, t<a,

(58) u(O, t) == w(O, t) + 2 sup { [ w( x', t') + K]-}.
To~ But, w(O, t) == 0, and T0, 1 is included in the strip [-a, a] X [0, oo ), so that w > -K on this strip, and thus u(O, t) = 0 on [0, a]. Analogously, u( L, t) == 0 on [0, a].

(59) Therefore, (58) defines the solution of (P 1 ) on T£ 12 ,L; 2 +a n ([0, L] X [0, oo )).

Let us define by induction the solution of ( P 1 ) on the region R n given by Rn= { (x, t) E [O,L) X [0, oo): ~ + (2n -l)a-lx-~ l<t <~ + (2n+ l)a-lx-~ I}.

We shall denote by on the function

an(x)=~+(2n-l)a-lx-~l ifxE[O,L], on(x)==on( -x), on(L+x)==on(L-x) if xE[O,a].
Suppose we know u(x, an(x

)) for x E [0, L ]. Let wn(x,an(x))==u(x,an(x)) if xE[O,L], wn(x,an(x))== -u( -x,an( -x)) if xE[ -a,O], wn(x,an(x))== -u(2L-x,an(2L-x)) if xE[L;L+a], (60)
The function wn is defined in the region an(x)<t<(2n+ l)a+ ~ -lx-~I'

Let us notice that the symmetry of the initial conditions in (60) implies (61) wn(O,t)==wn(L,t)==O for (2n-1)a<t<(2n+ 1)a.

Moreover, as u(x, an(x )) >-K, \f x E [0, L ], and as u satisfies the energy condition (10), we shall have wn(x, t) >-K for an(x) <t<(2n + 1)a + -lxl

(62)
or for an(x)<t<(2n+ 1)a+ -IL-xJ.

Let ( 63) u( x, t) == wn( x, t) + 2 sup[ ( wn( x', t') + K)-: an( x') < t' < t -Jx-x'J].
Thanks to (61) and (62), u satisfies the boundary conditions. Therefore it solves the problem of the string with an obstacle on Rn, and the induction can be pursued.

3. A numerical scheme. 3.1. A numerical scheme in a backward cone for the zero obstacle. Let there be given initial data u 0 and ut on the interval [-T, T]. We seek an approximation to the problem (Po,r) on the backward cone T 0 ~r• Let h == T jn be a step, and let us define discretized initial data u 0 and u~ by the following formula, where u3 is an affine interpolation, and u~ is piecewise constant:

1 u~( x) = h [ u 0 ((p + 1 )h)-u 0 ( ph )](x-ph)+ u 0 ( ph) h( )-_!_j(p+I)h ( ')d ' Ut X -h Ut X X ph ifxE[ph,(p+1)h], ( 64 
) ifxE[ph,(p+1)h].
The corresponding free solution wh is given by

wh(x, t) = ~ [ u~(x+ t) + u~(x-t) + ~~~1uf{x') dx'].
Let us define (65)

W;~1 =wh( ( i / )h, ( i;j )h) for O<i;j <n-1 i /I• Then w;7 1 satisfies the finite difference relation

(66) -h --h + -h -h W;,j-W;,j-t W;-t,j-W;-t,j-t•
Let us define a function at 1 on our mesh by ( 67)

-h --h +2 {( -h )-. ''<. ''<. ''+ ''>0} u;, 1 -wi,J
max w;',J' .z _z,J -}, z J _ .

We could define at 1 alternatively by ( 68)

-h _ -h 2 K-h u .. -w . . - .. , l,j l,j l,j {69) -h-. ( -h -h -(-h)-) K;, 1 -rmn K;-t,J,Ki,J-t' wi,J , K -h -o •f-<'< ;,-;- 1 n_z_n.
Notice that i(h is not the discretization of k, the correction term in characteristic coordinates, but the discretization of k.l i' where i is the set I in characteristic coordinates.

THEOREM 8. Let u be the solution of (Po,r) with zero obstacle, and let at 1 be defined by (67). Then:

(70

)
where C depends only on the initial conditions. M ore over, we have the following bounds on the (approximate) characteristic derivatives:

(71) (72)

1 ( "+l)h 1 -h --h 1<-f -} ( -)( ' ) d ' ui,J ui,J-1 -2 . Uox ul x
x .

-jh

Proof. Let us first evaluate w;7 1 -w(x', t') when (x', t') is in the characteristic square centered on ((i-j)h/2, (i + j)h/2), with sides of length h/2, i.e., 2i-lh

'+' 2i+lh d 2 <x t < 2 an -2}-lh< '-'<-2j+lh• 2 -X t - 2 .

w(x' t')-w.h.==w(x' t')-wh( i-j h i+j h)

' l ,) ' 2 ' 2
=~ [ u 0 (x'+t')-u~(ih)+uo(x'-t')-u~( -jh)

+ £~~~:'u1(y)dy-f:huf(y)dy],

i.e.,

We may then deduce from {73)

iw(x',t')-Wi7ji</I (J:T(u~x+uf}dx r/ 2 that jsup{ ( W;~J-: i'<i,j'<j,i+ j>O} -sup{ [ w(x',t')r: O<t'<t-lxx'l} j (74)

Let us note that w;~J == w(( i-j)h/2, ( i + j)h/2), because the approximation (64) is very particular. This, in turn, gives (7s)

IlJ~juL-u( i / h, i;j h )j<V2h (J:/u~x+uf)dx f 12
This completes the proof of (70). We now turn to proving (71) and ( 72). Let us note first that if

k -h - . { -h
. . ,< . . ,< . . ,+ .,>0}

; ,J-rmn W;' ,J' . 1 -1, 1 --1, 1 1 - , we can write ft 1 alternatively as

(76) k -h - . { -h .. ,< . . ,< •} ;, 1 -rmn w;',J' .1 -1,1 -J ,
because we know from ( 41) that w;~1 > 0 for i + j < 0, as long as we suppose that the domain of influence is not empty. 

and thus, a~,J-a~-1,J== fh( i) + gh(J)-2/h( i)-2gh( J)-fh( i -I)gh(J)

==-[!h(i)+gh(J)+Jh(i-1)+gh(J)].

Thanks to (80) and (82), we get lu~,J-a~-1,1!< l!h( i) + gh( J)l+ lth( i -1) + gh(J)I < l!h( i) -jh( i -1 )I.

(83)

In the second case, jh(i-1) + gh(j)<O.

If jh(i -1) == jh(i), we have immediately

(84) 1 -h _-h 1<1/h(•)-/h(•-1)1 ui,J U;-1 , 1 - z z •
If jh(i -1)> jh(i), then, we have (82), and

a~, 1 -a~_ 1 , 1 == fh( i) + gh(J)-2/h( i)-2gh( J)-fh( i -I)gh(J) + 2/h( i -1) + 2gh( J)

==2/h(i-I)-jh(i)-jh(i-I),

and, thanks to (82) we have la~,J-a~-1,JI< l!h( i)-!h( i -I )I.

From (83), ( 84) and (85), we deduce

1 'h 1 -h --h I< I h -h I==-ll ( + )( ') d I ui,J ui-1,}-wi,J wi-1,} 2 (i-1)h Uox u1 x x .
The proof of (72) is analogous. D We can deduce from (71) and (72) an energy inequality. Let i 0 , } 0 be given such that -n<i 0 ,j 0 <n and i 0 +j 0 >0. Then we have

io 1 Jo 1 2 "" -la~. -a~ 1 •I+ "" -la~ .-a~ . 11 . ~ h z,Jo z-,Jo . ~ h zo,J zo,J- l= -1 0 + 1 1= -1 0 + 1 (86)
3.2. A numerical scheme for the string with fixed ends and a constant obstacle. We shall use here the inductive construction of §2.3, which we discretize.

Let u 0 and u 1 be given on [O,L], and let (87) where the obstacle is cp( x) == -K < 0.

Let n be an even integer, and let the step be h == Ljn; let n 0 be the largest integer such that n 0 h<a.

We discretize the initial data as in (64) for O<p<n, and we extend them as periodic and odd functions: uh(x)=={-u~(-x)

for-n 0 h<x<O, r==0,1, r -u~(2L-x) for nh<x<(n+n 0 )h, r==O, 1.

We define wo,h by (88) and let (89

) Let w 0 ,h(x, 0) == u~(x ), awo,h at (x,O)==u?(x), D WO,h == 0 in 1(-;,/2)h ,(nj2+no)h' w.O'.h==wO,h _) h _) h ( i-' i+') l,j 2 ' 2 . ( 90 
)
U~1 =wiy +2 sup{ ( Wi~/+ K f: i' <i,j' <j, i' + j'>O} h

'< + '< '+ '>0 w ere l-n n 0 ,]-n 0 , 1 ] -• Let us define a subset Rm,h of l. X l. by (91) Rm,h == [ n + (2m -1 )n 0 , n + (2m + 1 )n 0 ] X [ -n + (2m -1 )n 0 , (2m -1 )n 0 ] U [(2m -1)n 0 , n + (2m + 1)n 0 ] X [(2m -1)n 0 , (2m + 1)n 0 ].
The region Rm,h is the discretized equivalent (in i,j coordinates) of the region Rm defined by (59).We define wm,h on the lower boundary of Rm,h by for i==n+ (2m-1)n 0 , -n+ (2m-1)n 0 <j<(2m-1)n 0 , for}== (2m-1)n 0 , (2m-1)n 0 <i<n+ (2m-1)n 0 , fori== (2m-1)n 0 , (2m-1)n 0 <J<(2m+ 1)n 0 , wnm+.J,-n+i for (2m-1)no+n<i<(2m+ 1)no+n,j== -n+(2m-1)n, and in Rm,h, we have (93) w.m.,h==w.m,h .+w.m.,h -w.m,h.

for (i,J'), (i-1,]'-1) in Rm,h. l,J z-1,] z,J-1 z-1,)-1
Then, we shall define u~1 on Rm,h n {(i,j): O<(i-J)/2 <n} by (94) UL=W/J•h+2suP{ ( wi~j?+ K r: i'<i,j'<j and (i',j') ERm,h}.

Of course (94) is the discretization of ( 63). THEOREM 9. Let uh be defined by (93), and let u be the solution of(P 1 ) on [O,L] with obstacle -K. Then (95)

maxlu~ .-u( i-j h i+j h)l<cm+ 1 'h . . ',J 2 ' 2 - V n l ,)
Relation (100) allows us to evaluate wm(((i-J)/2)h, ((i + J)/2)h)-wm(x', t'), (101) lwm( i / h, i;j h) -wm(x',t'),<J2h (f~a+a(u5x+uf)dx r 12 .

Let us denote by E the number, which has the dimension of an energy:

-JL+a( 22)

E--a Uox+ul dx.

Gathering relations (97), ( 99) and ( 101), we obtain:

!u~. 1 -u( i / h, i;j h) I<( 15Cm+2J2E )fh.

Therefore, if we choose C== 15 + 2{2 E, we have 15Cm+2/2E <cm+I.

The proof of ( 96) is immediate. D Remark. For (i,j) in Rm,h, we have i+j 2 >(2m-1)n 0 , and thus

(( i+j ) ) 3 1 +m< T h j2n 0 h + 2•
Therefore, if (((i-j)/2)h,((i+J)/2)h) converges to (x,t) ash goes to zero, we have from (95):

' a~.-u(i jh i+jh),<ctf 2 ac 3 1 2 fh z ,J 2 , 2 -1 1 V rt
for all C 1 > C, and for all h small enough.

4. Regularity in spaces of functions of locally bounded variation. This section is dedicated to proving the following result of regularity for an arbitrary concave obstacle cp.

THEOREM 10. Let u 0 and u 1 be elements of H 1 ~c(IR) and Lfoc(IR) respectively, such that (102) du 0 dx and u 1 are locally of bounded variation.

Suppose that u 0 and u 1 satisfy the compatibility condition (22), and that the obstacle is concave.

Then for all11, the function a a

~~~(t11)

defined on [ -1J, + oo) is locally of bounded variation, and analogously, for all ~ the function a a 11~a 11 a.11)

defined on [-~' + oo) is locally of bounded variation.

Proof. We retain the notation of §2.1 :

U=={x:w(x,T(x))>O}== U ]a;,b;[; i (35) (36) 
We have the following representation of the solution:

(lo 3 )

a(~, 11 ) =={~a)+ g( 11) for.,< Y((~), /( ~) + g( 11) for 11 > Y ~),
with the transmission conditions:

(104) (105)

/( ~) + g(Y( ~)) =/( ~) + g(Y( ~)) =<p[ ~-X(~) l, f' ( ~) + g' ( Y( ~)) == [ /' ( ~) + g' ( Y( ~))]
if Y is one-valued and 0> Y'( ~) >oo.

If we differentiate (104) with respect to~ on C, we get

(Io6) !'( ~) + Y'( ~)g'(Y( ~)) = J'( ~) + Y'a)g'(Y( n) = k <p'[ ~-X( n] (1-Y'( n)
(notice that Y is decreasing on C, and therefore almost everywhere differentiable). For Y'(~)==O, we deduce from (106) that (107)

f'(O=f'(O= k <p'a-Ya)). By hypothesis, <p" is positive, therefore <p' is increasing; as~~(~-Y(~))//2 is increasing, the right-hand side of ( 112) is bounded.

The term lh(~0 +0)-h(~0 -0)I is bounded, because (102) ensures that f, and therefore/, is locally bounded. The remaining term in (Ill) is the sum 

-:-1 + lb-!-+ b-:-1 <la-!-+ a-:-1 + lb-!--a""!-I+ la-!-+ a-:-1 +la-:--b-:-1 l l l l l l l l l l l l '
and using the sign conditions ( 115), lai +ai-l+ lb;+ +b;-1 <2lai +ail+ lb;+ -ail+ lb;-+ail

(117) <4rv( Ja)-k cp' ( ~-go); [~i'~;1).
Carrying ( 117) and ( 116) into (113), we obtain:

~ [lh(~; +O) -h(~; -o)l + lh(~;+O) -h(~;-O)I] {i: ~o~~;~b} (118) 
Here, ~0 ==sup{~; : ~; < b}. The same argument holds for the other characteristic derivative. The proof of Theorem 10 is complete; notice that we have proved, in fact, that locally, TV((au;a~) ( •, 11 ), I) is a bounded function of YJ, for all bounded/. D Remark 11. It is not true that under hypothesis (102), (au;a~)( •, t) or (au;a~)( •, t) are of bounded variation for all t.

, To see it, let us consider the following example. Let

(119) ( ) { A-t-a(x+t) 4 sin-+ 1 w x,t == x t A-t iflx+tl<b, if lx+tl>b.
We choose b such that sin(1/b)==O, and a such that the curve (120) t==A -a(x+ t)

4 sin -+ 1 X t
always has a slope less than 1, for lx+tl<b. For this purpose, we differentiate (120)

with respect to x:

t' ==4a(1 + t')(x+ t ) 3 sin -+ 1 -a(x+ t ) 2 cos -+ 1 • (1 + t'), X t X t
and so,

Clearly lt'l can be made smaller than 1 if a is sufficiently small.

Then we choose A large enough to have w(x,O) =A -ax 4 sin _!_ >0 for jxl <b.

X

Obviously, du 0 / dx-== wx(x, 0) and u 1 -== w 1 (x, 0) are locally of bounded variation. Thanks to (12I), the line of influence is given by (I20). We shall now see that (au;a'tJ)( •,A) is not of bounded variation. The straight line t=A crosses the line of influence infinitely many times, at the points x= _I_-A for 1-I-1 <b, n ElL, nw nw and we have

au a 11 (x,A)= -I +I ifxE( ( 2 k! 2 )' 1T -A, ( 2 k!l)'IT -A), k>O orifxE( ( 2 k~l) -A, ( 2 k~2) -A), k<O, ifxE( ( 2 k!l)'IT -A, 2 !' 1T -A), k>O or if xE ( 2 !' 1T -A, (fk! l)'IT -A), k<O.
This function is not of bounded variation on any interval containing zero.

5. Convergence of the penalty method. 5.1. Weak convergence. This paragraph is dedicated to a general (and unfortunately coarse!) study of the penalized problem

Dux-~ (ux-cp)-=0, (I22) u~J X, 0)-== u 0 ( X), aux Tt(x,O)==u 1 (x),
where r--== sup(-r, 0), and cp is an arbitrary continuous function of x, and u 0 , u 1 satisfy the compatibility condition (22). The parameter A is positive, and will tend to zero.

Let us mention that (I22) always possesses a unique solution; to see this, it is enough to write (122) in the form of an integral equation, and to use Picard iterations.

PROPOSITION I2. We have the following estimates for the solution ux of (I22):

J b[l aux ( 1 2 I aux 1 2 ( aux aux ) ] a Tt x,a(x)) + ax (x,a(x)) +2 TtTx (x,a(x))a 1 (x) dx (I23)
for all Lipschitz continuous o with Lipschitz constant

I such that o > 0 on (a, b), o( a)-== o(b)-==0; ( 124) 1-~ ( u x ( x 1 , 1 1 ) - cp ( X 1 ) ) -dx 1 dt 1 < C ( x, t, u 0 , u 1 ) Tx,t
where C does not depend on A.

We need definitions of left and right traces of the characteristic derivatives of a function u.

The following results were proved in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF]: let u be in V (cf. Def. ( 17 is increasing from [ -c, oo) to L 2 (c,d) for all c,d.

We define a -r a-

a~ a.1!)= li~ a~ a.11+h),
a_, a-

a~ (t11)= ~~a~ (t11-h), a -r a- a u ( ~' 11 ) == lim a u ( ~ + h ' 11 ) ' 11 hiO 11 (125) a_, a- _au (~,11)== lim au (~-h,11). 11 h -J-0 11
The functions au' ;a~ and aa';a~ are defined for all~ not belonging to the null set N~, and for all11 larger than -~; analogously, the functions aar ;a11 and aa';a11 are defined for all11 not belonging to the null set N 11 and for all ~ larger than -71.

[5, Prop. V.2 and Cor. V.4] tell us that

aa~ ( • , o ( • ) ) E Lioc ( R ; ( 1 + o ') dx) , ~ ~ ( • , o ( • ) ) EL ioc ( R ; ( 1 -o ') dx) , au' af ( . , 0 ( • ) ) EL ioc ( {X : o (X) > 0} , ( 1 + o ') dx), au' a:;} ( • , o ( • ) ) EL ioc ( {X : o (X) > 0}, ( 1 -o ') dx) .
Note that the above traces are not continuous functions of u. We have the following example:

Then 1

I+--t n un(x,t)== ( 1 ) t-1+~ if t< 1 + _!_' n if t> 1 + _!_. n au' 1 -a[(x, 1)= {i ' t:J X'
au'

1 a~n (x, 1)=-{i 't:/ x , ' t:J n .

We may now state the following result of weak convergence of the penalization: THEOREM 13. Given initial conditions u 0 EL\oc(IR) and u 1 ELioc(IR) such that u 0 >cp and u 1 >0 almost everywhere on the set { x: 

au at (X, 0) == U 1 (X) if U o (X) > cp (X), I ~ ~ ( x, 0) I < u 1 ( x) if u 0 ( x) = cp ( x).
Proof. From estimates (123) and (124), we can see that we can extract a subsequence u 11 such that (133) u 11 ~u weakly* in V.

The weak* topology on V is defined by the semi-norms j ufi + j uxf2 + j utf3 where f 1 , f 2 and f 3 are in L 1 (1R + ; L 2 (1R)) with compact support in IR X [0, oo ). We deduce from (133) that As a and b are arbitrary, we have eventually I~~ (x,O+O)I <lu 1 (x)l a.e. on R.

When u 0 (x)>cp(x), we have the first part of (132), as locally, v== D u==O. D

We shall now study the relation between the strong convergence of auA;ax and auA;at, and the verification of the energy condition (11). LEMMA 14. Let uA be a sequence of solutions of (122), converging weakly* to a solution u of (126)-(132). Then, u satisfies the energy condition (11) if and only if auA;at and auAjax converge to au;at and au;ax respectively, strongly in Lfoc(IR X [0, oo )).

Proof. Notice first that as ((up,cp)-

I J.L) • 1 K converges to v • 1 K in M(IR X IR +)
weakly, for all compact K, and as (up,cp)-converges to zero uniformly on compact sets, then (140) for any compact set K.

Let oh(x') == h -lx-x'l• Then we have the identity, for any function v, And according to (140), the limit of ( 143) is (142). Therefore, as au~-t;a~ (resp. then it is straightforward to pass to the limit in ( 11 ). 0 5.2. Strong convergence when the obstacle is zero and the initial characteristic derivatives are of bounded variation. The first step in this study is to notice that if w is an affine function, then the penalized solution converges to the solution of ( P oo) which conserves the energy.

LEMMA 15. Let there be given initial conditions

(144) u(x,O)==a-bx>O on [x 0 -t 0 ,x 0 +t 0 ], u 1 (b,O)== -c<O,
and suppose that the free solution w( x, t) ==a-bx-et is such that w(x 0 ,t 0 )<0.

Then the solution ux of (122) with initial conditions (144) is given by a-bx-ct for bx+ct<a,

../A(c2-b2) sin ct+bx-a (145) ux(x,t)== /X(c2-b 2 ) for a<bx + ct<a+w/X( c 2 -b 2 ) , bx + ct-a-w/X( c 2 -b 2 ) forbx+ct>a+w/X(c 2 -b 2 ) .
Therefore ux converges strongly in H 1 (Tx-1 ) to the solution of(Px 1 ). 0' 0 o, 0 Proof. Let us compute the solution of (Px 1 ):

0' 0 E == { ( x , t) E Tx-1 : a-bx-et< 0} . o, 0
We see at once that the slope of the line a== bx +et is smaller than 1, in absolute value. Therefore I== E, and

(146) u ( x, t ) == { a -bx -et bx+ct-a if a-bx-ct>O, if a-bx-ct<O.
Let us look for the solution of (122) with initial conditions (144) under the form ux ( x, t) == fx ( bx +et).

Then fx must satisfy the ordinary differential equation with the initial conditions

( c2-b2 )!"-!___ r = 0 X fx(a)==O, fx(a)==-1.
This problem can be solved immediately and gives (145). Clearly the limit of the sequence ux is u, and Lemma 14 allows us to conclude the proof. D

Solving (147) amounts to finding a solution of ( 0 u+ ~ u) where we recall that T, the line of influence, is Lipschitz continuous, with Lipschitz constant 1.

We shall now use assumption (154) to obtain more information about the line of influence. We need the following notation (see Fig. 3): To prove that o is identical to 7' in an interval [x-a',x+a'] where a' may be smaller than a, we have to check that lo'(x')l < 1 a.e. on [x-a',x+a'].

(156) Q 1 == { (X' t): X> I tl}' Q 2 == {(x,t):t<lxl}, Q 3 == {(x,t):x< -ltl}, Q 4 == {(x,
The function o is continuous indeed, as w is continuous and t' == o( x') is the unique solution of w(x', t')==O in N. We may not directly differentiate the relation w(x',o(x')) == 0, as we do not have the assumptions of the implicit function theorem. But, with the very same argument as in this theorem, and using notation (157) and its analogue for au;ax, we have w(x' +h,o(x+h )) ==w(x,o(x')) +wx(x',a(x'); Q 1 )h ( 161 ) + W 1 (X', 0 (X') ; Q 1 ) ( 0 (X' + h ) -CJ (X')) +e 1 (lhl+ jo(x' +h) -o(x')l)

Here e 1 is a function such that By a standard argument for all h such that ( h , o ( x' 

+ h ) -o ( x ')) E Q 1 • 1 . e 1 (k) _ 1m k -0.
( h , o( X' + h) -0' (X')) E Q 1 t ' ' 1
The same result holds in the three other quadrants Q 2 , Q 3 and Q 4 , and by choosing a'

adequately small we shall have Then the integral expression in (163) is estimated by But lw( x-X~ ,t-T~) -w 0 ( x-X~ ,t-T~)I<o(lx-X~ -x 0 1 +lt-T~ -t 0 1), and we have to check that {(X,T)ETQri: (x-X/X,t-T/X)ESUS 0 } is bounded.

This set can be written as and using the fact that IT'(x 0 )1< 1, this set is bounded under the condition (164).

Thus, immediately,

!u(x,t)-u 0 (x,t)l ==o( ~).

A consequence of (165) is that, for A sufficiently small, the solution u of (147) is negative on the set (166)

This uses the fact that u 1 <0 on a neighborhood of x 0 , as was proved in Lemma 19.

Therefore, on the set (166), the solution of the penalized problem (122) is the solution of the linear problem (147), for A small enough. We have thus, for (x, t) on the set (166):

au,\ ( lim aau A ( X 0 ' t 0 + ( 'TT -e) J A ( 1 -m 2 ) ) == w 1J (X 0 ' t 0 ) cos( 'TT -e) .

x__.o 11 Therefore, the limit ii of u satisfies: au aw a~(x,T(x))==-a~(x,T(x)) a.e.on {x:IT'(x)l<1}.

This proves that ii is indeed the solution of (P 00 ). D

Conclusion.

There are still many open problems which can be conveniently listed at this point. The main one is to prove existence of an energy conserving solution when the obstacle is not assumed to be concave, as was the case in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF].

An obstruction to the proof of existence is that the lines of influence might cluster, and we do not know how to extend the solution after they have clustered.

But there is a more fundamental problem: the whole model relies on the assumption that the motion is transverse: how well is this assumption satisfied when the obstacle is not parallel to the rest position of the string? A better model might be needed; it should be at the same time realistic and tractable.

Another class of problems is the study of the qualitative properties of the system that we consider: periodicity, almost periodicity, for instance; for a first set of results in this direction, see [7].
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  b;+,-(b;) 71;-fi the line of influence in characteristic coordinates is such that (36) if ~ E ( ~;, ~; ) , if~==~;'

  FIG.l.The sets E and I, the influence line t==T(x), the intervals (a 1 , b 1 ), and the characteristic coordinates, with the ~J' ~j, 11 1 , 11}•

  ta) + g( 11) = g( 11) + /( x( 11 )) -Jx<'ll)lc/'( n df ~ (40) -~ [/(min(~;,x(11)))-/(max(~;,~))], i where the summation is extended to the indices such that [ ~;,~;]intersects [~,X( 11 )]. We have: g( 11) +/(X( 11)) >0, lX('I)lcf'(~')df<O by (39). ~ As X( 11) is one-valued, it is not contained in the interior of an interval [ ~;' ~;]. Thus min[ ~;, X( 11)) == ~; if [ ~;, ~;] n [~,X( 11)] ¥= 0 and, if~ f£. [ ~;' ~;], the corresponding term in the sum vanishes. For~ in [ ~;' ~;], the term in the sum is/(~;)-/(~), which is not positive, by (37). Therefore, the expression ( 40) is nonnegative for ~<X(11). If we suppose that X(11)==[~1 ,~j], we have to study the expression g

  The topology on W 1 !;[([0,+oo); Lfoc(R))nLfoc([O,+oo); H 1 ~c(R)) is defined by the seminorms for A,B>O qABp( U) = lu(O,O)I+ (foB[ f~A ( u~+ u;}(x,t) dx r/2 

  2 strongly, for almost all t>O. The relation (55) together with the estimate qABoo( un) <sup PA+B( u 0 + u}) < + oo n imply that un converges to u in the space W 1 !;{([0, + oo ); Lioc(IR)) n Lfoc([O, + oo ); H 1 ~(1R)).

For

  O>Y'(~)>-oo, we deduce from (105) and (106) that f'(~)+/'(~)==/Icp'(~ Y( ~)),which contains (107). Therefore, we have (108) /'(~)+/'(~)==ficp'(~-Y(~)) a.e. on C, and differentiating (104) on cc, (109) /'( ~) == /'( ~) a.e. on cc. Let us denote by h the function (110)where 11 is fixed throughout the end of this proof, and let ~0 ==sup{~' EX( TJ) }. Then, for ~<~0 , h(~)==f(~) and ~0 does not belong to any interval(~;'~~).To evaluate the total variation of h on a given bounded interval I== [a, b ], we have to estimate(Ill)TV( h : I) == TV( h; In (oo, ~0 )) + TV( h; C n ( ~0 , + oo))+TV( h; cc n ( ~0 , + oo )) + lh( ~0 +0)h( ~o -0)1 + }: [/h(~;+o)-h(~;-o)/+/h(~;+O)-h(~;-0)/]. { i : ~0 :s:;~;:s:;b} According to (108) and (109), we have: TV( h; In (oo, ~0 )) + TV( h; C n ( ~0 , + oo)) + TV( h; cc n ( ~0 , + oo)) (112)<TV(!;I)+TV( f2cp' ( ~-~U)) -j(~);I) 0

  ~~+o)-h(~~-o)l+lh(~;+O)-h(~;-0)1], { i : ~0 :s:;~;:s:;b} which could possibly contain an infinite number of terms. Using (108) and (109), we can write the terms of (113) as (114) /U;+o)+Ja;-o)-/2cp'( ~i~1 1 ~ -o) + Ja;+o)+Ja;-o)-/2cp'( ~;~1 1 ; +o) 0 But we have the following inequalities, deduced from the definition of the line of influence and of the intervals [ ~i' ~;]:

  .-0)--1 cp' ( ~;-TJ; -o) ==a-:-<o l )kcp'( ~~~1J; +o) =ai>O, f(~;-o)kcp'( ~;~1 1 ; -o) =b;-<o, /(~~+o)--1 cp' ( ~~-11 ; +o) ==b:<o l We can estimate (114) by la( +ail+ lb/ +bil + k [ cp' ( ~i~1li +0) -cp'( ~i~1li -0) (116) + cp' ( ~; ~11; +O) -cp' ( ~:~11; -0) l• But l a:+ a

  )), such that Du is a positive measure. Then the function a a 11~¥(~,11) ~ [a,b] is increasing from [-a, oo) to L 2 (a,b) for all a,b, and similarly a a ~~-a (~,11) 11 [c,d]

  in C 0 (1R X IR +) with the compact topology.Possibly with a new extraction 1 (135) -( ucp) ~ v weakly in M(IR X IR +) the set of measures on IR X IR +.

2 I 2 2 b

 222 The initial condition (131) is obviously satisfied. It remains to check (132). For this purpose, let us take, in (137), o(x)==O on [a,b]. Then, ultimately we get b (x,O) + a;(x,O) dx<~ ldxl +lu11 dx. du 0 12 I a u 12 a~ (x,O) + a., (x,O) = dx + af(x,O+O) , which takes into account (131), we have l al au 1 Jb at(x,O+O) dx< a lu 1 1 dx.

11 1 dhjx+h (I duo 1 2 +

 12 If the limit of the sequence up, satisfies (11), then the value of (141) for v == u is (142)The value of (141) for v ==up, is (143) j lul) dx -j _!_ ( ( u"-<p)-) 2 dx' dt • o x -h dx o::; t' ::; t --1 x-x 'I J.L

  chosen that w 1 ( x, T( x )) + kwx( x, T( x )) < 0, then w(x+kh,T(x) +h) <0.Thus, there exists a unique solution to the problem (160) w(x',o(x')) ==0, max{lx-x'l, lo( x')-T( x )I) <a, where a is a small positive number.

FIG. 3 .

 3 FIG. 3. The regionsQ;, i== 1,-• • ,4 of the (x, t)-plane.

  x'+h)-o(x')] = _ wx(x',<J(x'); Q 1 ). h_,.o h w (x' o(x') • Q )

  wx(x',o(x');Q;) I I _..;...__ _ _ _ ___;,_ < 1e for x-x' <a', W 1 (X 1 , 0 (X 1 ) ; Q; )

  (167) tim aau,\ (x 0 ,t 0 +(w-e)/A(1-m 2 ) )== +wt(xo,to)cos(w-e),\~0 t On {X O : T 1 (X O) < 1 and W 1 (X O , T (X O) ; Q i) < 0, i == 1 , • • • , 4} .Analogously, (168) lim aauA ( x 0 , t 0 + ( ?T-e)JA(lm 2 )) = wx(x 0 , to)cos( ?T-e) x__.o x On {X o: T ' (X o) < 1 and W 1 (X o , T (X o) ; Q i) < 0, i == 1 , • • • , 4} ,and (167) and (168) in turn imply:(169) lim aaut.A ( x 0 , t 0 + ('ITe )JA(lm 2 ) ) = w~( x 0 , t 0 )cos( 'IT-e), x__.o c:;

  + iu 1 (x, t)n dx< C( a, b) \i a>O, \i b>O, \i t<b and if (3) is satisfied, then right and left derivatives can be defined almost everywhere on the noncharacteristic parts of the curve t = o( x ).

		[1, part V], where it was shown that if
	(13)	a is Lipschitz continuous on R, with Lipschitz constant 1, and o>O on R,
	(14)	~~Jiux(x, t )1

2

Moreover, if (11) holds, then for all a satisfying (13), we have:

(15) I a;tu (x,a(x nl= I a;tu (x,a(x nl a.e. on {X: la'( X )I< I}.

  is as follows: THEOREM 0. Problem (P 00 ) possesses a unique solution u if cp" is nonnegative. Moreover, this solution u is the unique solution of the linear problem

	uEV,	
	D ul{(x, t): t:;6T(x)} == 0,	
	au {24) at ( X,T(x) +0) =-at (x, T(x) -0) a.e. on { x: T(x) >0& i'T'(x )I< 1}, au
	u(x,O)==u 0 (x), au at (x, 0) == u 1 (x ).	
	If p. is the measure defined by	
	(25)	
	then the solution of (19) is given by the sum of the free solution wand of a convolution
	(26)	
	where t9 is the elementary solution of the wave equation with support in the positive
	light cone:	
	(27)	on { ( x, t) : t > I xI } ,
		elsewhere.
	It will be useful to consider the problems (Px,t), which are just (P 00 ) restricted to the backward wave cone r;,t, with initial data given on [x-t,x+t]. Clearly, u is a solution
	of (P 00 ) if and only if it is a solution of (Px,t) for all x E IR, t>O.

LEMMA 3 .

 3 proof of Theorem 1 comes in several steps. The first step is the following result: The set where sup{[ w(x', t')]-: (x', t') E Tx~t} does not vanish is the interior of the domain of influence I.Proof. If w(x', t')<O for some (x', t') in the backward cone Tx-o then (x, t) belongs to the forward cone Tx-+; 1 ,, the vertex of which is in the interior of E. Thus (x, t) is in the Conversely, if ( x, t) belongs to the interior of I, then there exists a point (x', t') in the interior of E such that (x, t) belongs to the interior of Tx+;,t'•

			We can choose
	this (x', t') such that w(x', t') is strictly negative, because the set of (x', t') such that
	w(x', t')<O is dense in the interior of E. Therefore, sup(x',t')ET~~J w(x', t')]->0.	D
	Let us define		
	(30)	k (X, t ) == inf { W (X', t ') : (X', t ') E T;, 1 } •
	Then, thanks to Lemma 3, we have, if u is defined by (28),
	31 ( )	U X t == ( ) { '	w( x, t) for t < ,-( x), w( x, t)-2k( x, t) fort>,-( x).
	LEMMA 4. Let u 0 and u 1 satisfy the compatibility conditions (22), and let I be
	nonempty. Then the function k satisfies
	(32)	D k==O in the interior of I.
			x, t) + 2 sup [ w( x', t')]-.
			(x', t') E Tx-.t
	Remark 2. If the obstacle is plane, i.e., if cp(x) == ax + /3, then (28) can be gener-
	alized to		
	(29)		

u( x, t) == w( x, t) + 2 sup [ w( x' t')-cp( x')]-. (x', t') E Tx-.t

To deduce (29) from (28) it is enough to consider ucp, and notice that D cp == 0. The ' interior of I.

  u 0 (x) == cp(x) }, there exists a function u such lul +I ~0 n dx, for all Lipschitz continuous functions o, with Lipschitz constant 1, such that o( a)== o( b)== 0,

	that	
	(126)	uEV,
	(127)	u>cp,
	(128)	Du>O,
	(129) (130)	supp D u C { ( x, t) : u ( x, t) == cp ( x) } , 2 aur 2 a[(x,a(x)) (1+a'(x))+ a:;;-(x,a(x)) (1-a'(x)) dx l J b[ aur a <~b( lul + 1 ~:0 n dx, J b[ au' 2 au' 2 l a a[(x,a(x)) (1+a'(x))+a:q(x,a(x)) (1-a'(x)) dx
	<~a( o > 0 on (a, b),
	(131)	u(x,O)==u 0 (x),
	(132)	

  au~-t/aTJ) converges weakly to au;a~ (resp. au;aTJ) in Lioc([O, oo)XIR+), and j -~' dx' dt' + j -~' dx' dt' = j ~ dx' dt' + j ~ dx' dt' p,~O Ax,t a~ Ax,t== {(x', t') E Tx~1/x' <0}, Bx,t== Tx~1\Ax,n we can conclude that the convergence of aui-L;a~ and auJ.t/aTJ to au;a~ and au;aTJ is strong.Conversely, if au~-t;a~ (resp. au~-t/aTJ) converges strongly to au;a~ (resp. au;aTJ),

	au 2	au 2	a 2	a 2
		Bx,t a11	Ax,t a~	Bx,t a11

lim where

  == Tt ( x, o ( x)) a .e. on { x : I o ' ( x) I < 1 } ,

		u( X' t) I {(x,t): t~a(x)} == 0,
		u(x,o(x )) ==w(x,o(x )),
	au at ( x, o ( x)) which can be written as	ow
	(150)		-u==w--(9*U 1 ~ A.
	where t9 is the elementary solution of the wave equation defined by
			&(x,t)={} if t> X,
			elsewhere.
	The convolution equation (150) has a unique solution given by
	(151)	
	By a simple inductive calculation in characteristic coordinates, we obtain:
	(152)	
	Therefore	
	(153)	
	Together with (153), formula (151) gives (149).	D
	We can now state the theorem of convergence for penalized solutions:
	THEOREM 18. Let u 0 and u 1 be such that
	(154)	du 0 dx and u 1 are locally of bounded variation
	and suppose that they satisfy the compatibility condition (122). Then the solution ux of
	(122) converges to the solution of(P 00 ) when A. goes to zero.

l{(x,l): t>a(x)} =0, Proof. Let us first notice that on le, the complement of the domain of influence, we have, if u is the solution of (P):

  t):t:S-Ixl}. •)is strictly decreasing for x' close enough to x, and moreover, if k is so

	We shall denote	
	(157)	aw -a (x,t: Q;)== hm -a (x+h,t+k). . aw t (h,k)~O t
			(h,k)EQ;
	(159)		aw
		1 ::;;::;4	t
	Proof. The hypothesis (159) implies that, in a neighborhood N of (x, T(x ))
		aw sup -(x',t'; Q;)< -1<0; 1 <i<4 at
	therefore w(x',	

Thanks to (154), (aw;at)(x,t; Q;) is defined for 1 <i<4, and we have the formula

(158) 

with notation as in (125). We have analogous formulae for the three other limits.

LEMMA 19. Let x be such that T'(x) is defined and IT'(x )I< 1. Suppose that max -a (x,t; Q;)<O. 1:s;;:s;4 t Then there exists a neighborhood (x-e,x+e) of x such that lx'-xl<e~T'(x') has left and right limits at every point and IT'( x' + 0)1 < 1; moreover sup ~w (x',r(x'); Q;)< -1<0.

for (i,j) in the region Rm,h defined by (91), where C depends only on the initial conditions. Moreover, we have the following bounds on the (approximate) characteristic derivatives:

if u 0 and u 1 are extended to alliR by periodicity and imparity.

Proof. We shall replace the number a defined in (87) by n 0 h; for this new value of a, we can perform the construction of the solution of P 1 as in 2.3, and we shall compare wm and w[:J'h on the regions Rm and Rm,h.

Thanks to Theorem 8, the relation ( 95) is verified for m==O and C>(2f~!a(u5x+ 

if u 0 and u 1 are extended to all of IR by imparity and periodicity. Therefore (100)

Proof. (i) Estimate (123). We have the identity

Integrating on the region {(x, t): a<x<b and O<t<o(x)}, we obtain the identity ~h[l a~" (x, a(x ))12 +I aa:" (x,a(x ))12

From here, (123) is immediate.

(ii). Estimate ( 124).

We integrate D uA == (1/i\)( uA-<p )-on the backward cone Tx~t:

x-t and using the Schwarz inequality and (123), we obtain To check (129), let (x 0 , t 0 ) be a point such that u(x 0 , t 0 )>cp(x 0 ); thanks to (134) we can find a neighborhood U of (x 0 ,t 0 ) and a J.Lo such that up.(x,t)-cp(x) >-i(u(x 0 ,t 0 )-cp(x 0 )) 'VJ.L<J.L 0 , for all (x,t)E U. Therefore D uP. I u== 0 for J.L < J.Lo, and in the limit D ulu==O. This proves (129).

To prove (130), let (J be given, and e 0 be a positive number. Let us define for lel <e 0 Letting e 0 go to zero, we obtain the first relation of ( 130). If we take e" == 0 and let e'

and then e 0 tend to zero, we obtain the second relation of (130).

Remark 16. Suppose we replace the function r-by a function lf; such that \f; (X ) == 0 if X > 0, l/;(x) >0 if x<O, l/; is continuous, strictly decreasing on (-oo, 0), l/;(-00) == 00.

Then the penalized problem

can be studied as above; we get Theorem 14 with almost no change in the proof. Moreover, a phase plane analysis shows easily that in the case of initial data (144) the limit of ux is the function (146). We chose the specific penalization (122) because of its simplicity. We need an integral solution of the linear Klein-Gordon equation with initial values given on a curve t == o( x ). This is the object of the next lemma.

LEMMA 17. Let w be a solution of the wave equation on the set S == { ( x, t)

where o is a Lipschitz continuous function with Lipschitz constant I.

Then the unique solution on S of the problem T x 0 -t 0 , To x 0 -m--( ) , wt Xo' to

With the help of (148), we have U X (X, t) -U o (X, t) == w( X, t) -Wo (X, t)

Let us estimate (163) for x and t such that (164) lx-x 0 1 + lt-t 0 l <C{X, and under the hypotheses that IT'(x 0 )1 < 1 and that w 1 (x 0 , t 0 ) and wx(x 0 , t 0 ) are well defined. Then lw(x, t)w 0 (x, t )I <o(lx-x 0 1 + lt-t 0 l) == o( /X).

To estimate the integral, let us first note that lw•1s-wo•1sol <lw-wol•1suso• This relation comes from the fact that, locally, w • 1 s' ==w-and w 0 • 1 so== -w 0 . We define new variables X and T by t-t'==T{X,

x-x'==X/X.