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Abstract: This article studies the recovery of graphons when they are convolution kernels on compact
(symmetric) metric spaces. This case is of particular interest since it covers the situation where the
probability of an edge depends only on some (unknown) function of the distance between latent points,
referred to as Nonparametric Geometric Graphs (NGG). In this setting, almost minimax adaptive estima-
tion of NGG is possible using a spectral procedure combined with a Goldenshluger-Lepski adaptation
method.The latent spaces covered by our framework encompasses (among others) compact symmetric
spaces of rank one, namely real spheres and projective spaces. For these latter, explicit computations of
the eigenbasis and of the model complexity can be achieved, leading to quantitative non-asymptotic
results. As a byproduct, the time complexity of our method scales cubicly in the size of the graph
and exponentially in the regularity of the graphon. Hence, this paper offers an algorithmically and
theoretically efficient procedure to estimate smooth NGG.
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1. Introduction

Over the recent years, the study of networks has become prevailing in many fields. Through the advent
of social networks, biological neural networks, food webs, protein interaction in genomics and World
wide web for instance, large scale data have become available. Extracting information from those
repositories of data is a true challenge. Random graphs prove to be particularly relevant to model
real-world networks. They are capable to capture complex interactions between actors of a system.
Vertices of a random graph usually represent entities of a system and the edges stand for the presence of
a specified relation between those entities. An important statistical problem is seeking better and more
informative representations of random graphs.

Following the seminal work of [13] various random graphs models have been suggested, see [5, 26, 20,
23] and references therein. Aside from classical random graphs, random geometric graphs, see [28],
have emerged as an interesting alternative to model real networks having spatial content. Examples
include the Internet (where the nodes are the routers) and other physical communication networks
such as road networks or neural networks in the brain. Recall that a random geometric graph is an
undirected graph in which each vertex is assigned a latent (unobservable) random label in some metric
spaces S. Two vertices are connected by an edge if the distance between them is smaller than some
threshold. Assuming that the underlying metric is the unit sphere Sd−1 and latent variables drawn from
the uniform distribution on Sd−1, the paper [8] considered the problem of testing if the observed graph
is an Erdös-Rényi one (no geometric structure) or a geometric graph on the sphere where points are
connected if their distance is smaller than some threshold.

More generally, random graphs with latent space can be characterized by the so-called graphon. In
fact, graphons can be seen as kernel functions for latent position graphs. For more insight about the
theory of graphon, we refer to the excellent monograph of [22]. In the case of graphons defining positive
definite kernels, the paper [32] proved that the eigen-decomposition of the adjacency matrix yields
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2 1 INTRODUCTION

consistent estimator of the graphon feature maps involving the latent variables. Besides, nonparametric
representations of graphons has gained attention. Statistical approaches on estimating graphons have
been developed using Least-Squares estimation [19] or Maximum Likelihood estimation [36]. Dealing
with estimation of (sparse) graphons from the observation of the adjacency matrix, the paper [19]
derives sharp rates of convergence for the L2 loss for the Stochastic Block Model.

1.1. A Statistical Pledge for Structured Latent Spaces

The graphons are limiting objects that describe large dense graphs. The graphon model [22] is standardly
and without loss of generality formulated choosing [0,1] as latent space. In this model, given latent
points x1, . . . , xn ∈ [0,1], the probability to draw an edge between i and j is W (x i , x j) where W is a
function from [0, 1]2 onto [0, 1], referred to as a graphon. This model is general and well referenced in
the literature—as mentioned earlier, the reader may consult the book [22] for further details.

However, this model may underneath intrinsic features of a random graph. For instance, recall the
prefix attachment graph model [22, Page 190] where the nodes are added one at a time and each new
nodes connects to a random previous node and all its predecessors. In this model, the graph sequence
converges in cut distance [22, Proposition 11.42] to the graphon Wpref defined as

∀(x1, y1), (x2, y2) ∈ [0, 1]2, Wpref((x1, y1), (x2, y2)) = 1(x1 < x2 y2) +1(x2 < x1 y1) , (1)

up to a measure preserving homomorphism of the latent space [0, 1]2. From a statistical point of view, the
estimation of the function ((x1, y1), (x2, y2)) 7→ 1(x1 < x2 y2) from sample points ((xk, yk))k uniformly
distributed on [0,1]2 is a well understood standard task.

Yet one may also represent this graphon on the standard latent space [0,1]. And, in this case, one
cannot represent this graphon using the indicator function of two symmetric convex sets with piecewise
smooth border as done in (1). Actually, in this case, a fractal-like structure appear and the statistical
estimation of this function seems more difficult than in (1). Our statement may be loose here but one
may emphasize that there may exist better latent spaces than [0, 1] on which the graphon may presents
a simple and better estimable formulation.

An other important statistical issue is that, by construction, graphons are defined on an equivalent class
“up to a measure preserving homomorphism” and it can be challenging to have a simple description from
an observation given by sampled graph—since one has to deal with all possible composition of a bivariate
function by any measure preserving homomorphism. In this paper, we circumvent this disappointing
statistical issue restraining our attention to graph models for which the probability of appearance of an
edge depends as a nonparametric function of the distance between latent points.

1.2. Main results

In this paper, we focus on latent metric spaces for which the distance is invariant by translation (or
conjugation) of pairs of points. This natural assumption leads to consider that the latent space S has
some group structure, namely it is a compact Lie group or some compact symmetric space. Hence,
consider graphons defined as functions p of (the cosine of) the distance γ (normalized so that the range
of γ equals [0,π]) of some compact Lie group S, or more generally of some compact symmetric space,
see Section 4. In this case, the graphon is given by

∀x , y ∈ S, W (x , y) = p(cosγ(x , y)) = p(cosγ(z, e)) and z = x y−1 ,

where y−1 is the inverse of y, e denotes the identity element of S and p is a function from [−1,1]
onto [0,1] referred to as the “envelope”. In the case when S is the Euclidean sphere, we consider
graphons that are a function p of cosine of the distance, namely cosγ(x , y) = 〈x , y〉, between latent
points x , y ∈ S.
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First, note that W , viewed as an integral operator on square-integrable functions, is a compact convolution
(on the left) operator. The convolution (on the left) kernel is simply

z ∈ S 7→ p(cosγ(z, e)) ∈ [0,1] .

Then the main point is that there exists an L2-decomposition of the Hilbert space of square integrable
functions such that the eigenfunctions basis of the convolution kernel (and the graphon W viewed as a
integral operator) depends only on the latent space S and does not depend on the function p. This basis
is the irreducible characters in the (Lie) Group case and the zonal spherical functions in the non-Group
case, see Cartan’s Classification of “sscc” Lie Groups and “ssccss” in Section 4 for further details. This
decomposition can be pushed on [−1, 1] and one gets an L2-decomposition of the envelope function p
such that the orthonormal basis (Z`) depends only on the latent space S and does not depend on p,
see (2). Furthermore, the eigenvalues λ? = (λ?k)k≥0 of the kernel W are exactly (up to some known
multiplicities and up to some known multiplicative constants) the coefficients of p onto the orthonormal
basis (Z`)`≥0. Hence, the graphon W is entirely described by the univariate function p defined on [−1, 1].
It follows that this subclass of graphons may be well suited for estimation since it reduces to estimate a
simple univariate function on [−1, 1].

Now, consider the case when S is one of the compact symmetric space of rank one—namely real spheres
or real/complex/quaternionic/octonionic projective spaces. In this case, one can explicitly give the
decomposition of the envelope function p. One can prove that the orthonormal polynomials (Z`)`≥0 are
the orthonormal polynomials (more precisely, normalized Jacobi polynomials) of some Beta law with
known shape parameters (α,β), see Table 1 for the explicit values. This decomposition is given by

p=
∑

`≥0

Æ

d`p
?
` Z` and p?` =

1
p

d`
〈p, Z`〉L2([−1,1],w) , (2)

in L2([−1, 1],w) where w denotes the density function of the Beta distribution. We further assume that
there exists s > 0, a (Sobolev) regularity parameter, such that

∀R≥ 1 ,
∑

`>R

d`(p
?
`)

2 ≤ C(p, s,S)R−2s.

for some constant C(p, s,S)> 0 and for some known dimensions (d`)`∈N (given by the representation of
the group/quotient S) that depends only on S, see Table 1. This assumption governs the regularity of
the kernel W and it can be understood that the derivative of order s (in the Laplacian on S sense) of W
is square-integrable. In this case, one can build an estimator bλbR (from the spectrum of the adjacency
matrix of the graph) of the spectrum λ? of W (viewed as an integral operator) such that

E
�

δ2
2

�

bλ
bR,λ?

��

= O
�

� n
log n

�− 2s
2s+(d−1)

�

,

where n is the size of the graph, d is the dimension of the latent space (actually, S is a (d− 1)-manifold)
and δ2 is the `2 distance between spectra, see (7) for a definition. We uncover the minimax rate of
estimating a s-regular function on a space of (Riemannian) dimension d− 1 up to a multiplicative log
factor. This result is stated in Theorem 6 without adaptation to the smoothness parameter, Theorem 7
and Corollary 8 with smoothness adaptation, and Theorem 9 and Corollary 10 for adaptive estimation of
the envelope function p at rate O (log n/n) when p is a polynomial. The general statement for compact
symmetric spaces is given by Theorem 11.

Note that our results hold for general convolution kernels and not necessarily semidefinite positive
kernels. Indeed, it is often assumed in the literature, see for instance [14, 29, 32, 31], that the graphon
W is a semidefinite positive kernels. In this case, the adjacency matrix of the random graph is almost
surely semidefinite positive, which is a strong requirement in Graph theory. To bypass this limitation,
our approach does not use any RKHS representation but a new non-asymptotic concentration result on
the integral operator, see Theorem 2 and Corollary 3. The rates uncovered by these results allow us to
introduce a minimax adaptive estimation procedure of the spectrum of the graphon.



4 2 SPECTRAL CONVERGENCE OF THE SAMPLED GRAPHONS

From a computational point of view, Theorem 5 enlightens on the time complexity of our estimator.
Remarkably, the time complexity is n3 + (Rmax + 2)!, that is cubic in the graph size n (as any spectral
method) and exponential in the number of coefficients p?

`
one has to estimate. The number Rmax is

theoretically with order n
1

d−1 but can be chosen smaller in practice. The spatial complexity is quadratic
in n as one has to store the adjacency matrix of the graph.

1.3. Outline

The convergence of the spectrum of the “matrix of probabilities” towards the spectrum of the integral
operator in a non-asymptotic frame is given in Section 2. Then, we begin our study by a comprehensive
example on the d-dimensional sphere in Section 3. Interestingly, we uncover that the spectrum of the
graphon (viewed as a kernel operator) presents a structure: the eigenvalues have prescribed multiplicities
and the eigenvectors are fixed—they are the spherical harmonics. Adaptive minimax estimation of the
spectrum of the graphon W (viewed as an integral operator) is proved and computational complexities
are discussed. Extensions to compact symmetric spaces is done in Section 4. Numerical experiments are
presented in Section 5. The proofs are given in the appendix.

2. Spectral Convergence of the Sampled graphons

In this section, we introduce some probabilistic results for graphons viewed as a kernel operator.

2.1. Estimating the Matrix of Probabilities

We denote [n] := {1, . . . , n} for all n ≥ 1. Consider a random undirected graph G with n nodes and
assume that we observe its n× n adjacency matrix A given by entries Ai j ∈ {0,1} where Ai j = 1 if the
nodes i and j are connected and Ai j = 0 otherwise. We set Aii = 0 on its diagonal entries for all i ∈ [n]
and we assume that Ai j are independent Bernoulli random variables with (Θ0)i j := P{Ai j = 1} for
1 ≤ i < j ≤ n. We denote by Θ0 the n× n symmetric matrix with entries (Θ0)i j for 1 ≤ i < j ≤ n and
zero diagonal entries. This is a matrix of probabilities associated to the random graph G. Throughout
this paper, we denote by

bT n := (1/n)A and T n := (1/n)Θ0 . (3)

Using the central limit theorem, it is elementary that, with high probability,

‖bT n − T n‖2
F ∈





1
n2

∑

i 6= j

(Θ0)i j(1− (Θ0)i j)±O
�

1
n

�



 ,

where ‖ · ‖F denotes the Frobenius norm. We witness that the Euclidean distance between bT n and T n
is of the order of the average value of the entries (Θ0)i j . The Frobenius norm seems an inappropriate
prediction loss. Instead, our analysis leverages the operator norm ‖ · ‖ loss to account for the distance
between the observation bT n and the target parameter T n. Furthermore, a near optimal error bound can
be derived for the operator norm ‖ · ‖ loss as shown in [2].

Proposition 1 (Bandeira & van Handel [2]). There exists a universal constant C0 > 0 such that for all
α ∈ (0,1), it holds

P
�

‖bT n − T n‖ ≥ 3

p

2D0

n
+ C0

p

log(n/α)
n

�

≤ α (4)

where D0 =max
i∈[n]

� ∑

j∈[n]

(Θ0)i j(1− (Θ0)i j)
�

≤ n/4.
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A proof is recalled in Appendix A.1. Proposition 1 is of particular interest giving an error bound on each
eigenvalue λk(T n) of T n, where λk(M) denotes the k-th largest eigenvalue of the symmetric matrix M .
Indeed, it holds, with probability greater that 1− n exp(−n),

∀k ∈ [n], |λk(bT n)−λk(T n)| ≤ ‖bT n − T n‖= O (1/
p

n) , (5)

by Weyl’s perturbation Theorem, see [4, Page 63] for instance.

2.2. Non-Asymptotic Error Bounds on the Kernel Spectrum in δ2-metric

We understand that the spectrum of bT n can be a good approximation of the spectrum of T n in the sense
of (5). Assuming a graphon W model we can link the spectrum of T n (sampled graphon onto the latent
points X1, . . . , Xn see below) to the spectrum of an integral operator TW defined by the graphon W
viewed as a symmetric kernel. More precisely, we consider J := (S,A ,σ) a probability space on S
endowed with measure σ on the σ-algebra A, and W : S × S → [0,1] a symmetric σ-measurable
function. The couple (J , W ) is referred to as a graphon, see for instance [22, Chapter 13]. We then
define a probabilistic model on Θ0 setting

(Θ0)i, j =W (X i , X j) for i 6= j and 0 otherwise

where X1, . . . , Xn are i.i.d. drawn w.r.t. σ. Assume that the kernel satisifies W ∈ L2(σ⊗σ;S×S), so that

∀x ∈ S, ∀g ∈ L2(σ;S), (TW g)(x) =

∫

S

W (x , y)g(y)dσ(y) ,

defines a symmetric Hilbert-Schmidt operator TW on L2(σ;S) and we can invoke the spectral theorem.
Hence, it holds that, in the L2(σ ⊗σ;S× S)-sense,

for almost every x , y ∈ S, W (x , y) =
∑

k≥1

λ?kφk(x)φk(y) , (6)

for an L2(σ;S)-orthonormal basis (φi)i≥1. This operator has a discrete spectrum, i.e. a countable
multiset λ? of nonzero (real) labeled eigenvalues (λ?k)k≥1 such that λ?k → 0. In particular, every nonzero
eigenvalue has finite multiplicity. In this article, we are free to choose any labeling of the target
eigenvalues (λ?k)k≥1 and observe that our results are valid for any choice of labeling. For instance, we
can standardly label the eigenvalues in decreasing order with respect to their absolute values such that
|λ?1| ≥ |λ

?
2| ≥ · · · and this gives results whose error rates (typically ‖W −WR‖2 see below) are in terms

of the best L2-approximation of rank R of the kernel W . An other choice may result in labeling the
eigenvalues in increasing order of “frequencies”. This labeling is natural for instance when we have a
representation by spherical harmonics of the kernel as in Section 3. This gives results whose error rates
are in terms of the best approximation by low frequency (i.e. the R first frequencies) kernels.

Given two sequences x and y of real numbers—completing finite sequences by zeros—such that it holds
∑

x2
i + y2

i <∞, we standardly define the `2-rearrangement distance δ2(x , y) as

δ2(x , y) := inf
π∈P

�∑

(x i − yπ(i))
2
�

1
2

,

where the infimum is taken over P the set of permutations with finite support. Using Hardy-Littlewood
rearrangement inequality [16, Theorem 368], it is standard to observe that

δ2(x , y) = lim
N→∞

�

N
∑

k=−N

(xk − yk)
2

�
1
2

, (7)
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with the convenient notation x−1 ≤ x−2 ≤ . . .≤ 0≤ . . .≤ x2 ≤ x1 ≤ x0 (respectively y−1 ≤ y−2 ≤ . . .≤
0≤ . . .≤ y2 ≤ y1 ≤ y0) where we denote x = (xk)k∈Z (respectively y = (yk)k∈Z) completing with zeros
if necessary.

Using this metric we can compare the (finite) spectrum λ(T n) of T n to the (infinite) spectrum λ? of TW .
To the best of our knowledge, existing results on this issue assume that W is a positive kernel and use a
RKHS representation and/or Mercer theorem. This assumption might seem meaningless for a graphon.
Indeed, it implies that TW is semi-definite and if W =WH is a “step-function” kernel representing a finite
graph H, it implies that the adjacency matrix of H is semi-definite which might be seen as restrictive. In
this article, we bypass this limitation with the next result based on the analysis developed in [21] and
some recent development in random matrix concentration, see [33] for instance.

Theorem 2. Let W ∈ L2(σ⊗σ;S×S) be a symmetric kernel and let (φk)k≥1 be an orthonormal eigenbasis
as in (6). Let R≥ 1 and α ∈ (0, 1/3). Set

ρ(R) :=max

�

1,









R
∑

r=1

φ2
r










∞
− 1

�

and ∀x , y ∈ S, WR(x , y) :=
R
∑

i=1

λ?iφi(x)φi(y).

Then, for all n3 ≥ ρ(R) log(2R/α), it holds

δ2(λ(T n),λ
?)≤2‖W −WR‖2 + ‖W −WR‖∞

�2 log(2/α)
n

�
1
4

+ ‖WR‖2

�

�ρ(R) log(2R/α)
n

�
1
2 +

�2ρ(R)
n

�

1+ max
1≤r≤R

||φ2
r ||∞

√

√ log(R/α)
2n

��
1
2

�

,

with probability at least 1− 3α.

A proof of Theorem 2 can be found in Appendix A.2. This result shows that for all n≥ n0(R), it holds
that δ2(λ(T n),λ?) ≤ 2‖W −WR‖2 + C0(R)n−

1
4 with probability at least 1− 3α, where the constants

n0(R)≥ 1 and C0(R)> 0 may depend on R, the orthogonal basis (φk)k∈[R], α and the graphon W . We
have the following improvement for canonical kernels, see [11, Definition 3.5.1] for a definition.

Corollary 3. Assume further that the kernel (W −WR)2(x , y)−E
�

(W −WR)2
�

is canonical, namely

For almost every x ∈ S, E
�

(W −WR)
2(x , X1)

�

= E
�

(W −WR)
2(X1, X2)

�

,

then there exist universal constants C1, C2 > 0 such that for all n3 ≥ ρ(R) log(2R/α), it holds

δ2(λ(T n),λ
?)≤2‖W −WR‖2 + ‖W −WR‖∞

�C1 log(C2/α)
n

�
1
2

+ ‖WR‖2

�

�ρ(R) log(2R/α)
n

�
1
2 +

�2ρ(R)
n

�

1+ max
1≤r≤R

||φ2
r ||∞

√

√ log(R/α)
2n

��
1
2

�

,

with probability at least 1− 3α.

A proof of this corollary can be found in Appendix A.6.

3. The Sphere Example, prelude of Symmetric Compact Spaces

From a general point of view, this article focuses on the case where the value W (x , y) depends on a
nonparametric function p of the distance between the points x and y of a latent space S assumed a
compact Lie group or a compact symmetric space, see Section 4 for further details. Such assumptions on
the graphon W allows to lead the spectral analysis a step further. In this section, we restrict our analysis
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to the pleasant case of S := Sd−1 the unit sphere of Rd equipped with the uniform probability measure σ
and the usual scalar product 〈·, ·〉. In the literature, a popular model is given by the Random Geometric
Graph for which the value W (x , y) depends on the distance between the points x and y of the latent
space Sd−1 and W (x , y) = 1〈x ,y〉≥τ for some threshold τ ∈ (−1, 1) as in [12, 8]. From now on, assume
that W only depends on the distance between latent points, namely

∀x , y ∈ Sd−1, W (x , y) = p(〈x , y〉)

where p : [−1, 1]→ [0, 1] is an unknown function that is to be estimated. We refer to p as the “envelope”
function.

3.1. Harmonic Analysis on Sd−1

Let us start by providing a brief overview on Fourier analysis on Sd−1. As pointed out above, in this
case the operator TW is a convolution (on the left) operator. Its spectral decomposition (6) satisfies that
the orthonormal basis (φk)k does not depend on p and the spectrum λ(TW ) is exactly described by the
Fourier coefficients (p?

`
)` of p, see [10, Lemma 1.2.3]. This remark remains true when the latent space S

is assumed a compact Lie group or a compact symmetric space, see Section 4 for further details.

In the spherical case, the orthonormal basis of eigenfunctions consists of the real spherical harmonics.
The following material can be found in [10]. Let us denoteH` the space of real spherical harmonics of
degree ` with orthonormal basis (Y` j) j∈[d`] where

d` := dim(H`) =
�

`+ d− 1
`

�

−
�

`+ d− 3
`− 2

�

(8)

for ` ≥ 2 and d0 = 1, d1 = d. Note that d` is therefore of order `d−2. In the sequel we identify
(φk)k≥1 = (Y` j)`≥0, j∈[d`] so that the spectral decomposition (6) reads

∀x , y ∈ Sd−1, p(〈x , y〉) =
∑

`≥0

p?`
�

d
∑̀

j=1

Y` j(x)Y` j(y)

︸ ︷︷ ︸

Zonal Harmonic

�

, (9)

where λ? = {p?0,p?1, . . . ,p?1, . . . ,p?
`
, . . . ,p?

`
, . . .} and

∑d`
j=1 Y` j(x)Y` j(y) is a zonal harmonic of degree `,

see [10, Chapter 2]. The eigenvalue p?
`

has multiplicity d` if the eigenvalues are all distinct. Furthermore,
it holds that

p?` :=
� c`bd

d`

�

∫ 1

−1

p(t)Gβ
`
(t)wβ (t)d t,

where Gβ
`

denotes the Gegenbauer polynomial of degree ` defined for

β =
d− 1

2
, wβ (x) := (1− x2)β−1 , c` :=

2`+ d− 2
d− 2

and bd :=
Γ (d

2 )

Γ ( 1
2 )Γ (

d
2 −

1
2 )

,

with Γ the Gamma function, see [10, Chapter 2]. We recall that the Gegenbauer polynomials are
orthogonal polynomials on the interval [−1, 1] with respect to the weight function wβ . Besides, one can
recover p ∈ L2(wβ ; [−1,1]) thanks to the identity

p=
∑

`≥0

�
Æ

d`p
?
`

��

Gβ
`
/‖Gβ

`
‖L2(wβ ;[−1,1])

︸ ︷︷ ︸

Z`

�

=
∑

`≥0

p?`c`G
β

`
. (10)

Remark 1. Note that p?
`

is the eigenvalue of the operator TW associated to the eigenspaceH`, (
p

d`p
?
`
)`≥0

are the coordinates of p ∈ L2(wβ ; [−1, 1]) in the orthonormal basis (Z`)`≥0, where Z` := Gβ
`
/‖Gβ

`
‖L2(wβ ;[−1,1]).

Note that requiring W ∈ L2(σ ⊗σ;Sd−1 × Sd−1) is equivalent to p ∈ L2(wβ ; [−1,1]).
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Let R≥ 0 and define

eR :=
R
∑

`=0

d` =
�

R+ d− 1
R

�

+
�

R+ d− 2
R− 1

�

, (11)

where the last equality is obtained with the telescoping sum using (8). Furthermore, we get that

eR≤
2(R+ d− 1)d−1

(d− 1)!
= O (Rd−1),

and this quantity is the dimension of Spherical Harmonics of degree less than R.

3.2. A Glimpse into Weighted Sobolev Spaces

Some of our result concern “smooth graphons” for which a regularity assumption is required. Fol-
lowing [27], we can define our approximation space defining the “Weighted Sobolev” space with the
eigenvalues of the Laplacian on the Sphere. More precisely, let s > 0 a regularity parameter and
f ∈ L2(wβ ; (−1, 1)) such that f =

∑

`≥0 f ?
`

c`G
β

`
in L2, we define

‖ f ‖∗Z s
wβ
((−1,1)) =

�∞
∑

`=0

d`| f ?` |
2(1+ (`(`+ 2β + 1))s)

�
1
2

and
Z s

wβ
((−1, 1)) =

�

f ∈ L2(wβ ; (−1, 1)) : ‖ f ‖∗Z s
wβ
(−1,1) <∞

	

.

Then, if p belongs to the Weighted Sobolev Z s
wβ
((−1,1)) with smoothness s > 0, it holds

∑

`>R

d`(p
?
`)

2 =
∑

`>R

d`(p
?
`)

2 1+ (`(`+ 2β + 1))s

1+ (`(`+ 2β + 1))s
≤ C(p, s,d)R−2s , (12)

where C(p, s,d)> 0 is a constant that may depend on p, s or d.

3.3. Spectrum Consistency of the Matrix of Probabilities

Under this framework, Corollary 3 can be written as follows.

Proposition 4. There exists a universal constant C > 0 such that for all α ∈ (0,1/3) and for all n3 ≥
eR log(2eR/α), it holds

δ2(λ(T n),λ
?)≤ 2

�∑

`>R

d`(p
?
`)

2
�

1
2 + C

q

eR(1+ log(eR/α))/n

with probability at least 1− 3α. Moreover, if p belongs to the Weighted Sobolev space Z s
wβ
((−1,1)), then

for n large enough

E[δ2
2(λ(T n),λ

?)]≤ C ′
�

n
log n

�− 2s
2s+(d−1)

where C ′ only depends on s, d and ‖p‖∗Z s
wβ
((−1,1)).

A proof can be found in Appendix A.7. These theoretical results show that the eigenvalues of T n converges
towards the unknown spectrum λ?.
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3.4. Nonparametric Estimation of the Kernel Spectrum

Let us now define our estimation procedure. Recall that we observe a graph and then its n× n adjacency
matrix A, where Ai j are independent Bernoulli random variables. Our model is that

P{Ai j = 1}= (Θ0)i j =W (X i , X j) = p(〈X i , X j〉), 1≤ i < j ≤ n,

where X1, . . . , Xn are i.i.d. uniform variables on Sd−1. Our aim is to recover the envelope function p
using only observations A, the variables X i being unobserved. The idea is to estimate the coefficients p?

`

of p in the Gegenbauer polynomial basis, using that

λ? :=
�

p?0,p?1, . . . ,p?1, . . . ,p?`, . . . ,p?`, . . .
	

is close to λ(T n) and this latter is close to the spectrum

λ := λ(bT n)

of our observable bT n = (1/n)A. Let us fix R≥ 0 some resolution level, and denote

λ?R :=
�

p?0
︸︷︷︸

d0

,p?1, . . . ,p?1
︸ ︷︷ ︸

d1

, . . . ,p?R, . . . ,p?R
︸ ︷︷ ︸

dR

�

the first coefficients of p, i.e., the first eigenvalues of TW —not necessarily the largest. In view of (9) and
defining eR as in (11), we understand that the eR first eigenvalues of TW belong to the convex set

MR :=
¦

( u?0
︸︷︷︸

d0

, u?1, . . . , u?1
︸ ︷︷ ︸

d1

, . . . , u?R, . . . , u?R
︸ ︷︷ ︸

dR

) ∈ ReR
©

. (13)

Remark 2. Consider the convex setM [0,1]
R of coefficients (u?0, u?1, . . . , u?1, . . . , u?R, . . . , u?R) corresponding to a

function between 0 and 1, namely

M [0,1]
R :=

¦

(u?0, u?1, . . . , u?1, . . . , u?R, . . . , u?R) ∈ R
eR s.t. there exists an extension (u?`)`>R

s.t. for a.e. t ∈ [−1, 1], 0≤
∞
∑

`=0

u?`c`G
β

`
(t)≤ 1

©

.

Note that λ?R ∈M [0,1]
R and that for all x ∈MR

δ2(PM [0,1]
R
(x),λ?R)≤ δ2(x ,λ?R)

where PM [0,1]
R

denotes the L2-projection ontoM [0,1]
R . It follows that all the results presented applies if we

substituteMR byM [0,1]
R . But, since we do not use the fact that the coefficients (u?0, u?1, . . . , u?1, . . . , u?R, . . . , u?R)

correspond to a function between 0 and 1 in our proofs and our numerical study, we choose to alleviate
presentation usingMR instead ofM [0,1]

R .

We assume that n≥ eR and we denote Sm the set of all permutation of [m]. We define the estimator bλR

as the closest sequence to λ which belongs to the set of “admissible” spectraMR as follows:

bλR ∈ argmin
u∈MR

min
σ∈Sn

¦

eR
∑

k=1

(uk −λσ(k))2 +
n
∑

k=eR+1

λ2
σ(k)

©

. (14)

where we recall that λ denotes the spectrum of bT n. We denote bpR
`

the stage values of bλR, such that

bλR = (bλR
1 , . . . , bλR

eR
) = (bpR

0 ,bpR
1 , . . . ,bpR

1 , . . . ,bpR
R, . . . ,bpR

R).



10 3 THE SPHERE EXAMPLE, PRELUDE OF SYMMETRIC COMPACT SPACES

One can check that

bpR
` =

1
d`

e

∑̀

k=Þ`−1

λσ(k)

where σ (that depends on R) is a permutation achieving the minimum in (14) and we use the nota-
tion (11) with the convention Ý−1 = 1. Furthermore, the true complexity of this estimator is not n! which
matches the complexity of Sn. The true computation complexity of our estimator is at most (R+ 1)! as
shown by the next theorem.

Theorem 5 (Computational Complexity). Let R ≥ 0 such that eR ≤ n. For any sequence of real num-
bers (λk)nk=1 such that λ1 ≥ λ2 ≥ . . .≥ λn it holds that

∃HR ⊆Sn s.t. ∀u ∈MR, min
σ∈Sn

¦

eR
∑

k=1

(uk −λσ(k))2 +
n
∑

k=eR+1

λ2
σ(k)

©

= min
σ∈HR

¦

eR
∑

k=1

(uk −λσ(k))2 +
n
∑

k=eR+1

λ2
σ(k)

©

where the set HR depends only on R and has size at most (R+ 2)!.

A proof can be found in Appendix B.1. This proof is constructive and it gives the expression of HR.

Remark 3. Remark that the hypothesis λ1 ≥ λ2 ≥ . . .≥ λn is not necessary and can be removed. Indeed, if
τ ∈Sn a permutation such that λτ(1) ≥ λτ(2) ≥ . . .≥ λτ(n) then it holds that

∃HR ⊆Sn s.t. ∀u ∈MR, min
σ∈Sn

¦

eR
∑

k=1

(uk−λσ(k))2+
n
∑

k=eR+1

λ2
σ(k)

©

= min
σ∈HR

¦

eR
∑

k=1

(uk−λσ◦τ(k))2+
n
∑

k=eR+1

λ2
σ◦τ(k)

©

where the set HR depends only on R and has size at most (R+ 2)!.

Remark 4. Interestingly the computational complexity of our estimateur depends linearly on the sample
size n which is important when observing large networks. However, it depends as R exp R in the complexity R
of the model. Hence, it is relevant for large networks and low degree R kernels. However, if the experimenter
knows that the eigenvalues are monotone (when sorting the eigenvalues so that the corresponding eigenspaces
have increasing dimensions) then the complexity is linear in R.

Using Proposition 1 and Theorem 4 we can prove that bλR is a relevant estimator of the true first
eigenvalues λ?R as shown in the next theorem.

Theorem 6. There exists a universal constant κ0 > 0 such that the following holds. For all α ∈ (0,1), if
n3 ≥ (2eR)3 ∨ eR log(2eR/α), with probability greater that 1− 3α, it holds

δ2(bλ
R,λ?R)≤ 4δ2(λ

?R,λ?) +κ0

Ç

eR
�

1+ log
�

eR/α
��

/n.

Moreover, there exists a universal constant κ1 > 0 such that, if n≥ 2eR then

E[δ2
2(bλ

R,λ?R)]≤ κ1

¦

δ2
2(λ

?R,λ?) +
eR log n

n

©

.

A proof can be found in Appendix A.8.

To go further we need to analyze the behavior of the bias term δ2(λ?R,λ?) as a function of R under some
regularity conditions on the envelope p. Indeed we can write

δ2(λ
?R,λ?)2 =

∑

k>eR

|λ?k|
2 =

∑

`>R

d`(p
?
`)

2.
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Assume that p belongs to the weighted Sobolev space Z s
wβ
((−1,1)) of regularity s > 0 defined in

Section 3.2. Thus, since eR= O (Rd−1), using (12) and setting Ropt = b(n/log n)
1

2s+d−1 c, we get

E
�

δ2
2(bλ

Ropt ,λ?)
�

≤ 2δ2
2(λ

?Ropt ,λ?) + 2Eδ2
2(bλ

Ropt ,λ?Ropt)® R−2s
opt +

eRopt log n

n
®
�

n
log n

�− 2s
2s+(d−1)

.

Thus we recover a classical nonparametric rate of convergence for the estimation of a function with
smoothness s in a space of dimension d− 1 (see [17]). We also face a classical issue of nonparametric
statistics: how to choose R, given that the best theoretical choice Ropt depends on the unknown smoothness s?
This is the point of the next section.

3.5. Minimax Adaptation to the Smoothness of p

Let us defineR = {1, 2, . . . , Rmax} the possible values for R, with 2eRmax ≤ n. Following the Goldenshluger-
Lepski method [15], set

B(R) :=max
R′∈R

¦

δ2(bλ
R′ , bλR′∧R)−κ

√

√

eR′ log n
n

©

, (15)

where κ > 0 is a constant to be specified later. This function can be seen as an estimation of the (unknown)
bias δ2(λ?R,λ?). Then we define our final resolution level bR as a minimizer of an approximation of the
risk as

bR ∈ argmin
R∈R

¦

B(R) + κ

√

√

eR log n
n

©

. (16)

The estimator of λ? is then bλbR, which depends on the choice of constant κ in (15) and (16). The following
results shows that this estimator is as good as the best one of the collection (bλR)R∈R , up to a constant C ,
provided that κ is large enough.

Theorem 7. Let bλbR the estimator defined by (14), (15) and (16). There exist numerical constants C > 0
and κ0 > 0 (as in Theorem 6) such that , if κ≥ κ0

p
11, with probability 1− 3n−8

δ2(bλ
bR,λ?)≤ C min

R∈R

¦

δ2(λ
?R,λ?) + κ

√

√

eR log n
n

©

.

Moreover, for κ≥ κ0
p

5, there exists a numerical constant C ′ > 0 such that

E[δ2
2(bλ

bR,λ?)]≤ C ′min
R∈R

¦

δ2
2(λ

?R,λ?) +κ2
eR log n

n

©

.

A proof can be found in Appendix A.10. Thus we choose κ≥ κ0
p

5 in (15) and (16) (the practical choice
of the tuning constant κ will be tackled in Section 5), and for this estimator we get the following rate of
convergence.

Corollary 8. Assume that p belongs to the Weighted Sobolev space Z s
wβ
((−1,1)) and that Rmax is chosen

such that cn≤ 2eRmax ≤ n with c some constant smaller than 1. Then there exists a constant C > 0 depending
only on ‖p‖∗Z s

wβ
((−1,1)), s and d such that

E[δ2
2(bλ

bR,λ?)]≤ C
�

n
log n

�− 2s
2s+(d−1)

.
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This means that the algorithm automatically adapts bR to the unknown smoothness s of p: it chooses a
small resolution level for smooth functions and a greater bR for irregular functions, that provides the
best result in each case. Assuring that this is the optimal rate of convergence is beyond the scope of this
paper but we believe that it cannot converge faster than n−

2s
2s+(d−1) , since it is the usual rate for estimating

a function in a (d− 1)-dimensional context.

The final step is to define the following estimator of envelope p by

∀t ∈ [−1,1], bpbR(t) :=
bR
∑

`=0

bpbR` c`G
β

`
(t) . (17)

3.6. Estimating the envelope function

Inferring from the estimation of λ? to the estimation of p, we face an identifiability problem. Indeed,
consider for instance the case d= 3, which implies β = 1, d` = 2`+ 1, c` = 2`+ 1. For µ > 0, let

pa =
1
2

c0Gβ0 +µc1Gβ1 + 0× c2Gβ2 + 0× c3Gβ3 +µc4Gβ4 ,

pb =
1
2

c0Gβ0 + 0× c1Gβ1 +µc2Gβ2 +µc3Gβ3 + 0× c4Gβ4

Then the associated spectrum are

λ?a = (1/2, µ,µ,µ
︸ ︷︷ ︸

3

, 0, 0, 0, 0, 0
︸ ︷︷ ︸

5

, 0, 0, 0, 0, 0, 0, 0
︸ ︷︷ ︸

7

, µ,µ,µ,µ,µ,µ,µ,µ,µ
︸ ︷︷ ︸

9

)

λ?b = (1/2, 0,0, 0
︸ ︷︷ ︸

3

, µ,µ,µ,µ,µ
︸ ︷︷ ︸

5

, µ,µ,µ,µ,µ,µ,µ
︸ ︷︷ ︸

7

, 0, 0, 0, 0, 0, 0, 0, 0, 0
︸ ︷︷ ︸

9

)

which are indistinguishable in δ2 metric, although ‖pa − pb‖2 = µ
p

24. Furthermore, note that, for
µ≤ 1/24, these functions have values in [0, 1].

Remark 5. A natural question is then: Can we recover the right eigenvalues labels from the empirical
eigenvectors?
Under stronger requirements (RKHS-type assumptions), convergence of the eigenvectors of A/n towards the
eigenfunctions of the integral operator TW could be proved as in [32]. Essentially, it is possible to prove
that the orthogonal projections Π` onto eigenspaces of A/n are closed in operator norm to the n× n matrix
with entries

∑d`
j=1 Y` j(X i)Y` j(X j) given by the Zonal Harmonics. Unfortunately, this statistics depends on

the latent points and suffers from the “agnostic” error as explained in [19]. While possible theoretically, it
seems difficult in practice to use the information of the observed eigenvectors to uncover the right labels of
the eigenvalues.

Nevertheless we can state a result in the case of a finite spectrum of distinct eigenvalues.

Proposition 9. Assume that the envelope function p is polynomial of degree D, i.e., p?
`
= 0 for any ` > D

and p?D 6= 0. Assume also that all nonzeros p?
`

for ` ∈ {0, . . . , D} are distinct. If R≥ D and n is large enough
then

‖bpR − p‖2
2 ≤ 11κ2

0

eR log n
n

,

with probability greater that 1− 3n−8 where κ0 > 0 is the constant defined in Theorem 6. Furthermore, it
holds

E[‖bpR − p‖2
2]≤ (18+ 4κ2

0)
eR log n

n
,

for n large enough.
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A proof can be found in Appendix A.11. Let us now state what the adaptive procedure defined by (15)
and (16) can do in this polynomial case.

Corollary 10. Assume that the envelope function p is polynomial of degree D, i.e., p?
`
= 0 for any ` > D

and p?D 6= 0. Assume also that all nonzeros p?
`

for ` ∈ {0, . . . , D} are distinct. If Rmax ≥ D, there exists a
numerical constant C such that, if n large enough, then bR≥ D a.s. and

E[‖bpbR − p‖2
2]≤ C eD

�

log n
n

�

.

A proof can be found in Appendix A.12.

4. Extensions to Compact Symmetric Spaces

The aim of this section is to extend the previous result on spheres to numerous spaces such as compact
Lie groups and compact symmetric spaces. A useful reference might be the books [35, 9] or the nice
survey written in [25, Chapter 3] (see also [24] for a presentation of compact symmetric spaces) which
has been useful to polish this section.

4.1. Harmonic Analysis on Compact Symmetric Spaces

In this section, we consider that (S,γ) is a compact Lie group with an invariant Riemannian metric γ,
or more generally a compact symmetric space. The definitions will be given below when describing
Cartan’s Classification and, to be precise, this section focuses on (semi)simple connected compact (sscc
in short) Lie groups and simple simply connected compact symmetric spaces (ssccss in short). These
structures encompass spheres, projective spaces, Grassmannians, and orthogonal or unitary groups; and
one can handle explicit eigenvectors computations in this framework.

Consider again that the graphon W (g, h) depends only on (the cosine of) the distance γ(g, h) (normalized
so that the range of γ equals [0,π]) between points g, h ∈ S such that

W (g, h) = p(cosγ(g, h)) = p(cosγ(gh−1, eS)) =: p(gh−1)

where eS denotes the identity element and p(g) = p(cosγ(g, eS)). Also we assume that 0 ≤ W ≤ 1
since W defines a probability matrix. In particular, W is square-integrable on the compact S×S. Observe
that estimating W reduces to estimate p that reduces to estimate p and vice versa. By definition of the
distance, note that

• When S is a sscc Lie group, the function p is invariant by conjugation, namely p(hgh−1) = p(g)
for any latent points g, h ∈ S. We denote by L2(S)S the space of square-integrable functions p on S
that are invariant by conjugation.

• When S = G/K is a ssccss, the function p is bi-K-invariant, namely p(k1 gk2) = p(g) for any
k1, k2 ∈ K and g ∈ G. We denote by L2(K \G/K) the space of square-integrable functions on G
that are bi-K-invariants.

In particular, Peter–Weyl’s decomposition (presented below) gives an L2-decomposition of p in these
settings. The measure on S is the Haar measure (normalized to be a probability measure), denoted dg,
standardly defined for any compact topological group S. The harmonic analysis on S is based on the
Fourier transform of the space L2(S, dg) of square integrable (complex valued) functions on S. This
space L2(S, dg) is a Hilbert space for the scalar product

〈 f1, f2〉=
∫

S

f1(g) f2(g)dg .
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We define also the convolution product

( f1 ∗ f2)(g) =

∫

S

f1(gh−1) f2(h)dh .

Now, recall that W defines a symmetric Hilbert-Schmidt operator TW on L2(S, dg) and the spectral
theorem (6) gives

W (g, h) =
∑

k≥1

λ?kφk(g)φk(h) ,

for an L2(S, dg)-orthonormal basis (φi)i≥1. Remark also that

(TW ( f ))(g1) =

∫

S

W (g1, g2) f (g2)dg2 =

∫

S

W (g1 g−1
2 , eS) f (g2)dg2 =

∫

S

p(g1h−1) f (h)dh= (p ∗ f )(g1)

for all f ∈ L2(S, dg). We deduce that TW is the convolution on the left by p. We continue with a short
reminder on harmonic analysis on compact groups and compact quotients.

Representation of Compact Groups and Irreducible Characters The first ingredient is representa-
tions of any compact group S. It is defined by a finite dimensional complex vector space V and
by a continuous morphism of groups ρ : S→ GL(V ) where GL(V ) denotes the group of isomor-
phisms of V . A linear representation (V,ρ) is irreducible if one cannot find a subspace W such that
0 (W ( V and that is S-stable, i.e., for all w ∈W and all g ∈ S, one has ρ(g)(w) ∈W . If V is a
linear representation then one can always split it into irreducible components

V =
⊕

r∈bS

mrV
r

where bS is the countable set of isomorphism classes of irreducible representations r = (ρr, V r)
of S and mr ≥ 1. Furthermore, we denote by

chr(g) = tr(ρr(g)) ,

the irreducible characters associated to the irreducible representation r= (ρr, V r) of S where tr
denotes the trace operator on EndC(V r) the set of (complex) endomorphisms of V r. In particular,
since ρr(g) is unitary, it holds

∀g ∈ S, |chr(g)| ≤ dr = chr(eS) ,

where dr is the dimension of V r. Also, note that

chr ∗ chs =
δrs

dr
chr ,

where δrs denotes the Kroneker delta.
Peter–Weyl’s Decomposition The Peter–Weyl’s Decomposition shows that (chr)r∈bS is an orthonormal

basis of L2(S)S. It follows that
p =

∑

r∈bS

〈p, chr〉chr

in L2(S)S. Using that TW is a left convolution operator by p, we find that (chr)r∈bS is an eigenfunction
basis of TW associated to the eigenvalues (λ?r)r∈bS given by

λ?r =
〈p, chr〉

dr
,

with multiplicity d2
r = dim(EndC(V r)).
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Compact Gelfand Pairs and Zonal Spherical Functions There is an extension of this decomposition
to quotients S = G/K of a compact topological group G by a closed subgroup K. The most
convenient setting for this extension is the one of compact Gelfand pairs defined as follows.

Definition (Gelfand Pair). We say that (G, K) is a Gelfand pair if for any irreducible representation V r

of G, the space of K-fixed vectors

V r,K =
¦

v ∈ V r : ∀k ∈ K , ρr(k)(v) = v
©

has dimension at most one.

An irreducible representation V r is called spherical if dimC(V r,K) = 1. We denote by bGK the set of
spherical representations of the Gelfand pair (G, K). If r ∈ bGK then we denote by er a unit vector
vector in V r,K which is unique up to a multiplicative complex constant of modulus one. The zonal
spherical functions

zonr(g) =
Æ

dr




er,ρr(g)(er)
�

V r

where dr is the dimension of V r. In particular, since ρr(g) is unitary and er normalized, it holds

∀g ∈ G, |zonr(g)| ≤
Æ

dr = zonr(eG) , (18)

where eG is the identity element of G. Also, note that

zonr ∗ zons =
δrs
p

dr

zonr .

Cartan’s Extension of Peter–Weyl’s Decomposition In the case of bi-K-invariant functions on G, an
extension of Peter–Weyl’s decomposition theorem shows that (zonr)r∈bGK is an orthonormal basis
of L2(K \G/K). It follows that

p =
∑

r∈bGK

〈p, zonr〉zonr

in L2(K \G/K). Using that TW is a left convolution operator by p, we find that (zonr))r∈bGK is an
eigenfunction of TW associated to the eigenvalue (λ?r)r∈bGK given by

λ?r =
〈p, zonr〉
p

dr

.

with multiplicity dr = dim(V r). The reader may recognize here the case of the sphere studied in
the previous section.

Cartan’s Classification of sscc Lie Groups and ssccss Now, a crucial question is how explicit are these
decompositions. We begin with the notion of sscc Lie Groups that is based on Cartan’s criterion
for semisimplicity. It implies that a simply connected compact Lie group can always be written as
a direct product of simple simply connected compact Lie group (in short sscc Lie group). Here,
by simple we mean a Lie group S whose Lie algebra is simple, that is nonabelian and without
non-trivial ideal. Interestingly, Cartan’s classification of sscc Lie groups shows that any sscc Lie
group fall into one of the following infinite families:

Group type

• Special unitary group SU(n+ 1),
• Odd spin group Spin(2n+ 1),
• Compact symplectic group USp(n),
• Even spin group Spin(2n),

or, it is one of the five exceptional compact Lie groups.

The sscc Lie groups belong to a larger class of compact Riemannian manifolds called symmetric
spaces. Moreover, any simply connected compact symmetric space is isometric to a product of
simple simply connected compact symmetric spaces (in short ssccss), which cannot be split further.
A classification of all the ssccss S has been proposed by Cartan which shows that S is either of
Group type (see above) or one of the following objects
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non-Group type In this case, S falls into one of the following infinite families:

• Real Grassmannians SO(p+ q)/(SO(p)× SO(q)),
• Complex Grassmannians SU(p+ q)/(SU(p)× SU(q)),
• Quaternionic Grassmannians USp(p+ q)/(USp(p)×USp(q)),
• Space of real structures on a complex space SU(n)/SO(n),
• Space of quaternionic structures on an even complex space SU(2n)/USp(n),
• Space of complex structures on a quaternionic space USp(n)/U(n),
• Space of complex structures on an even real space SO(2n)/SU(n),

or, it is one of the twelve exceptional sscc symmetric spaces.

Remark that, for all the ssccss examples, the eigenfunctions of the spectral decomposition of TW
do not depend on TW and they are irreducible characters in the group case and zonal spherical
functions in the non-group case.

Weyl’s Highest Weight theorem and Cartan–Helgason’s Extension Given a ssccss, we can make ex-
plicit the set bS in the group case, and the set bGK in the non-group case thanks to the Weyl’s
highest weight theorem and Cartan–Helgason’s extension, see [25, Chapter 3] for a short and well
written introduction. The highest weight theorem is completed by a formula for the irreducible
character chr of the module V r with highest weight r, see for instance [9, Chapter 22] and Weyl’s
integration formula [9, Chapter 17].
The same analysis can be lead in the non-group case. The only additional difficulty is the manipu-
lation of zonal spherical functions. This issue will be handled by considering compact symmetric
spaces of rank 1 in the following.

Now, we are ready to extend the previous results on the sphere to other latent spaces S, namely the
compact symmetric spaces of rank 1.

4.2. Compact Symmetric Spaces of Rank One

We focus here on the interesting case of compact symmetric spaces of rank one for which the zonal
spherical functions can be explicitly computed. Indeed, one has the following classification of the compact
symmetric spaces of rank one and of the corresponding spherical representations, see [25, Chapter 3]
and [34] for instance. A compact symmetric space of rank one is ssccss that is 2-point homogeneous,
namely

• [Compact Symmetric Spaces of Rank One] Given two pairs of points (x1, x2) and (y1, y2) such
that γ(x1, x2) = γ(y1, y2), there is an isometry of S that maps x1 (resp. x2) onto y1 (resp. y2).

The compact symmetric spaces of rank one are

• the real spheres Sd−1 = SO(d)/SO(d− 1),
• the real projective spaces RPd−1 = SO(d)/O(d− 1),
• the complex projective spaces CPd−1 = SU(d)/U(d− 1),
• the quaternionic projective spaces HPd−1 = USp(d)/(USp(d− 1)×USp(1)),
• or the octonionic projective plane OP2 = F4/Spin(9).

In the case of compact symmetric spaces of rank 1, one can explicitly described the spherical repre-
sentations bGK . The dimension d` := dimC(V `ω0) of the `-th spherical representation V `ω0 are given in
Table 1. One can even describe the zonal spherical functions of these spaces, and thus compute the
eigenvalues p?

`
(recall that their multiplicities d` are given by Table 1).
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For compact symmetric spaces of rank one, on can define

• a probability density function w(t) on [−1, 1] defined as the density of the pushforward measure
of the Haar measure by the map x 7→ t = cos(γ(x , e)),

• the pushforwards Z` on [−1,1] of the zonal spherical functions, normalized so that they are an
orthonormal basis of L2([−1, 1],w), the space of square-integrable functions with respect to the
weight function w on [−1,1].

S d` eR=
∑

0≤`≤R

d` t = cos(γ(x , e)) Density w

Sd−1
�

`+d−1
`

�

−
�

`+d−3
`−2

� 2R+d−1
R+d−1

�R+d−1
d−1

�

xd Beta( d−1
2 , d−1

2 )

RPd−1 (6+d2+8`(2`−3)+d(8`−5))Γ (d+2`−3)
Γ (d−1)Γ (1+2`)

4R+d−1
2R+d−1

�2R+d−1
d−1

� x2
d−x2

1−···−x2
d−1

x2
1+···+x2

d
Beta( d−1

2 , 1
2 )

CPd−1 2`+d
d

�

`+d−1
d−1

�2
− 2`+d−2

d

�

`+d−2
d−1

�2 2R+d
d

�R+d−1
d−1

�2 |xd |2−|x1 |2−···−|xd−1 |2

|x1 |2+···+|xd |2
Beta(d− 1,1)

HPd−1 2(`+1)(d(4d2−1)+2d(4d−1)`+(4d−1)`2)Γ (2d+`−1)Γ (2d+`)
Γ (2d)Γ (2+2d)Γ (2+`)2

2R+2d+1
(2d+1)(R+1)

�R+2d
2d

��R+2d−1
2d−1

� |xd |2−|x1 |2−···−|xd−1 |2

|x1 |2+···+|xd |2
Beta(2d− 2,2)

OP2 (4+`)(5+`)2(6+`)
924

2R+11
385

�R+7
4

��R+10
10

� |x3 |2−|x1 |2−|x2 |2

|x1 |2+|x2 |2+|x3 |2
Beta(8, 4)

TABLE 1
Review of the dimensions d` of the spherical representations, the distance cos(γ(x , e)) to the identity e, the weight function w(t) of the
compact symmetric spaces S of rank 1. These latter are respectively the density w and the orthonormal polynomials of the beta law

on [−1,1] with shape parameters (α,β), see (19).

In Table 1, one hase the following standard parameterizations of latent space S:

• the real sphere Sd−1 is endowed with the coordinates x = (x1, . . . , xd) such that ||x ||2 = 1 and the
“north pole” is given by e = (0, . . . , 0, 1). We denote the “weight function” by w(x), it is the density
of the push forward measure of the Haar measure by the map x 7→ cos(γ(x , e)) where we recall
that γ(x , e) = arccos xd.

• the projective space FPd−1 (where F = R,C,H or O) is endowed with projective coordinates
[x1 : x2 : · · · : xd] with the x i ’s in F, and the “north pole” is given by e = [0 : · · · : 0 : 1]. We denote
the “weight function” by w(x), it is the density of the push forward measure of the Haar measure
by the map x 7→ cos(γ(x , e)) where we recall that γ(x , e) = 2 arccos(|xd|/||x ||2).

One can show that the Jacobi polynomials (resp. beta distributions on [−1,1]) are the pushforward
zonal spherical functions Z` (resp. the Haar measure) with shape parameters (α,β) depending on the
base field and the dimension, see Table 1. In the case of real spheres, these Jacobi polynomials are the
Legendre/Gegenbauer polynomials seen in Section 3. We recall that for shape parameters (α,β) the
beta density distribution w is given by

w(t) =
Γ (α+ β)

2α+β−1Γ (α)Γ (β)
(1− t)α−1(1+ t)β−11[−1,1](t) , (19)

where Γ is the Gamma function. In particular, recall that one has

p=
∑

`

Æ

d`p
?
`Z` and p?` =

1
p

d`
〈p, Z`〉L2([−1,1],w) ,

in L2([−1, 1],w). We further assume that there exists s > 0, a (Sobolev) regularity parameter, such that

∀R≥ 1 ,
∑

`>R

d`(p
?
`)

2 ≤ C(p, s,S)R−2s.

for some constant C(p, s,S)> 0 and for dimensions (d`)`≥0 that depends only on S.
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Now, recall the definition of the set of modelsMR in (13) (the dimensions (d`)`≥0 are given by Table 1),
of the estimator bλR in (14), of the adaptation bR in (16), of bpbR in (17), and of T n in (3). Our estimation
procedure is the same as in the sphere example the only difference is that the dimensions (d`)`≥0, eR and
the zonal spherical function Z` depend on the latent space under consideration, see Table 1.

Theorem 11. Let S be a compact symmetric space of rank one with Riemanian dimension d− 1. There
exist constants C0, C1, C2,κ0,κ1 > 0 such that the following holds. Let α ∈ (0, 1/3) and n, R≥ 0 such that
n≥ 2eR and n3 ≥ eR log(2eR/α) where eR is given in Table 1. Then it holds,

• [Convergence of the matrix of probabilities]

δ2(λ(T n),λ
?)≤ 2

�∑

`>R

d`(p
?
`)

2
�

1
2 + C0

q

eR(1+ log(eR/α))/n

with probability at least 1− 3α and

E[δ2
2(λ(T n),λ

?)] = O
�

� n
log n

�− 2s
2s+(d−1)

�

.

• [Convergence of the matrix of finite rank approximation]

δ2(bλ
R,λ?R)≤ 4δ2(λ

?R,λ?) + κ0

Ç

eR
�

1+ log
�

eR/α
��

/n.

with probability at least 1− 3α and

E[δ2
2(bλ

R,λ?R)]≤ κ1

�

δ2
2(λ

?R,λ?) +
eR log n

n

�

.

• [Convergence of the adaptation] For κ≥ κ0

p
11, it holds that

δ2(bλ
bR,λ?)≤ C1 min

R∈R

¦

δ2(λ
?R,λ?) + κ

√

√

eR log n
n

©

,

with probability 1− 3n−8. Furthermore, for κ≥ κ0
p

5, it holds that

E[δ2
2(bλ

bR,λ?)]≤ C2 min
R∈R

¦

δ2
2(λ

?R,λ?) +κ2
eR log n

n

©

.

A proof can be found in Appendix A.13. Note that the same results as in Proposition 9 and Corollary 10
hold when S is a compact symmetric space of rank one. Namely, adaptive estimation of the envelope
function p is possible when p is a polynomial.

5. Numerical Experiments

5.1. Simulations

In this section we shall assess the performances of our estimation procedure by estimating numerous
envelope functions p. We consider the example of S = S2, the unit sphere in dimension d = 3. The
functions Gβ

`
turn to be the Legendre polynomials and the dimension of the space of spherical harmonics

of degree ` is d` = 2`+ 1.

First, we shall explain how our algorithm works in practice to compute the adaptive estimator bpbR of p,
see (14) and (17). For sake of clarity, we deal with a simple example. Suppose we are given an adjacency
matrix A of size 20× 20 and we set Rmax = 1. Thus n= 20, d0 = 1 and d1 = 3.
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Step 1 Compute the 20 eigenvalues of A and sort them in decreasing order λ(1) ≥ · · · ≥ λ(20), see
Figure 1.

Step 2 Take 0 ≤ R ≤ Rmax. Generate SR+2, the set of all permutation of {0, d0, . . . , dR}, the set with
R+ 2 elements. The factor +1 in R+ 2 = (R+ 1) + 1 is due to the “zeros” (represented by the
symbol 0) to be placed, see Step 3 for a proper definition. For instance, for R= 1, we have

SR+1 =







































































σ(1) = [d1, d0, 0]

σ(2) = [d1, 0, d0]

σ(3) = [d0, d1, 0]

σ(4) = [d0, 0, d1]

σ(5) = [0, d0, d1]

σ(6) = [0, d1, d0]

Step 3 For each permutation σ(i)i∈{1,...,6} of SR+2, compute the following (epσ(i),`)`∈{0,1,2} which are
the “stage means” of the λ(i),i∈{1,...,20}’s according to the order of appearance of the d`’s in the
permutation σ(i). For instance, for σ(1) = [d1, d0, 0] (see Figure 1), we get

epσ(1),2 =
1
3

3
∑

`=1

λ(`), epσ(1),1 = λ(4), epσ(1),0 = 0,

and for σ(4) = [d0, 0, d1] one gets

epσ(2),1 = λ(1), epσ(2),0 = 0, epσ(2),2 =
1
3

20
∑

i=18

λ(`).

In Step 2, we have called “zeros” the fact that we always set epσ(i),0 = 0.
Step 4 For each permutation σ(i), compute the corresponding vector eλσ(i) of size 20, containing

the epσ(i),` with multiplicity d`. Then compute the risk Score(σ(i)) for each σ(i). For example for
σ(1) = [d1, d0, 0] (see Figure 1), one gets

eλσ(1) = (epσ(1),2,epσ(1),2,epσ(1),2
︸ ︷︷ ︸

d1=3

,epσ(1),1
︸ ︷︷ ︸

d0=1

, 0, . . . , 0
︸ ︷︷ ︸

n−d0−d1=16

)

and its risk is Score(σ(1)) =
20
∑

`=1

(λ(`) − epσ(1),`)2.

Step 5 Select the permutation σmin such that σmin = arg min
σ(i)

Score(σ(i)).

Step 6 Get the estimate bλR defined by

bλR = (epσmin,1
︸ ︷︷ ︸

d0=1

,epσmin,2,epσmin,2,epσmin,2
︸ ︷︷ ︸

d1=3

) = (bpR
0 ,bpR

1 ,bpR
1 ,bpR

1) ,

see (14).
Step 7 Iterate Steps 2 to 6 for R= 0 to Rmax. Compute the level bR according to (16) and the adaptive

estimator bpbR(t) according to (17).
Step 8 Troncate bpbR(t) so as to it belongs to [0, 1].
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FIGURE 1. Plot of the 20 sorted eigenvalues λ(i) of adjacency matrix A and the values of vector eλσ(1).

Of course, the choice of level R is crucial and the estimation is sensitive to R. That is why we use our
selection method, as described in Section 3.5 (see Step 7 in the description of the algorithm above). As
almost all estimators selection methods, this Goldenshluger-Lepski method uses an hyper-parameter κ.
Our theoretical result ensures a good performance as soon as κ is large enough, but it is well known
that a more precise choice is better in practice. Heuristics exist to calibrate κ, but they are all based on
the behavior of the estimator for very large R (see for instance [3]). Hence these techniques are not
possible here, due to the computational cost of the estimation when R is large (we can hardly consider
larger than Rmax = 7 because of the complexity in (Rmax+2)!). Fortunately, the stability of the estimation
allows us to choose here a fixed κ, namely κ= 0.25, and this choice ensures good selection of R̂ for a
wide range of functions p.

Now, let us deal with the estimation of the six following envelope functions p

p1(t) =
�1+ t

2

�4
,

p2(t) = 1t>0.7,

p3(t) = e−(t−1)2 ,

p4(t) = 0.5+ 0.5 sin
�

πt/2
�

,

p5(t) =
1
3
+

1
12

�

35t4 − 30t2 + 3
�

,

p6(t) = t101t>0 .

We consider graphs of size n= 5000. We set Rmax = 4 and κ= 0.25 for the adaptive selection rule of R,
see (16).

Figure 2 presents our simulation results. For each envelope function p, we represent on the top side,
the estimated coefficients bpbR

`
and the true coefficients p?

`
with their multiplicity 2`+ 1. On the bottom

side, we represent the estimated envelope function bp and the true p. Note that our procedure is not
constrained by dealing with envelope functions p defining positive kernels W . Such an example is given
by the step function p2 as its Fourier coefficients p?2,`’s can be negative, see Figure 2.

The estimation of all functions are good except for the step function p2 which is more demanding
due to its discontinuity. Despite that function p6 is not easy to be estimated because of its flatness,
our estimation is satisfying. Furthermore, it is interesting to remark that except for p2, the estimated
coefficients are very close to the true ones.
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FIGURE 2. Estimation of envelope functions p1, . . . ,p6.
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Appendix A: Proofs

A.1. Proof of Proposition 1

This result is a consequence of [2, Corollary 3.12] and [2, Remark 3.19] with X i j = Ai j − (Θ0)i j a
centered but not symmetric random variable, ε = 1/2 say, eσ2 = D0 by definition, and observing that
eσ2
∗ =maxi j((Θ0)i j ∨ (1− (Θ0)i j))≤ 1. It gives

∀t > 0, P
�

‖A−Θ0‖ ≥ 3
p

2D0 + C t
	

≤ n exp(−t2) ,

for some universal constant C > 0.

A.2. Proof of Theorem 2

Let R≥ 1 and define

Φn
i := (1/

p
n)(φi(X1), . . . ,φi(Xn)) ∈ Rn,

KR := Diag(λ1(TW ) . . . ,λR(TW )) ∈ RR×R,

ER,n := (〈Φn
i ,Φn

j 〉 −δi j)i, j∈[R] ∈ RR×R,

XR,n :=
�

Φn
1 · · ·Φ

n
R

�

∈ Rn×R,

AR,n :=
�

X>R,nXR,n

�
1
2 ∈ RR×R and note that A2

R,n = IdR + ER,n,

TR,n :=
R
∑

r=1

λr(TW )Φ
n
r (Φ

n
r )
> = XR,nKRX>R,n ∈ R

n×n,

eTR,n := ((1−δi j)TR,n)i, j∈[n] ∈ Rn×n,

T ?R,n := AR,nKRAR,n ∈ RR×R,

and WR(x , y) :=
R
∑

i=1

λi(TW )φi(x)φi(y),

where the last identity holds point-wise. Observe that A2
R,n = IdR + ER,n. It holds

δ2(λ(TW ),λ(TWR
)) =

�∑

r>R

λ2
r (TW )

�
1
2

. (20)

Note the equalities between spectra λ(TWR
) = λ(KR) and λ(TR,n) = λ(T ?R,n) where the last one follows

by using a SVD of XR,n. Hence, we deduce that

δ2(λ(TWR
),λ(TR,n)) = δ2(λ(KR),λ(T

?
R,n))≤ ‖T

?
R,n − KR‖F = ‖AR,nKRAR,n − KR‖F ,

by Hoffman-Wielandt inequality, see [21, Page 118] for instance. Equation (4.8) at [21, Page 127] gives
that

δ2(λ(TWR
),λ(TR,n))≤

p
2‖KR‖F‖ER,n‖=

p
2‖WR‖2‖ER,n‖ , (21)

Actually, one can remove the constant
p

2 using Ostrowski’s theorem, see [7, Theorem A.2] for instance.
Also, by Hoffman-Wielandt inequality, we have

δ2(λ(TR,n),λ(eTR,n))≤ ‖eTR,n − TR,n‖F =
� 1

n2

n
∑

i=1

W 2
R (X i , X i)

�
1
2

, (22)

and

δ2(λ(eTR,n),λ(T n))≤ ‖eTR,n − T n‖F =
� 1

n2

∑

i 6= j

(W −WR)
2(X i , X j)

�
1
2

. (23)



A.3 Proof of Lemma 12 23

Invoke Lemma 12 to bound (21), Lemma 13 to bound (22) and Lemma 14 to bound (23).

Lemma 12. Let R≥ 1 and denote by ρ(R) :=max(1,‖
∑R

r=1φ
2
r ‖∞ − 1) then it holds

∀t > 0, P
�

‖ER,n‖ ≥ t
	

≤ 2R exp
�

−
n

2ρ(R)
t2

1+ t/(3n)

�

.

In particular, for all α ∈ (0,1) and for n3 ≥ ρ(R) log(2R/α), it holds

P

¨

‖ER,n‖ ≥

√

√ρ(R) log(2R/α)
n

«

≤ α .

Lemma 13. Let R≥ 1 and α ∈ (0,1) then, with probability at least 1−α, it holds

1
n2

n
∑

i=1

W 2
R (X i , X i)≤

�

1+ max
1≤r≤R

||φ2
r ||∞

√

√ log(R/α)
2n

�

2ρ(R)||WR||2

n
.

Lemma 14. It holds, for all α ∈ (0, 1),

P

(

1
n(n− 1)

∑

i 6= j

(W −WR)
2(X i , X j)≥

∑

r>R

λ2
r (TW ) + ‖W −WR‖2

∞

√

√ log(2/α)
n− 1

)

≤ α .

These lemmas are proven in Appendix A.3, Appendix A.4 and Appendix A.5. Collecting (20), (21), (22)
and (23), the triangular inequality gives the result.

A.3. Proof of Lemma 12

Observe that nER,n =
∑n

i=1(ZR(X i)Z>R (X i)− IdR) is a sum of independent centered symmetric matrices
where we denote by ZR(x) := (φ1(x), . . . ,φR(x)). In particular, ZR(X i)Z>R (X i) are rank one matrices so
that it holds

‖ZR(X i)Z
>
R (X i)− IdR‖= 1∨

�

‖ZR(X i)‖2
2 − 1

�

= 1∨
�

(
R
∑

r=1

φ2
r (X i))

2 − 1
�

≤ 1∨
�

‖
R
∑

r=1

φ2
r ‖∞ − 1

�

=: ρ(R) .

Moreover, one has

σ2
R,n := n‖E

�

(ZR(X1)Z
>
R (X1)− IdR)

2
�

‖

= n‖E
�

‖ZR(X1)‖2
2ZR(X1)Z

>
R (X1)− 2ZR(X1)Z

>
R (X1)− IdR

�

‖

= n‖E
�

‖ZR(X1)‖2
2ZR(X1)Z

>
R (X1)

�

− IdR‖

≤ n







‖
R
∑

r=1

φ2
r ‖∞E

�

ZR(X1)Z
>
R (X1)

�

− IdR










= n







‖
R
∑

r=1

φ2
r ‖∞IdR − IdR










= n
�

�

�‖
R
∑

r=1

φ2
r ‖∞ − 1

�

�

�≤ nρ(R)
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where we invoke that a.s. ‖ZR(X1)‖2
2ZR(X1)Z>R (X1)´ (‖

∑R
r=1φ

2
r ‖∞)ZR(X1)Z>R (X1). It follows from the

matrix Bernstein inequality given in [33, Theorem 6.1.1]

∀t > 0, P
�

‖ER,n‖ ≥ t
	

≤ 2R exp
�

−
n

2ρ(R)
t2

1+ t/(3n)

�

.

Indeed, we have used [33, Theorem 6.1.1] with

Xk ← ZR(X i)Z
>
R (X i)− IdR,

R← ρ(R),
Y ← nER,n,

σ2 ≤ n||E
�

X 2
1

�

|| ← σ2
R,n,

t ← nt,

according to the notation of [33] on the left hand side and our notation on the right hand side. It proves
the lemma.

A.4. Proof of Lemma 13

Observe that

1
n2

n
∑

i=1

W 2
R (X i , X i) =

1
n2

n
∑

i=1

�

R
∑

r=1

λr(TW )φ
2
r (X i)

�2

=
1
n2

∑

r,s∈[R]

λr(TW )λs(TW )
�

n
∑

i=1

φ2
r (X i)φ

2
s (X i)

�

= x>Ax ≤ ||A||||x ||22

with x = (λ1(TW )/
p

n, . . . ,λR(TW )/
p

n) and A = ((1/n)
∑n

i=1φ
2
r (X i)φ2

s (X i))r,s. Note that A is an
irreducible and aperiodic matrix since its coefficients are positive. It follows by Perron-Frobenius theorem
that

||A|| ≤
1
n

max
1≤r≤R

(
R
∑

s=1

n
∑

i=1

φ2
r (X i)φ

2
s (X i))

Now, this last quantity can be upper bounded as follows

1
n

R
∑

s=1

n
∑

i=1

φ2
r (X i)φ

2
s (X i) =

1
n

n
∑

i=1

φ2
r (X i)(

R
∑

s=1

φ2
s (X i)),

≤ (
1
n

n
∑

i=1

φ2
r (X i))(1+ρ(R)).

Using the bound
φ2

r (X1)≤ max
1≤r≤R

||φ2
r ||∞ =: aR ,

and Hoeffding inequality [6, Page 34], we deduce that

∀t > 0, P

¨

1
n

n
∑

i=1

φ2
r (X i)> E

�

φ2
r (X1)

�

+ t

«

≤ exp
�

−
2nt2

a2
R

�

.

Observe that E
�

φ2
r (X1)

�

= 1. Let α ∈ (0, 1), choosing t2 = a2
R log(R/α)/(2n) and taking an union bound,

it holds that

P

¨

∀r ∈ [R],
1
n

n
∑

i=1

φ2
r (X i)≤ 1+

aR log
1
2 (R/α)
p

2n

«

≥ 1−α
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It results in

P

¨

||A|| ≤
�

1+
(1+ρ(R)) log

1
2 (R/α)

p
2n

�

(1+ρ(R))

«

≥ 1−α

On this event, we deduce that

1
n2

n
∑

i=1

W 2
R (X i , X i)≤ ||A||||x ||22,

≤
�

1+
aR log

1
2 (R/α)
p

2n

� (1+ρ(R))||WR||2

n
,

which gives the result.

A.5. Proof of Lemma 14

By a standard inequality of Hoeffding [18], for a bounded kernel h, for all α ∈ (0, 1),

P

(

�

�

�

1
n(n− 1)

∑

i 6= j

h(X i , X j)−E (h(X1, X2))
�

�

�> ‖h‖∞

√

√ log(2/α)
n− 1

)

≤ α

Applying this result for h= (W −WR)2 and noticing that

• E (h(X1, X2)) = ‖W −WR‖2
2 =

∑

r>Rλ
2
r (TW ),

• ‖h‖∞ = ‖W −WR‖2
∞,

the result follows.

A.6. Proof of Corollary 3

The symmetric kernel h := (W −WR)2 − E
�

(W −WR)2
�

is σ-canonical, see [11, Definition 3.5.1] for
a definition. The following important improvement of Hoeffding’s inequalities for canonical kernels
was proved by [1], it holds that there exists two universal constants C1 > 0 and C2 > 0 such that for all
α ∈ (0,1),

P

(

�

�

�

1
n(n− 1)

∑

i 6= j

h(X i , X j)
�

�

�> C1‖h‖∞
log(C2/α)

n

)

≤ α .

We deduce that it holds, for all α ∈ (0,1),

P

(

1
n(n− 1)

∑

i 6= j

(W −WR)
2(X i , X j)≥ ‖W −WR‖2

2 + C1‖W −WR‖2
∞

log(C2/α)
n

)

≤ α ,

which proves the corollary substituting Lemma 14 by the aforementioned inequality.

A.7. Proof of Proposition 4

Define

∀t ∈ [−1, 1], pR(t) :=
R
∑

`=0

p?`c`G
β

`
(t) .
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We apply Corollary 3 to the kernel as follows.

∀x , y ∈ Sd−1, W
eR(x , y) :=

R
∑

`=0

p?`c`G
β

`
(〈x , y〉) = pR(〈x , y〉) ,

First, note that

‖W −W
eR‖2 = ‖p− pR‖2 =

�∑

`>R

d`(p
?
`)

2
�

1
2

. (24)

Next, invoke [10, Corollary 1.2.7] to get that

∀`≥ 0,
d
∑̀

j=1

Y 2
` j = d` .

It follows that the quantity ρ(eR) of Theorem 2 simplifies to ρ(eR)≤ eR. Furthermore, it holds

∀x ∈ Sd−1, W
eR(x , x) =

R
∑

`=0

p?`c`G
β

`
(1) =

R
∑

`=0

d`p
?
` , (25)

since Gλ
`
(1) = d`/c`. Then by Hoffman-Wielandt inequality, we have

δ2(λ(T eR,n),λ(eT eR,n))≤ ‖eT eR,n − T
eR,n‖F =

� 1
n2

n
∑

i=1

W 2
eR
(X i , X i)

�
1
2 =

1
p

n

�

�

�

R
∑

`=0

d`p
?
`

�

�

� ,

almost surely. And we use this bound instead of the one of Lemma 13. The following result follows:

δ2(λ(TW
eR
),λ(T n))≤

�

R
∑

`=0

d`(p
?
`)

2
�

1
2
�

eR log(2eR/α)
n

�
1
2

+
1
p

n

�

�

�

R
∑

`=0

d`p
?
`

�

�

�+ ‖p− pR‖2 + ‖p− pR‖∞
�C1 log(C2/α)

n

�
1
2

(26)

with probability at least 1− 3α.

Let us study the various terms appearing in (26). First, by orthonormality

R
∑

`=0

d`|p?`|
2 = ‖pR‖2

2 ≤ ‖p‖
2
2 ≤ 2

since pR is the orthogonal projection of p, and |p| ≤ 1. Next, using Cauchy-Schwarz inequality
�

�

�

�

�

R
∑

`=0

d`p
?
`

�

�

�

�

�

≤

�

R
∑

`=0

d`

�1/2� R
∑

`=0

d`|p?`|
2

�1/2

≤
Æ

2eR.

Now ‖p−pR‖∞ ≤ 1+‖pR‖∞, with ‖pR‖∞ ≤
∑R
`=0 |p

?
`
c`|‖G

β

`
‖∞. But ‖Gβ

`
‖∞ = Gβ

`
(1) by Formula (4.7.1)

and Theorems 7.32.1 and 7.33.1 of [30] so

‖pR‖∞ ≤
R
∑

`=0

|p?`c`|G
λ
` (1) =

R
∑

`=0

|p?`|d` ≤
Æ

2eR .

Finally, (26) becomes

δ2(λ(TW
eR
),λ(T n))≤

p
2
�

eR log(2eR/α)
n

�
1
2 +

p

2eR
p

n

+
�∑

`>R

d`(p
?
`)

2
�

1
2 +

�

1+
Æ

2eR
��C1 log(C2/α)

n

�
1
2
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Hence, since eR≥ 1 and log n≤ n, there exists a numerical constant C > 0 such that, with probability at
least 1− 3α

δ2(λ(TW
eR
),λ(T n))≤

�∑

`>R

d`(p
?
`)

2
�

1
2 + C

√

√

eR(1+ log(eR/α))
n

. (27)

Adding (24) gives the first statement of Proposition 4.

Now let us denote by Ω the set with probability larger than 1− 3α such that the previous inequality is
true. One has

δ2(λ(T n),λ
?) = δ2(λ(T n),λ

?)1Ω +δ2(λ(T n),λ
?)1Ωc .

Observe that each |λk(T n)| is bounded by ρ(T n) the spectral radius of T n. Since T n := (1/n)Θ0, it holds
that ρ(bT n)≤ ‖Θ0/n‖F ≤ 1. Then

δ2(λ(T n),λ
?)≤ δ2(λ(T n), 0) +δ2(0,λ?)≤

p
n+ ‖p‖2 (28)

which entails δ2
2(λ(T n),λ?)≤ (1+

p
2)2n. Hence, using this bound and previous inequality,

Eδ2
2(λ(T n),λ

?) = E
�

δ2
2(λ(T n),λ

?)1Ω
�

+ (1+
p

2)2nP(Ωc)

≤ 8
�∑

`>R

d`(p
?
`)

2
�

+ 2C2
eR(1+ log(eR/α))

n
+ 3α(1+

p
2)2n

as soon as n3 ≥ eR log(2eR/α). We choose α= n−2, and assume n≥ 2eR. Then

eR log(2eR/α) = eR log(2eRn2)≤
n
2

log(n3)≤ n3 ,

and

E
�

δ2
2(λ(T n),λ

?)
�

≤ 8
�∑

`>R

d`(p
?
`)

2
�

+ 2C2
eR(1+ log(eRn2))

n
+ 3(1+

p
2)2n−1

≤ 8
�∑

`>R

d`(p
?
`)

2
�

+ C ′
Rd−1 log n

n

since eR = O (Rd−1). Now we assume that p belongs to the Weighted Sobolev Z s
wβ
((−1,1)). Then,

using (12), for all R such that n≥ 2eR, it holds

E
�

δ2
2(λ(T n),λ

?)
�

≤ 8C(p, s,d)R−2s + C ′
Rd−1 log n

n

To conclude it is sufficient to choose R= b(n/log n)
1

2s+d−1 c.

A.8. Proof of Theorem 6

We use the notation of the previous proofs and, in particular, the notation of Appendix A.7. The heart of
the proof lies in the following proposition, proved in Appendix A.9.
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Proposition 15. Let R≥ 0 such that 2eR≤ n. It holds δ2(bλR,λ?R)≤ 4δ2(λ(TW
eR
),λ(T n))+

p

2eR‖bT n−T n‖.

Now, using inequality (4), we know that with probability at least 1−α it holds

‖bT n − T n‖ ≤
3
p

2n
+ C0

p

log(n/α)
n

.

Moreover, by (27) in proof of Proposition 4, for all n3 ≥ eR log(2eR/α),

δ2(λ(TW
eR
),λ(T n))≤

�∑

`>R

d`(p
?
`)

2
�

1
2 + C

√

√

eR(1+ log(eR/α))
n

.

Thus there exists a numerical constant κ0 > 0 such that, with probability at least 1− 3α

δ2(bλ
R,λ?R)≤ 4

�∑

`>R

d`(p
?
`)

2
�

1
2 + κ0

√

√

eR(1+ log(eR/α))
n

.

if n3 ≥ (2eR)3 ∨ eR log(2eR/α), that gives the first statement of Theorem 6.

Now let us denote by Ω the set with probability larger than 1− 3α such that the previous inequality is
true. One has

δ2(bλ
R,λ?R) = δ2(bλ

R,λ?R)1Ω +δ2(bλ
R,λ?R)1Ωc

As for (28), we can prove the coarse bound

δ2(bλ
R,λ?R)≤

Æ

eR+ ‖p‖2 ≤ (1+
p

2)
Æ

eR.

Hence, using this bound and previous inequality,

E
�

δ2
2(bλ

R,λ?R)
�

= E
�

δ2
2(bλ

R,λ?R)1Ω
�

+ (1+
p

2)2eRP(Ωc)

≤ 32

�

∑

`>R

d`(p
?
`)

2

�

+ 2κ2
0

eR
�

1+ log(eR/α)
�

n
+ 3α(1+

p
2)2eR ,

as soon as n3 ≥ (2eR)3 ∨ eR log(2eR/α). We choose α= n−1, and assume n ≥ 2eR. Then eR log(2eR/α) ≤ n3

and

E
�

δ2
2(bλ

R,λ?R)
�

≤ 32

�

∑

`>R

d`(p
?
`)

2

�

+ 2κ2
0

eR
�

1+ log(eRn)
�

n
+ 3(1+

p
2)2

eR
n

≤ 32

�

∑

`>R

d`(p
?
`)

2

�

+ (6κ2
0 + 18)

eR log n
n

.

This completes the proof.

A.9. Proof of Proposition 15

◦ Define ∆R as follows

∀x , y ∈ R2eR, ∆2
R(x , y) := min

σ∈S2eR

¦

2eR
∑

k=1

(xk − yσ(k))
2
©

,

where S2eR denotes the set of permutations on [2eR].
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Once again, using Hardy-Littlewood rearrangement inequality [16, Theorem 368], it holds that

∀x , y ∈ R2eR s.t. x1 ≥ . . .≥ x2eR and y1 ≥ . . .≥ y2eR, ∆2
R(x , y) :=

2eR
∑

k=1

(xk − yk)
2 .

Completing with eR zeros, we denote also

bΛR := ( bp0
︸︷︷︸

d0

,bp1, . . . ,bp1
︸ ︷︷ ︸

d1

, . . . ,bpR, . . . ,bpR
︸ ︷︷ ︸

dR

, 0, . . . , 0
︸ ︷︷ ︸

eR

) ∈ R2eR ,

and Λ?R := (p?0,p?1, . . . ,p?1, . . . ,p?R, . . . ,p?R, 0, . . . , 0) ∈ R2eR .

Since R does not vary in this proof, we have denoted bp` := bpR
`
. Observe that δ2(bλR,λ?R) =∆R(bΛR,Λ?R)

using the property described in (7) and Hardy-Littlewood rearrangement inequality [16, Theorem 368]
again.

◦ Recall that it holds λ(TW
eR
) = {0,p?0,p?1, . . . ,p?1, . . . ,p?R, . . . ,p?R} where zero is the only eigenvalue with

infinite multiplicity. In particular, remark that the vector (p?0,p?1, . . . ,p?1, . . . ,p?R, . . . ,p?R) belongs toMR.
We begin by defining

(p0, . . . ,pR, . . . ,pR) ∈ arg min
u∈MR

min
σ∈Sn

¦

eR
∑

k=1

(uk −λσ(k)(T n))
2 +

n
∑

k=eR+1

λσ(k)(T n)
2
©

, (29)

where Sn denotes the set of permutation on [n]. Also, define

∀x , y ∈ Sd−1, W
eR(x , y) =

R
∑

`=0

p`c`G
β

`
(〈x , y〉) ,

and observe that λ(TW
eR
) = {0,p0,p1, . . . ,p1, . . . ,pR, . . . ,pR} where zero is the only eigenvalue with

infinite multiplicity. Denote σ ∈Sn the permutation that achieves the minimum in (29). We have the
following intermediate result.

Lemma 16. It holds

δ2
2(λ(TW

eR
),λ(T n)) =

eR
∑

k=1

(pk −λσ(k)(T n))
2 +

n
∑

k=eR+1

λσ(k)(T n)
2 ≤ δ2

2(λ(TW
eR
),λ(T n)) ,

where (p`)` is defined by (29).

Proof. Observe that λ(TW
eR
) has at most eR nonzero eigenvalues. Using again Hardy-Littlewood re-

arrangement inequality [16, Theorem 368] and (7), one may deduce that δ2
2(λ(TW

eR
),λ(T n)) reads

∑

eR
k=1(pk −λσ(k)(T n))2 +

∑n
k=eR+1λσ(k)(T n)2 for some permutation σ ∈Sn. Taking the infimum leads to

the left hand side equality.

Then, observe that λ(TW
eR
) has at most eR nonzero eigenvalues. Using again Hardy-Littlewood rear-

rangement inequality [16, Theorem 368] and (7), one may deduce again that δ2
2(λ(TW

eR
),λ(T n)) reads

∑

eR
k=1(p

?
k − λσ(k)(T n))2 +

∑n
k=eR+1λσ(k)(T n)2 for some permutation σ ∈ Sn. Furthermore, recall that

(p?0,p?1, . . . ,p?1, . . . ,p?R, . . . ,p?R) belongs toMR and, hence, it is admissible to Program (29). In particular,
the value of the objective at this point is always greater than the minimal value. This gives the right
hand side inequality.

◦ Similarly, denote ((bp`), bσ) a point that achieves the minimum in (14). Now, consider

S := σ([eR])∪ bσ([eR]) ,

and Sc := [n] \ S, and define s := #S ≤ 2eR≤ n.
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On can check that

bp` =
1
d`

e

∑̀

k=Þ`−1

λ
bσ(k) and p` =

1
d`

e

∑̀

k=Þ`−1

λσ(k)

with the convention Ý−1= 1.

◦ Denote by SS,n the set of permutation σ ∈Sn such that σ([s]) = S, SS the set of bijections from [s]
onto S and Ss the set of permutations of [s]. It is clear that SS 'Ss. Observe that

(bp`) = arg min
u∈MR

min
σ∈Sn

¦

eR
∑

k=1

(uk −λσ(k))2 +
n
∑

k=eR+1

λ2
σ(k)

©

= arg min
u∈MR

min
σ∈SS,n

¦

eR
∑

k=1

(uk −λσ(k))2 +
n
∑

k=eR+1

λ2
σ(k)

©

since one of the permutation σ ∈Sn that achieves the minimum in the first row satisfies σ ∈SS,n and it
follows that (bp`) is the arg minimum of the second program. Now, separating the terms λ2

σ(k) for k > eR,
we obtain

(bp`) = arg min
u∈MR

min
σ∈SS,n

¦

eR
∑

k=1

(uk −λσ(k))2 +
s
∑

k=eR+1

λ2
σ(k) +

∑

t∈Sc

λ2
t

©

= arg min
u∈MR

min
σ∈SS

¦

eR
∑

k=1

(uk −λσ(k))2 +
s
∑

k=eR+1

λ2
σ(k) +

∑

t∈Sc

λ2
t

©

= arg min
u∈MR

min
σ∈SS

¦

eR
∑

k=1

(uk −λσ(k))2 +
s
∑

k=eR+1

λ2
σ(k)

©

. (30)

Similarly, one can check that

(p`) = arg min
u∈MR

min
σ∈SS

¦

eR
∑

k=1

(uk −λσ(k)(T n))
2 +

s
∑

k=eR+1

λσ(k)(T n)
2
©

.

◦ Consider the restriction ∆̇R of ∆R to Rs defined as follows

∀x , y ∈ Rs, ∆̇2
R(x , y) := min

σ∈Ss

¦

s
∑

k=1

(xk − yσ(k))
2
©

.

Using (5) and Weyl’s inequality [4, Page 63] and by abuse of notation, note that

∆̇R((λk(T n))k∈S , (λk)k∈S)≤
�∑

k∈S

(λk −λk(T n))
2
�

1
2 ≤
p

s‖bT n − T n‖ .

Moreover, using (30) and by abuse of notation, remark that

∆̇2
R((bp`), (λk)k∈S) = min

σ∈SS

¦

min
u∈MR

eR
∑

k=1

(uk −λσ(k))2 +
s
∑

k=eR+1

λ2
σ(k)

©

.

≤ min
σ∈SS

¦

eR
∑

k=1

(pk −λσ(k))2 +
s
∑

k=eR+1

λ2
σ(k)

©

.

= ∆̇2
R((p`), (λk)k∈S)

where (bp`) = (bp0,bp1, . . . ,bp1, . . . ,bpR, . . . ,bpR, 0, . . . , 0) ∈ Rs completing with s− eR zeros.
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◦ Using (29), Lemma 16 and by abuse of notation, observe that

∆̇2
R((p`), (λk(T n))k∈S) = min

σ∈SS

¦

eR
∑

k=1

(pk −λσ(k)(T n))
2 +

s
∑

k=eR+1

λσ(k)(T n)
2
©

.

≤ min
σ∈SS

¦

eR
∑

k=1

(pk −λσ(k)(T n))
2 +

s
∑

k=eR+1

λσ(k)(T n)
2 +

∑

t∈Sc

λt(T n)
2
©

.

= min
σ∈Sn

¦

eR
∑

k=1

(pk −λσ(k)(T n))
2 +

n
∑

k=eR+1

λσ(k)(T n)
2
©

,

=
eR
∑

k=1

(pk −λσ(k)(T n))
2 +

n
∑

k=eR+1

λσ(k)(T n)
2

= δ2
2(λ(TW

eR
),λ(T n))

≤ δ2
2(λ(TW

eR
),λ(T n))

where we denote by (p`) = (p0,p1, . . . ,p1, . . . ,pR, . . . ,pR, 0, . . . , 0) ∈ Rs completing with s− eR zeros.

◦ Using that ∆̇R is a semi-distance—in particular the triangular inequality holds, one deduces

∆̇R((bp`), (p`))≤ ∆̇R((bp`), (λk)k∈S) + ∆̇R((λk)k∈S , (λk(T n))k∈S) + ∆̇R((λk(T n))k∈S , (p`))

≤ 2δ2(λ(TW
eR
),λ(T n)) +

p
s‖bT n − T n‖ ,

combining the aforementioned inequalities.

Define Λ
R

:= (p0,p1, . . . ,p1, . . . ,pR, . . . ,pR, 0, . . . , 0) ∈ R2eR completing with eR zeros, and remark that

∆R(bΛ
R,Λ

R
)≤ ∆̇R((bp`), (p`))≤ 2δ2(λ(TW

eR
),λ(T n)) +

Æ

2eR‖bT n − T n‖ .

◦ It remains to bound ∆R(Λ?R,Λ
R
). Note that ∆R(Λ?R,Λ

R
) = δ2(λ(TW

eR
),λ(TW

eR
)). Then, invoke

Lemma 16 to get that

∆R(Λ
?R,Λ

R
)≤ δ2(λ(TW

eR
),λ(T n)) +δ2(λ(T n),λ(TW

eR
))≤ 2δ2(λ(TW

eR
),λ(T n)) .

Finally we obtain the following bound:

δ2(bλ
R,λ?R)≤ 4δ2(λ(TW

eR
),λ(T n)) +

Æ

2eR‖bT n − T n‖ (31)

for all sample size n≥ 2eR.

A.10. Proof of Theorem 7

In this proof we denote D(R) =
Æ

eR log n/n, so that B(R) =maxR′∈R
�

δ2(bλR′ , bλR′∧R)−κD(R′)
	

. Fix some
R ∈ R . First decompose

δ2(bλ
bR,λ?)≤ δ2(bλ

bR, bλbR∧R) +δ2(bλ
bR∧R, bλR) +δ2(bλ

R,λ?).

Using the definition of B(R) and B(bR) it holds that

δ2(bλ
bR,λ?)≤ B(R) +κD(bR) + B(bR) + κD(R) +δ2(bλ

R,λ?).
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We now use the definition of bR to write δ2(bλ
bR,λ?)≤ 2B(R) + 2κD(R) +δ2(bλR,λ?). The last term can be

split in δ2(bλR,λ?)≤ δ2(bλR,λ?R) +δ2(λ?R,λ?). Thus,

δ2(bλ
bR,λ?)≤ 2B(R) + 2κD(R) +δ2(bλ

R,λ?R) +δ2(λ
?R,λ?). (32)

We shall now control the term B(R). Denote a+ =max(a, 0) the positive part of any real a. Let us write

B(R) =max
R′∈R
{δ2(bλ

R′ , bλR′∧R)−κD(R′)}

≤ max
R′∈R ,R′≥R

{δ2(bλ
R′ , bλR)−κD(R′)}+

≤ max
R′∈R ,R′≥R

{δ2(bλ
R′ ,λ?R

′
) +δ2(λ

?R′ ,λ?R) +δ2(λ
?R, bλR)− κD(R′)}+

Now δ2
2(λ

?R′ ,λ?R) =
eR′
∑

k=eR+1

|λ?k|
2 ≤ δ2

2(λ
?R,λ?). Then

B(R)≤ max
R′∈R ,R′≥R

{δ2(bλ
R′ ,λ?R

′
)− κD(R′)}+ +δ2(λ

?R,λ?) +δ2(λ
?R, bλR) .

Finally, combining this with (32),

δ2(bλ
bR,λ?)≤ 2 max

R′∈R ,R′≥R
{δ2(bλ

R′ ,λ?R
′
)−κD(R′)}+ + 2κD(R) + 3δ2(bλ

R,λ?R) + 3δ2(λ
?R,λ?) ,

≤ 5 max
R′∈R ,R′≥R

{δ2(bλ
R′ ,λ?R

′
)−κD(R′)}+ + 3δ2(λ

?R,λ?) + 5κD(R) .

Now, we invoke Theorem 6 and a union bound to insure that, if n3 ≥ (2eRmax)3∨eRmax log(2eRmax/α) then,
with probability greater that 1− 3|R|α, it holds

∀R′ ∈ R , δ2(bλ
R′ ,λ?R

′
)≤ 4δ2(λ

?R′ ,λ?) +κ0

√

√

√

eR′

n

�

1+ log

�

eR′

α

��

We choose α = n−1−q, then eRmax log(2eRmax/α) = eRmax log(2eRmaxnq+1) ≤ n log(nq+2)/2 < 0.1(q + 2)n3

since x−2 log x ≤ 0.09 and also note that 1+ log
�

eR/α
�

≤ (q+ 3) log n. If q+ 2≤ 10 then it holds that
n3 > eRmax log(2eRmax/α) and with probability 1− 3n−q

∀R′ ∈ R , δ2(bλ
R′ ,λ?R

′
)≤ 4δ2(λ

?R′ ,λ?) +κ0

p

q+ 3D(R′)

Then, with probability 1− 3n−q, provided that κ≥ κ0

p

q+ 3

δ2(bλ
bR,λ?)≤ 5 max

R′∈R ,R′≥R
{4δ2(λ

?R′ ,λ?)}+ + 3δ2(λ
?R,λ?) + 5κD(R)

≤ 23δ2(λ
?R,λ?) + 5κD(R)

Since it holds for any R, the first inequality of Theorem 7 is proved by choosing q = 8.

The second statement will follow by the same roadmap as in the end of proof A.8. Let us denote by Ω
the set with probability larger than 1− 3n−q such that the previous inequality is true, and let us find a

coarse bound on δ2
2(bλ

R,λ?). Remind that δ2(bλR,λ?R)≤ (1+
p

2)
p

eR for all R, see (28). Furthermore

δ2(λ
?R,λ?) =

�∑

`>R

d`(p
?
`)

2
�

1
2 ≤ ‖p‖2 ≤

p
2 .

Hence, using this bound and previous inequality, for all R ∈ R ,

E
�

δ2
2(bλ

bR,λ?)
�

≤ E
�

δ2
2(bλ

bR,λ?)1Ω
�

+ (1+ 2
p

2)2eRmax P(Ωc)

≤ 2(23)2δ2
2(λ

?R,λ?) + 2(5)2κ2D2(R) + (1+ 2
p

2)2eRmax3n−q

≤ 2(23)2
�

δ2
2(λ

?R,λ?) +κ2D2(R) + n1−q
�

provided that κ≥ κ0

p

q+ 3. The conclusion follows, choosing for instance q = 2.
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A.11. Proof of Proposition 9

Note that δ2
2(λ

?R,λ?) =
∑

k>eR |λ
?
k|

2 =
∑

`>R d`|p?`|
2 and this quantity vanishes when R ≥ D. From

Theorem 6 and assuming that n3 ≥ (2eR)3 ∨ eR log(2eR/α), we derive that, for R≥ D, it holds

δ2(bλ
R,λ?R)≤ κ0

Ç

eR
�

1+ log
�

eR/α
��

/n

with probability at least 1−3α. Remark also that pR = p as soon as R≥ D, where pR(t) :=
∑R
`=0 p?

`
c`G

β

`
(t).

We now work on the set with probability 1− 3α given by Theorem 6.

We denote
δ := min

0≤i 6= j≤D; p?i 6=0
|p?i − p?j | ∧ |p

?
i |> 0 ,

and note that, for n large enough, it holds δ2(bλR,λ?R)< δ/2. Then there exists a permutation σ? ∈Sn

such that for all k ∈ [n], |bλR
σ?(k) −λ

?R
k |< δ/2. Now, observe that

bλR = ( bpR
0

︸︷︷︸

d0

,bpR
1 , . . . ,bpR

1
︸ ︷︷ ︸

d1

, . . . ,bpR
D, . . . ,bpR

D
︸ ︷︷ ︸

dD

, . . . ,bpR
R, . . . ,bpR

R
︸ ︷︷ ︸

dR

, 0, . . . ),

λ?R = ( p?0
︸︷︷︸

d0

,p?1, . . . ,p?1
︸ ︷︷ ︸

d1

, . . . ,p?D, . . . ,p?D
︸ ︷︷ ︸

dD

, 0, . . . ).

We deduce that if δ2(bλR,λ?R)< δ/2 then for all h, i, j, k,` such that p?h 6= 0 it holds

If |bpR
k − p?h| ∨ |bp

R
` − p?h| ≤ δ/2 (resp. |bpR

k − p?i | ∨ |bp
R
k − p?j | ≤ δ/2)

then bpR
k = bp

R
` (resp. p?i = p?j ) . (33)

Indeed, one bpR
`

cannot be at the same time at a distance less than δ/2 to some p?i 6= 0 and at a distance
less that δ/2 to some p?j since these latter are both at a distance of δ. Necessarily the permutation σ? is
such that the group of eigenvalues p?i 6= 0 of multiplicity di matches with the group of eigenvalues bpR

i
with the same multiplicity—recall that the multiplicities d` are pairwise different since the sequence d`
is increasing. Thanks to (33) it holds

δ2
2(bλ

R,λ?R) =
∑

h; p?h 6=0

dh(bp
R
h − p?h)

2 +
∑

`; p?
`
=0

d`(bp
R
` )

2 = ||bpR − p||22 ,

noticing that ‖bpR − pR‖2
2 =

∑R
`=0 d`(bpR

`
− p?

`
)2. It follows that if

n3 ≥ (2eR)3 ∨ eR log(2eR/α) and 2κ0

Ç

eR
�

1+ log
�

eR/α
��

/n< min
0≤i 6= j≤D; p?i 6=0

|p?i − p?j | ∧ |p
?
i |

then ||bpR−p||2 ≤ κ0

q

eR
�

1+ log
�

eR/α
��

/n with probability at least 1−3α. Again, we choose α = n−1−q,
then eR log(2eR/α) = eR log(2eRnq+1)≤ n log(nq+2)/2< 0.1(q+ 2)n3 since x−2 log x ≤ 0.09 and also note
that 1+ log(eR/α)≤ (q+ 3) log n. With q = 8, it holds that n3 > eR log(2eR/α). Now, if

n≥ 2eR and 2κ0

q

11eR log(n)/n< min
0≤i 6= j≤D; p?i 6=0

|p?i − p?j | ∧ |p
?
i |

then ||bpR − p||2 ≤ κ0

Æ

11eR log(n)/n with probability 1− 3n−8, as claimed.

For the second statement, let us denote by Ω the set with probability larger than 1− 3n−q such that
the previous inequality is true, and let us find a coarse bound on ||bpR − p||22, for instance ||bpR − p||2 ≤
(1+

p
2)
p

eR. Hence, using this bound and previous inequality, it holds

E
�

||bpR − p||22
�

≤ E
�

||bpR − p||221Ω
�

+ (1+
p

2)2eRP(Ωc)≤
κ2

0 (q+ 3)eR log n

n
+ 3(1+

p
2)2eRn−q

recalling that 1+ log(eR/α)≤ (q+ 3) log n. The conclusion follows, choosing q = 1.
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A.12. Proof of Corollary 10

From Theorem 7, with probability 1− 3n−8

δ2(bλ
bR,λ?)≤ C min

 

min
R<D

 

δ2(λ
?R,λ?) +κ

√

√

eR log n
n

!

,min
R≥D

 

κ

√

√

eR log n
n

!!

≤ C min

 

min
R<D

 

δ2(λ
?R,λ?) +κ

√

√

eR log n
n

!

,κ

√

√

eD log n
n

!

Then, with probability 1− 3n−8,

δ2(bλ
bR,λ?)≤ Cκ

√

√

eD log n
n

−→
n→∞

0.

Thus, reasonning as in proof A.11, it holds

δ2
2(bλ

bR,λ?) = ||bpbR − p||22 =
∑

`

d`(bp
bR
` − p?)2 ,

If (by contradiction) bR< D, then δ2(λ?
bR,λ?)≥ dD|p?D|

2 > 0 and then δ2(bλ
bR,λ?) cannot tend to 0. Thus

necessarily bR≥ D.Moreover, since δ2
2(bλ

R̂,λ?) = ||bpR̂ − p||22 , with probability 1− 3n−8

||bpR̂ − p||22 ≤ C2κ2
eD log n

n
.

Finally we can write

E
�

||bpbR − p||22
�

≤ E
�

||bpbR − p||221Ω
�

+ (1+
p

2)2eRmax P(Ωc)

≤ C2κ2
eD log n

n
+ 3(1+

p
2)2eRmaxn−8 ≤ (C2κ2 + 9)

eD log n
n

.

A.13. Proof of Theorem 11

The proof follows the same guidelines as in the sphere example. The only difference is that we do
not have Gegenbauer polynomials but normalized Jacobi polynomials Z` now. In particular, we have
previously used the fact that Gegenbauer polynomials are bounded. Here, the same result holds in virtue
of (18).

To be precise, when S is a compact symmetric space, note that

•
R
∑

r=1

φ2
r =

R−1
∑

r=0

Æ

dr zonr(eS) =
R−1
∑

r=0

dr =àR− 1 and we get that ρ(R) ≤ eR when invoking Lemma 12

or Theorem 2;

• we define pR(t) :=
R
∑

`=0

Æ

d`p
?
`Z`(t) and we get that

W
eR(x , y) = pR(cos(γ(x , y)))

W
eR(x , x) =

R
∑

`=0

Æ

d`p
?
`Z`(1) =

R
∑

`=0

d`p
?
` ,

by (18). This identity can be used in place of (25).

Using these inequalities and following the same guidelines as in the sphere example, one can prove the
result.
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Appendix B: Computational Considerations

B.1. Proof of Theorem 5

Without loss of generality, assume that λ1 ≥ λ2 ≥ . . .≥ λn. Similarly, let u ∈MR and remember that we
can group the coordinates of u in groups of sizes d` for ` = 0, . . . , R. Reordering by decreasing order,
there exists τ ∈SR+1 such that

u
åτ(1)−1+1

= . . .= u
ßτ(1)

︸ ︷︷ ︸

dτ(1)

≥ . . .≥u
äτ(q)−1+1

= . . .= u
ßτ(q)

︸ ︷︷ ︸

dτ(q)

≥ 0>

u
åτ(q+1)−1+1

= . . .= u
äτ(q+1)

︸ ︷︷ ︸

dτ(q+1)

≥ . . .≥ u
åτ(R)−1+1

= . . .= u
åτ(R+1)

︸ ︷︷ ︸

dτ(R+1)

,

for some q ∈ N. We may consider that q = 0 and respectively q = R+ 1 in degenerate cases when all the
coefficients are negative and respectively non negative. Remember that u ∈ ReR and set uk = 0 for k > eR
such that, completing with zeros, consider that u ∈ Rn. One has

u
åτ(1)−1+1

= . . .= u
ßτ(1)

︸ ︷︷ ︸

dτ(1)

≥ . . .≥u
äτ(q)−1+1

= . . .= u
ßτ(q)

︸ ︷︷ ︸

dτ(q)

≥ u
eR+1 = . . .= un
︸ ︷︷ ︸

n−eR

= 0>

u
åτ(q+1)−1+1

= . . .= u
äτ(q+1)

︸ ︷︷ ︸

dτ(q+1)

≥ . . .≥ u
åτ(R+1)−1+1

= . . .= u
åτ(R+1)

︸ ︷︷ ︸

dτ(R+1)

.

Note that

min
σ∈Sn

¦

eR
∑

k=1

(uk −λσ(k))2 +
n
∑

k=eR+1

λ2
σ(k)

©

= δ2
2((λk)

n
k=1, (uk)

n
k=1) = min

σ′∈Sn

¦

n
∑

k=1

(uσ′(k) −λk)
2
©

, (34)

taking σ′ = σ−1. Using Hardy-Littlewood rearrangement inequality [16, Theorem 368], it is standard to
observe that

(34)=(u
åτ(1)−1+1

−λ1)
2 + · · ·+ (u

ßτ(1) −λdτ(1))
2

︸ ︷︷ ︸

dτ(1)

+ · · ·

+ (u
äτ(q)−1+1

−λdτ(1)+···+dτ(q−1)+1)
2 + · · ·+ (u

ßτ(q) −λdτ(1)+···+dτ(q))
2

︸ ︷︷ ︸

dτ(q)

+λ2
dτ(1)+···+dτ(q)+1 + · · ·+λ

2
dτ(1)+···+dτ(q)+n−eR

︸ ︷︷ ︸

n−eR

+ (u
åτ(q+1)−1+1

−λdτ(1)+···+dτ(q)+n−eR+1)
2 + · · ·+ (u

äτ(q+1)
−λdτ(1)+···+dτ(q+1)+n−eR)

2

︸ ︷︷ ︸

dτ(q+1)

+ · · ·

+ (u
åτ(R+1)−1+1

−λdτ(1)+···+dτ(R)+n−eR)
2 + · · ·+ (u

åτ(R+1)
−λn)

2

︸ ︷︷ ︸

dτ(R+1)

.
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Hence a permutation σ′ achieving the minimum in (34) is given by

σ−1 = σ′ =











































































































k σ′(k)

1 åτ(1)− 1+ 1

...
...

dτ(1) ßτ(1)

...
...

dτ(1) + · · ·+ dτ(q−1) + 1 åτ(q)− 1+ 1

...
...

dτ(1) + · · ·+ dτ(q) ßτ(q)

dτ(1) + · · ·+ dτ(q) + 1 eR+ 1

...
...

dτ(1) + · · ·+ dτ(q) + n− eR n

...
...

dτ(1) + · · ·+ dτ(R) + n− eR åτ(R+ 1)− 1+ 1

...
...

n åτ(R+ 1)











































































































Remark that this permutation can be explicitly written given τ ∈ SR+1 and q ∈ [0, R]. It follows that
the set of permutations σ′ achieving the minimum in the right hand side of (34) is in one to one
correspondence with a subset of SR+2. Since σ = σ′−1 in (34) the same result holds true for the
permutation σ achieving the minimum of the left hand side of (34), proving the result. We define HR
has the set of permutation σ achieving the minimum of the left hand side of (34). The proof given here
is constructive and it gives an explicit expression of HR.
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