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Abstract: : This article studies the recovery of graphons when they are convolution ker-
nels on compact (symmetric) metric spaces. This case is of particular interest since it covers
the situation where the probability of an edge depends only on some unknown nonparamet-
ric function of the distance between latent points, referred to as Nonparametric Geometric
Graphs (NGG).
In this setting, adaptive estimation of NGG is possible using a spectral procedure combined
with a Goldenshluger-Lepski adaptation method. The latent spaces covered by our frame-
work encompass (among others) compact symmetric spaces of rank one, namely real spheres
and projective spaces. For these latter, explicit computations of the eigen-basis and of the
model complexity can be achieved, leading to quantitative non-asymptotic results. The time
complexity of our method scales cubicly in the size of the graph and exponentially in the
regularity of the graphon. Hence, this paper offers an algorithmically and theoretically effi-
cient procedure to estimate smooth NGG.
As a by product, this paper shows a non-asymptotic concentration result on the spectrum
of integral operators defined by symmetric kernels (not necessarily positive).
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1. Introduction

Over the recent years, the study of networks has become prevailing in many fields. Through the
advent of social networks, biological neural networks, food webs, protein interaction in genomics
and World wide web for instance, large scale data have become available. Extracting information
from those repositories of data is a true challenge. Random graphs prove to be particularly relevant
to model real-world networks. They are capable to capture complex interactions between actors
of a system. Vertices of a random graph usually represent entities of a system and the edges stand
for the presence of a specified relation between those entities. An important statistical problem is
seeking better and more informative representations of random graphs.

Following the seminal work of Erdős and Rényi (1960) various random graphs models have
been suggested, see Bollobás (2001); Newman (2003); Kolaczyk (2009); Hoff, Raftery and Hand-
cock (2002); Matias and Robin (2014) and references therein. Aside from classical random graphs,
random geometric graphs, see Penrose (2003); Liben-Nowell and Kleinberg (2007); Parthasarathy
et al. (2017) have emerged as an interesting alternative to model real networks having spatial
content. Examples include the Internet (where the nodes are the routers) and other physical com-
munication networks such as road networks or neural networks in the brain. Recall that a random
geometric graph is an undirected graph in which each vertex is assigned a latent (unobservable)
random label in some metric spaces S. Two vertices are connected by an edge if the distance
between them is smaller than some threshold. Assuming that the underlying metric is the unit
sphere Sd−1 and latent variables drawn from the uniform distribution on Sd−1, the paper Bubeck
et al. (2016) considered the problem of testing if the observed graph is an Erdös-Rényi one (no ge-
ometric structure) or a geometric graph on the sphere where points are connected if their distance
is smaller than some threshold.
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More generally, random graphs with latent space can be characterized by the so-called graphon.
In fact, graphons can be seen as kernel functions for latent position graphs. For more insight about
the theory of graphon, we refer to the excellent monograph of Lovász (2012). In the case of graphons
defining positive definite kernels, the paper Tang et al. (2013) proved that the eigen-decomposition
of the adjacency matrix yields consistent estimator of the graphon feature maps involving the latent
variables. Besides, nonparametric representations of graphons has gained attention. Statistical ap-
proaches on estimating graphons have been developed using Least-Squares estimation Klopp et al.
(2017) or Maximum Likelihood estimation Wolfe and Olhede (2013). Dealing with estimation of
(sparse) graphons from the observation of the adjacency matrix, the paper Klopp et al. (2017)
derives sharp rates of convergence for the L2 loss for the Stochastic Block Model. We mention also
the general methodology, referred to as USVT algorithm, of Chatterjee (2015) that can be invoked
to control the L2 loss between the probability matrix and a eigenvalue-tresholded version of the
adjacency matrix. However, note that the present paper is more concerned (see Theorem 2) by
controlling the distance between the probability matrix and its integral operator. The USVT point
of view has been further investigated in Xu (2017) that gives rates of convergence for the so-called
“probability matrix ” estimation problem (see Section 2.1), under smoothness assumptions. Moti-
vated by sharp control of individual eigenvalues behavior (invoking Weyl’s perturbation Theorem,
see (Bhatia, 2013, page 63)), we choose to control the difference between the adjacency matrix
and the probability matrix in operator norm, see Proposition 1.

1.1. A Statistical Pledge for Structured Latent Spaces

The graphons are limiting objects that describe large dense graphs. The graphon model Lovász
(2012) is standardly and without loss of generality formulated choosing [0, 1] as latent space. In
this model, given latent points x1, . . . , xn ∈ [0, 1], the probability to draw an edge between i and j
is W (xi, xj) where W is a function from [0, 1]2 onto [0, 1], referred to as a graphon. This model
is general and well referenced in the literature—as mentioned earlier, the reader may consult the
book Lovász (2012) for further details.

However, this model may underneath intrinsic features of a random graph. For instance, recall
the prefix attachment graph model (Lovász, 2012, page 190) where the nodes are added one at
a time and each new node connects to a random previous node and all its predecessors. In this
model, the graph sequence converges in cut distance (Lovász, 2012, Proposition 11.42) to the
graphon Wpref defined as, for all (x1, y1), (x2, y2) ∈ [0, 1]2,

Wpref((x1, y1), (x2, y2)) = 1(x1 < x2y2) + 1(x2 < x1y1) , (1)

up to a measure preserving homomorphism of the latent space [0, 1]2. From a statistical point of
view, the estimation of the function ((x1, y1), (x2, y2)) 7→ 1(x1 < x2y2) from sample points ((xk, yk))k
uniformly distributed on [0, 1]2 is a well understood standard task.

Yet one may also represent this graphon on the standard latent space [0, 1]. And, in this case,
one cannot represent this graphon using the indicator function of two symmetric convex sets with
piecewise smooth border as done in (1). Actually, in this case, a fractal-like structure appear and
the statistical estimation of this function seems more difficult than in (1). Our statement may be
loose here but one may emphasize that there may exist better latent spaces than [0, 1] on which
the graphon may present a simple and better estimable formulation.

An other important statistical issue is that, by construction, graphons are defined on an equiv-
alent class “up to a measure preserving homomorphism” and it can be challenging to have a simple
description from an observation given by sampled graph—since one has to deal with all possible
composition of a bivariate function by any measure preserving homomorphism. In this paper, we
circumvent this disappointing statistical issue restraining our attention to graph models for which
the probability of appearance of an edge depends as a nonparametric function of the distance
between latent points.
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1.2. Main results

In this paper, we focus on latent metric spaces for which the distance is invariant by translation (or
conjugation) of pairs of points. This natural assumption leads to consider that the latent space S
has some group structure, namely it is a compact Lie group or some compact symmetric space
(“Intuitively, a symmetric space is a Riemannian manifold where geodesics are “nicely” arranged in
a symmetric way around any point”(Méliot, 2017, Chapter 3)). Hence, consider graphons defined
as functions p of (the cosine of) the distance γ (normalized so that the range of γ equals [0, π])
of some compact Lie group S, or more generally of some compact symmetric space, see Section 4.
In this case, the graphon is given by

∀x, y ∈ S, W (x, y) = p(cos γ(x, y)) = p(cos γ(z, e)) and z = xy−1 ,

where y−1 is the inverse of y, e denotes the identity element of S and p is a function from [−1, 1]
onto [0, 1] referred to as the “envelope”. In the case when S is the Euclidean sphere, we consider
graphons that are a function p of cosine of the distance, namely cos γ(x, y) = 〈x, y〉, between latent
points x, y ∈ S. In this case e is the north pole and p(〈x, y〉) = p(〈z, e〉) where z is the image of x
by the rotation which maps y to e.

First, note that W , viewed as an integral operator on square-integrable functions, is a compact
convolution (on the left) operator:

f ∈ L2(S) 7→
∫
S

p(cos γ(x, .))f(x)dx ∈ L2(S)

Then the main point is that there exists an L2-decomposition of the Hilbert space of square
integrable functions such that the eigenfunctions basis of the convolution kernel (and the graphon
W viewed as a integral operator) depends only on the latent space S and does not depend on the
function p. This basis is the irreducible characters in the (Lie) Group case and the zonal spherical
functions in the non-Group case, see Cartan’s Classification of “sscc” Lie Groups and “ssccss” in
Section 4 for further details. This decomposition can be pushed on [−1, 1] and one gets an L2-
decomposition of the envelope function p such that the orthonormal basis (Z`) depends only on
the latent space S and does not depend on p, see (2). Furthermore, the eigenvalues λ? = (λ?k)k≥0

of the kernelW are exactly (up to some known multiplicities and up to some known multiplicative
constants) the coefficients of p onto the orthonormal basis (Z`)`≥0. Hence, the graphon W is
entirely described by the univariate function p defined on [−1, 1]. It follows that this subclass
of graphons may be well suited for estimation since it reduces to estimate a simple univariate
function on [−1, 1].

Now, consider the case when S is one of the compact symmetric space of rank one—namely real
spheres or real/complex/quaternionic/octonionic projective spaces. In this case, one can explicitly
give the decomposition of the envelope function p. One can prove that the orthonormal polynomi-
als (Z`)`≥0 are the orthonormal polynomials (more precisely, normalized Jacobi polynomials) of
some Beta law with known shape parameters (α, β), see Table 1 in the Appendix for the explicit
values. This decomposition is given by

p =
∑
`≥0

√
d`p

?
` Z` and p?` =

1√
d`
〈p, Z`〉L2([−1,1],w) , (2)

in L2([−1, 1],w) where w denotes the density function of the Beta distribution. We further assume
that there exists s > 0, a (Sobolev) regularity parameter, such that

∀R ≥ 1 ,
∑
`>R

d`(p
?
` )

2 ≤ C(p, s,S)R−2s.

for some constant C(p, s,S) > 0 and for some known dimensions (d`)`∈N (given by the repre-
sentation of the group/quotient S) that depend only on S, see Table 1 in the Appendix. This
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assumption governs the regularity of the kernel W and it can be understood that the derivative
of order s (in the Laplacian on S sense) of W is square-integrable. In this case, one can build an
estimator λ̂R̂ (from the spectrum of the adjacency matrix of the graph) of the spectrum λ? of W
(viewed as an integral operator) such that

E
[
δ2
2

(
λ̂R̂, λ?

)]
= O

[( n

log n

)− 2s
2s+(d−1)

]
,

where n is the size of the graph, d is the dimension of the latent space (actually, S is a (d − 1)-
manifold) and δ2 is the `2 distance between spectra, see (9) for a definition. We uncover for the
minimax risk, the rate of estimating a s-regular function on a space of (Riemannian) dimension
d−1 up to a multiplicative log factor. This result is stated in Theorem 6 without adaptation to the
smoothness parameter, Theorem 7 and Corollary 8 with smoothness adaptation, and Theorem 9
and Corollary 10 for adaptive estimation of the envelope function p at rate O(log n/n) when p is
a polynomial. The general statement for compact symmetric spaces is given by Theorem 11.

Note that our results hold for general convolution kernels and not necessarily semidefinite
positive kernels. Indeed, it is often assumed in the literature, see for instance Ferreira, Menegatto
and Peron (2008); Rosasco, Belkin and Vito (2010); Tang et al. (2013, 2017), that the graphon W
is a semidefinite positive kernel. If one assumes that the graphon is a positive definite kernel
(leading to a RKHS representation) then the probability matrix (see Section 2.1) of the random
graph is almost surely semidefinite positive (by definition of positive definite kernels). In this
case, the empirical eigenvalues (the eigenvalues of the adjacency matrix) might be negative but
these negative empirical eigenvalues converge to nonnegative limiting eigenvalues as the graph size
grows, which is a strong requirement. See also Remark 1 on this point. To bypass this limitation,
our approach does not use any RKHS representation but a new non-asymptotic concentration
result on the integral operator, see Theorem 2 and Corollary 3. In particular, this framework is
consistent with negative empirical eigenvalues clustering around negative limiting eigenvalues. The
rates uncovered by these results allow us to introduce an adaptive estimation procedure of the
spectrum of the graphon.

From a computational point of view, Theorem 5 enlightens on the time complexity of our
estimator. Remarkably, the time complexity is n3 + (Rmax + 2)!, that is cubic in the graph size
n (as any spectral method) and exponential in the number of coefficients p?` one has to estimate.
The spatial complexity is quadratic in n as one has to store the adjacency matrix of the graph.

1.3. Outline

The convergence of the spectrum of the “matrix of probabilities” towards the spectrum of the
integral operator in a non-asymptotic frame is given in Section 2.

Then, we begin our study by a comprehensive example on the d-dimensional sphere in Section 3.
Interestingly, we uncover that the spectrum of the graphon (viewed as a kernel operator) presents
a structure: the eigenvalues have prescribed multiplicities and the eigenvectors are fixed—they are
the spherical harmonics.

Adaptive estimation of the spectrum of the graphon W (viewed as an integral operator) is
proved and computational complexities are discussed.

Extensions to compact symmetric spaces is done in Section 4. Numerical experiments are pre-
sented in Section 5.

The proofs are given in the appendix.

2. Spectral Convergence of the Sampled graphons

2.1. Estimating the Matrix of Probabilities

We denote [n] := {1, . . . , n} for all n ≥ 1. Consider a random undirected graph G with n nodes
and assume that we observe its n× n adjacency matrix A given by entries Aij ∈ {0, 1} where
Aij = 1 if the nodes i and j are connected and Aij = 0 otherwise.
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We set Aii = 0 on its diagonal entries for all i ∈ [n] and we assume that Aij are independent
Bernoulli random variables with (Θ0)ij := P{Aij = 1} for 1 ≤ i < j ≤ n.

We denote by Θ0 the n × n symmetric matrix with entries (Θ0)ij for 1 ≤ i < j ≤ n and zero
diagonal entries. This is a matrix of probabilities associated to the random graph G.

Throughout this paper, we denote by

T̂ n := (1/n)A and T n := (1/n) Θ0 . (3)

Our analysis leverages the operator norm ‖ · ‖ loss to account for the distance between the obser-
vation T̂ n and the target parameter T n.

Furthermore, a near optimal error bound can be derived for the operator norm ‖ · ‖ loss as
shown in Bandeira et al. (2016).

Proposition 1 (Bandeira et al. (2016)). There exists a universal constant C0 > 0 such that for
all α ∈ (0, 1), it holds

P

{
‖T̂ n − T n‖ ≥ 3

√
2D0

n
+ C0

√
log(n/α)

n

}
≤ α (4)

where D0 = max
i∈[n]

[ ∑
j∈[n]

(Θ0)ij(1− (Θ0)ij)
]
≤ n/4.

A proof is recalled in Appendix A.1. Proposition 1 is of particular interest giving an error bound on
each eigenvalue λk(T n) of T n, where λk(M) denotes the k-th largest eigenvalue of the symmetric
matrix M . Indeed, it holds, with probability greater that 1− n exp(−n),

∀k ∈ [n], |λk(T̂ n)− λk(T n)| ≤ ‖T̂ n − T n‖ = O(1/
√
n) , (5)

by Weyl’s perturbation Theorem, see (Bhatia, 2013, page 63) for instance.

2.2. On the Kernel Spectrum

We understand that the spectrum of T̂ n can be a good approximation of the spectrum of T n in
the sense of (5). Assuming a graphon W model we can link the spectrum of T n (sampled graphon
onto the latent points X1, . . . , Xn see below) to the spectrum of an integral operator TW defined
by the graphon W viewed as a symmetric kernel. More precisely, we consider J := (S,A,σ) a
probability space on S endowed with measure σ on the σ-algebra A, and W : S × S → [0, 1] a
symmetric σ-measurable function. The couple (J,W ) is referred to as a graphon, see for instance
(Lovász, 2012, Chapter 13). We then define a probabilistic model on Θ0 setting

(Θ0)i,j = W (Xi, Xj) for i 6= j and 0 otherwise

where X1, . . . , Xn are i.i.d. drawn w.r.t. σ. Assume that the kernel satisifiesW ∈ L2(S×S,σ⊗σ),
so that

∀x ∈ S, ∀g ∈ L2(S,σ), (TW g)(x) =

∫
S

W (x, y)g(y)dσ(y) ,

defines a symmetric Hilbert-Schmidt operator TW on L2(S,σ) and we can invoke the spectral
theorem. Hence, it holds that, in the L2(S × S,σ ⊗ σ)-sense,

for almost every x, y ∈ S, W (x, y) =
∑
k≥1

λ?kφk(x)φk(y) , (6)

for an L2(S,σ)-orthonormal basis (φi)i≥1. This operator has a discrete spectrum, i.e. a countable
multiset λ? of nonzero (real) labeled eigenvalues (λ?k)k≥1 such that λ?k → 0. In particular, every
nonzero eigenvalue has finite multiplicity. We are free to choose any labeling of the target eigen-
values (λ?k)k≥1 and observe that our results are valid for any choice of labeling. For instance, we
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can standardly label the eigenvalues in decreasing order with respect to their absolute values such
that |λ?1| ≥ |λ?2| ≥ · · · and this gives results whose error rates (typically ‖W −WR‖2 see below)
are in terms of the best L2-approximation of rank R of the kernel W . An other choice may result
in labeling the eigenvalues in increasing order of “frequencies”. This labeling is natural for instance
when we have a representation by spherical harmonics of the kernel as in Section 3. This gives
results whose error rates are in terms of the best approximation by low frequency (i.e. the R first
frequencies) kernels.

2.3. The relatively sparse model

Note that the average degree of node i is
∑
j∈[n](Θ0)ij which is of the order of the graph size n in

the graphon model for which (Θ0)ij = W (Xi, Xj). To gain in realism, one may consider a model
where

(Θ0)ij = ζnW (Xi, Xj)

where ζn is a sequence of positive real numbers that may converge to zero. In this model, the
average degree of one node is of the order of nζn. One standard interpretation is that edges are
drawn independently with probabilityW (Xi, Xj) and we independently suppress these edges with
probability 1− ζn. The relatively sparse model (Wolfe and Olhede, 2013) is given by sequences ζn
such that

lim inf
n

nζn
log n

≥ Z , (7)

where Z > 0 is a universal positive constant. In this model, the average degree of one node is
at least O(log n). This latter rate is a standard threshold on connectedness in random graphs
(Bollobás, 2001). More precisely, it is known that in the Erdös-Rényi model, the sharp threshold
on connectedness is ζn = log(n)/n. The interested reader may also consult further works on
percolation on graphons in the sparse regime (where ζn = c/n for some constant c > 0), see
(Bollobás et al., 2010) for instance. Note that if ζn = 1 then we recover the previous model,
referred to as the “dense ” regime.

Note that

TζnW = ζnTW and T n := (ζnW (Xi, Xj)/n)i,j = ζn(W (Xi, Xj)/n)i,j .

By homogeneity, we understand that one may consider that ζn = 1 when studying the convergence
of T n towards TζnW .

However, the situation is more intricate for the convergence of T̂ n towards T n. Given a fixed
graphon model W , one has the bound

‖T n‖ = ζn‖(W (Xi, Xj)/n)i,j‖ = OP(ζn) ,

where OP denotes stochastic boundedness and since the operator norm of (W (Xi, Xj)/n)i,j con-
verges to the largest absolute eigenvalue of TW , see Section 2.4. On the other hand, the control (4)
is given by: There exists a universal constant C0 > 0 such that for all α ∈ (0, 1), it holds

P

{
‖T̂ n − T n‖ ≥ 3

√
2ζn
n

+ C0

√
log(n/α)

n

}
≤ α (8)

using that D0 = max
i∈[n]

[ ∑
j∈[n]

(Θ0)ij(1− (Θ0)ij)
]
≤ nζn. It gives

‖T̂ n − T n‖ = OP
(√ζn

n
+

√
log n

n

)
.

Under the relatively sparse model assumption (7), one has

‖T̂ n − T n‖ = OP

(√
ζn
n

)
and ‖T n‖ = OP(ζn)
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entailing that T̂ n is a better approximation of T n than the null matrix. While, for faster rate,
namely ζn = o(

√
log n/n) one has

‖T̂ n − T n‖ = OP
(√log n

n

)
and ‖T n‖ = OP(ζn) = oP

(√log n

n

)
entailing that the null matrix is a better approximation of T n than the observation T̂ n. This short
argumentation shows that the relatively sparse model (7) ensures the observation T̂ n is at least
more informative than the null matrix for the operator norm topology.

To conclude, we will adopt two conventions. First, we will consider that ζn = 1 when studying
the convergence of T n towards TζnW . Second, every results based on statistics of T̂ n will be
presented in the relatively sparse model (7) in a joint remark, see Section 3.4.

2.4. Non-Asymptotic Error Bounds in δ2-metric

Given two sequences x and y of real numbers—completing finite sequences by zeros—such that it
holds

∑
x2
i + y2

i <∞, we standardly define the `2-rearrangement distance δ2(x, y) as

δ2(x, y) := inf
π∈P

[∑
(xi − yπ(i))

2
] 1

2

,

where the infimum is taken over P the set of permutations with finite support. Using Hardy-
Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368), it is
standard to observe that

δ2(x, y) = lim
N→∞

[
N∑

k=−N

(xk − yk)2

] 1
2

, (9)

with the convenient notation x−1 ≤ x−2 ≤ . . . ≤ 0 ≤ . . . ≤ x2 ≤ x1 ≤ x0 (respectively y−1 ≤
y−2 ≤ . . . ≤ 0 ≤ . . . ≤ y2 ≤ y1 ≤ y0) where we denote x = (xk)k∈Z (respectively y = (yk)k∈Z)
completing with zeros if necessary. Using this metric we can compare the (finite) spectrum λ(T n)
of T n to the (infinite) spectrum λ? of TW .

Remark 1. To the best of our knowledge, existing results on this issue assume that W is a
positive kernel and use a RKHS representation and/or Mercer theorem. This assumption might
seem meaningless for a graphon. Indeed, it implies that TW is semi-definite (contrary to the present
paper) and if W = WH is a “step-function” kernel representing a finite graph H, it implies that the
adjacency matrix of H is semi-definite which might be seen as restrictive. In this article, we bypass
this limitation with the next result based on the analysis developed in Koltchinskii and Giné (2000)
and some recent development in random matrix concentration, see Tropp (2012) for instance.

Theorem 2. Let W ∈ L2(S×S,σ⊗σ) be a symmetric kernel and let (φk)k≥1 be an orthonormal
eigenbasis as in (6). Let R ≥ 1 and α ∈ (0, 1/3). Set

ρ(R) := max

[
1,
∥∥∥ R∑
r=1

φ2
r

∥∥∥
∞
− 1

]
and WR(x, y) :=

R∑
i=1

λ?iφi(x)φi(y).

Then, for all n3 ≥ ρ(R) log(2R/α), it holds

δ2(λ(T n), λ?) ≤2‖W −WR‖2 + ‖W −WR‖∞
[2 log(2/α)

n

] 1
4

+ ‖WR‖2

[[ρ(R) log(2R/α)

n

] 1
2

+
[2ρ(R)

n

(
1 + max

1≤r≤R
||φ2

r||∞

√
log(R/α)

2n

)] 1
2

]
,

with probability at least 1− 3α.
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A proof of Theorem 2 can be found in Appendix A.2. This result shows that for all n ≥ n0(R), it
holds that δ2(λ(T n), λ?) ≤ 2‖W −WR‖2 +C0(R)n−

1
4 with probability at least 1− 3α, where the

constants n0(R) ≥ 1 and C0(R) > 0 may depend on R, the orthogonal basis (φk)k∈[R], α and the
graphon W .

We have the following improvement for canonical kernels, see (De la Pena and Giné, 2012,
Definition 3.5.1) for a definition.

Remark 2. Under the relatively sparse model (7), Theorem 2 becomes: for all n3 ≥ ρ(R) log(2R/α),
it holds

δ2(ζnλ(T n), ζn λ
?) ≤2 ζn ‖W −WR‖2 + ζn ‖W −WR‖∞

[2 log(2/α)

n

] 1
4

+ ζn ‖WR‖2

[[ρ(R) log(2R/α)

n

] 1
2

+
[2ρ(R)

n

(
1 + max

1≤r≤R
||φ2

r||∞

√
log(R/α)

2n

)] 1
2

]
,

with probability at least 1 − 3α. In the aforementioned setting, we have denoted the eigenvalues
of TW by λ? (as before) so that ζn λ? are the eigenvalues of TζnW , and their empirical counterpart
(based on the probability matrix) by ζnλ(T n), namely the eigenvalues of ζnT n.

Corollary 3. Assume further that the kernel (W −WR)2(x, y) − E
(
(W −WR)2

)
is canonical,

namely

For almost every x ∈ S, E
(
(W −WR)2(x,X1)

)
= E

(
(W −WR)2(X1, X2)

)
,

then there exist universal constants C1, C2 > 0 such that for all n3 ≥ ρ(R) log(2R/α), it holds

δ2(λ(T n), λ?) ≤2‖W −WR‖2 + ‖W −WR‖∞
[C1 log(C2/α)

n

] 1
2

+ ‖WR‖2

[[ρ(R) log(2R/α)

n

] 1
2

+
[2ρ(R)

n

(
1 + max

1≤r≤R
||φ2

r||∞

√
log(R/α)

2n

)] 1
2

]
,

with probability at least 1− 3α.

A proof of this corollary can be found in Appendix A.6.

Remark 3. Under the relatively sparse model (7), Corollary 3 becomes: for all n3 ≥ ρ(R) log(2R/α),
it holds

δ2(ζnλ(T n), ζnλ
?) ≤2ζn ‖W −WR‖2 + ζn ‖W −WR‖∞

[C1 log(C2/α)

n

] 1
2

+ ζn ‖WR‖2

[[ρ(R) log(2R/α)

n

] 1
2

+
[2ρ(R)

n

(
1 + max

1≤r≤R
||φ2

r||∞

√
log(R/α)

2n

)] 1
2

]
,

with probability at least 1 − 3α. In the aforementioned setting, we have denoted the eigenvalues
of TW by λ? (as before) so that ζn λ? are the eigenvalues of TζnW , and their empirical counterpart
(based on the probability matrix) by ζnλ(T n), namely the eigenvalues of ζnT n.
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3. The Sphere Example, Prelude of Symmetric Compact Spaces

From a general point of view, this article focuses on the case where the value W (x, y) depends
on a nonparametric function p of the distance between the points x and y of a latent space S
assumed a compact Lie group or a compact symmetric space, see Section 4 for further details. Such
assumptions on the graphonW allow to lead the spectral analysis a step further. In this section, we
restrict our analysis to the pleasant case of S := Sd−1 the unit sphere of Rd with d ≥ 3 equipped
with the uniform probability measure σ and the usual scalar product 〈·, ·〉. In the literature, a
popular model is given by the Random Geometric Graph for which the value W (x, y) depends on
the distance between the points x and y of the latent space Sd−1 and W (x, y) = 1〈x,y〉≥τ for some
threshold τ ∈ (−1, 1) as in Devroye et al. (2011); Bubeck et al. (2016). From now on, assume that
W only depends on the distance between latent points, namely

∀x, y ∈ Sd−1, W (x, y) = p(〈x, y〉)

where p : [−1, 1] → [0, 1] is an unknown function that is to be estimated. We refer to p as the
“envelope” function.

3.1. Harmonic Analysis on Sd−1

Let us start by providing a brief overview on Fourier analysis on Sd−1. As pointed out above, in
this case the operator TW is a convolution (on the left) operator. Its spectral decomposition (6)
satisfies that the orthonormal basis (φk)k does not depend on p and the spectrum λ(TW ) is exactly
described by the Fourier coefficients (p?` )` of p, see (Dai and Xu, 2013, Lemma 1.2.3). This remark
remains true when the latent space S is assumed a compact Lie group or a compact symmetric
space, see Section 4 for further details.

In the spherical case, the orthonormal basis of eigenfunctions consists of the real spherical
harmonics. The following material can be found in Dai and Xu (2013). Let us denote H` the space
of real spherical harmonics of degree ` with orthonormal basis (Y`j)j∈[d`] where

d` := dim(H`) =

(
`+ d− 1

`

)
−
(
`+ d− 3

`− 2

)
(10)

for ` ≥ 2 and d0 = 1, d1 = d. Note that the d`’s are all distinct and of order `d−2. We discard S1

from our analysis because in that case, the d`’s are constant equal to 2. In the sequel we identify
(φk)k≥1 = (Y`j)`≥0, j∈[d`] so that the spectral decomposition (6) reads

∀x, y ∈ Sd−1, W (x, y) = p(〈x, y〉) =
∑
`≥0

p?`

[ d∑̀
j=1

Y`j(x)Y`j(y)︸ ︷︷ ︸
Zonal Harmonic

]
, (11)

where λ? = {p?0,p?1, . . . ,p?1, . . . ,p?` , . . . ,p?` , . . .} and
∑d`
j=1 Y`j(x)Y`j(y) is a zonal harmonic of

degree `. The eigenvalue p?` has multiplicity d` if the eigenvalues are all distinct. Furthermore, it
holds that

p?` :=
(c`bd
d`

)∫ 1

−1

p(t)Gβ` (t)wβ(t)dt,

where Gβ` denotes the Gegenbauer polynomial of degree ` defined for a parameter β = (d− 2)/2

wβ(x) := (1− x2)β−
1
2 , c` :=

2`+ d− 2

d− 2
and bd :=

Γ(d
2 )

Γ( 1
2 )Γ(d

2 −
1
2 )
,

with Γ the Gamma function. We recall that the Gegenbauer polynomials are orthogonal poly-
nomials on the interval [−1, 1] with respect to the weight function wβ . Besides, one can recover
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p ∈ L2([−1, 1],wβ) thanks to the identity

p =
∑
`≥0

[√
d`p

?
`

] [
Gβ` /‖G

β
` ‖L2([−1,1],wβ)︸ ︷︷ ︸

Z`

]
=
∑
`≥0

p?`c`G
β
` . (12)

Remark 4. Note that p?` is the eigenvalue of the operator TW associated to the eigenspace H`,
(
√
d`p

?
` )`≥0 are the coordinates of p ∈ L2([−1, 1],wβ) in the orthonormal basis (Z`)`≥0, where

Z` := Gβ` /‖G
β
` ‖L2([−1,1],wβ). Note that requiring W ∈ L2(Sd−1 × Sd−1,σ ⊗ σ) is equivalent to

p ∈ L2([−1, 1],wβ).

Let R ≥ 0 and define

R̃ :=

R∑
`=0

d` =

(
R+ d− 1

R

)
+

(
R+ d− 2

R− 1

)
, (13)

where the last equality is obtained with the telescoping sum using (10). Furthermore, we get that

R̃ ≤ 2(R+ d− 1)d−1

(d− 1)!
= OP(Rd−1),

and this quantity is the dimension of Spherical Harmonics of degree less than R.

3.2. A Glimpse into Weighted Sobolev Spaces

Some of our result concern “smooth graphons” for which a regularity assumption is required.
Following Nicaise (2000), we can define our approximation space defining the Weighted Sobolev
space with the eigenvalues of the Laplacian on the Sphere. More precisely, let s > 0 a regularity
parameter and f ∈ L2((−1, 1),wβ) such that f =

∑
`≥0 f

?
` c`G

β
` in L2, we define

‖f‖∗Zswβ ((−1,1)) =

[ ∞∑
`=0

d`|f?` |2(1 + (`(`+ 2β))s)

] 1
2

and
Zswβ ((−1, 1)) =

{
f ∈ L2((−1, 1),wβ) : ‖f‖∗Zswβ ((−1,1)) <∞

}
.

Then, if p belongs to the Weighted Sobolev Zswβ ((−1, 1)) with smoothness s > 0, it holds∑
`>R

d`(p
?
` )

2 =
∑
`>R

d`(p
?
` )

2 1 + (`(`+ 2β))s

1 + (`(`+ 2β))s
≤ C(p, s,d)R−2s , (14)

where C(p, s,d) > 0 is a constant that may depend on p, s or d.

3.3. Spectrum Consistency of the Matrix of Probabilities

Under this framework, Corollary 3 can be written as follows.

Proposition 4. There exists a universal constant C > 0 such that for all α ∈ (0, 1/3) and for all
n3 ≥ R̃ log(2R̃/α), it holds

δ2(λ(T n), λ?) ≤ 2
[∑
`>R

d`(p
?
` )

2
] 1

2

+ C

√
R̃(1 + log(R̃/α))/n

with probability at least 1−3α. Moreover, if p belongs to the Weighted Sobolev space Zswβ ((−1, 1)),
then for n large enough

E[δ2
2(λ(T n), λ?)] ≤ C ′

[
n

log n

]− 2s
2s+(d−1)

where C ′ only depends on s, d and ‖p‖∗Zswβ ((−1,1)).
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A proof can be found in Appendix A.7. These theoretical results show that the eigenvalues
of T n converge towards the unknown spectrum λ?.

3.4. Nonparametric Estimation of the Kernel Spectrum

Let us now define our estimation procedure. Recall that we observe a graph and then its n× n
adjacency matrix A, where Aij are independent Bernoulli random variables. Our model is that

P{Aij = 1} = (Θ0)ij = W (Xi, Xj) = p(〈Xi, Xj〉), 1 ≤ i < j ≤ n,

where X1, . . . , Xn are i.i.d. uniform variables on Sd−1. Our aim is to recover the envelope function
p using only observations A, the variables Xi being unobserved. The idea is to estimate the
coefficients p?` of p in the Gegenbauer polynomial basis, using that

λ? :=
{
p?0,p

?
1, . . . ,p

?
1, . . . ,p

?
` , . . . ,p

?
` , . . .

}
is close to λ(T n) and this latter is close to the spectrum

λ := λ(T̂ n)

of our observable T̂ n = (1/n)A. Let us fix R ≥ 0 some resolution level, and denote

λ?R :=
(

p?0︸︷︷︸
d0

,p?1, . . . ,p
?
1︸ ︷︷ ︸

d1

, . . . ,p?R, . . . ,p
?
R︸ ︷︷ ︸

dR

)
the first coefficients of p, i.e., the first eigenvalues of TW—not necessarily the largest. In view
of (11) and defining R̃ as in (13), we understand that the R̃ first eigenvalues of TW belong to the
convex set

MR :=
{

( u?0︸︷︷︸
d0

, u?1, . . . , u
?
1︸ ︷︷ ︸

d1

, . . . , u?R, . . . , u
?
R︸ ︷︷ ︸

dR

) ∈ RR̃
}
. (15)

Remark 5. One can consider the convex setM[0,1]
R of admissible coefficients

( u?0︸︷︷︸
d0

, u?1, . . . , u
?
1︸ ︷︷ ︸

d1

, . . . , u?R, . . . , u
?
R︸ ︷︷ ︸

dR

)

corresponding to a function between 0 and 1, namely

M[0,1]
R :=

{
(u?0, u

?
1, . . . , u

?
1, . . . , u

?
R, . . . , u

?
R) ∈ RR̃ s.t.

there exists an extension (u?` )`>R s.t.

for a.e. t ∈ [−1, 1], 0 ≤
∞∑
`=0

u?`c`G
β
` (t) ≤ 1

}
.

Then, note that λ?R ∈M[0,1]
R and that for all x ∈MR

δ2(PM[0,1]
R

(x), λ?R) ≤ δ2(x, λ?R)

where PM[0,1]
R

denotes the L2-projection onto M[0,1]
R . It follows that all the results presented

applies if we substitute MR by M[0,1]
R . But, since we do not use the fact that the coefficients

(u?0, u
?
1, . . . , u

?
1, . . . , u

?
R, . . . , u

?
R) correspond to a function between 0 and 1 in our proofs and our

numerical study, we choose to alleviate presentation usingMR instead ofM[0,1]
R .
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We assume that n ≥ R̃ and we denote Sn the set of all permutation of [n]. We define the
estimator λ̂R as the closest sequence to λ which belongs to the set of “admissible” spectraMR as
follows:

λ̂R ∈ arg min
u∈MR

min
σ∈Sn

{ R̃∑
k=1

(uk − λσ(k))
2 +

n∑
k=R̃+1

λ2
σ(k)

}
. (16)

where we recall that λ denotes the spectrum of T̂ n. We denote p̂R` the stage values of λ̂R, such
that

λ̂R = (λ̂R1 , . . . , λ̂
R
R̃

) = (p̂R0 , p̂
R
1 , . . . , p̂

R
1 , . . . , p̂

R
R, . . . , p̂

R
R).

One can check that

p̂R` =
1

d`

˜̀∑
k=˜̀−1

λσ(k)

where σ (that depends on R) is a permutation achieving the minimum in (16) and we use the
notation (13) with the convention −̃1 = 1. Furthermore, the true complexity of this estimator is
not n! which matches the complexity of Sn. The true computation complexity of our estimator is
at most (R+ 2)! as shown by the next theorem.

Theorem 5 (Computational Complexity). Let R ≥ 0 such that R̃ ≤ n. For any sequence of real
numbers (λk)nk=1 such that λ1 ≥ λ2 ≥ . . . ≥ λn it holds that

∃HR ⊆ Sn s.t. ∀u ∈MR, min
σ∈Sn

{ R̃∑
k=1

(uk − λσ(k))
2 +

n∑
k=R̃+1

λ2
σ(k)

}

= min
σ∈HR

{ R̃∑
k=1

(uk − λσ(k))
2 +

n∑
k=R̃+1

λ2
σ(k)

}
where the set HR depends only on R and has size at most (R+ 2)!.

A proof can be found in Appendix B.1. This proof is constructive and it gives the expression
of HR.

Remark 6. Remark that the hypothesis λ1 ≥ λ2 ≥ . . . ≥ λn is not necessary and can be removed.
Indeed, if τ ∈ Sn a permutation such that λτ(1) ≥ λτ(2) ≥ . . . ≥ λτ(n) then it holds that

∃HR ⊆ Sn s.t. ∀u ∈MR, min
σ∈Sn

{ R̃∑
k=1

(uk − λσ(k))
2 +

n∑
k=R̃+1

λ2
σ(k)

}

= min
σ∈HR

{ R̃∑
k=1

(uk − λσ◦τ(k))
2 +

n∑
k=R̃+1

λ2
σ◦τ(k)

}
where the set HR depends only on R and has size at most (R+ 2)!.

Remark 7. Interestingly the computational complexity of our spectral estimator depends cubicly
on the sample size n which is important when observing large networks. The presented algorithm
(see Section 5.1) has exponential complexity in the dimension R of the model. Hence, it is relevant
only for low degree R kernels stricto sensu. However, it can be accelerated:

• If the experimenter knows that the eigenvalues are monotone (when sorting the eigenvalues
so that the corresponding eigen-spaces have increasing dimensions) then the complexity is
linear in R;

• If not, different clustering strategies might be used in place of Steps 2-5 in Section 5.1. One
may consult Section 5.2 for further details, where we argue that hierarchical agglomerative
clustering (HAC) with single linkage, of time complexity O(n3), can be invoked here.
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Using Proposition 1 and Theorem 4 we can prove that λ̂R is a relevant estimator of the true
first eigenvalues λ?R as shown in the next theorem.

Theorem 6. There exists a universal constant κ0 > 0 such that the following holds. For all
α ∈ (0, 1), if n3 ≥ (2R̃)3 ∨ R̃ log(2R̃/α), with probability greater that 1− 3α, it holds

δ2(λ̂R, λ?R) ≤ 4δ2(λ?R, λ?) + κ0

√
R̃
(

1 + log
(
R̃/α

))
/n.

Moreover, there exists a universal constant κ1 > 0 such that, if n ≥ 2R̃ then

E[δ2
2(λ̂R, λ?R)] ≤ κ1

{
δ2
2(λ?R, λ?) +

R̃ log n

n

}
.

A proof can be found in Appendix A.8.

Remark 8. Possibly considering larger numerical constants κ0, κ1 > 0, in the relatively sparse
model (7), the previous result reads as follows: if n3 ≥ (2R̃)3 ∨ R̃ log(2R̃/α) then

δ2(λ̂R, ζn λ
?R) ≤ 4 ζn δ2(λ?R, λ?) + κ0

√
ζnR̃

n

[
1 +

√
ζn(1 + log(R̃/α)) +

√
log(n/α)

nζn

]
.

with probability at least 1− 3α. If n ≥ 2R̃ then

E[δ2
2(λ̂R, ζn λ

?R)] ≤ κ1

{
ζ2
nδ

2
2(λ?R, λ?) + ζn

R̃ (1 + ζn log n)

n

}
.

In the aforementioned setting, we have denoted the eigenvalues of TW by λ? (as before), and their
estimation (based on the adjacency matrix) by λ̂. These latter are scaled by a factor OP(ζn) in the
relatively sparse model (7).

To go further we need to analyze the behavior of the bias term δ2(λ?R, λ?) as a function of R
under some regularity conditions on the envelope p. Indeed we can write

δ2(λ?R, λ?)2 =
∑
k>R̃

|λ?k|2 =
∑
`>R

d`(p
?
` )

2.

Assume that p belongs to the weighted Sobolev space Zswβ ((−1, 1)) of regularity s > 0 defined

in Section 3.2. Thus, since R̃ = O(Rd−1), using (14) and setting Ropt = b(n/log n)
1

2s+d−1 c, we get

E
[
δ2
2(λ̂Ropt , λ?)

]
≤ 2δ2

2(λ?Ropt , λ?) + 2E δ2
2(λ̂Ropt , λ?Ropt)

. R−2s
opt +

R̃opt log n

n
.

[
n

log n

]− 2s
2s+(d−1)

.

Thus we recover a classical nonparametric rate of convergence for estimating a function with
smoothness s in a space of dimension d − 1, see Hasminskii and Ibragimov (1990) for instance.
This is also the rate towards the probability matrix obtained by Xu (2017). However, assuring
that this is the optimal rate of convergence is beyond the scope of the paper. Note that the
present setting to estimate a graphon nonparametrically differs from the regression framework.
First, the δ2 loss is defined up to the action of the permutation group. Moreover, despite the
number n2 of observations, the problem suffers from the presence of latent variables. Indeed the
design points Xi’s are unobserved. This all contributes to a non standard estimation problem.
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Remark 9. In the relatively sparse model (7), the same calculation leads to

Ropt =
( nζn

1 + ζn log n

) 1
2s+d−1

and

E
[
δ2
2(λ̂Ropt , ζn λ

?)
]
. ζ2

n

[
nζn

1 + ζn log n

]− 2s
2s+(d−1)

.

We also face a classical issue of nonparametric statistics: how to choose R, given that the best
theoretical choice Ropt depends on the unknown smoothness s? This is the point of the next section.

3.5. Adaptation to the Smoothness of p

Let us define R = {1, 2, . . . , Rmax} the possible values for R, with 2R̃max ≤ n. Following the
Goldenshluger-Lepski method (Goldenshluger and Lepski, 2013), set

B(R) := max
R′∈R

{
δ2(λ̂R

′
, λ̂R

′∧R)− κ

√
R̃′ log n

n

}
, (17)

where R∧R′ = min(R,R′) and κ > 0 is a constant to be specified later. This function can be seen
as an estimation of the (unknown) bias δ2(λ?R, λ?). Then we define our final resolution level R̂ as
a minimizer of an approximation of the risk as

R̂ ∈ arg min
R∈R

{
B(R) + κ

√
R̃ log n

n

}
. (18)

The estimator of λ? is then λ̂R̂, which depends on the choice of constant κ in (17) and (18). The
following results show that this estimator is as good as the best one of the collection (λ̂R)R∈R, up
to a constant C, provided that κ is large enough.

Theorem 7. Let λ̂R̂ the estimator defined by (16), (17) and (18). There exist numerical constants
C > 0 and κ0 > 0 (as in Theorem 6) such that , if κ ≥ κ0

√
11, with probability 1− 3n−8

δ2(λ̂R̂, λ?) ≤ C min
R∈R

{
δ2(λ?R, λ?) + κ

√
R̃ log n

n

}
.

Moreover, for κ ≥ κ0

√
5, there exists a numerical constant C ′ > 0 such that

E[δ2
2(λ̂R̂, λ?)] ≤ C ′ min

R∈R

{
δ2
2(λ?R, λ?) + κ2 R̃ log n

n

}
.

A proof can be found in Appendix A.10. Thus we choose κ ≥ κ0

√
5 in (17) and (18), the practical

choice of the tuning constant κ will be tackled in Section 5. Note also that the interesting choice
of R is such that Ropt ∈ R which is the case for cn

1
2s+d−1 ≤ Rmax where c > 0 is a constant. A

more simple choice of Rmax may be cn ≤ 2R̃max ≤ n where 0 < c < 1 is a constant. In these cases,
we get the following rate of convergence.

Corollary 8. Assume that p belongs to the Weighted Sobolev space Zswβ ((−1, 1)). Then there
exists a constant C > 0 depending only on ‖p‖∗Zswβ ((−1,1)), s and d such that

E[δ2
2(λ̂R̂, λ?)] ≤ C

[
n

log n

]− 2s
2s+(d−1)

.
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This means that the algorithm automatically adapts R̂ to the unknown smoothness s of p: it
chooses a small resolution level for smooth functions and a greater R̂ for irregular functions, that
provides the best result in each case.

The final step is to define the following estimator of envelope p by

∀t ∈ [−1, 1], p̂R̂(t) :=

R̂∑
`=0

p̂R̂` c`G
β
` (t) . (19)

3.6. Estimating the envelope function

Inferring from the estimation of λ? to the estimation of p, we face an identifiability problem.
Indeed, consider for instance the case d = 3, which implies β = 1/2, d` = 2`+ 1, c` = 2`+ 1. For
µ > 0, let

pa =
1

2
c0G

β
0 + µc1G

β
1 + 0× c2Gβ2 + 0× c3Gβ3 + µc4G

β
4 ,

pb =
1

2
c0G

β
0 + 0× c1Gβ1 + µc2G

β
2 + µc3G

β
3 + 0× c4Gβ4

Then the associated spectrum are

λ?a = (1/2, µ, µ, µ︸ ︷︷ ︸
3

, 0, 0, 0, 0, 0︸ ︷︷ ︸
5

, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
7

, µ, µ, µ, µ, µ, µ, µ, µ, µ︸ ︷︷ ︸
9

)

λ?b = (1/2, 0, 0, 0︸ ︷︷ ︸
3

, µ, µ, µ, µ, µ︸ ︷︷ ︸
5

, µ, µ, µ, µ, µ, µ, µ︸ ︷︷ ︸
7

, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
9

)

which are indistinguishable in δ2 metric, although ‖pa − pb‖2 = µ
√

24. Furthermore, note that,
for µ ≤ 1/24, these functions have values in [0, 1].

Remark 10. A natural question is then: Can we recover the right eigenvalues labels from the
empirical eigenvectors?
Under stronger requirements (RKHS-type assumptions), convergence of the eigenvectors of A/n
towards the eigenfunctions of the integral operator TW may be proved as in Tang et al. (2013).
Essentially, it is possible to prove that the orthogonal projections Π` onto eigenspaces of A/n
are closed in operator norm to the n × n matrix with entries

∑d`
j=1 Y`j(Xi)Y`j(Xj) given by the

Zonal Harmonics. Unfortunately, this statistics depends on the latent points and suffers from the
“agnostic” error as explained in Klopp et al. (2017). While possible theoretically, it seems difficult
in practice to use the information of the observed eigenvectors to uncover the right labels of the
eigenvalues.

Nevertheless we can state a result in the case of a finite spectrum of distinct eigenvalues.

Proposition 9. Assume that the envelope function p is polynomial of degree D, i.e., p?` = 0 for
any ` > D and p?D 6= 0. Assume also that all nonzeros p?` for ` ∈ {0, . . . , D} are distinct. If R ≥ D
and n is large enough then

‖p̂R − p‖22 ≤ 11κ2
0

R̃ log n

n
,

with probability greater that 1− 3n−8 where κ0 > 0 is the constant defined in Theorem 6. Further-
more, it holds

E[‖p̂R − p‖22] ≤ (18 + 4κ2
0)
R̃ log n

n
,

for n large enough.
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A proof can be found in Appendix A.11. We actually prove that these upper bounds are true
as soon as

n ≥ 2R̃ and 2κ0

√
11R̃ log(n)/n < min

0≤i 6=j≤D; p?i 6=0
|p?i − p?j | ∧ |p?i |

Note that we uncover (up to a log factor) the parametric rate of estimation.

Remark 11. Under the same assumptions than Proposition 9, in the relatively sparse model (7),
the previous result reads as follows: If R ≥ D and n is large enough then

‖p̂R − p‖22 ≤ κ2
0

ζnR̃

n
(1 + 11ζn log n)

with probability greater that 1− 3n−8, for some constant κ0 possibly large. Furthermore, we have

E[‖p̂R − p‖22] ≤ κ1
ζnR̃

n
(1 + 4ζn log n) ,

for n large enough and for some constant κ1 possibly large.

Let us now state what the adaptive procedure defined by (17) and (18) can do in this polynomial
case.

Corollary 10. Assume that the envelope function p is polynomial of degree D, i.e., p?` = 0 for
any ` > D and p?D 6= 0. Assume also that all nonzeros p?` for ` ∈ {0, . . . , D} are distinct. If
Rmax ≥ D, there exists a numerical constant C such that, if n large enough, then R̂ ≥ D a.s. and

E[‖p̂R̂ − p‖22] ≤ CD̃
(

log n

n

)
.

More precisely, the result is true as soon as
√
D̃ log(n)/n is smaller than a constant times

min0≤i 6=j≤D; p?i 6=0 |p?i − p?j | ∧ |p?i |. A proof can be found in Appendix A.12. Here again, the para-
metric rate of estimation is attained by the adaptive procedure.

4. Extensions to Compact Symmetric Spaces

The aim of this section is to extend the previous result on spheres to numerous spaces such as
compact Lie groups and compact symmetric spaces. A useful reference might be the books Wolf
(2007); Bump (2013) or the nice survey written in (Méliot, 2017, Chapter 3) (see also Méliot (2014)
for a presentation of compact symmetric spaces) which has been useful to polish this section.

4.1. Harmonic Analysis on Compact Symmetric Spaces

In this section, we consider that (S, γ) is a compact Lie group with an invariant Riemannian
metric γ, or more generally a compact symmetric space. The definitions will be given below
when describing Cartan’s Classification and, to be specific, this section focuses on (semi)simple
connected compact Lie groups (sscc in short) and simple simply connected compact symmetric
spaces (ssccss in short). These structures encompass spheres, projective spaces, Grassmannians,
and orthogonal or unitary groups; and one can handle explicit eigenvectors computations in this
framework.

Consider again that the graphon W (g, h) depends only on (the cosine of) the distance γ(g, h)
(normalized so that the range of γ equals [0, π]) between points g, h ∈ S such that

W (g, h) = p(cos γ(g, h)) = p(cos γ(gh−1, eS)) =: p(gh−1)

where eS denotes the identity element and p(g) = p(cos γ(g, eS)). Also we assume that 0 ≤W ≤ 1
since W defines a probability matrix. In particular, W is square-integrable on the compact S×S.
Observe that estimating W reduces to estimate p that reduces to estimate p and vice versa. By
definition of the distance, note that
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• When S is a sscc Lie group, the function p is invariant by conjugation, namely p(hgh−1) =
p(g) for any latent points g, h ∈ S. We denote by L2(S)S the space of square-integrable
functions p on S that are invariant by conjugation.

• When S = G/K is a ssccss, the function p is bi-K-invariant, namely p(k1gk2) = p(g) for
any k1, k2 ∈ K and g ∈ G. We may denote by L2(K \G/K) the space of square-integrable
functions on G that are bi-K-invariants.

In particular, Peter–Weyl’s decomposition (presented below) gives an L2-decomposition of p in
these settings. The measure on S is the Haar measure (normalized to be a probability measure),
denoted dg, standardly defined for any compact topological group S. The harmonic analysis on
S is based on the Fourier transform of the space L2(S,dg) of square integrable (complex valued)
functions on S. This space L2(S,dg) is a Hilbert space for the scalar product

〈f1, f2〉 =

∫
S

f1(g)f2(g)dg .

We define also the convolution product

(f1 ∗ f2)(g) =

∫
S

f1(gh−1)f2(h)dh .

Now, recall that W defines a symmetric Hilbert-Schmidt operator TW on L2(S,dg) and the
spectral theorem (6) gives

W (g, h) =
∑
k≥1

λ?kφk(g)φk(h) ,

for an L2(S,dg)-orthonormal basis (φi)i≥1. Remark also that

(TW (f))(g1) =

∫
S

W (g1, g2)f(g2)dg2 =

∫
S

W (g1g
−1
2 , eS)f(g2)dg2

=

∫
S

p(g1h
−1)f(h)dh = (p ∗ f)(g1)

for all f ∈ L2(S,dg). We deduce that TW is the convolution on the left by p. We continue with a
short reminder on harmonic analysis on compact groups and compact quotients.

Representation of Compact Groups and Irreducible Characters The first ingredient is
representations of any compact group S. It is defined by a finite dimensional complex vector
space V and by a continuous morphism of groups ρ : S → GL(V ) where GL(V ) denotes
the group of isomorphisms of V . A linear representation (V, ρ) is irreducible if one cannot
find a subspace W such that 0 ( W ( V and that is S-stable, i.e., for all w ∈ W and all
g ∈ S, one has ρ(g)(w) ∈W . If V is a linear representation then one can always split it into
irreducible components

V =
⊕
r∈Ŝ

mrV
r

where Ŝ is the countable set of isomorphism classes of irreducible representations r = (ρr, V r)
of S and mr ≥ 1. Furthermore, we denote by

chr(g) = tr(ρr(g)) ,

the irreducible characters associated to the irreducible representation r = (ρr, V r) of S where
tr denotes the trace operator on EndC(V r) the set of (complex) endomorphisms of V r. In
particular, since ρr(g) is unitary, it holds

∀g ∈ S, |chr(g)| ≤ dr = chr(eS) ,
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where dr is the dimension of V r. Also, note that

chr ∗ chs =
δrs
dr

chr ,

where δrs denotes the Kroneker delta.
Peter–Weyl’s Decomposition The Peter–Weyl’s Decomposition shows that (chr)r∈Ŝ is an or-

thonormal basis of L2(S)S . It follows that

p =
∑
r∈Ŝ

〈p, chr〉chr

in L2(S)S . Using that TW is a left convolution operator by p, we find that (chr)r∈Ŝ is an
eigenfunction basis of TW associated to the eigenvalues (λ?r)r∈Ŝ given by

λ?r =
〈p, chr〉
dr

,

with multiplicity d2
r = dim(EndC(V r)).

Compact Gelfand Pairs and Zonal Spherical Functions There is an extension of this de-
composition to quotients S = G/K of a compact topological groupG by a closed subgroupK.
The most convenient setting for this extension is the one of compact Gelfand pairs defined
as follows.

Definition (Gelfand Pair). We say that (G,K) is a Gelfand pair if for any irreducible
representation V r of G, the space of K-fixed vectors

V r,K =
{
v ∈ V r : ∀k ∈ K , ρr(k)(v) = v

}
has dimension at most one.

An irreducible representation V r is called spherical if dimC(V r,K) = 1. We denote by ĜK

the set of spherical representations of the Gelfand pair (G,K). If r ∈ ĜK then we denote by
er a unit vector vector in V r,K which is unique up to a multiplicative complex constant of
modulus one. The zonal spherical functions

zonr(g) =
√
dr
〈
er, ρr(g)(er)

〉
V r

where dr is the dimension of V r. In particular, since ρr(g) is unitary and er normalized, it
holds

∀g ∈ G, |zonr(g)| ≤
√
dr = zonr(eG) , (20)

where eG is the identity element of G. Also, note that

zonr ∗ zons =
δrs√
dr

zonr .

Cartan’s Extension of Peter–Weyl’s Decomposition In the case of bi-K-invariant functions
on G, an extension of Peter–Weyl’s decomposition theorem shows that (zonr)r∈ĜK is an or-
thonormal basis of L2(K \G/K). It follows that

p =
∑

r∈ĜK

〈p, zonr〉zonr

in L2(K \G/K). Using that TW is a left convolution operator by p, we find that (zonr))r∈ĜK
is an eigenfunction of TW associated to the eigenvalue (λ?r)r∈ĜK given by

λ?r =
〈p, zonr〉√

dr
.

with multiplicity dr = dim(V r). The reader may recognize here the case of the sphere studied
in the previous section.
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Cartan’s Classification of sscc Lie Groups and ssccss Now, a crucial question is how ex-
plicit are these decompositions. We begin with the notion of sscc Lie Groups that is based
on Cartan’s criterion for semisimplicity. It implies that a simply connected compact Lie
group can always be written as a direct product of simple simply connected compact Lie
group (in short sscc Lie group). Here, by simple we mean a Lie group S whose Lie algebra is
simple, that is nonabelian and without non-trivial ideal. Interestingly, Cartan’s classification
of sscc Lie groups shows that any sscc Lie group fall into one of the following infinite families:

Group type

• Special unitary group SU(n+ 1),
• Odd spin group Spin(2n+ 1),
• Compact symplectic group USp(n),
• Even spin group Spin(2n),

or, it is one of the five exceptional compact Lie groups.

The sscc Lie groups belong to a larger class of compact Riemannian manifolds called sym-
metric spaces. Moreover, any simply connected compact symmetric space is isometric to a
product of simple simply connected compact symmetric spaces (in short ssccss), which can-
not be split further. A classification of all the ssccss S has been proposed by Cartan which
shows that S is either of Group type (see above) or one of the following objects

non-Group type In this case, S falls into one of the following infinite families:

• Real Grassmannians SO(p+ q)/(SO(p)× SO(q)),
• Complex Grassmannians SU(p+ q)/(SU(p)× SU(q)),
• Quaternionic Grassmannians USp(p+ q)/(USp(p)×USp(q)),
• Space of real structures on a complex space SU(n)/SO(n),
• Space of quaternionic structures on an even complex space SU(2n)/USp(n),
• Space of complex structures on a quaternionic space USp(n)/U(n),
• Space of complex structures on an even real space SO(2n)/SU(n),

or, it is one of the twelve exceptional sscc symmetric spaces.

Remark that, for all the ssccss examples, the eigenfunctions of the spectral decomposition of
TW do not depend on TW and they are irreducible characters in the group case and zonal
spherical functions in the non-group case.

Weyl’s Highest Weight theorem and Cartan–Helgason’s Extension Given a ssccss, we
can make explicit the set Ŝ in the group case, and the set ĜK in the non-group case thanks
to the Weyl’s highest weight theorem and Cartan–Helgason’s extension, see (Méliot, 2017,
Chapter 3) for a short and well written introduction. The highest weight theorem is com-
pleted by a formula for the irreducible character chr of the module V r with highest weight
r, see for instance (Bump, 2013, Chapter 22) and Weyl’s integration formula (Bump, 2013,
Chapter 17).
The same analysis can be lead in the non-group case. The only additional difficulty is the
manipulation of zonal spherical functions. This issue will be handled by considering compact
symmetric spaces of rank 1 in the following.

Now, we are ready to extend the previous results on the sphere to other latent spaces S, namely
the compact symmetric spaces of rank 1.

4.2. Compact Symmetric Spaces of Rank One

We focus here on the interesting case of compact symmetric spaces of rank one for which the
zonal spherical functions can be explicitly computed. Indeed, one has the following classification
of the compact symmetric spaces of rank one and of the corresponding spherical representations,
see (Méliot, 2017, Chapter 3) and Volchkov and Volchkov (2009) for instance. We recall that
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“intuitively, a symmetric space is a Riemannian manifold where geodesics are “nicely” arranged
in a symmetric way around any point”. More formally, a compact symmetric space of rank one is
ssccss that is 2-point homogeneous, namely

• [Compact Symmetric Spaces of Rank One] Given two pairs of points (x1, x2) and
(y1, y2) such that γ(x1, x2) = γ(y1, y2), there is an isometry of S that maps x1 (resp. x2)
onto y1 (resp. y2).

The compact symmetric spaces of rank one are

• the real spheres Sd−1 = SO(d)/SO(d− 1),
• the real projective spaces RPd−1 = SO(d)/O(d− 1),
• the complex projective spaces CPd−1 = SU(d)/U(d− 1),
• the quaternionic projective spaces HPd−1 = USp(d)/(USp(d− 1)×USp(1)),
• or the octonionic projective plane OP2 = F4/Spin(9).

In the case of compact symmetric spaces of rank 1, one can explicitly described the spherical
representations ĜK . The dimension d` := dimC(V `ω0) of the `-th spherical representation V `ω0

are given in Table 1 in the Appendix. One can even describe the zonal spherical functions of these
spaces, and thus compute the eigenvalues p?` (recall that their multiplicities d` are given by Table 1
in the Appendix).

For compact symmetric spaces of rank one, on can define

• a probability density function w(t) on [−1, 1] defined as the density of the pushforward
measure of the Haar measure by the map x 7→ t = cos(γ(x, e)),

• the pushforwards Z` on [−1, 1] of the zonal spherical functions, normalized so that they are
an orthonormal basis of L2([−1, 1],w), the space of square-integrable functions with respect
to the weight function w on [−1, 1].

In Table 1, one hase the following standard parameterizations of latent space S:

• the real sphere Sd−1 is endowed with the coordinates x = (x1, . . . , xd) such that ||x||2 = 1
and the “north pole” is given by e = (0, . . . , 0, 1). We denote the “weight function” by w(x), it
is the density of the push forward measure of the Haar measure by the map x 7→ cos(γ(x, e))
where we recall that γ(x, e) = arccosxd.

• the projective space FPd−1 (where F = R,C,H or O) is endowed with projective coordinates
[x1 : x2 : · · · : xd] with the xi’s in F, and the “north pole” is given by e = [0 : · · · :
0 : 1]. We denote the “weight function” by w(x), it is the density of the push forward
measure of the Haar measure by the map x 7→ cos(γ(x, e)) where we recall that γ(x, e) =
2 arccos(|xd|/||x||2).

One can show that the Jacobi polynomials (resp. beta distributions on [−1, 1]) are the pushforward
zonal spherical functions Z` (resp. the Haar measure) with shape parameters (α, β) depending on
the base field and the dimension, see Table 1 in the Appendix. In the case of real spheres, these
Jacobi polynomials are the Legendre/Gegenbauer polynomials seen in Section 3. We recall that
for shape parameters (α, β) the beta density distribution w is given by

w(t) =
Γ(α+ β)

2α+β−1Γ(α)Γ(β)
(1− t)α−1(1 + t)β−11[−1,1](t) , (21)

where Γ is the Gamma function. In particular, recall that one has

p =
∑
`

√
d`p

?
`Z` and p?` =

1√
d`
〈p, Z`〉L2([−1,1],w) ,

in L2([−1, 1],w). We further assume that there exists s > 0, a (Sobolev) regularity parameter,
such that

∀R ≥ 1 ,
∑
`>R

d`(p
?
` )

2 ≤ C(p, s,S)R−2s.

for some constant C(p, s,S) > 0 and for dimensions (d`)`≥0 that depends only on S.
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Now, recall the definition of the set of models MR in (15) (the dimensions (d`)`≥0 are given
by Table 1), of the estimator λ̂R in (16), of the adaptation R̂ in (18), of p̂R̂ in (19), and of T n
in (3). Our estimation procedure is the same as in the sphere example the only difference is that
the dimensions (d`)`≥0, R̃ and the zonal spherical function Z` depend on the latent space under
consideration, see Table 1 in the Appendix.

Theorem 11. Let S be a compact symmetric space of rank one with Riemanian dimension d−1.
There exist constants C0, C1, C2, κ0, κ1 > 0 such that the following holds. Let α ∈ (0, 1/3) and
n, R ≥ 0 such that n ≥ 2R̃ and n3 ≥ R̃ log(2R̃/α) where R̃ is given in Table 1 in the Appendix.
Then it holds,

• [Convergence of the matrix of probabilities]

δ2(λ(T n), λ?) ≤ 2
[∑
`>R

d`(p
?
` )

2
] 1

2

+ C0

√
R̃(1 + log(R̃/α))/n

with probability at least 1− 3α and

E[δ2
2(λ(T n), λ?)] = O

[( n

log n

)− 2s
2s+(d−1)

]
.

• [Convergence of the matrix of finite rank approximation]

δ2(λ̂R, λ?R) ≤ 4δ2(λ?R, λ?) + κ0

√
R̃
(

1 + log
(
R̃/α

))
/n.

with probability at least 1− 3α and

E[δ2
2(λ̂R, λ?R)] ≤ κ1

{
δ2
2(λ?R, λ?) +

R̃ log n

n

}
.

• [Convergence of the adaptation] For κ ≥ κ0

√
11, it holds that

δ2(λ̂R̂, λ?) ≤ C1 min
R∈R

{
δ2(λ?R, λ?) + κ

√
R̃ log n

n

}
,

with probability 1− 3n−8. Furthermore, for κ ≥ κ0

√
5, it holds that

E[δ2
2(λ̂R̂, λ?)] ≤ C2 min

R∈R

{
δ2
2(λ?R, λ?) + κ2 R̃ log n

n

}
.

A proof can be found in Appendix A.13. Note that the same results as in Proposition 9 and
Corollary 10 hold when S is a compact symmetric space of rank one. Namely, adaptive estimation
of the envelope function p is possible when p is a polynomial.

5. Numerical Experiments

5.1. Simulations

In this section we shall assess the performances of our estimation procedure by estimating numerous
envelope functions p. We consider the example of S = S2, the unit sphere in dimension d = 3.
The functions Gβ` turn to be the Legendre polynomials and the dimension of the space of spherical
harmonics of degree ` is d` = 2`+ 1.

First, we shall explain how our algorithm works in practice to compute the adaptive estimator
p̂R̂ of p, see (16) and (19). For sake of clarity, we deal with a simple example. Suppose we are
given an adjacency matrix A of size 20×20 and we set Rmax = 1. Thus n = 20, d0 = 1 and d1 = 3.
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Step 1 Compute the 20 eigenvalues of A and sort them in decreasing order λ(1) ≥ · · · ≥ λ(20),
see Figure 1.

Step 2 Take 0 ≤ R ≤ Rmax. Generate SR+2, the set of all permutation of {0, d0, . . . , dR}, the set
with R+ 2 elements. The factor +1 in R+ 2 = (R+ 1) + 1 is due to the “zeros” (represented
by the symbol 0) to be placed, see Step 3 for a proper definition. For instance, for R = 1,
we have

SR+2 =



σ1 = [d1, d0, 0]
σ2 = [d1, 0, d0]
σ3 = [d0, d1, 0]
σ4 = [d0, 0, d1]
σ5 = [0, d0, d1]
σ6 = [0, d1, d0]

Step 3 For each permutation σi, i ∈ {1, . . . , 6} of SR+2, compute the following (p̃σi,`)`∈{0,1,2}
which are the “stage means” of the λ(i)’s, i ∈ {1, . . . , 20} according to the order of appearance
of the d`’s in the permutation σi. For instance, for σ1 = [d1, d0, 0] (see Figure 1), we get

p̃σ1,2 =
1

3

3∑
`=1

λ(`), p̃σ1,1 = λ(4), p̃σ1,0 = 0,

and for σ4 = [d0, 0, d1] one gets

p̃σ2,1 = λ(1), p̃σ2,0 = 0, p̃σ2,2 =
1

3

20∑
i=18

λ(`).

In Step 2, we have called “zeros” the fact that we always set p̃σi,0 = 0.
Step 4 For each permutation σi, compute the corresponding vector λ̃σi of size 20, containing

the p̃σi,` with multiplicity d`. Then compute the risk Score(σi) for each σi. For example for
σ1 = [d1, d0, 0] (see Figure 1), one gets

λ̃σ1
= (p̃σ1,2, p̃σ1,2, p̃σ1,2︸ ︷︷ ︸

d1=3

, p̃σ1,1︸ ︷︷ ︸
d0=1

, 0, . . . , 0︸ ︷︷ ︸
n−d0−d1=16

)

and its risk is Score(σ1) =

20∑
`=1

(λ(`) − p̃σ1,`)
2.

Step 5 Select the permutation σmin such that σmin = arg min
σi

Score(σi).

Step 6 Get the estimate λ̂R defined by

λ̂R = (p̃σmin,1︸ ︷︷ ︸
d0=1

, p̃σmin,2, p̃σmin,2, p̃σmin,2︸ ︷︷ ︸
d1=3

) = (p̂R0 , p̂
R
1 , p̂

R
1 , p̂

R
1 ) ,

see (16).
Step 7 Iterate Steps 2 to 6 for R = 0 to Rmax. Compute the level R̂ according to (18) and the

adaptive estimator p̂R̂(t) according to (19).
Step 8 Troncate p̂R̂(t) so as to it belongs to [0, 1].

Of course, the choice of level R is crucial and the estimation is sensitive to R. That is why
we use our selection method, as described in Section 3.5 (see Step 7 in the description of the
algorithm above). As almost all estimators selection methods, this Goldenshluger-Lepski method
uses an hyper-parameter κ. Our theoretical result ensures a good performance as soon as κ is
large enough, but it is well known that a more precise choice is better in practice. Heuristics exist
to calibrate κ, but they are all based on the behavior of the estimator for very large R (see for
instance Baudry, Maugis and Michel (2012)). Hence these techniques are not possible here, due
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Figure 1. Plot of the 20 sorted eigenvalues λ(i) of adjacency matrix A and the values of vector λ̃σ(1).

to the computational cost of the estimation when R is large (we can hardly consider larger than
Rmax = 7 because of the complexity in (Rmax + 2)!). Fortunately, the stability of the estimation
allows us to choose here a fixed κ, namely κ = 0.25, and this choice ensures good selection of R̂
for a wide range of functions p.

Now, let us deal with the estimation of the six following envelope functions p

p1(t) =
(1 + t

2

)4

,

p2(t) = 1t>0.7,

p3(t) = e−(t−1)2 ,

p4(t) = 0.5 + 0.5 sin
(
πt/2

)
,

p5(t) =
1

3
+

1

12

(
35t4 − 30t2 + 3

)
,

p6(t) = t101t>0 .

We consider graphs of size n = 5000. We set Rmax = 4 and κ = 0.25 for the adaptive selection
rule of R, see (18).

Figure 2 presents our simulation results. For each envelope function p, we represent on the top
side, the estimated coefficients p̂R̂` and the true coefficients p?` with their multiplicity 2` + 1. On
the bottom side, we represent the estimated envelope function p̂ and the true p. Note that our
procedure is not constrained by dealing with envelope functions p defining positive kernels W .
Such an example is given by the step function p2 as its Fourier coefficients p?2,`’s can be negative,
see Figure 2.

The estimation of all functions are good except for the step function p2 which is more demand-
ing due to its discontinuity. Despite that function p6 is not easy to be estimated because of its
flatness, our estimation is satisfying. Furthermore, it is interesting to remark that except for p2,
the estimated coefficients are very close to the true ones.

5.2. How to speed the algorithm

The aforementioned algorithm is a spectral algorithm with complexity O(n3), which is standard.
Costly steps might be Steps 2-5 which rely on evaluating the empirical risk function for all
possible permutations of the ordering of the eigen-spaces. These steps are of complexity O(Rd),
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Figure 2. Estimation of envelope functions p1, . . . ,p6.

which is exponential on the number R of estimated eigen-spaces. Yet, these steps are just meant
to cluster empirical eigenvalues (on the real line) into groups of prescribed sizes d0, d1, . . . , dR and
one might be willing to use standard clustering approaches to perform this task.

For instance a Hierarchical Agglomerative Clustering (HAC) with Single Linkage function should
be able to identify well separated clusters of eigenvalues. Looking at the dimensions matching the
d`’s along the HAC tree, one might recover the right labeling of the eigenvalues. The success
of these clustering approaches will rely on the event that eigenvalues are well separated. This
notion has been investigated in (Araya Valdivia and De Castro, 2019) where the authors showed
that, for n sufficiently large and under mild assumptions (essentially spectral gaps between distinct
eigenvalues), the empirical eigenvalues gather in clusters of size d`. As a conclusion, for n sufficiently
large, one might use standard clustering approaches such as HAC, in place of the costly Steps
2-5, to identify right clusters of empirical eigenvalues.
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Appendix A: Proofs

A.1. Proof of Proposition 1

This result is a consequence of (Bandeira et al., 2016, Corollary 3.12) and (Bandeira et al., 2016,
Remark 3.13) with Xij = Aij − (Θ0)ij a centered but not symmetric random variable, ε = 1/2
say, σ̃2 = D0 by definition, and observing that σ̃2

∗ = maxij((Θ0)ij ∨ (1− (Θ0)ij)) ≤ 1. It gives

∀t > 0, P
{
‖A−Θ0‖ ≥ 3

√
2D0 + Ct

}
≤ n exp(−t2) ,

for some universal constant C > 0.

A.2. Proof of Theorem 2

Let R ≥ 1 and define

Φni := (1/
√
n)(φi(X1), . . . , φi(Xn)) ∈ Rn,

KR := Diag(λ1(TW ) . . . , λR(TW )) ∈ RR×R,
ER,n := (〈Φni ,Φnj 〉 − δij)i,j∈[R] ∈ RR×R,

XR,n :=
[
Φn1 · · ·ΦnR

]
∈ Rn×R,

AR,n :=
(
X>R,nXR,n

) 1
2 ∈ RR×R and note that A2

R,n = IdR + ER,n,

TR,n :=

R∑
r=1

λr(TW )Φnr (Φnr )> = XR,nKRX
>
R,n ∈ Rn×n,

T̃R,n := ((1− δij)TR,n)i,j∈[n] ∈ Rn×n,
T ?R,n := AR,nKRAR,n ∈ RR×R,

and WR(x, y) :=

R∑
i=1

λi(TW )φi(x)φi(y),

where the last identity holds point-wise. Observe that A2
R,n = IdR + ER,n. It holds

δ2(λ(TW ), λ(TWR
)) =

(∑
r>R

λ2
r(TW )

) 1
2

. (22)

Note the equalities between spectra λ(TWR
) = λ(KR) and λ(TR,n) = λ(T ?R,n) where the last one

follows by using a SVD of XR,n. Hence, we deduce that

δ2(λ(TWR
), λ(TR,n)) = δ2(λ(KR), λ(T ?R,n)) ≤ ‖T ?R,n −KR‖F = ‖AR,nKRAR,n −KR‖F ,

by Hoffman-Wielandt inequality, see (Koltchinskii and Giné, 2000, page 118) for instance. Equa-
tion (4.8) at (Koltchinskii and Giné, 2000, page 127) gives that

δ2(λ(TWR
), λ(TR,n)) ≤

√
2‖KR‖F ‖ER,n‖ =

√
2‖WR‖2‖ER,n‖ , (23)

Actually, one can remove the constant
√

2 using Ostrowski’s theorem, see (Braun, 2006, Theorem
A.2) for instance. Also, by Hoffman-Wielandt inequality, we have

δ2(λ(TR,n), λ(T̃R,n)) ≤ ‖T̃R,n − TR,n‖F =
[ 1

n2

n∑
i=1

W 2
R(Xi, Xi)

] 1
2

, (24)
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and

δ2(λ(T̃R,n), λ(T n)) ≤ ‖T̃R,n − T n‖F =
[ 1

n2

∑
i 6=j

(W −WR)2(Xi, Xj)
] 1

2

. (25)

Invoke Lemma 12 to bound (23), Lemma 13 to bound (24) and Lemma 14 to bound (25).

Lemma 12. Let R ≥ 1 and denote by ρ(R) := max(1, ‖
∑R
r=1 φ

2
r‖∞ − 1) then it holds

∀t > 0, P {‖ER,n‖ ≥ t} ≤ 2R exp
[
− n

2ρ(R)

t2

1 + t/(3n)

]
.

In particular, for all α ∈ (0, 1) and for n3 ≥ ρ(R) log(2R/α), it holds

P

{
‖ER,n‖ ≥

√
ρ(R) log(2R/α)

n

}
≤ α .

Lemma 13. Let R ≥ 1 and α ∈ (0, 1) then, with probability at least 1− α, it holds

1

n2

n∑
i=1

W 2
R(Xi, Xi) ≤

[
1 + max

1≤r≤R
||φ2

r||∞

√
log(R/α)

2n

]
2ρ(R)||WR||2

n
.

Lemma 14. It holds, for all α ∈ (0, 1),

P

 1

n(n− 1)

∑
i 6=j

(W −WR)2(Xi, Xj) ≥
∑
r>R

λ2
r(TW ) + ‖W −WR‖2∞

√
log(2/α)

n− 1

 ≤ α .
These lemmas are proven in Appendix A.3, Appendix A.4 and Appendix A.5. Collecting (22), (23), (24)
and (25), the triangular inequality gives the result.

A.3. Proof of Lemma 12

Observe that nER,n =
∑n
i=1(ZR(Xi)Z

>
R (Xi)− IdR) is a sum of independent centered symmetric

matrices where we denote by ZR(x) := (φ1(x), . . . , φR(x)). In particular, ZR(Xi)Z
>
R (Xi) are rank

one matrices so that it holds

‖ZR(Xi)Z
>
R (Xi)− IdR‖ = 1 ∨

(
‖ZR(Xi)‖22 − 1

)
= 1 ∨

(
(

R∑
r=1

φ2
r(Xi))− 1

)
≤ 1 ∨

(
‖

R∑
r=1

φ2
r‖∞ − 1

)
=: ρ(R) .

Moreover, one has

σ2
R,n : = n‖E

(
(ZR(X1)Z>R (X1)− IdR)2

)
‖

= n‖E
(
‖ZR(X1)‖22ZR(X1)Z>R (X1)− 2ZR(X1)Z>R (X1)− IdR

)
‖

= n‖E
(
‖ZR(X1)‖22ZR(X1)Z>R (X1)

)
− IdR‖

≤ n
∥∥∥‖ R∑

r=1

φ2
r‖∞E

(
ZR(X1)Z>R (X1)

)
− IdR

∥∥∥
= n

∥∥∥‖ R∑
r=1

φ2
r‖∞IdR − IdR

∥∥∥
= n

∣∣∣‖ R∑
r=1

φ2
r‖∞ − 1

∣∣∣ ≤ nρ(R)
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where we invoke that a.s. ‖ZR(X1)‖22ZR(X1)Z>R (X1) 4 (‖
∑R
r=1 φ

2
r‖∞)ZR(X1)Z>R (X1). It follows

from the matrix Bernstein inequality given in (Tropp, 2012, Theorem 6.1.1)

∀t > 0, P {‖ER,n‖ ≥ t} ≤ 2R exp
[
− n

2ρ(R)

t2

1 + t/(3n)

]
.

Indeed, we have used (Tropp, 2012, Theorem 6.1.1) with

Xk ← ZR(Xi)Z
>
R (Xi)− IdR,

R← ρ(R),

Y ← nER,n,

σ2 ≤ n||E
(
X2

1

)
|| ← σ2

R,n,

t← nt,

according to the notation of Tropp (2012) on the left hand side and our notation on the right hand
side. It proves the lemma.

A.4. Proof of Lemma 13

Observe that

1

n2

n∑
i=1

W 2
R(Xi, Xi) =

1

n2

n∑
i=1

( R∑
r=1

λr(TW )φ2
r(Xi)

)2
=

1

n2

∑
r,s∈[R]

λr(TW )λs(TW )
( n∑
i=1

φ2
r(Xi)φ

2
s(Xi)

)
= x>Ax ≤ ||A||||x||22

with x = (λ1(TW )/
√
n, . . . , λR(TW )/

√
n) and A = ((1/n)

∑n
i=1 φ

2
r(Xi)φ

2
s(Xi))r,s. Note that A is

an irreducible and aperiodic matrix since its coefficients are positive. It follows by Perron-Frobenius
theorem that

||A|| ≤ 1

n
max

1≤r≤R
(

R∑
s=1

n∑
i=1

φ2
r(Xi)φ

2
s(Xi))

Now, this last quantity can be upper bounded as follows

1

n

R∑
s=1

n∑
i=1

φ2
r(Xi)φ

2
s(Xi) =

1

n

n∑
i=1

φ2
r(Xi)(

R∑
s=1

φ2
s(Xi)),

≤ (
1

n

n∑
i=1

φ2
r(Xi))(1 + ρ(R)).

Using the bound
φ2
r(X1) ≤ max

1≤r≤R
||φ2

r||∞ =: aR ,

and Hoeffding inequality (Boucheron, Lugosi and Massart, 2013, page 34), we deduce that

∀t > 0, P

{
1

n

n∑
i=1

φ2
r(Xi) > E

(
φ2
r(X1)

)
+ t

}
≤ exp

(
− 2nt2

a2
R

)
.

Observe that E
(
φ2
r(X1)

)
= 1. Let α ∈ (0, 1), choosing t2 = a2

R log(R/α)/(2n) and taking an union
bound, it holds that

P

{
∀r ∈ [R],

1

n

n∑
i=1

φ2
r(Xi) ≤ 1 +

aR log
1
2 (R/α)√
2n

}
≥ 1− α
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It results in

P

{
||A|| ≤

(
1 +

(1 + ρ(R)) log
1
2 (R/α)√

2n

)
(1 + ρ(R))

}
≥ 1− α

On this event, we deduce that

1

n2

n∑
i=1

W 2
R(Xi, Xi) ≤ ||A||||x||22,

≤
(

1 +
aR log

1
2 (R/α)√
2n

) (1 + ρ(R))||WR||2

n
,

which gives the result.

A.5. Proof of Lemma 14

By a standard inequality of Hoeffding (Hoeffding, 1963), for a bounded kernel h, for all α ∈ (0, 1),

P

∣∣∣ 1

n(n− 1)

∑
i 6=j

h(Xi, Xj)− E (h(X1, X2))
∣∣∣ > ‖h‖∞√ log(2/α)

n− 1

 ≤ α
Applying this result for h = (W −WR)2 and noticing that

• E (h(X1, X2)) = ‖W −WR‖22 =
∑
r>R λ

2
r(TW ),

• ‖h‖∞ = ‖W −WR‖2∞,

the result follows.

A.6. Proof of Corollary 3

The symmetric kernel h := (W −WR)2 − E
(
(W −WR)2

)
is σ-canonical, see (De la Pena and

Giné, 2012, Definition 3.5.1) for a definition. The following important improvement of Hoeffding’s
inequalities for canonical kernels was proved by Arcones and Giné (1993), it holds that there exists
two universal constants C1 > 0 and C2 > 0 such that for all α ∈ (0, 1),

P

∣∣∣ 1

n(n− 1)

∑
i 6=j

h(Xi, Xj)
∣∣∣ > C1‖h‖∞

log(C2/α)

n

 ≤ α .
We deduce that it holds, for all α ∈ (0, 1),

P

 1

n(n− 1)

∑
i6=j

(W −WR)2(Xi, Xj) ≥ ‖W −WR‖22 + C1‖W −WR‖2∞
log(C2/α)

n

 ≤ α ,
which proves the corollary substituting Lemma 14 by the aforementioned inequality.

A.7. Proof of Proposition 4

Define

∀t ∈ [−1, 1], pR(t) :=

R∑
`=0

p?`c`G
β
` (t) .
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We apply Corollary 3 to the kernel as follows.

∀x, y ∈ Sd−1, WR̃(x, y) :=

R∑
`=0

p?`c`G
β
` (〈x, y〉) = pR(〈x, y〉) ,

First, note that

‖W −WR̃‖2 = ‖p− pR‖2 =
[∑
`>R

d`(p
?
` )

2
] 1

2

. (26)

Next, invoke (Dai and Xu, 2013, Corollary 1.2.7) to get that

∀` ≥ 0,

d∑̀
j=1

Y 2
`j = d` .

It follows that the quantity ρ(R̃) of Theorem 2 simplifies to ρ(R̃) ≤ R̃. Furthermore, it holds

∀x ∈ Sd−1, WR̃(x, x) =

R∑
`=0

p?`c`G
β
` (1) =

R∑
`=0

d`p
?
` , (27)

since Gλ` (1) = d`/c`. Then by Hoffman-Wielandt inequality, we have

δ2(λ(T R̃,n), λ(T̃ R̃,n)) ≤ ‖T̃ R̃,n − T R̃,n‖F =
[ 1

n2

n∑
i=1

W 2
R̃

(Xi, Xi)
] 1

2

=
1√
n

∣∣∣ R∑
`=0

d`p
?
`

∣∣∣ ,
almost surely. And we use this bound instead of the one of Lemma 13. The following result follows:

δ2(λ(TWR̃
), λ(T n)) ≤

[ R∑
`=0

d`(p
?
` )

2
] 1

2
[ R̃ log(2R̃/α)

n

] 1
2

+
1√
n

∣∣∣ R∑
`=0

d`p
?
`

∣∣∣+ ‖p− pR‖2 + ‖p− pR‖∞
[C1 log(C2/α)

n

] 1
2

(28)

with probability at least 1− 3α.
Let us study the various terms appearing in (28). First, by orthonormality

R∑
`=0

d`|p?` |2 = ‖pR‖22 ≤ ‖p‖22 ≤ 2

since pR is the orthogonal projection of p, and |p| ≤ 1. Next, using Cauchy-Schwarz inequality∣∣∣∣∣
R∑
`=0

d`p
?
`

∣∣∣∣∣ ≤
(

R∑
`=0

d`

)1/2( R∑
`=0

d`|p?` |2
)1/2

≤
√

2R̃.

Now ‖p − pR‖∞ ≤ 1 + ‖pR‖∞, with ‖pR‖∞ ≤
∑R
`=0 |p?`c`|‖G

β
` ‖∞. But ‖Gβ` ‖∞ = Gβ` (1) by

Formula (4.7.1) and Theorems 7.32.1 and 7.33.1 of Szegő (1975) so

‖pR‖∞ ≤
R∑
`=0

|p?`c`|Gλ` (1) =

R∑
`=0

|p?` |d` ≤
√

2R̃ .

Finally, (28) becomes

δ2(λ(TWR̃
), λ(T n)) ≤

√
2
[ R̃ log(2R̃/α)

n

] 1
2

+

√
2R̃√
n

+
[∑
`>R

d`(p
?
` )

2
] 1

2

+
(

1 +
√

2R̃
)[C1 log(C2/α)

n

] 1
2
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Hence, since R̃ ≥ 1 and log n ≤ n, there exists a numerical constant C > 0 such that, with
probability at least 1− 3α

δ2(λ(TWR̃
), λ(T n)) ≤

[∑
`>R

d`(p
?
` )

2
] 1

2

+ C

√
R̃(1 + log(R̃/α))

n
. (29)

Adding (26) gives the first statement of Proposition 4.
Now let us denote by Ω the set with probability larger than 1 − 3α such that the previous

inequality is true. One has

δ2(λ(T n), λ?) = δ2(λ(T n), λ?)1Ω + δ2(λ(T n), λ?)1Ωc .

Observe that each |λk(T n)| is bounded by ρ(T n) the spectral radius of T n. Since T n := (1/n)Θ0,
it holds that ρ(T n) ≤ ‖Θ0/n‖F ≤ 1. Then

δ2(λ(T n), λ?) ≤ δ2(λ(T n), 0) + δ2(0, λ?) ≤
√
n+ ‖p‖2 (30)

which entails δ2
2(λ(T n), λ?) ≤ (1 +

√
2)2n. Hence, using this bound and previous inequality,

E δ2
2(λ(T n), λ?) = E

(
δ2
2(λ(T n), λ?)1Ω

)
+ (1 +

√
2)2nP(Ωc)

≤ 8
[∑
`>R

d`(p
?
` )

2
]

+ 2C2 R̃(1 + log(R̃/α))

n
+ 3α(1 +

√
2)2n

as soon as n3 ≥ R̃ log(2R̃/α). We choose α = n−2, and assume n ≥ 2R̃. Then

R̃ log(2R̃/α) = R̃ log(2R̃n2) ≤ n

2
log(n3) ≤ n3 ,

and

E
(
δ2
2(λ(T n), λ?)

)
≤ 8
[∑
`>R

d`(p
?
` )

2
]

+ 2C2 R̃(1 + log(R̃n2))

n
+ 3(1 +

√
2)2n−1

≤ 8
[∑
`>R

d`(p
?
` )

2
]

+ C ′
Rd−1 log n

n

since R̃ = O(Rd−1). Now we assume that p belongs to the Weighted Sobolev Zswβ ((−1, 1)). Then,
using (14), for all R such that n ≥ 2R̃, it holds

E
(
δ2
2(λ(T n), λ?)

)
≤ 8C(p, s,d)R−2s + C ′

Rd−1 log n

n

To conclude it is sufficient to choose R = b(n/log n)
1

2s+d−1 c.

A.8. Proof of Theorem 6

We use the notation of the previous proofs and, in particular, the notation of Appendix A.7. The
heart of the proof lies in the following proposition, proved in Appendix A.9.

Proposition 15. Let R ≥ 0 such that 2R̃ ≤ n. It holds

δ2(λ̂R, λ?R) ≤ 4δ2(λ(TWR̃
), λ(T n)) +

√
2R̃ ‖T̂ n − T n‖ .
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Now, using inequality (4), we know that

‖T̂ n − T n‖ ≤
3√
2n

+ C0

√
log(n/α)

n
,

with probability at least 1− α.

Remark 12. In the relatively sparse model (7), using (8), recall that

‖T̂ n − T n‖ ≤ 3

√
2ζn
n

+ C0

√
log(n/α)

n

with probability at least 1− α. It shows that ‖T̂ n − T n‖ = OP(
√
ζn/n) under (7).

Moreover, by (29) in proof of Proposition 4, for all n3 ≥ R̃ log(2R̃/α),

δ2(λ(TWR̃
), λ(T n)) ≤

[∑
`>R

d`(p
?
` )

2
] 1

2

+ C

√
R̃(1 + log(R̃/α))

n
.

Remark 13. In the relatively sparse model (7), it reads

δ2(λ(TWR̃
), λ(T n)) ≤ ζn

[∑
`>R

d`(p
?
` )

2
] 1

2

+ Cζn

√
R̃(1 + log(R̃/α))

n
.

with probability at least 1− α. We recall that p?` are the eigenvalues of TW .

Thus there exists a numerical constant κ0 > 0 such that, with probability at least 1− 3α

δ2(λ̂R, λ?R) ≤ 4
[∑
`>R

d`(p
?
` )

2
] 1

2

+ κ0

√
R̃(1 + log(R̃/α))

n
.

if n3 ≥ (2R̃)3 ∨ R̃ log(2R̃/α), that gives the first statement of Theorem 6. The remark (Remark 8)
following Theorem 6 can be deduced from the previous remarks of this proof.

Now let us denote by Ω the set with probability larger than 1 − 3α such that the previous
inequality is true. One has

δ2(λ̂R, λ?R) = δ2(λ̂R, λ?R)1Ω + δ2(λ̂R, λ?R)1Ωc

As for (30), we can prove the coarse bound

δ2(λ̂R, λ?R) ≤
√
R̃+ ‖p‖2 ≤ (1 +

√
2)
√
R̃.

Hence, using this bound and previous inequality,

E
(
δ2
2(λ̂R, λ?R)

)
= E

(
δ2
2(λ̂R, λ?R)1Ω

)
+ (1 +

√
2)2R̃P(Ωc)

≤ 32

[∑
`>R

d`(p
?
` )

2

]
+ 2κ2

0

R̃
(

1 + log(R̃/α)
)

n
+ 3α(1 +

√
2)2R̃ ,

as soon as n3 ≥ (2R̃)3∨R̃ log(2R̃/α). We choose α = n−1, and assume n ≥ 2R̃. Then R̃ log(2R̃/α) ≤
n3 and

E
(
δ2
2(λ̂R, λ?R)

)
≤ 32

[∑
`>R

d`(p
?
` )

2

]
+ 2κ2

0

R̃
(

1 + log(R̃n)
)

n
+ 3(1 +

√
2)2 R̃

n

≤ 32

[∑
`>R

d`(p
?
` )

2

]
+ (6κ2

0 + 18)
R̃ log n

n
.

This completes the proof. The same reasoning gives the second statement of Remark 8.
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A.9. Proof of Proposition 15

◦ Define ∆R as follows

∀x, y ∈ R2R̃, ∆2
R(x, y) := min

σ∈S2R̃

{ 2R̃∑
k=1

(xk − yσ(k))
2
}
,

where S2R̃ denotes the set of permutations on [2R̃].
Once again, using Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya,

1952, Theorem 368), it holds that

∀x, y ∈ R2R̃ s.t. x1 ≥ . . . ≥ x2R̃ and y1 ≥ . . . ≥ y2R̃, ∆2
R(x, y) :=

2R̃∑
k=1

(xk − yk)2 .

Completing with R̃ zeros, we denote also

Λ̂R := ( p̂0︸︷︷︸
d0

, p̂1, . . . , p̂1︸ ︷︷ ︸
d1

, . . . , p̂R, . . . , p̂R︸ ︷︷ ︸
dR

, 0, . . . , 0︸ ︷︷ ︸
R̃

) ∈ R2R̃ ,

and Λ?R := (p?0,p
?
1, . . . ,p

?
1, . . . ,p

?
R, . . . ,p

?
R, 0, . . . , 0) ∈ R2R̃ .

Since R does not vary in this proof, we have denoted p̂` := p̂R` . Observe that δ2(λ̂R, λ?R) =

∆R(Λ̂R,Λ?R) using the property described in (9) and Hardy-Littlewood rearrangement inequality
(Hardy, Littlewood and Pólya, 1952, Theorem 368) again.
◦ Recall that it holds λ(TWR̃

) = {0,p?0,p?1, . . . ,p?1, . . . ,p?R, . . . ,p?R} where zero is the only
eigenvalue with infinite multiplicity. In particular, remark that the vector (p?0,p

?
1, . . . ,p

?
1, . . . ,p

?
R, . . . ,p

?
R)

belongs toMR. We begin by defining

(p0, . . . ,pR, . . . ,pR) ∈ arg min
u∈MR

min
σ∈Sn

{ R̃∑
k=1

(uk − λσ(k)(T n))2 +

n∑
k=R̃+1

λσ(k)(T n)2
}
, (31)

where Sn denotes the set of permutation on [n]. Also, define

∀x, y ∈ Sd−1, W R̃(x, y) =

R∑
`=0

p`c`G
β
` (〈x, y〉) ,

and observe that λ(TW R̃
) = {0,p0,p1, . . . ,p1, . . . ,pR, . . . ,pR} where zero is the only eigenvalue

with infinite multiplicity. Denote σ ∈ Sn the permutation that achieves the minimum in (31). We
have the following intermediate result.

Lemma 16. It holds

δ2
2(λ(TW R̃

), λ(T n)) =

R̃∑
k=1

(pk − λσ(k)(T n))2 +

n∑
k=R̃+1

λσ(k)(T n)2 ≤ δ2
2(λ(TWR̃

), λ(T n)) ,

where (p`)` is defined by (31).

Proof. Observe that λ(TW R̃
) has at most R̃ nonzero eigenvalues. Using again Hardy-Littlewood

rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368) and (9), one may
deduce that δ2

2(λ(TW R̃
), λ(T n)) reads

∑R̃
k=1(pk − λσ(k)(T n))2 +

∑n
k=R̃+1 λσ(k)(T n)2 for some

permutation σ ∈ Sn. Taking the infimum leads to the left hand side equality.
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Then, observe that λ(TWR̃
) has at most R̃ nonzero eigenvalues. Using again Hardy-Littlewood

rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368) and (9), one may
deduce again that δ2

2(λ(TW R̃
), λ(T n)) reads

∑R̃
k=1(p?k − λσ(k)(T n))2 +

∑n
k=R̃+1 λσ(k)(T n)2 for

some permutation σ ∈ Sn. Furthermore, recall that (p?0,p
?
1, . . . ,p

?
1, . . . ,p

?
R, . . . ,p

?
R) belongs to

MR and, hence, it is admissible to Program (31). In particular, the value of the objective at this
point is always greater than the minimal value. This gives the right hand side inequality.

◦ Similarly, denote ((p̂`), σ̂) a point that achieves the minimum in (16). Now, consider

S := σ([R̃]) ∪ σ̂([R̃]) ,

and Sc := [n] \ S, and define s := #S ≤ 2R̃ ≤ n.
On can check that

p̂` =
1

d`

˜̀∑
k=˜̀−1

λσ̂(k) and p` =
1

d`

˜̀∑
k=˜̀−1

λσ(k)

with the convention −̃1 = 1.
◦ Denote by SS,n the set of permutation σ ∈ Sn such that σ([s]) = S, SS the set of bijections

from [s] onto S and Ss the set of permutations of [s]. It is clear that SS ' Ss. Observe that

(p̂`) = arg min
u∈MR

min
σ∈Sn

{ R̃∑
k=1

(uk − λσ(k))
2 +

n∑
k=R̃+1

λ2
σ(k)

}

= arg min
u∈MR

min
σ∈SS,n

{ R̃∑
k=1

(uk − λσ(k))
2 +

n∑
k=R̃+1

λ2
σ(k)

}
since one of the permutation σ ∈ Sn that achieves the minimum in the first row satisfies σ ∈ SS,n

and it follows that (p̂`) is the arg minimum of the second program. Now, separating the terms λ2
σ(k)

for k > R̃, we obtain

(p̂`) = arg min
u∈MR

min
σ∈SS,n

{ R̃∑
k=1

(uk − λσ(k))
2 +

s∑
k=R̃+1

λ2
σ(k) +

∑
t∈Sc

λ2
t

}

= arg min
u∈MR

min
σ∈SS

{ R̃∑
k=1

(uk − λσ(k))
2 +

s∑
k=R̃+1

λ2
σ(k) +

∑
t∈Sc

λ2
t

}

= arg min
u∈MR

min
σ∈SS

{ R̃∑
k=1

(uk − λσ(k))
2 +

s∑
k=R̃+1

λ2
σ(k)

}
. (32)

Similarly, one can check that

(p`) = arg min
u∈MR

min
σ∈SS

{ R̃∑
k=1

(uk − λσ(k)(T n))2 +

s∑
k=R̃+1

λσ(k)(T n)2
}
.

◦ Consider the restriction ∆̇R of ∆R to Rs defined as follows

∀x, y ∈ Rs, ∆̇2
R(x, y) := min

σ∈Ss

{ s∑
k=1

(xk − yσ(k))
2
}
.
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Using (5) and Weyl’s inequality (Bhatia, 2013, page 63) and by abuse of notation, note that

∆̇R((λk(T n))k∈S , (λk)k∈S) ≤
[∑
k∈S

(λk − λk(T n))2
] 1

2 ≤
√
s‖T̂ n − T n‖ .

Moreover, using (32) and by abuse of notation, remark that

∆̇2
R((p̂`), (λk)k∈S) = min

σ∈SS

{
min
u∈MR

R̃∑
k=1

(uk − λσ(k))
2 +

s∑
k=R̃+1

λ2
σ(k)

}
.

≤ min
σ∈SS

{ R̃∑
k=1

(pk − λσ(k))
2 +

s∑
k=R̃+1

λ2
σ(k)

}
.

= ∆̇2
R((p`), (λk)k∈S)

where (p̂`) = (p̂0, p̂1, . . . , p̂1, . . . , p̂R, . . . , p̂R, 0, . . . , 0) ∈ Rs completing with s− R̃ zeros.
◦ Using (31), Lemma 16 and by abuse of notation, observe that

∆̇2
R((p`), (λk(T n))k∈S) = min

σ∈SS

{ R̃∑
k=1

(pk − λσ(k)(T n))2 +

s∑
k=R̃+1

λσ(k)(T n)2
}
.

≤ min
σ∈SS

{ R̃∑
k=1

(pk − λσ(k)(T n))2 +

s∑
k=R̃+1

λσ(k)(T n)2 +
∑
t∈Sc

λt(T n)2
}
.

= min
σ∈Sn

{ R̃∑
k=1

(pk − λσ(k)(T n))2 +

n∑
k=R̃+1

λσ(k)(T n)2
}
,

=

R̃∑
k=1

(pk − λσ(k)(T n))2 +

n∑
k=R̃+1

λσ(k)(T n)2

= δ2
2(λ(TW R̃

), λ(T n))

≤ δ2
2(λ(TWR̃

), λ(T n))

where we denote by (p`) = (p0,p1, . . . ,p1, . . . ,pR, . . . ,pR, 0, . . . , 0) ∈ Rs completing with s − R̃
zeros.
◦ Using that ∆̇R is a semi-distance—in particular the triangular inequality holds, one deduces

∆̇R((p̂`), (p`)) ≤ ∆̇R((p̂`), (λk)k∈S) + ∆̇R((λk)k∈S , (λk(T n))k∈S) + ∆̇R((λk(T n))k∈S , (p`))

≤ 2δ2(λ(TWR̃
), λ(T n)) +

√
s‖T̂ n − T n‖ ,

combining the aforementioned inequalities.
Define Λ

R
:= (p0,p1, . . . ,p1, . . . ,pR, . . . ,pR, 0, . . . , 0) ∈ R2R̃ completing with R̃ zeros, and

remark that

∆R(Λ̂R,Λ
R

) ≤ ∆̇R((p̂`), (p`)) ≤ 2δ2(λ(TWR̃
), λ(T n)) +

√
2R̃‖T̂ n − T n‖ .

◦ It remains to bound ∆R(Λ?R,Λ
R

). Note that ∆R(Λ?R,Λ
R

) = δ2(λ(TWR̃
), λ(TW R̃

)). Then,
invoke Lemma 16 to get that

∆R(Λ?R,Λ
R

) ≤ δ2(λ(TWR̃
), λ(T n)) + δ2(λ(T n), λ(TW R̃

)) ≤ 2δ2(λ(TWR̃
), λ(T n)) .

Finally we obtain the following bound:

δ2(λ̂R, λ?R) ≤ 4δ2(λ(TWR̃
), λ(T n)) +

√
2R̃‖T̂ n − T n‖ (33)

for all sample size n ≥ 2R̃.
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A.10. Proof of Theorem 7

In this proof we denoteD(R) =

√
R̃ log n/n, so thatB(R) = maxR′∈R

{
δ2(λ̂R

′
, λ̂R

′∧R)− κD(R′)
}
.

Fix some R ∈ R. First decompose

δ2(λ̂R̂, λ?) ≤ δ2(λ̂R̂, λ̂R̂∧R) + δ2(λ̂R̂∧R, λ̂R) + δ2(λ̂R, λ?).

Using the definition of B(R) and B(R̂) it holds that

δ2(λ̂R̂, λ?) ≤ B(R) + κD(R̂) +B(R̂) + κD(R) + δ2(λ̂R, λ?).

We now use the definition of R̂ to write δ2(λ̂R̂, λ?) ≤ 2B(R) + 2κD(R) + δ2(λ̂R, λ?). The last term
can be split in δ2(λ̂R, λ?) ≤ δ2(λ̂R, λ?R) + δ2(λ?R, λ?). Thus,

δ2(λ̂R̂, λ?) ≤ 2B(R) + 2κD(R) + δ2(λ̂R, λ?R) + δ2(λ?R, λ?). (34)

We shall now control the term B(R). Denote a+ = max(a, 0) the positive part of any real a. Let
us write

B(R) = max
R′∈R

{δ2(λ̂R
′
, λ̂R

′∧R)− κD(R′)}

≤ max
R′∈R,R′≥R

{δ2(λ̂R
′
, λ̂R)− κD(R′)}+

≤ max
R′∈R,R′≥R

{δ2(λ̂R
′
, λ?R

′
) + δ2(λ?R

′
, λ?R) + δ2(λ?R, λ̂R)− κD(R′)}+

Now δ2
2(λ?R

′
, λ?R) =

R̃′∑
k=R̃+1

|λ?k|2 ≤ δ2
2(λ?R, λ?). Then

B(R) ≤ max
R′∈R,R′≥R

{δ2(λ̂R
′
, λ?R

′
)− κD(R′)}+ + δ2(λ?R, λ?) + δ2(λ?R, λ̂R) .

Finally, combining this with (34),

δ2(λ̂R̂, λ?) ≤ 2 max
R′∈R,R′≥R

{δ2(λ̂R
′
, λ?R

′
)− κD(R′)}+ + 2κD(R) + 3δ2(λ̂R, λ?R) + 3δ2(λ?R, λ?) ,

≤ 5 max
R′∈R,R′≥R

{δ2(λ̂R
′
, λ?R

′
)− κD(R′)}+ + 3δ2(λ?R, λ?) + 5κD(R) .

Now, we invoke Theorem 6 and a union bound to insure that, if n3 ≥ (2R̃max)3∨R̃max log(2R̃max/α)
then, with probability greater that 1− 3|R|α, it holds

∀R′ ∈ R , δ2(λ̂R
′
, λ?R

′
) ≤ 4δ2(λ?R

′
, λ?) + κ0

√√√√ R̃′

n

(
1 + log

(
R̃′

α

))

We choose α = n−1−q, then R̃max log(2R̃max/α) = R̃max log(2R̃maxn
q+1) ≤ n log(nq+2)/2 <

0.1(q + 2)n3 since x−2 log x ≤ 0.09 and also note that 1 + log
(
R̃/α

)
≤ (q + 3) log n. If q + 2 ≤ 10

then it holds that n3 > R̃max log(2R̃max/α) and with probability 1− 3n−q

∀R′ ∈ R , δ2(λ̂R
′
, λ?R

′
) ≤ 4δ2(λ?R

′
, λ?) + κ0

√
q + 3D(R′)

Then, with probability 1− 3n−q, provided that κ ≥ κ0

√
q + 3

δ2(λ̂R̂, λ?) ≤ 5 max
R′∈R,R′≥R

{4δ2(λ?R
′
, λ?)}+ + 3δ2(λ?R, λ?) + 5κD(R)

≤ 23δ2(λ?R, λ?) + 5κD(R)
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Since it holds for any R, the first inequality of Theorem 7 is proved by choosing q = 8.
The second statement will follow by the same roadmap as in the end of proof A.8. Let us denote

by Ω the set with probability larger than 1−3n−q such that the previous inequality is true, and let
us find a coarse bound on δ2

2(λ̂R, λ?). Remind that δ2(λ̂R, λ?R) ≤ (1 +
√

2)
√
R̃ for all R, see (30).

Furthermore

δ2(λ?R, λ?) =
[∑
`>R

d`(p
?
` )

2
] 1

2 ≤ ‖p‖2 ≤
√

2 .

Hence, using this bound and previous inequality, for all R ∈ R,

E
(
δ2
2(λ̂R̂, λ?)

)
≤ E

(
δ2
2(λ̂R̂, λ?)1Ω

)
+ (1 + 2

√
2)2R̃max P(Ωc)

≤ 2(23)2δ2
2(λ?R, λ?) + 2(5)2κ2D2(R) + (1 + 2

√
2)2R̃max3n−q

≤ 2(23)2
(
δ2
2(λ?R, λ?) + κ2D2(R) + n1−q)

provided that κ ≥ κ0

√
q + 3. The conclusion follows, choosing for instance q = 2.

A.11. Proof of Proposition 9

Note that δ2
2(λ?R, λ?) =

∑
k>R̃ |λ

?
k|2 =

∑
`>R d`|p?` |2 and this quantity vanishes when R ≥ D.

From Theorem 6 and assuming that n3 ≥ (2R̃)3∨R̃ log(2R̃/α), we derive that, for R ≥ D, it holds

δ2(λ̂R, λ?R) ≤ κ0

√
R̃
(

1 + log
(
R̃/α

))
/n

with probability at least 1 − 3α. Remark also that pR = p as soon as R ≥ D, where pR(t) :=∑R
`=0 p?`c`G

β
` (t). We now work on the set with probability 1− 3α given by Theorem 6.

We denote
δ := min

0≤i 6=j≤D; p?i 6=0
|p?i − p?j | ∧ |p?i | > 0 ,

and note that, for n large enough, it holds δ2(λ̂R, λ?R) < δ/2. Then there exists a permutation
σ? ∈ Sn such that for all k ∈ [n], |λ̂Rσ?(k) − λ

?R
k | < δ/2. Now, observe that

λ̂R = ( p̂R0︸︷︷︸
d0

, p̂R1 , . . . , p̂
R
1︸ ︷︷ ︸

d1

, . . . , p̂RD, . . . , p̂
R
D︸ ︷︷ ︸

dD

, . . . , p̂RR, . . . , p̂
R
R︸ ︷︷ ︸

dR

, 0, . . . ),

λ?R = ( p?0︸︷︷︸
d0

,p?1, . . . ,p
?
1︸ ︷︷ ︸

d1

, . . . ,p?D, . . . ,p
?
D︸ ︷︷ ︸

dD

, 0, . . . ).

We deduce that if δ2(λ̂R, λ?R) < δ/2 then for all h, i, j, k, ` such that p?h 6= 0 it holds

If |p̂Rk − p?h| ∨ |p̂R` − p?h| ≤ δ/2 (resp. |p̂Rk − p?i | ∨ |p̂Rk − p?j | ≤ δ/2)

then p̂Rk = p̂R` (resp. p?i = p?j ) . (35)

Indeed, one p̂R` cannot be at the same time at a distance less than δ/2 to some p?i 6= 0 and at a
distance less that δ/2 to some p?j since these latter are both at a distance of δ. Necessarily the
permutation σ? is such that the group of eigenvalues p?i 6= 0 of multiplicity di matches with the
group of eigenvalues p̂Ri with the same multiplicity—recall that the multiplicities d` are pairwise
different since the sequence d` is increasing. Thanks to (35) it holds

δ2
2(λ̂R, λ?R) =

∑
h; p?h 6=0

dh(p̂Rh − p?h)2 +
∑

`; p?`=0

d`(p̂
R
` )2 = ||p̂R − p||22 ,
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noticing that ‖p̂R − pR‖22 =
∑R
`=0 d`(p̂

R
` − p?` )

2. It follows that if

n3 ≥ (2R̃)3 ∨ R̃ log(2R̃/α) and 2κ0

√
R̃
(

1 + log
(
R̃/α

))
/n < min

0≤i 6=j≤D; p?i 6=0
|p?i − p?j | ∧ |p?i |

then ||p̂R − p||2 ≤ κ0

√
R̃
(

1 + log
(
R̃/α

))
/n with probability at least 1− 3α. Again, we choose

α = n−1−q, then R̃ log(2R̃/α) = R̃ log(2R̃nq+1) ≤ n log(nq+2)/2 < 0.1(q + 2)n3 since x−2 log x ≤
0.09 and also note that 1 + log(R̃/α) ≤ (q + 3) log n. With q = 8, it holds that n3 > R̃ log(2R̃/α).
Now, if

n ≥ 2R̃ and 2κ0

√
11R̃ log(n)/n < min

0≤i 6=j≤D; p?i 6=0
|p?i − p?j | ∧ |p?i |

then ||p̂R − p||2 ≤ κ0

√
11R̃ log(n)/n with probability 1− 3n−8, as claimed.

For the second statement, let us denote by Ω the set with probability larger than 1−3n−q such
that the previous inequality is true, and let us find a coarse bound on ||p̂R − p||22, for instance
||p̂R − p||2 ≤ (1 +

√
2)
√
R̃. Hence, using this bound and previous inequality, it holds

E
(
||p̂R − p||22

)
≤ E

(
||p̂R − p||221Ω

)
+ (1 +

√
2)2R̃P(Ωc) ≤ κ2

0 (q + 3) R̃ log n

n
+ 3(1 +

√
2)2R̃n−q

recalling that 1 + log(R̃/α) ≤ (q + 3) log n. The conclusion follows, choosing q = 1.

A.12. Proof of Corollary 10

From Theorem 7, with probability 1− 3n−8

δ2(λ̂R̂, λ?) ≤ C min

min
R<D

δ2(λ?R, λ?) + κ

√
R̃ log n

n

 , min
R≥D

κ
√
R̃ log n

n


≤ C min

min
R<D

δ2(λ?R, λ?) + κ

√
R̃ log n

n

 , κ

√
D̃ log n

n


Then, with probability 1− 3n−8,

δ2(λ̂R̂, λ?) ≤ Cκ

√
D̃ log n

n
−→
n→∞

0.

Thus, reasonning as in proof A.11, it holds

δ2
2(λ̂R̂, λ?) = ||p̂R̂ − p||22 =

∑
`

d`(p̂
R̂
` − p?)2 ,

If (by contradiction) R̂ < D, then δ2(λ?R̂, λ?) ≥ dD|p?D|2 > 0 and then δ2(λ̂R̂, λ?) cannot tend to
0. Thus necessarily R̂ ≥ D. Moreover, since δ2

2(λ̂R̂, λ?) = ||p̂R̂ − p||22 , with probability 1− 3n−8

||p̂R̂ − p||22 ≤ C2κ2 D̃ log n

n
.

Finally we can write

E
(
||p̂R̂ − p||22

)
≤ E

(
||p̂R̂ − p||221Ω

)
+ (1 +

√
2)2R̃max P(Ωc)

≤ C2κ2 D̃ log n

n
+ 3(1 +

√
2)2R̃maxn

−8 ≤ (C2κ2 + 9)
D̃ log n

n
.
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A.13. Proof of Theorem 11

The proof follows the same guidelines as in the sphere example. The only difference is that we do
not have Gegenbauer polynomials but normalized Jacobi polynomials Z` now. In particular, we
have previously used the fact that Gegenbauer polynomials are bounded. Here, the same result
holds in virtue of (20).

To be specific, when S is a compact symmetric space, note that

•
R∑
r=1

φ2
r =

R−1∑
r=0

√
dr zonr(eS) =

R−1∑
r=0

dr = R̃− 1 and we get that ρ(R) ≤ R̃ when invoking

Lemma 12 or Theorem 2;

• we define pR(t) :=

R∑
`=0

√
d`p

?
`Z`(t) and we get that

WR̃(x, y) = pR(cos(γ(x, y)))

WR̃(x, x) =

R∑
`=0

√
d`p

?
`Z`(1) =

R∑
`=0

d`p
?
` ,

by (20). This identity can be used in place of (27).

Using these inequalities and following the same guidelines as in the sphere example, one can prove
the result.

Appendix B: Computational Considerations

B.1. Proof of Theorem 5

Without loss of generality, assume that λ1 ≥ λ2 ≥ . . . ≥ λn. Similarly, let u ∈MR and remember
that we can group the coordinates of u in groups of sizes d` for ` = 0, . . . , R. Reordering by
decreasing order, there exists τ ∈ SR+1 such that

u ˜τ(1)−1+1
= . . . = u

τ̃(1)︸ ︷︷ ︸
dτ(1)

≥ . . . ≥u ˜τ(q)−1+1
= . . . = u

τ̃(q)︸ ︷︷ ︸
dτ(q)

≥ 0 >

u ˜τ(q+1)−1+1
= . . . = u ˜τ(q+1)︸ ︷︷ ︸

dτ(q+1)

≥ . . . ≥ u ˜τ(R)−1+1
= . . . = u ˜τ(R+1)︸ ︷︷ ︸
dτ(R+1)

,

for some q ∈ N. We may consider that q = 0 and respectively q = R+ 1 in degenerate cases when
all the coefficients are negative and respectively non negative. Remember that u ∈ RR̃ and set
uk = 0 for k > R̃ such that, completing with zeros, consider that u ∈ Rn. One has

u ˜τ(1)−1+1
= . . . = u

τ̃(1)︸ ︷︷ ︸
dτ(1)

≥ . . . ≥u ˜τ(q)−1+1
= . . . = u

τ̃(q)︸ ︷︷ ︸
dτ(q)

≥ uR̃+1 = . . . = un︸ ︷︷ ︸
n−R̃

= 0 >

u ˜τ(q+1)−1+1
= . . . = u ˜τ(q+1)︸ ︷︷ ︸

dτ(q+1)

≥ . . . ≥ u ˜τ(R+1)−1+1
= . . . = u ˜τ(R+1)︸ ︷︷ ︸

dτ(R+1)

.

Note that

min
σ∈Sn

{ R̃∑
k=1

(uk−λσ(k))
2+

n∑
k=R̃+1

λ2
σ(k)

}
= δ2

2((λk)nk=1, (uk)nk=1) = min
σ′∈Sn

{ n∑
k=1

(uσ′(k)−λk)2
}
, (36)
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taking σ′ = σ−1. Using Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya,
1952, Theorem 368), it is standard to observe that

(36) = (u ˜τ(1)−1+1
− λ1)2 + · · ·+ (u

τ̃(1)
− λdτ(1))

2︸ ︷︷ ︸
dτ(1)

+ · · ·

+ (u ˜τ(q)−1+1
− λdτ(1)+···+dτ(q−1)+1)2 + · · ·+ (u

τ̃(q)
− λdτ(1)+···+dτ(q))

2︸ ︷︷ ︸
dτ(q)

+ λ2
dτ(1)+···+dτ(q)+1 + · · ·+ λ2

dτ(1)+···+dτ(q)+n−R̃︸ ︷︷ ︸
n−R̃

+ (u ˜τ(q+1)−1+1
− λdτ(1)+···+dτ(q)+n−R̃+1)2 + · · ·+ (u ˜τ(q+1)

− λdτ(1)+···+dτ(q+1)+n−R̃)2︸ ︷︷ ︸
dτ(q+1)

+ · · ·
+ (u ˜τ(R+1)−1+1

− λdτ(1)+···+dτ(R)+n−R̃)2 + · · ·+ (u ˜τ(R+1)
− λn)2︸ ︷︷ ︸

dτ(R+1)

.

Hence a permutation σ′ achieving the minimum in (36) is given by

σ−1 = σ′ =



k σ′(k)

1 ˜τ(1)− 1 + 1
...

...
dτ(1) τ̃(1)
...

...
dτ(1) + · · ·+ dτ(q−1) + 1 ˜τ(q)− 1 + 1

...
...

dτ(1) + · · ·+ dτ(q) τ̃(q)

dτ(1) + · · ·+ dτ(q) + 1 R̃+ 1
...

...
dτ(1) + · · ·+ dτ(q) + n− R̃ n

...
...

dτ(1) + · · ·+ dτ(R) + n− R̃ ˜τ(R+ 1)− 1 + 1
...

...
n ˜τ(R+ 1)


Remark that this permutation can be explicitly written given τ ∈ SR+1 and q ∈ [0, R]. It follows
that the set of permutations σ′ achieving the minimum in the right hand side of (36) is in one to
one correspondence with a subset of SR+2. Since σ = σ′−1 in (36) the same result holds true for
the permutation σ achieving the minimum of the left hand side of (36), proving the result. We
define HR has the set of permutation σ achieving the minimum of the left hand side of (36). The
proof given here is constructive and it gives an explicit expression of HR.
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