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We consider the inverse scattering problem for the two-dimensional Schrödinger equation at fixed positive energy. Our results include inverse scattering reconstructions from the simplest scattering amplitudes. In particular, we give a complete analytic solution of the phased and phaseless inverse scattering problems for the single-point potentials (of the Bethe-Peierls-Fermi-Zeldovich-Berezin-Faddeev type). Then we study numerical inverse scattering reconstructions from the simplest scattering amplitudes using the Riemann-Hilbert-Manakov problem of the soliton theory. Finally, we apply the later numerical inverse scattering results for constructing related numerical solutions for equations of the Novikov-Veselov hierarchy at fixed positive energy.

Introduction

We consider the two-dimensional Schrödinger equation at fixed positive energy E:

-

∆ψ + v(x)ψ = Eψ, x ∈ R 2 , E > 0, (1) 
where v is a real-valued sufficiently regular potential on R 2 with sufficient decay at infinity. For this equation we consider the classical scattering solutions ψ + = ψ + (x, k), specified by the following asymptotics:

ψ + (x, k) = e ikx + C(|k|) e i|k||x| |x| 1/2 f (k, |k| x |x| ) + o(|x| -1 2 ), |x| → +∞, x ∈ R 2 , k ∈ R 2 , k 2 = E, C(|k|) = -πi √ 2πe -iπ/4 |k| 1 2 ,
(2) * Dedicated to S. P. Novikov on the occasion of his 80th birthday 1 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany; email: alexey.agaltsov@polytechnique.edu 2 CMAP, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France; IEPT RAS, 117997 Moscow, Russia; email: novikov@cmap.polytechnique.fr 1 with a priori unknown coefficient f . The function f of ( 2) is known as the scattering amplitude for equation [START_REF] Albeverio | Solvable models and quantum mechanics, ser. Texts and Monographs in Physics[END_REF] and is defined on

M E = S 1 √ E × S 1 √ E , (3) 
S 1 √ E = m ∈ R 2 | m 2 = E . (4) 
It is known that f possesses the following properties:

f (k, l) = f (-l, -k) (reciprocity), (5) 
f (k, l) -f (l, k) = π i √ E S 1 √ E f (k, m)f (l, m)dm (unitarity), (6) 
where k, l ∈ S 1 √ E . For possible assumptions on v assuring existence and uniqueness of ψ + at fixed k and properties [START_REF] Faddeev | Inverse problem of quantum scattering theory. II[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] for f see, e.g., [START_REF]The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF][START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF].

Note also that

f y (k, l) = e i(k-l)y f (k, l), k, l ∈ S 1 √ E , (7) 
where f is the scattering amplitude for v and f y is the scattering amplitude for the translated potential v y = v(• -y), y ∈ R 2 .

For equation [START_REF] Albeverio | Solvable models and quantum mechanics, ser. Texts and Monographs in Physics[END_REF], the problem of finding ψ + , f from v is known as the direct scattering problem; the problem of finding v from f is known as the inverse scattering problem; and the problem of finding v from |f | 2 is known as the phaseless inverse scattering problem.

In addition to equation (1) we consider its isospectral deformations at fixed E given by the Novikov-Veselov equation and its higher order analogs, see [START_REF] Novikov | Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolution equations[END_REF][START_REF]Finite-zone, two-dimensional Schrödinger operators. Potential operators[END_REF][START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF]. These equations admit a representation in the form of L-A-B Manakov triple (introduced in [START_REF] Manakov | The method of the inverse scattering problem, and twodimensional evolution equations[END_REF]), where L = -∆ + v -E. We recall that the first non-trivial equation of the Novikov-Veselov hierarchy can be written as:

∂ t v = 4 Re 4∂ 3 z v + ∂ z (vw) -E∂ z w , ∂ z w = -3∂ z v, w = w(x, t), w(x, t) → 0, |x| → +∞, E > 0, t ∈ R, x = (x 1 , x 2 ) ∈ R 2 , ( 8 
)
where v = v(x, t), w = w(x, t), ∂ z = 1 2 (∂ x1 -i∂ x2 ), ∂ z = 1 2 (∂ x1 + i∂ x2
). Analogs of the Gardner-Green-Kruskal-Miura relations for the equations of the Novikov-Veselov hierarchy and for the scattering amplitude f = f (k, l, t) are as follows:

f (k, l, t) = exp 2itE 2n+1 2 cos((2n + 1)ϕ k ) -cos((2n + 1)ϕ l ) f (k, l, 0), k = √ E(cos ϕ k , sin ϕ k ), l = √ E(cos ϕ l , sin ϕ l ), ( 9 
)
where n is the number of equation in the hierarchy; see [START_REF] Novikov | Theory of solitions[END_REF] for the classical Gardner-Green-Kruskal-Miura relations and [START_REF] Novikov | Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy[END_REF][START_REF]Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials[END_REF] for [START_REF]Faddeev Eigenfunctions for Point Potentials in Two Dimensions[END_REF].

Remark 1. (a) Properties ( 5), ( 6) are invariant with respect to transformations of f given by ( 7) and ( 9). (b) The differential scattering cross-section |f | 2 is invariant with respect to transformations of f given by ( 7) and [START_REF]Faddeev Eigenfunctions for Point Potentials in Two Dimensions[END_REF].

In [START_REF] Novikov | Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy[END_REF][START_REF]The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF] it was shown that if f is smooth, satisfies ( 5), [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] and

f L 2 (M E ) < √ E 3π , ( 10 
)
then there is a smooth, real-valued, decaying at infinity potential v such that f is the scattering amplitude for v at fixed E. In addition, this v is reconstructed from f via the algorithm suggested in [START_REF] Novikov | Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy[END_REF][START_REF]The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF] and simplified in [START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF]. This final algorithm of [START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] is recalled in Section 2.

Note that these results of [START_REF] Novikov | Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy[END_REF][START_REF]The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] are obtained using, in particular, the Riemann-Hilbert-Manakov problem of the soliton theory (see [START_REF]The inverse scattering transform for the time dependent Schrödinger equation and Kadomtsev-Petviashvili equation[END_REF]) and results of [START_REF] Faddeev | Inverse problem of quantum scattering theory. II[END_REF] and [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schrödinger operator and the nonlocl Riemann problem[END_REF]. In turn, the algorithm of [START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] is implemented numerically in [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF].

The results of the present work include inverse scattering reconstructions from some simplest functions f satisfying (5), [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] at fixed E. In particular, in this framework we give a complete analytic solution of the phased and phaseless inverse scattering problems for the single-point potentials (of the Bethe-Peierls-

Fermi-Zeldovich-Berezin-Faddeev type) v α,y (x), α ∈ R ∪ {∞}, y ∈ R 2 , see Subsection 4.1.
Then we give numerical inverse scattering reconstructions from some simplest scattering amplitudes f satisfying (5), [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] at fixed E > 0 using the numerical implementation (in MATLAB) of [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] of the algorithm recalled in Section 2.

First of all, in this connection, we study reconstructions from constant f satisfying (5), [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] at fixed E. In particular, such f arise as scattering amplitudes of the single-point potentials v α,y (x) for y = 0 (i.e. supported at zero). Note that already for this simplest case there are no explicit analytic reconstruction formulas for regular potentials. Our numerical results for this case develop studies of [START_REF] Burov | Relationship between the amplitude and phase of a signal scattered by a point-line acoustic inhomogeneity[END_REF][START_REF] Badalyan | Scattering by acoustic boundary scatterers with small wave sizes and their reconstruction[END_REF]. These results are presented in details in Subsection 4.2.

Then, using the numerical inverse scattering implementation of [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF], we study reconstructions from functions f arising as scattering amplitudes of multi-point potentials (scatterers)

v(x) = N j=1 v αj ,yj (x), x ∈ R 2 , α j ∈ R, y j ∈ R 2 , (11) 
consisting of N single-point scatterers v αj ,yj (x), where each point scatterer is described by its internal parameter α j and position y j (and y i = y j for i = j). This can be also considered as the first use of the multi-point potentials of the Bethe-Peierls-Fermi-Zeldovich-Berezin-Faddeev type for testing inverse scattering algorithms. Possibility of such tests was mentioned in [START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF]. These results are presented in details in Subsection 5.1. We emphasize that our aforementioned numerical reconstructions are obtained using the results of [START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF][START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] and can be considered as regular approximations to the initial multi-point potentials which are quite singular.

Finally, using the scattering amplitudes for the multi-point potentials, relations [START_REF]Faddeev Eigenfunctions for Point Potentials in Two Dimensions[END_REF] and the inverse scattering implementation of [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] we obtain the related numerical solutions for equations of the Novikov-Veselov hierarchy. In particular, these results also illustrate non-uniqueness in the inverse scattering problem without phase information at fixed energy. See Subsection 5.2 for details.

Inverse scattering algorithm

It is convenient to use the following notations:

z = x 1 + ix 2 , z = x 1 -ix 2 , λ = E -1/2 (k 1 + ik 2 ), λ = E -1/2 (l 1 + il 2 ), (12) 
where

x = (x 1 , x 2 ) ∈ R 2 , k = (k 1 , k 2 ) ∈ S 1 √ E , l = (l 1 , l 2 ) ∈ S 1 √ E . In these notations k 1 = 1 2 E 1/2 (λ + λ -1 ), k 2 = i 2 E 1/2 (λ -1 -λ), l 1 = 1 2 E 1/2 (λ + λ -1 ), l 2 = i 2 E 1/2 (λ -1 -λ ), (13) 
where λ, λ ∈ T ,

T = λ ∈ C | |λ| = 1 . (14) 
Using formulas ( 3), ( 4), ( 12), ( 13), ( 14) one can see that

S 1 √ E ∼ = T, M E ∼ = T × T. (15) 
In addition, in these notations functions ψ + , f of (2) can be written as

ψ + = ψ + (z, λ, E), f = f (λ, λ , E), (16) 
where λ, λ ∈ T , z ∈ C, E > 0. The algorithm of [START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] for finding v on R 2 from f on M E has the following scheme:

f -→ h ± -→ µ + -→ µ -→ v, (17) 
and consists of the following steps:

Step 1. Find functions h ± (λ, λ , E), λ, λ ∈ T , from the following linear integral equations:

h ± (λ, λ , E) -π T h ± (λ, λ , E)χ ±i λ λ -λ λ × ×f (λ , λ , E) |dλ | = f (λ, λ , E), (18) 
where

χ(s) = 1, s ≥ 0, 0, s < 0. ( 19 
)
Step 2. Solve the following linear integral equation for µ + (z, λ, E), z ∈ C, λ ∈ T , E > 0:

µ + (z, λ, E) + T B(λ, λ , z, E)µ + (z, λ , E) |dλ | = 1, (20) 
where

B(λ, λ , z, E) = 1 2 T h -(ζ, λ , z, E)χ -i ζ λ - λ ζ dζ ζ -λ(1 -0) - 1 2 T h + (ζ, λ , z, E)χ i ζ λ - λ ζ dζ ζ -λ(1 + 0) , (21) 
h ± (λ, λ , z, E) = h ± (λ, λ , E)× × exp -i √ E 2 (λ -λ )z -(λ -1 -λ -1 )z , (22) 
and λ, λ ∈ T , z ∈ C, E > 0.

Step

3. Define function µ -(z, λ, E), z ∈ C, λ ∈ T , E > 0, by the formula µ -(z, λ, E) = µ + (z, λ, E) + πi T h -(λ, λ , z, E)× ×χ -i λ λ - λ λ µ + (z, λ , E) |dλ |, (23) 
where function h -(λ, λ , z, E) is given by ( 22) and χ is defined by (19).

Step 4. Potential v = v(x, E), x ∈ R 2 , E > 0, is given by the formula

v(x, E) = √ E π T ∂ z µ -(z, ζ, E) dζ, (24) 
where

z = x 1 + ix 2 , x = (x 1 , x 2 ), ∂ z = 1 2 (∂ x1 -i∂ x2 ). Remark 2.
As it was mentioned in the introduction, if f satisfies (5), ( 6), [START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF], then there exists a smooth real-valued decaying at infinity potential v such that f is the scattering amplitude for v at fixed E > 0. In this result condition [START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF] can be replaced by a much weaker condition that all integral equations in [START_REF] Novikov | Theory of solitions[END_REF], (20) are uniquely solvable. In addition, in notations of the present section condition (10) can be written as

f L 2 (T ×T ) < 1 3π . ( 25 
)
Note also that

v(x, τ 2 E) = τ 2 v(τ x, E), E > 0, τ > 0, (26) 
for v(x, E) reconstructed via (17) from f which is independent of E, i.e. f = f (λ, λ ).

Scattering functions for multi-point potentials

The scattering theory for multi-point potentials v mentioned in formula [START_REF] Manakov | The method of the inverse scattering problem, and twodimensional evolution equations[END_REF] of the introduction is presented, in particular, in [START_REF] Albeverio | Solvable models and quantum mechanics, ser. Texts and Monographs in Physics[END_REF][START_REF]Faddeev Eigenfunctions for Point Potentials in Two Dimensions[END_REF][START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF]. In addition, all single-point potentials v α,y (x), α ∈ R \ {0}, x, y ∈ R 2 , can be considered as renormalizations of delta functions εδ(x -y) with negative coefficients ε.

We recall that for the multi-point potentials v of formula [START_REF] Manakov | The method of the inverse scattering problem, and twodimensional evolution equations[END_REF] the classical scattering functions ψ + and f are given by explicit formulas as follows.

For the classical scattering eigenfunctions ψ + the following formulas hold:

ψ + (x, k) = e ikx + N j=1 q + j (k)G + (x -y j , k), x ∈ R 2 , k ∈ S 1 √ E , y j ∈ R 2 , y j = y m for j = m, (27) 
G + (x, k) = -i 4 H (1) 0 (|x||k|), x ∈ R 2 , k ∈ S 1 √ E , (28) 
where H

(1) 0

is the Hankel function of the first kind of order zero and q + (k) = q + 1 (k), . . . , q + N (k) is the solution of the following linear system:

A + (k)q + (k) = b + (k), (29) 
where

A + (k) ∈ M N (C), b + (k) ∈ C N are given by A + m,j (k) = 1 + αm 4π (πi -2 ln |k|), m = j, -α m G + (y m -y j , k), m = j, (30) 
b + (k) = α 1 e iky1 , . . . , α N e iky N , α 1 , . . . , α N ∈ R.

For the classical scattering amplitude f the following formula holds:

f (k, l) = 1 (2π) 2 N j=1 q + j (k)e -ilyj , k, l ∈ S 1 √ E , (32) 
where q + j (k) are the same as in ( 27), (29).

4 Reconstructions from constant f

Analytic inverse scattering for the single-point potentials

The simplest functions on M E are constants. Therefore, the results given below in this section are of particular interest.

Lemma 1. Let f ≡ f 0 on M E for fixed E > 0, where f 0 is a complex constant. Then f satisfies (5), [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] if and only if f 0 ∈ S, where

S = ζ ∈ C | ζ -ζ = -2iπ 2 ζ ζ = ζ ∈ C | |ζ + i 2π 2 | = 1 2π 2 . ( 33 
)
Lemma 1 follows from direct substitution of f 0 into (5), [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF]. One can see that S is the circle centered at -i 2π 2 of radius 1 2π 2 . Using (29), (32) (for N = 1, y 1 = 0) one can see that the scattering amplitude for the single point potential v α,y , y = 0, at fixed energy E is given by the following formula:

f (k, l) ≡ f α (E), f α (E) = 1 (2π) 2 α 1 + α 4π (πi -ln E) , E > 0, α ∈ R. ( 34 
)
Assuming that f α (E) is defined as in (34), we have the following result.

Theorem 1. Let ζ = f α (E) for fixed E > 0. Then ζ ∈ S for any α ∈ R ∪ {∞}.
Conversely, for any ζ ∈ S there exists the uniqie α ∈ R ∪ {∞} such that ζ = f α (E) and this α is given by the following formula:

α = (2π) 2 ζ 1 -πζ(πi -ln E) . ( 35 
)
Proof of Theorem 1. The fact that the scattering amplitudes f (of Section 3) for the multi-point potentials satisfy ( 5), ( 6), the corollary of (34) that f = f α (E) is constant at fixed E and α, and Lemma

1 imply that ζ ∈ S if ζ = f α (E). The property that ζ ∈ S if ζ = f α (E)
can also be verified by the direct calculation using the precise formula for f α (E) in (34). Conversely, consider the equation

f α (E) = ζ with respect to α ∈ C ∪ {∞}, (36) 
for fixed ζ ∈ S and E > 0. One can see that this equation is uniquely solvable and that the solution is given by formula (35). Direct calculations also show that α = ᾱ. Theorem 1 is proved.

Remark 3. Theorem 1 gives a complete solution of the inverse scattering problem for the single point potentials v α,y , α ∈ R ∪ {∞}, y = 0 (uniqueness, reconstruction, characterization). In view of formula [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schrödinger operator and the nonlocl Riemann problem[END_REF], this solution admits a straightforward generalization to the case of v α,y with α ∈ R ∪ {∞}, y ∈ R 2 .

Remark 4. The property that ζ ∈ S if ζ = f α (E) can be considered as a relationship between the amplitude and phase of a single point scatterer v α,y , α ∈ R, y = 0. For a single point potential centered at zero, such a relationship was obtained in [START_REF] Burov | Relationship between the amplitude and phase of a signal scattered by a point-line acoustic inhomogeneity[END_REF][START_REF] Badalyan | Scattering by acoustic boundary scatterers with small wave sizes and their reconstruction[END_REF] in the form:

sin φ = -|β|/4
, where

β = |β| exp(iφ), β = (2π) 2 f (k, l). ( 37 
)
However, in [START_REF] Burov | Relationship between the amplitude and phase of a signal scattered by a point-line acoustic inhomogeneity[END_REF][START_REF] Badalyan | Scattering by acoustic boundary scatterers with small wave sizes and their reconstruction[END_REF] this relation is not yet related to the unitarity property (6) of the scattering amplitude f . In addition, Theorem 1 implies the following corollary for inverse scattering without phase information. 

ζ = ± σ(1 -σπ 4 ) -iσπ 2 , ( 38 
)
where the expression in (38) is single-valued for σ = 0 and σ = 1 π 4 and is double-valued for σ ∈ (0, 1 π 4 ). In addition, for any σ ∈

( 1 π 4 , ∞) there exists no α ∈ R ∪ {∞} such that σ = |f α (E)| 2 . Remark 5. Let ζ = f α1 (E 1 ) for some fixed α 1 ∈ R ∪ {∞}, E 1 > 0.
Then for any E 2 > 0 there exists the unique α 2 ∈ R ∪ {∞} such that ζ = f α2 (E 2 ), and this α 2 is given by the following formula:

α 2 = α 1 1 + α1 4π ln E2 E1 . ( 39 
)

Numerical reconstructions from f ∈ S

In contrast to Theorem 1, we have no explicit formula for finding a regular potential v(x, E) with constant scattering amplitude f ∈ S \ {0} at fixed energy E > 0. However, the related numerical reconstructions using the numerical implementation of [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] of the algorithm recalled in Section 2 are presented below in this section.

It is convenient to use the following parametrization of the circle S of (33):

S = ζ = ζ(ϕ) | ζ(ϕ) = 1 2π 2 -i + e iϕ , ϕ ∈ [-π, π) . ( 40 
) Let A ± = ζ ∈ C | ±(ζ + ζ + 2πζ ζ ln E) > 0 = ζ ∈ C | ± |ζ + 1 2π ln E | -1 2π ln E > 0 . (41) Note that α < 0 for ζ ∈ A -∩ S, α > 0 for ζ ∈ A + ∩ S, α = 0 for ζ = 0, α = ∞ for ζ = 1 π(πi-ln E) , (42) 
where α is given by (35) for fixed E > 0. Figure 1 illustrates reconstructions v(x, E) from scattering amplitudes

f (k, l) ≡ ζ(ϕ) for ϕ ∈ (-π 2 , π 2 ) as well as for ϕ ∈ ( π 2 , 3π 2 
), where ζ(ϕ) is given in ( 40) and E = 100. We show the real parts of the reconstructed potentials v(x, E) only. The reason is that in our cases the imaginary parts are very small in comparison with the real parts. In addition, the domain of negative α for E = 100 corresponds to ϕ ∈ (90 • , 158.6 • ), and α = ∞ corresponds to 158.6 • .

Note that numerical examples illustrating reconstructions from f (k, l) ≡ ζ(ϕ) with ϕ ∈ (-π 2 , π 2 ) at fixed E > 0 were already given in [START_REF] Badalyan | Scattering by acoustic boundary scatterers with small wave sizes and their reconstruction[END_REF] in the framework of inverse scattering in acoustics.

However, in addition to remarks of [START_REF] Badalyan | Scattering by acoustic boundary scatterers with small wave sizes and their reconstruction[END_REF], it is interesting to note that for the potential v(x, E) shown at Figure 1 for ϕ = -89 • equation (1) can not be interpreted already as the acoustic Helmholtz equation with variable sound speed c(x) > 0. More precisely, in this case equation [START_REF] Albeverio | Solvable models and quantum mechanics, ser. Texts and Monographs in Physics[END_REF] can not be rewritten as

-∆ψ -ω 2 c(x) 2 -ω 2 c 2 0 ψ = ω 2 c 2 0 ψ, (43) 
where

v(x, E) = -ω 2 c(x) 2 -ω 2 c 2 0 , c(x) > 0, c 0 > 0, ω > 0, ω 2 c 2 0 = E, E = 100. ( 44 
)
The reason is that in this example max

x v(x, E) > E. (45) 
In connection with the results of Subsection 4.1, it is important to note that the reconstruction shown in Figure 1 (right) is positive at zero, whereas all single-point potentials v α,y (x), α ∈ R ∪ {∞}, α = 0, y ∈ R 2 , can be considered as renormalized δ-functions εδ(x) with negative ε. On the other hand, the reconstruction shown in Figure 1 (left) looks indeed as a regularized εδ(x) with negative ε. To our knowledge, the reconstructions of Figure 1 (left) were not yet given in the literature.

It is important to note that reconstructions shown in Figure 1 for ϕ = 201 • and ϕ = -21 • are obtained from scattering amplitudes f which differ only by their phases. However, these reconstructions differ by their signs as well as by the order of their amplitudes, and illustrate non-uniqueness in the phaseless inverse scattering problem (mentioned in the introduction) in the simplest case! Finally, note that condition [START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF] for f (k, l) ≡ ζ(ϕ) is fulfiled for ϕ ∈ (70.8 • , 109.2 • ) only, where ζ is defined as in (40) and E = 100. However, as it was already pointed out in [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF][START_REF] Badalyan | Scattering by acoustic boundary scatterers with small wave sizes and their reconstruction[END_REF], the algorithm recalled in Section 2 works well much beyond limitation [START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF].

Further reconstruction examples

Let f α1,...,α N ,y1,...,y N denote the scattering amplitude of (32) for fixed α 1 , . . . , α N ∈ R ∪ {∞} and y 1 , . . . , y N ∈ R 2 .

Reconstructions from scattering amplitudes for multipoint potentials

Developing results of Subsection 4.2 we also obtain numerical reconstructions v(x, E) from some scattering amplitudes f α1,...,α N ,y1,...,y N for multi-point potentials via the numerical implementation of [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] of the algorithm recalled above in Section 2. These reconstructions v(x, E) are illustrated by Figure 2 that the positions of points of the initial multi-point potentials are reconstructed very properly. In addition, we have

v(x, E) ≈ N j=1 v αj ,yj (x, E), (46) 
where v αj ,yj (x, E) denote the reconstructions from the scattering amplitudes of the single-point potentials v αj ,yj (x).

Evolutions according to equations of the Novikov-Veselov hierarchy

We recall the following scheme, established in [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schrödinger operator and the nonlocl Riemann problem[END_REF][START_REF] Novikov | Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy[END_REF][START_REF]The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF]Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF], for constructing solutions v(x, t, E), x ∈ R 2 , t ∈ R, of the Novikov-Veselov equation ( 8) and its higher order analogs at fixed E > 0:

f (k, l) -→ f (k, l, t) -→ v(x, t, E), (47) 
consisting of the following steps:

Step 1. Given a smooth function f (k, l) on M E satisfying ( 5), ( 6) and [START_REF]Faddeev Eigenfunctions of Multipoint Potentials[END_REF] at

fixed E > 0, define f (k, l, t), t ∈ R \ {0}, using (9) with f (k, l, 0) = f (k, l),
where n is the number of equation in the Novikov-Veselov hierarchy.

Step 2. Construct v = v(x, t, E) using scheme (17) of Section 2 with f = f (k, l, t) for each fixed t ∈ R. 3 ), 3 sin( 2πk 3 )). Left:

α 1 = 0.7, α 2 = α 3 = -1; right: α 1 = α 2 = α 3 = -1. Here E = 100.
Note that in a similar way with Remark 2, condition (10) can be weakened to the condition of the unique solvability of all involved integral equations.

In this section, using the numerical implementation of [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] of the algorithm recalled in Section 2, we present numerical solutions of the Novikov-Veselov equation ( 8) and its higher order analogs using scheme (47). In our examples we use some scattering amplitudes f of Section 3 for single-and multi-point potentials as the initial data of this scheme.

Our numerical results are illustrated by Figures 2,[START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF][START_REF] Burov | Relationship between the amplitude and phase of a signal scattered by a point-line acoustic inhomogeneity[END_REF] In particular, Figure 3 shows v(x, t, E) for the case of single-point potential. In this case v(x, 0, E) looks as the reconstructions shown in Figure 1 Note that these numerical solutions v(x, t, E) of the Novikov-Veselov equation and its higher order analogs at fixed E > 0 illustrate the significant impact of the phase of the scattering amplitude f on the form of the reconstructed potential. These solutions (for fixed t) can be considered as non-trivial examples of non-uniqueness in the phaseless inverse scattering problem mentioned in the introduction. 

Corollary 1 .

 1 Let E > 0 be fixed. Then for any σ ∈ [0, 1 π 4 ] the values of parameter α ∈ R ∪ {∞} such that σ = |f α (E)| 2 are given by (35) with

for the case of 3 - 1 :

 31 point potentials and E = 100. In particular, in these examples we have Cross-sections of potentials v(x, E) (real part) numerically reconstructed from the scattering amplitudes f (k, l) ≡ ζ(ϕ), ϕ = 201 • (α ≈ 5.15), 203 • (α ≈ 4.98), 204 • (α ≈ 4.9) (left) and ϕ = 30 • (α ≈ 1.25), -21 • (α ≈ 1.86), -89 • (α ≈ 2.71) (right). Here ζ(ϕ) is defined as in (40) and E = 100.

Figure 2 :

 2 Figure 2: Numerical reconstructions from the scattering amplitudes of 3-point potentials f α1,α2,α3,y1,y2,y3 with y k = (3 cos( 2πk 3 ), 3 sin( 2πk 3 )). Left: α 1 = 0.7, α 2 = α 3 = -1; right: α 1 = α 2 = α 3 = -1. Here E = 100.

  (left) with min x v(x, 0, E) ≈ -26.31. (48) Besides, Figures 2 (right) and 4 show v(x, 0, E) and v(x, t, E) for the case of 3-point potentials.

2 Figure 3 :

 23 Figure 3: Solution v(x, t, E) of the n-th equation of the Novikov-Veselov hierarchy constructed from scattering amplitude f (k, l) ≡ f α (E). Left: n = 1, α = -1, t = 2E -3/2 ; right: n = 2, α = -1, t = E -5/2 . Here f α (E) is defined as in (34) and E = 100. The color indicates the value varying from -2 (black) to 1 (white).

2 Figure 4 :

 24 Figure 4: Solution v(x, t, E) of the n-th equation of the Novikov-Veselov hierarchy constructed from scattering amplitude f (k, l) = f α1,α2,α3,y1,y2,y3 (k, l), α 1 = α 2 = α 3 = -1, y k = (3 cos( 2πk 3 ), 3 sin( 2πk 3 )). Left: n = 1, t = 2.5E -3/2 ; right: n = 5, t = E -11/2 . Here E = 100 and the color indicates the value varying from -2 (black) to 1 (white).
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