
HAL Id: hal-01570494
https://hal.science/hal-01570494v1

Submitted on 30 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Examples of solving the inverse scattering problem and
the equations of the Veselov-Novikov hierarchy from the

scattering data of point potentials
Alexey Agaltsov, Roman Novikov

To cite this version:
Alexey Agaltsov, Roman Novikov. Examples of solving the inverse scattering problem and the equa-
tions of the Veselov-Novikov hierarchy from the scattering data of point potentials. Russian Mathe-
matical Surveys, 2019, 74 (3), pp.373-386. �10.1070/RM9867�. �hal-01570494�

https://hal.science/hal-01570494v1
https://hal.archives-ouvertes.fr


Simplest examples of inverse scattering on the

plane at fixed energy∗

A. D. Agaltsov1, R. G. Novikov2

July 30, 2017

We consider the inverse scattering problem for the two-dimensional
Schrödinger equation at fixed positive energy. Our results include
inverse scattering reconstructions from the simplest scattering am-
plitudes. In particular, we give a complete analytic solution of the
phased and phaseless inverse scattering problems for the single-point
potentials (of the Bethe-Peierls-Fermi-Zeldovich-Berezin-Faddeev type).
Then we study numerical inverse scattering reconstructions from the
simplest scattering amplitudes using the Riemann-Hilbert-Manakov
problem of the soliton theory. Finally, we apply the later numerical
inverse scattering results for constructing related numerical solutions
for equations of the Novikov-Veselov hierarchy at fixed positive en-
ergy.

Keywords: inverse scattering, Schrödinger equation, numerical anal-
ysis, Novikov-Veselov equation

Subjects: 35R30 (inverse problems for PDEs), 65N21 (numerical
analysis of inverse problems for PDEs), 35P25 (scattering theory),
35J10 (Schrödinger operator), 35Q53 (KdV-like equations);

1 Introduction

We consider the two-dimensional Schrödinger equation at fixed positive energy
E:

−∆ψ + v(x)ψ = Eψ, x ∈ R2, E > 0, (1)

where v is a real-valued sufficiently regular potential on R2 with sufficient decay
at infinity. For this equation we consider the classical scattering solutions ψ+ =
ψ+(x, k), specified by the following asymptotics:

ψ+(x, k) = eikx + C(|k|)e
i|k||x|

|x|1/2
f(k, |k| x|x| ) + o(|x|− 1

2 ), |x| → +∞,

x ∈ R2, k ∈ R2, k2 = E, C(|k|) = −πi
√

2πe−iπ/4|k| 12 ,
(2)
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with a priori unknown coefficient f . The function f of (2) is known as the
scattering amplitude for equation (1) and is defined on

ME = S1√
E
× S1√

E
, (3)

S1√
E

=
{
m ∈ R2 | m2 = E

}
. (4)

It is known that f possesses the following properties:

f(k, l) = f(−l,−k) (reciprocity), (5)

f(k, l)− f(l, k) =
π

i
√
E

∫
S1√

E

f(k,m)f(l,m)dm (unitarity), (6)

where k, l ∈ S1√
E

. For possible assumptions on v assuring existence and unique-

ness of ψ+ at fixed k and properties (5), (6) for f see, e.g., [14, 6, 10].
Note also that

fy(k, l) = ei(k−l)yf(k, l), k, l ∈ S1√
E
, (7)

where f is the scattering amplitude for v and fy is the scattering amplitude for
the translated potential vy = v(· − y), y ∈ R2.

For equation (1), the problem of finding ψ+, f from v is known as the direct
scattering problem; the problem of finding v from f is known as the inverse
scattering problem; and the problem of finding v from |f |2 is known as the
phaseless inverse scattering problem.

In addition to equation (1) we consider its isospectral deformations at fixed
E given by the Novikov-Veselov equation and its higher order analogs, see [16,
17, 6]. These equations admit a representation in the form of L-A-B Manakov
triple (introduced in [11]), where L = −∆ + v − E. We recall that the first
non-trivial equation of the Novikov-Veselov hierarchy can be written as:

∂tv = 4 Re
(
4∂3
zv + ∂z(vw)− E∂zw

)
,

∂z̄w = −3∂zv, w = w(x, t), w(x, t)→ 0, |x| → +∞,
E > 0, t ∈ R, x = (x1, x2) ∈ R2,

(8)

where v = v(x, t), w = w(x, t), ∂z = 1
2 (∂x1 − i∂x2), ∂z̄ = 1

2 (∂x1 + i∂x2).
Analogs of the Gardner-Green-Kruskal-Miura relations for the equations of

the Novikov-Veselov hierarchy and for the scattering amplitude f = f(k, l, t)
are as follows:

f(k, l, t) = exp
(
2itE

2n+1
2

(
cos((2n+ 1)ϕk)− cos((2n+ 1)ϕl)

))
f(k, l, 0),

k =
√
E(cosϕk, sinϕk), l =

√
E(cosϕl, sinϕl),

(9)

where n is the number of equation in the hierarchy; see [18] for the classical
Gardner-Green-Kruskal-Miura relations and [13, 8] for (9).
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Remark 1. (a) Properties (5), (6) are invariant with respect to transformations
of f given by (7) and (9). (b) The differential scattering cross-section |f |2 is
invariant with respect to transformations of f given by (7) and (9).

In [13, 14] it was shown that if f is smooth, satisfies (5), (6) and

‖f‖L2(ME) <

√
E

3π
, (10)

then there is a smooth, real-valued, decaying at infinity potential v such that f
is the scattering amplitude for v at fixed E. In addition, this v is reconstructed
from f via the algorithm suggested in [13, 14] and simplified in [15]. This final
algorithm of [15] is recalled in Section 2.

Note that these results of [13, 14, 15] are obtained using, in particular, the
Riemann-Hilbert-Manakov problem of the soliton theory (see [12]) and results
of [5] and [7]. In turn, the algorithm of [15] is implemented numerically in [3].

The results of the present work include inverse scattering reconstructions
from some simplest functions f satisfying (5), (6) at fixed E. In particular, in
this framework we give a complete analytic solution of the phased and phaseless
inverse scattering problems for the single-point potentials (of the Bethe-Peierls-
Fermi-Zeldovich-Berezin-Faddeev type) vα,y(x), α ∈ R ∪ {∞}, y ∈ R2, see
Subsection 4.1.

Then we give numerical inverse scattering reconstructions from some sim-
plest scattering amplitudes f satisfying (5), (6) at fixed E > 0 using the numer-
ical implementation (in MATLAB) of [3] of the algorithm recalled in Section
2.

First of all, in this connection, we study reconstructions from constant f
satisfying (5), (6) at fixed E. In particular, such f arise as scattering amplitudes
of the single-point potentials vα,y(x) for y = 0 (i.e. supported at zero). Note
that already for this simplest case there are no explicit analytic reconstruction
formulas for regular potentials. Our numerical results for this case develop
studies of [4, 2]. These results are presented in details in Subsection 4.2.

Then, using the numerical inverse scattering implementation of [3], we study
reconstructions from functions f arising as scattering amplitudes of multi-point
potentials (scatterers)

v(x) =

N∑
j=1

vαj ,yj (x), x ∈ R2, αj ∈ R, yj ∈ R2, (11)

consisting of N single-point scatterers vαj ,yj (x), where each point scatterer is
described by its internal parameter αj and position yj (and yi 6= yj for i 6=
j). This can be also considered as the first use of the multi-point potentials
of the Bethe-Peierls-Fermi-Zeldovich-Berezin-Faddeev type for testing inverse
scattering algorithms. Possibility of such tests was mentioned in [10]. These
results are presented in details in Subsection 5.1.

We emphasize that our aforementioned numerical reconstructions are ob-
tained using the results of [15, 3] and can be considered as regular approxima-
tions to the initial multi-point potentials which are quite singular.
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Finally, using the scattering amplitudes for the multi-point potentials, rela-
tions (9) and the inverse scattering implementation of [3] we obtain the related
numerical solutions for equations of the Novikov-Veselov hierarchy. In particu-
lar, these results also illustrate non-uniqueness in the inverse scattering problem
without phase information at fixed energy. See Subsection 5.2 for details.

2 Inverse scattering algorithm

It is convenient to use the following notations:

z = x1 + ix2, z̄ = x1 − ix2,

λ = E−1/2(k1 + ik2), λ′ = E−1/2(l1 + il2),
(12)

where x = (x1, x2) ∈ R2, k = (k1, k2) ∈ S1√
E

, l = (l1, l2) ∈ S1√
E

. In these
notations

k1 = 1
2E

1/2(λ+ λ−1), k2 = i
2E

1/2(λ−1 − λ),

l1 = 1
2E

1/2(λ′ + λ′−1), l2 = i
2E

1/2(λ′−1 − λ′),
(13)

where λ, λ′ ∈ T ,
T =

{
λ ∈ C | |λ| = 1

}
. (14)

Using formulas (3), (4), (12), (13), (14) one can see that

S1√
E
∼= T, ME

∼= T × T. (15)

In addition, in these notations functions ψ+, f of (2) can be written as

ψ+ = ψ+(z, λ,E), f = f(λ, λ′, E), (16)

where λ, λ′ ∈ T , z ∈ C, E > 0.
The algorithm of [15] for finding v on R2 from f on ME has the following

scheme:

f −→ h± −→ µ+ −→ µ− → v, (17)

and consists of the following steps:

Step 1. Find functions h±(λ, λ′, E), λ, λ′ ∈ T , from the following linear integral
equations:

h±(λ, λ′, E)− π
∫
T

h±(λ, λ′′, E)χ
(
±i
[
λ
λ′′ − λ′′

λ

])
×

×f(λ′′, λ′, E) |dλ′′| = f(λ, λ′, E),

(18)

where

χ(s) =

{
1, s ≥ 0,

0, s < 0.
(19)
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Step 2. Solve the following linear integral equation for µ+(z, λ,E), z ∈ C, λ ∈ T ,
E > 0:

µ+(z, λ,E) +

∫
T

B(λ, λ′, z, E)µ+(z, λ′, E) |dλ′| = 1, (20)

where

B(λ, λ′, z, E) =
1

2

∫
T

h−(ζ, λ′, z, E)χ

(
−i
[
ζ

λ′
− λ′

ζ

])
dζ

ζ − λ(1− 0)

−1

2

∫
T

h+(ζ, λ′, z, E)χ

(
i

[
ζ

λ′
− λ′

ζ

])
dζ

ζ − λ(1 + 0)
,

(21)

h±(λ, λ′, z, E) = h±(λ, λ′, E)×

× exp
(
−i
√
E
2

(
(λ− λ′)z̄ − (λ−1 − λ′−1)z

))
,

(22)

and λ, λ′ ∈ T , z ∈ C, E > 0.

Step 3. Define function µ−(z, λ,E), z ∈ C, λ ∈ T , E > 0, by the formula

µ−(z, λ,E) = µ+(z, λ,E) + πi

∫
T

h−(λ, λ′, z, E)×

×χ
(
−i
[
λ

λ′
− λ′

λ

])
µ+(z, λ′, E) |dλ′|,

(23)

where function h−(λ, λ′, z, E) is given by (22) and χ is defined by (19).

Step 4. Potential v = v(x,E), x ∈ R2, E > 0, is given by the formula

v(x,E) =

√
E

π

∫
T

∂zµ−(z, ζ, E) dζ, (24)

where z = x1 + ix2, x = (x1, x2), ∂z = 1
2 (∂x1

− i∂x2
).

Remark 2. As it was mentioned in the introduction, if f satisfies (5), (6), (10),
then there exists a smooth real-valued decaying at infinity potential v such that
f is the scattering amplitude for v at fixed E > 0. In this result condition
(10) can be replaced by a much weaker condition that all integral equations in
(18), (20) are uniquely solvable. In addition, in notations of the present section
condition (10) can be written as

‖f‖L2(T×T ) <
1

3π
. (25)

Note also that

v(x, τ2E) = τ2v(τx,E), E > 0, τ > 0, (26)

for v(x,E) reconstructed via (17) from f which is independent of E, i.e. f =
f(λ, λ′).
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3 Scattering functions for multi-point potentials

The scattering theory for multi-point potentials v mentioned in formula (11)
of the introduction is presented, in particular, in [1, 9, 10]. In addition, all
single-point potentials vα,y(x), α ∈ R \ {0}, x, y ∈ R2, can be considered as
renormalizations of delta functions εδ(x− y) with negative coefficients ε.

We recall that for the multi-point potentials v of formula (11) the classical
scattering functions ψ+ and f are given by explicit formulas as follows.

For the classical scattering eigenfunctions ψ+ the following formulas hold:

ψ+(x, k) = eikx +

N∑
j=1

q+
j (k)G+(x− yj , k),

x ∈ R2, k ∈ S1√
E
, yj ∈ R2, yj 6= ym for j 6= m,

(27)

G+(x, k) = − i
4H

(1)
0 (|x||k|), x ∈ R2, k ∈ S1√

E
, (28)

where H
(1)
0 is the Hankel function of the first kind of order zero and q+(k) =(

q+
1 (k), . . . , q+

N (k)
)

is the solution of the following linear system:

A+(k)q+(k) = b+(k), (29)

where A+(k) ∈MN (C), b+(k) ∈ CN are given by

A+
m,j(k) =

{
1 + αm

4π (πi− 2 ln |k|), m = j,

−αmG+(ym − yj , k), m 6= j,
(30)

b+(k) =
(
α1e

iky1 , . . . , αNe
ikyN

)
, α1, . . . , αN ∈ R. (31)

For the classical scattering amplitude f the following formula holds:

f(k, l) =
1

(2π)2

N∑
j=1

q+
j (k)e−ilyj , k, l ∈ S1√

E
, (32)

where q+
j (k) are the same as in (27), (29).

4 Reconstructions from constant f

4.1 Analytic inverse scattering for the single-point poten-
tials

The simplest functions onME are constants. Therefore, the results given below
in this section are of particular interest.

Lemma 1. Let f ≡ f0 on ME for fixed E > 0, where f0 is a complex constant.
Then f satisfies (5), (6) if and only if f0 ∈ S, where

S =
{
ζ ∈ C | ζ − ζ̄ = −2iπ2ζζ̄

}
=
{
ζ ∈ C | |ζ + i

2π2 | = 1
2π2

}
.

(33)
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Lemma 1 follows from direct substitution of f0 into (5), (6).
One can see that S is the circle centered at − i

2π2 of radius 1
2π2 .

Using (29), (32) (forN = 1, y1 = 0) one can see that the scattering amplitude
for the single point potential vα,y, y = 0, at fixed energy E is given by the
following formula:

f(k, l) ≡ fα(E),

fα(E) =
1

(2π)2

α

1 + α
4π (πi− lnE)

, E > 0, α ∈ R.
(34)

Assuming that fα(E) is defined as in (34), we have the following result.

Theorem 1. Let ζ = fα(E) for fixed E > 0. Then ζ ∈ S for any α ∈ R∪{∞}.
Conversely, for any ζ ∈ S there exists the uniqie α ∈ R ∪ {∞} such that ζ =
fα(E) and this α is given by the following formula:

α =
(2π)2ζ

1− πζ(πi− lnE)
. (35)

Proof of Theorem 1. The fact that the scattering amplitudes f (of Section 3) for
the multi-point potentials satisfy (5), (6), the corollary of (34) that f = fα(E)
is constant at fixed E and α, and Lemma 1 imply that ζ ∈ S if ζ = fα(E). The
property that ζ ∈ S if ζ = fα(E) can also be verified by the direct calculation
using the precise formula for fα(E) in (34).

Conversely, consider the equation

fα(E) = ζ with respect to α ∈ C ∪ {∞}, (36)

for fixed ζ ∈ S and E > 0. One can see that this equation is uniquely solvable
and that the solution is given by formula (35). Direct calculations also show
that α = ᾱ.

Theorem 1 is proved.

Remark 3. Theorem 1 gives a complete solution of the inverse scattering prob-
lem for the single point potentials vα,y, α ∈ R ∪ {∞}, y = 0 (uniqueness, re-
construction, characterization). In view of formula (7), this solution admits a
straightforward generalization to the case of vα,y with α ∈ R ∪ {∞}, y ∈ R2.

Remark 4. The property that ζ ∈ S if ζ = fα(E) can be considered as a
relationship between the amplitude and phase of a single point scatterer vα,y,
α ∈ R, y = 0. For a single point potential centered at zero, such a relationship
was obtained in [4, 2] in the form:

sinφ = −|β|/4, where

β = |β| exp(iφ), β = (2π)2f(k, l).
(37)

However, in [4, 2] this relation is not yet related to the unitarity property
(6) of the scattering amplitude f .
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In addition, Theorem 1 implies the following corollary for inverse scattering
without phase information.

Corollary 1. Let E > 0 be fixed. Then for any σ ∈ [0, 1
π4 ] the values of

parameter α ∈ R ∪ {∞} such that σ = |fα(E)|2 are given by (35) with

ζ = ±
√
σ(1− σπ4)− iσπ2, (38)

where the expression in (38) is single-valued for σ = 0 and σ = 1
π4 and is

double-valued for σ ∈ (0, 1
π4 ). In addition, for any σ ∈ ( 1

π4 ,∞) there exists no
α ∈ R ∪ {∞} such that σ = |fα(E)|2.

Remark 5. Let ζ = fα1(E1) for some fixed α1 ∈ R ∪ {∞}, E1 > 0. Then for
any E2 > 0 there exists the unique α2 ∈ R ∪ {∞} such that ζ = fα2

(E2), and
this α2 is given by the following formula:

α2 =
α1

1 + α1

4π ln E2

E1

. (39)

4.2 Numerical reconstructions from f ∈ S

In contrast to Theorem 1, we have no explicit formula for finding a regular
potential v(x,E) with constant scattering amplitude f ∈ S \{0} at fixed energy
E > 0. However, the related numerical reconstructions using the numerical
implementation of [3] of the algorithm recalled in Section 2 are presented below
in this section.

It is convenient to use the following parametrization of the circle S of (33):

S =
{
ζ = ζ(ϕ) | ζ(ϕ) = 1

2π2

(
−i+ eiϕ

)
, ϕ ∈ [−π, π)

}
. (40)

Let
A± =

{
ζ ∈ C | ±(ζ + ζ̄ + 2πζζ̄ lnE) > 0

}
=
{
ζ ∈ C | ±

(
|ζ + 1

2π lnE | −
1

2π lnE

)
> 0
}
.

(41)

Note that
α < 0 for ζ ∈ A− ∩ S, α > 0 for ζ ∈ A+ ∩ S,
α = 0 for ζ = 0, α =∞ for ζ = 1

π(πi−lnE) ,
(42)

where α is given by (35) for fixed E > 0.
Figure 1 illustrates reconstructions v(x,E) from scattering amplitudes f(k, l) ≡

ζ(ϕ) for ϕ ∈ (−π2 ,
π
2 ) as well as for ϕ ∈ (π2 ,

3π
2 ), where ζ(ϕ) is given in (40) and

E = 100. We show the real parts of the reconstructed potentials v(x,E) only.
The reason is that in our cases the imaginary parts are very small in compar-
ison with the real parts. In addition, the domain of negative α for E = 100
corresponds to ϕ ∈ (90◦, 158.6◦), and α =∞ corresponds to 158.6◦.

Note that numerical examples illustrating reconstructions from f(k, l) ≡
ζ(ϕ) with ϕ ∈ (−π2 ,

π
2 ) at fixed E > 0 were already given in [2] in the framework

of inverse scattering in acoustics.
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However, in addition to remarks of [2], it is interesting to note that for
the potential v(x,E) shown at Figure 1 for ϕ = −89◦ equation (1) can not
be interpreted already as the acoustic Helmholtz equation with variable sound
speed c(x) > 0. More precisely, in this case equation (1) can not be rewritten
as

−∆ψ −
(
ω2

c(x)2 −
ω2

c20

)
ψ = ω2

c20
ψ, (43)

where
v(x,E) = −

(
ω2

c(x)2 −
ω2

c20

)
, c(x) > 0, c0 > 0,

ω > 0, ω2

c20
= E, E = 100.

(44)

The reason is that in this example

max
x

v(x,E) > E. (45)

In connection with the results of Subsection 4.1, it is important to note that
the reconstruction shown in Figure 1 (right) is positive at zero, whereas all
single-point potentials vα,y(x), α ∈ R ∪ {∞}, α 6= 0, y ∈ R2, can be considered
as renormalized δ-functions εδ(x) with negative ε. On the other hand, the
reconstruction shown in Figure 1 (left) looks indeed as a regularized εδ(x) with
negative ε. To our knowledge, the reconstructions of Figure 1 (left) were not
yet given in the literature.

It is important to note that reconstructions shown in Figure 1 for ϕ = 201◦

and ϕ = −21◦ are obtained from scattering amplitudes f which differ only by
their phases. However, these reconstructions differ by their signs as well as by
the order of their amplitudes, and illustrate non-uniqueness in the phaseless
inverse scattering problem (mentioned in the introduction) in the simplest case!

Finally, note that condition (10) for f(k, l) ≡ ζ(ϕ) is fulfiled for ϕ ∈ (70.8◦, 109.2◦)
only, where ζ is defined as in (40) and E = 100. However, as it was already
pointed out in [3, 2], the algorithm recalled in Section 2 works well much beyond
limitation (10).

5 Further reconstruction examples

Let fα1,...,αN ,y1,...,yN denote the scattering amplitude of (32) for fixed α1, . . . ,
αN ∈ R ∪ {∞} and y1, . . . , yN ∈ R2.

5.1 Reconstructions from scattering amplitudes for multi-
point potentials

Developing results of Subsection 4.2 we also obtain numerical reconstructions
v(x,E) from some scattering amplitudes fα1,...,αN ,y1,...,yN for multi-point poten-
tials via the numerical implementation of [3] of the algorithm recalled above in
Section 2. These reconstructions v(x,E) are illustrated by Figure 2 for the case
of 3-point potentials and E = 100. In particular, in these examples we have
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Figure 1: Cross-sections of potentials v(x,E) (real part) numerically recon-
structed from the scattering amplitudes f(k, l) ≡ ζ(ϕ), ϕ = 201◦ (α ≈ 5.15),
203◦ (α ≈ 4.98), 204◦ (α ≈ 4.9) (left) and ϕ = 30◦ (α ≈ 1.25), −21◦ (α ≈ 1.86),
−89◦ (α ≈ 2.71) (right). Here ζ(ϕ) is defined as in (40) and E = 100.

that the positions of points of the initial multi-point potentials are reconstructed
very properly. In addition, we have

v(x,E) ≈
N∑
j=1

vαj ,yj (x,E), (46)

where vαj ,yj (x,E) denote the reconstructions from the scattering amplitudes of
the single-point potentials vαj ,yj (x).

5.2 Evolutions according to equations of the Novikov-Veselov
hierarchy

We recall the following scheme, established in [7, 13, 14, 15], for constructing
solutions v(x, t, E), x ∈ R2, t ∈ R, of the Novikov-Veselov equation (8) and its
higher order analogs at fixed E > 0:

f(k, l) −→ f(k, l, t) −→ v(x, t, E), (47)

consisting of the following steps:

Step 1. Given a smooth function f(k, l) on ME satisfying (5), (6) and (10) at
fixed E > 0, define f(k, l, t), t ∈ R\{0}, using (9) with f(k, l, 0) = f(k, l),
where n is the number of equation in the Novikov-Veselov hierarchy.

Step 2. Construct v = v(x, t, E) using scheme (17) of Section 2 with f = f(k, l, t)
for each fixed t ∈ R.

Then v(x, t, E) satisfies the n-th equation of the Novikov-Veselov hierarchy at
fixed E > 0.
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Figure 2: Numerical reconstructions from the scattering amplitudes of 3-point
potentials fα1,α2,α3,y1,y2,y3 with yk = (3 cos( 2πk

3 ), 3 sin( 2πk
3 )). Left: α1 = 0.7,

α2 = α3 = −1; right: α1 = α2 = α3 = −1. Here E = 100.

Note that in a similar way with Remark 2, condition (10) can be weakened
to the condition of the unique solvability of all involved integral equations.

In this section, using the numerical implementation of [3] of the algorithm
recalled in Section 2, we present numerical solutions of the Novikov-Veselov
equation (8) and its higher order analogs using scheme (47). In our examples
we use some scattering amplitudes f of Section 3 for single- and multi-point
potentials as the initial data of this scheme.

Our numerical results are illustrated by Figures 2, 3, 4. In particular, Figure
3 shows v(x, t, E) for the case of single-point potential. In this case v(x, 0, E)
looks as the reconstructions shown in Figure 1 (left) with

min
x
v(x, 0, E) ≈ −26.31. (48)

Besides, Figures 2 (right) and 4 show v(x, 0, E) and v(x, t, E) for the case of
3-point potentials.

Note that these numerical solutions v(x, t, E) of the Novikov-Veselov equa-
tion and its higher order analogs at fixed E > 0 illustrate the significant impact
of the phase of the scattering amplitude f on the form of the reconstructed po-
tential. These solutions (for fixed t) can be considered as non-trivial examples
of non-uniqueness in the phaseless inverse scattering problem mentioned in the
introduction.
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Figure 4: Solution v(x, t, E) of the n-th equation of the Novikov-Veselov hi-
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