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Abstract： 

The objective of the present study is to numerically investigate the quantitative effects of CO2 

replacement of N2 in the oxidizer side on NOx formation in CH4 diffusion flames established in 

counterflow configuration at atmospheric pressure. The mole fraction of O2 in the oxidizer was kept 

constant at 21%. Calculations were conducted at different stretch rates and different percentage of CO2 

in the oxidizer. Calculations were also carried out with and without radiation to quantify the effects of 

radiation heat transfer. For this simulation, a modified CHEMKIN code and a radiation code developed 

at the Combustion Group of ICPET were used. Mainly due to its much higher specific heat, 

replacement of nitrogen in air by carbon dioxide significantly lowers the temperature of the flame, 

leading to much lower NO concentrations. For a specified stretch rate, there exists a maximum 

percentage of CO2 in the oxidizer beyond which flame extinction occurs. The value of the maximum 

percentage of CO2 in the oxidizer decreases as the stretch rate increases. Effect of radiation heat 

transfer becomes more important as the stretch rate decreases. Replacement of N2 by CO2 in the 

oxidizer is an effective way to control NOx formation in CH4 diffusion flames mainly due to its thermal 

effect and secondly due to its chemical and radiative effects. 

Key words: CH4 Diffusion Flame; CO2 replacement; NOx formation; stretch rate; thermal effects; 

radiative effects. 

1. Introduction 

Combustion generated NOx (represents NO, NO2 and also N2O) are major air pollutants and also 
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contribute, along with other species (unburned hydrocarbons, CO and CO2), to global warming through 

the green-house effect. Various techniques have been developed to reduce the formation of NOx in 

flames, including the popular flue gas recirculation (FGR) in furnace application or exhaust gas 

recirculation (EGR) in engine application. It is important to understand from a fundamental point of 

view the mechanisms for the reduction of NOx when FGR or EGR is employed. Since CO2 is a major 

component in the combustion products, the present study is concerned with the effect of CO2 addition 

to air (through replacement of N2 by CO2 while keeping the O2 concentration constant) on NOx 

formation in CH4 counterflow diffusion flames. 

In the open literatures, there are some researches have been recently carried out for the effects and 

effectiveness of CO2 addition in reducing flame temperature and NOx emission [1-3], primarily 

involving its thermal effects of high heat capacity and radiation loss, and chemical effects of 

participation in reaction [4,5]. 

Due to these potential effects, the extinction characteristic is an interesting topic for flames diluted 

with carbon dioxide [6-8]. Qiao et al. [9] numerically quantified the chemical effect of CO2 on flame 

suppression of premixed methane flame in microgravity. The results indicate the decrease of flames 

temperature and radiative heat losses by diluent most likely lead to the flame extinction. Lock et al. [10] 

demonstrates the extinction characteristics of methane-air partially premixed and non-premixed flames. 

The fuel dilution is more effective than the air dilution for flame extinction with decreasing the level of 

partial premixing. The coflow and counterflow flames exhibit similarity. 

Considering that a high CO2 concentration in the application of Oxy-fuel combustion technology 

[11, 12], Song et al. [13] investigated the negative impacts of CO2 on combustion temperature. The 

nonlinear variation of chemical effects of CO2 on temperature with fraction of O2 is also given. Sabia et 

al. [14] found the dynamic behavior of temperature oscillations. Especially for the fuel-rich mixtures 

diluted with carbon dioxide, it significantly alters both the CH4 oxidation and CH3 recombination to 

ethane which mainly induces the instabilities. 

It is also well known that at high and low stretch rates flame extinction occurs, called stretch 

extinction and radiation extinction respectively. The present study shows that there exists a maximum 

amount CO2 in the oxidizer at a given stretch rate beyond which steady state combustion cannot be 

established. This type of flame extinction may be termed “thermal extinction” which is caused by flame 

temperature reduction through increased heat capacity of the combustion products. It has been shown 
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by previous studies [15, 16] (among several other studies) that radiation heat transfer becomes more 

important as the stretch rate decreases. 

The more recently developed GRI-Mech 3.0 mechanism (optimized for natural gas combustion) 

was used in this study. The results of this study were compared to the previous numerical studies [15,16] 

based on GRI-Mech 2.1 to demonstrate the differences between these two versions of GRI-Mech 

mechanism in the prediction of NOx in counterflow CH4 diffusion flames. 

2. Numerical Model 

In this study numerical calculations were carried out to model CH4 diffusion flames formed by 

two coaxial jets of fuel and air streams at atmospheric pressure, as shown in Fig.1. Although the system 

is 2D (axisymmetric), the problem can be transformed into a system of ordinary differential equations 

(1D) valid along the centerline [17]. The ordinary differential equations of mass, momentum, species, 

and energy are given as [17]. 

 

           (1) 

                                                                                                                                                                 

                   (2) 

 

                                  (3) 

 

             

        

(4) 

 
where V = u is the mass flux, f ’=v/v is the stream function or the nondimensional velocity in the 

radial direction, a is the stretch rate (such that the free stream velocities at the edge of the boundary 

layer are given as v = ay and u = -2ax),  density,  viscosity, Wk the molecular weight of the kth 

species, Yk the mass fraction of the kth species, k the molar rate of production of the kth species per 

unit volume, hk the specific enthalpy of the kth species, Vk the diffusion velocity of the kth species, cp 

the specific heat of the mixture at constant pressure , cpk the specific heat of the kth species, and qr the 

source term due to radiation heat transfer. The system of equations is closed by the ideal gas state 

equation.  

The radiation source term was calculated using the discrete-ordinates method (DOM) coupled 

with the statistical narrow-band correlated-k (SNBCK) method for the absorption coefficients of CO, 

2' '
( ') 0

d df df
V a f a

dx dx dx
 

æö
--+=ç÷

èø

( ) 0k
k k k k

dYd
Y V V W

dx dx
--+=

1 1

0
K K

p k k pk k k k r

k k

d dT dT dT
c V Y V c W h q

dx dx dx dx
l

==

æö
---+=ç÷

èø
åå

2 ' 0
dV

a f
dx

+=



4 
 

CO2, and H2O [18]. 

The oxidizer jet is located at an axial position of –2.2 cm and the fuel jet is located at 1.3 cm. The 

reaction mechanism used in the calculations is GRI-Mech 3.0 containing 53 species and 325 reactions. 

The calculations were conducted for four stretch rates of 4, 10, 25 and 50 s-1. The oxidizer consists of 

O2, N2, and CO2. The mole fraction of CO2 is from 0% (standard air as oxidizer) to 60% in the oxidizer. 

The mole fraction of O2 in the oxidizer was kept constant at 21%. The fuel is pure CH4. 

 

 

 

 

 

 

Fig.1 Schematic of a counterflow diffusion flame setup and locations of flame and stagnation 

plane 

3. Results and discussion 

3.1.  Effects of CO2 and stretch rate on the temperature 

The flame temperature is studied for a stretch rate of 10 m-1 in Fig. 2. The calculated peak flame 

temperatures decrease with the increase of the percentage of CO2. This temperature decrease is a direct 

consequence to the value of the heat capacity of the carbon dioxide. CO2 has a high heat capacity 

compared to the air. The more CO2 is added in the air side, the more CO2 takes the heat. Consequently, 

the more CO2 is added, the less is the temperature peak flame. 

oxidizer fuel
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Figure 2. Comparison of the flame temperatures obtained with and without radiation for 

different percentages of CO2 and for a stretch rate of 10 s-1. 

The flame temperature is studied for a stretch rate of 10 m-1 in Fig. 2. The calculated peak flame 

temperatures decrease with the increase of the percentage of CO2. This temperature decrease is a direct 

consequence to the value of the heat capacity of the carbon dioxide. CO2 has a high heat capacity 

compared to the air. The more CO2 is added in the air side, the more CO2 takes the heat. Consequently, 

the more CO2 is added, the less is the temperature peak flame. 

In Fig. 3, the calculations have converged with a stretch rate of 25 m-1 easier than with 10 m-1. The 

more the stretch rate is low, the more the convergence is difficult to have because the air and the fuel 

have not enough velocity to give a good combustion in the flame. These results are interesting because 

they give more precision on the effect of the CO2 percentage. The peak temperature decreases regularly 

with the increase of the CO2 percentage as shown in Fig. 2. But what is interesting, is to see that for a 

percentage of 60%, the peak temperature is 1644 K for an abscissa around -0.886 cm whereas for 0%, 

the peak temperature is 2036 K for x= -0.625 cm. The dramatically decrease of temperature show that 

for a percentage higher than around 60%, the temperature of the flame is too low, the combustion is not 

possible. These results show that it is not possible to make calculations with a high percentage of CO2 

and with a high stretch rate. The position of the flame shifts regularly on the oxidizer side. The position 

of the case with 50% is because of a flow rate of 0.095 l/s whereas all the other cases have a flow rate 

of 0.065 l/s. 
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Figure 3. Comparison of the flame temperatures obtained with and without radiation for 

different percentages of CO2 and for a stretch rate of 25 m-1. 

The Fig. 4 confirms the results of the Fig. 3. The flame cannot appear with both high stretch rate 

and high CO2 percentage. The difference between 0% and 10% without radiation for a stretch rate of 10 

m-1 is 79 K and for 25 m-1, it is 78 K. So, the decrease of the temperature is not caused by the stretch 

rate but by the percentage of CO2. There is no relation for the temperature between the percentage and 

the stretch rate. It is difficult to compare this point for the radiation because the data do not correspond 

exactly but it seems to be the same evolution. But all the results without radiation have the same 

evolution as those with radiation. Consequently, it shows that the radiation undergo the same effects of 

CO2 and the stretch rate as without radiation. 
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Figure 4. Comparison of the flame temperatures obtained with and without radiation for 

different percentages of CO2 and for a stretch rate of 50 m-1. 

 

3.2. Effects of CO2 and stretch rate on the NO formation 

Fig. 5 shows clearly that the percentage of CO2 has a really consequence on the flame and the 

formation of NO. The quantity of NO decreases dramatically with the increase of the quantity of CO2. 

This result is not surprising because it is well known that CO2 is added in industrial furnaces in order 

to decrease the pollution and the formation of pollutants like NO in the combustion. But the Fig. 6 

shows that the quantity of NO is more important with a higher stretch rate. The dramatic decrease is the 

same as Fig. 5 but for all the percentages, there are more NO with a high stretch rate than with a low 

stretch rate. That is because the combustion is better with a low stretch rate. With a high stretch rate, 

the combustion has not enough time to be completed, that is why the NO formation is more important. 

For a high percentage, the NO mass fraction is very low. It is not because the pollution is at the 

minimum but it is because of the flame which is going to be put out. The curve for 50% is shifted 

because of the flow rate. All these results are confirmed for a stretch rate of 50 m-1 with Fig. 7. 
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Figure 5. Comparison of mass fractions of NO obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 10 m-1. 
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Figure 6. Comparison of mass fractions of NO obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 25 m-1. 
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Figure 7. Comparison of mass fractions of NO obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 50 m-1. 

 

3.3. Effects of CO2 and stretch rate on the NO2 and N2O formation 

Fig. 8, 9 and 10 present the same results for the NO2 formation as for the NO formation 

presented before except for radiation. All the calculations with radiation for the NO2 formation show 

that the NO2 formation is higher than without radiation contrary to the stretch rate of 10 m-1. This 

result is normal because a way of the NO2 formation is the reaction between NO and HO2 in the 

low-temperatures regions of flame [19]. And as shown in Fig. 2, 3 and 4, the temperatures decrease 

with radiation, that is why it is normal to find more low-temperatures regions with the calculations of 

radiation. 
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Figure 8. Comparison of mass fractions of NO2 obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 10 m-1. 

 

CH4 Flame - Stretch Rate = 25 m-1
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Figure 9. Comparison of mass fractions of NO2 obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 25 m-1. 
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Figure 10. Comparison of mass fractions of NO2 obtained with and without radiation for 

different percentages of CO2 and for a stretch rate of 50 m-1 
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Figure 1. Comparison of mass fractions of N2O obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 10 m-1. 

 

 

As it has already been shown and according to Fig. 11, when the percentage of CO2 decreases, the 

formation of pollutants like N2O decreases too. And it is the same for all the stretch rate (Fig. 12 and 
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13). And when the stretch rate increase but stay low, the value of the peak formation increase a bit. It is 

probably for the same reason as for NO2. But for a high stretch rate (between 25 and 50 m-1), this 

evolution is lower. 
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Figure 12. Comparison of mass fractions of N2O obtained with and without radiation for 

different percentages of CO2 and for a stretch rate of 25 m-1 
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Figure13. Comparison of mass fractions of N2O obtained with and without radiation for different 

percentages of CO2 and for a stretch rate of 50 m-1. 

4. Conclusion 

A numerical study was carried out with CHEMKIN to investigate NOx formation behavior of CH4 
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diffusion flame with CO2 addition. Numerical results of the present study show that it is not possible to 

maintain sustainable combustion with either high CO2 or high stretch rate. For the CH4 diffusion flame, 

the thermal effect of CO2 is more significant than its chemical and radiative effects. The flame 

temperature significantly decreases with the increase of CO2 percentage, correspondingly reduce the 

NOx formation. Although the stretch rate has very little impact on temperature, there are more NO with 

a high stretch rate, due to lack of sufficient combustion time. Radiation increases the NO2 formation as 

a result of more low-temperatures region. In addition, effect of radiation heat transfer becomes more 

important as the stretch rate decreases. 
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