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Abstract

In this paper, a new transmuted general family of distributions is introduced and studied. In partic-

ular, we obtain explicit expressions for the moments, the incomplete moments, the moment generating

function, entropies measures and order statistics. Further, we introduce a bivariate extension of the new

family. Some sub-models of the family are introduced, involving Burr, Gompertz, Weibull and gamma

distributions. We discuss the different methods of estimation of the model parameters and a simulation

study is investigated for one of the special models to check the asymptotic behavior of the estimates

under all estimation methods. Further, the potentiality of the family is illustrated by fitting two real

data sets to the mentioned sub-models.
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1 Introduction

Literature of lifetime distributions is rich with various continuous univariate distributions and still growing

rapidly. Several extensions of some well-known lifetime distributions have been developed during the last

two decades for modeling and analysis many types of real life data that having different random nature.

This development is followed by many approaches for generating new families of distributions because that

the family contains many distributions and hence increase the chance of modeling a large number of real

data. Among these families, there are the Exponential-G by [12], the Marshal-Olkin-G (MO-G) by [13], the

transmuted distributions by [19], the beta-G by [10], the Kumaraswamy-G (Kw-G) by [7], the McDonald-G

(Mc-G) by [2], the gamma-G (type 1) by [21], the gamma-G (type 2) by [17], the log-gamma-G by [6],

the logistic-G by [20], the exponentiated generalized-G by [8], the Transformed-Transformer (T-X) by [4],

the exponentiated (T-X) by [5], the Kumaraswamy odd log-logistic-G (KwOLL-G) by [3], the generalized

transmuted-G by [15], the beta transmuted-H families by [1] and the cubic rank transmuted distributions

by [11].

1



1.1 Genesis of the family

Here, we introduce a new family of distribution called the transmuted general (T-G) family of distributions.

In order to motivate its interest, let us first present the well-know T-X family introduced by [4]. Let G(x) be

a general baseline cumulative distribution function (cdf). The cdf corresponding to the T-X family is given

by

F (x) =

∫ G(x)

0

p(t)dt, x ∈ R,

where p(t) denotes a probability density function (pdf) with support on [0, 1]. As noticed in [4], the famous

transmuted distributions family with cdf given by F (x) = (1+λ)G(x)−λG2(x), λ ∈ [−1, 1], [19], corresponds

to the T-X family defined with the pdf: p(t) = 1 + λ− 2λt. As a new remark, one observe that p(t) can be

expressed as generalized mixture of two pdfs with support on [0, 1]:

p(t) = (1− λ)p1(t) + λp2(t),

where p1(t) = 1 and p2(t) = 2(1− t). This fact motivates the consideration of a new family of distributions

derived to the T-X family and generalized mixture of two pdfs; for any pdfs p1(t) and p2(t) with support on

[0, 1] and λ such that inf
t∈[0,1]

[(1− λ)p1(t) + λp2(t)] > 0, the following function F (x) is a cdf:

F (x) =

∫ G(x)

0

[(1− λ)p1(t) + λp2(t)] dt, x ∈ R.

A new family of distributions arises by keeping p1(t) = 1 for the sake of simplicity but choosing a new pdf

for p2(t), with different nature. In this paper, we focus our attention on the decreasing convex pdf given by

p2(t) = 2
(1+t)2 . The corresponding cdf of the is given by

F (x) =

∫ G(x)

0

[
(1− λ) + λ

2

(1 + t)2

]
dt =

[
1− λ+

2λ

1 +G(x)

]
G(x), λ ∈ [−1, 1], x ∈ R. (1.1)

Equivalent expressions of (1.1) are given by

F (x) = G(x) + λ
G(x) [1−G(x)]

1 +G(x)
, x ∈ R.

To the best of our knowledge, this family of distributions is new in the literature.

1.2 Aim and organization of the paper

The aim of this paper is to explore the mathematical and practical aspects of the T-G family, and to show its

importance and its flexibility using applications to real data sets. In particular, we explicit expressions for

the moments, incomplete moments, generating function, mean deviation and residual and reversed residual

life moments. Stochastic ordering and reliability parameter are studied. General results for order statistics

are derived. Entropies measures (Rényi entropy and Mathai-Hanboldand entropy) are determined.Some

sub-models of the family are introduced, involving Burr, Gompertz, Weibull and gamma distributions. A

bivariate extension of the new family is also introduced. We provide simulation results of different estimation

methods (maximum likelihood, least square, minimum spacing, weighted least square and Cramer Von Mises)

for one of the special models to check the asymptotic behavior of the estimates under those methods. Further,

applications on two different real data sets are given, with fair comparisons with recent flexible distribution.

This paper is unfolded as follows. Section 2 is devoted to the mathematical properties of the T-G

family. Special models are introduced in Section 3. An extension to the bivariate case is explored in Section

4. Section 5 presents estimation methods for the parameters of the T-G family. Simulation results and

applications to real data sets are given in Section 6.

2



2 Mathematical properties

We say that a random variable follows the T-G distribution if it has the cdf given by (1.1). Hereafter, we

consider a random variable X following the T-G distribution.

2.1 Shape of the pdf

Let g(x) be the baseline pdf, the pdf of X is given by

f(x) =

[
1− λ+

2λ

(1 +G(x))2

]
g(x), λ ∈ [−1, 1], x ∈ R. (2.1)

An equivalent expression is

f(x) =
{(1 + λ) + (1− λ)G(x) [2 +G(x)]} g(x)

(1 +G(x))2
, λ ∈ [−1, 1], x ∈ R.

The critical points of f(x) are the roots of the equation:

g′(x)

g(x)
− 2

g(x)

1 +G(x)
+

2 g(x)(λ− 1) [1 +G(x)]

1 + λ− (1− λ)G(x)[2 +G(x)]
= 0.

2.2 Expansions for the pdf and the cdf

By using generalized binomial expansion we can show that the pdf (2.1) of X has the expansion

f(x) =

∞∑
j=0

aj hj(x), (2.2)

where a0 = 1 + λ, aj = 2λ(−1)j for j ≥ 1 and hj(x) = (j + 1)Gj(x) g(x) for j ≥ 0.

The cdf of X can be expressed as

F (x) =

∞∑
j=0

aj Hj+1(x), (2.3)

where Hj+1(x) = Gj+1(x) for j ≥ 0.

Note that hj(x) is the pdf of the exp-G distribution with power parameter j + 1, and Hj+1(x) the

associated cdf. Therefore (2.2) (resp. (2.3)) reveals that the pdf (resp. cdf) of the T-G distribution is a

linear combination of pdfs (resp. cdfs) of the exp-G distributions. Hence some properties of the exp-G

distribution can be used to determine some mathematical properties of the T-G distribution. Technical

details on the the exp-G distribution can be found in [12].

2.3 Quantile function

For λ ∈ [−1, 1), the quantile function of X is given by

F−1(x) = G−1

[
1− x+ λ−

√
x2 + x(2− 6λ) + (1 + λ)2

2(λ− 1)

]
, x ∈ (0, 1). (2.4)

For λ = 1, we have

F−1(x) = G−1

[
x

2− x

]
, x ∈ (0, 1). (2.5)

Thus, for any random variable U following the uniform U(0, 1) distribution, the random variable X given

by X = F−1(U) follows the T-G distribution.
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2.4 Hazard rate function

The hazard rate function (hrf) of X is given by

h(x) =
f(x)

1− F (x)
=
{(1 + λ) + (1− λ)G(x) [2 +G(x)]} g(x)

[1 +G(x)] [1− λG(x)− (1− λ)G2(x)]
, λ ∈ [−1, 1], x ∈ R.

The critical points of h(x) are obtained from the equation:

g′(x)

g(x)
− g(x)

1 +G(x)
+

[λ− 2(λ− 1)G(x)] g(x)

1− λG(x) + (λ− 1)G2(x)
+

2 (1− λ) [1 +G(x)] g(x)

1 + λ− (1− λ)G(x)[2 +G(x)]
= 0.

2.5 Moments, moment generating function and mean deviations

Using the expansion (2.2), the rth moment of X is given by

E(Xr) =

∫ ∞
−∞

xrf(x) dx =

∞∑
j=0

aj

∫ ∞
−∞

xr hj(x) dx. (2.6)

Similarly, denoting by 1A the indicator random variable on A, the rth incomplete moment of X can be

obtained as

µr(x) = E(Xr1{X≤x}) =
∞∑
j=0

aj Tj,r(x), (2.7)

where Tj,r(x) =
∫ x
−∞ tr hj(t) dt.

The moment generating function of X is given by

M(t) = E(etX) =

∞∑
j=0

ajMj(t),

where Mj(t) =
∫∞

0
et x hj(x) dx.

The mean deviations of X about the mean and median, respectively, can be put as

Dµ = E(|X − µ|) = 2µF (µ)− 2µ1(µ) (2.8)

and

DM = E(|X −M |) = µ− 2µ1(M), (2.9)

where µ = E(X) is given by (2.6), F (µ) is easily calculated from (1.1) and µ1(M) is obtained from (2.7)

with M = F−1( 1
2 ), using (2.4) or (2.5).

2.6 Residual and reversed residual life moments

Using the binomial expansion, the rth residual life moments of X can be obtained as

Mr(t) = E ((X − t)r | X > t) =

r∑
j=0

(
r

j

)
(−1)r−jtr−jE

(
Xj | X > t

)
=

1

1− F (t)

r∑
j=0

(
r

j

)
(−1)r−jtr−j

[
E(Xj)− µj(t)

]
,

where E(Xj) is given by (2.6) and µj(t) is obtained from (2.7).

Similarly, the rth reversed residual life moments of X can be obtained as

mr(t) = E ((t−X)r | X ≤ t) =

r∑
j=0

(
r

j

)
(−1)jtr−jE

(
Xj | X ≤ t

)
=

1

F (t)

r∑
j=0

(
r

j

)
(−1)jtr−jµj(t).
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2.7 Stochastic ordering

This subsection is devoted to the stochastic ordering, which is a common concept to show the ordering

mechanism in life time distributions. A random variable X is said to be stochastically smaller than a

random variable Y in the

• stochastic order (X ≤st Y ) if the associated cdfs satisfy: FX(x) ≥ FY (x) for all x.

• hazard rate order (X ≤hr Y ) if the associated hrfs satisfy: hX(x) ≥ hY (x) for all x.

• likelihood ratio order (X ≤lr Y ) if the ratio of the associated pdfs given by fX(x)
fY (x) decreases in x.

When the supports of X and Y have a common finite left end-point, the following chain of implications

holds:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.

Further details can be found in [18]. Let X be a random variable following the T-G distribution with

parameter λ1 with pdf fX(x) and Y be a random variable following the T-G distribution with parameter λ2

with pdf fY (x). Let us prove that X ≤lr Y under some assumptions on λ1 and λ2. We have

fX(x) =

[
1− λ1 +

2λ1

(1 +G(x))2

]
g(x) =

[1 + λ1 + (1− λ1)[2 +G(x)]G(x)]

(1 +G(x))2
g(x)

and

fY (x) =
[1 + λ2 + (1− λ2)[2 +G(x)]G(x)]

(1 +G(x))2
g(x).

Hence
fX(x)

fY (x)
=

1 + λ1 + (1− λ1) z

1 + λ2 + (1− λ2) z
,

where z = [2 +G(x)]G(x). Taking derivative with respect to x, we obtain(
fX(x)

fY (x)

)′
=

2(λ2 − λ1) z′

(1 + λ2 + (1− λ2) z)
2 ,

where z′ = 2 [1 +G(x)] g(x). Since z′ ≥ 0 and (1 + λ2 + (1− λ2) z)
2
> 0, if λ2 < λ1, we have

(
fX(x)
fY (x)

)′
< 0,

implying that fX(x)
fY (x) decreases in x, so X ≤lr Y .

2.8 Stress-strength reliability

In reliability theory, a common situation is that the life of a component has a random strength subjected to

a random stress. The random strength can be modeled by a random variable X and the random stress can

be modeled by a random variable Y . The probability that the component functions satisfactorily is given

by R = P (Y < X), which is a well-known measure of component reliability with many applications. Let X

be a random variable following the T-G distribution with parameter λ1 with pdf fX(x) and Y be a random

variable following the T-G distribution with parameter λ2 with cdf FY (x). Owing to the expansions (2.2)

and (2.3), we have

R = P (Y < X) =

∫ ∞
−∞

P (Y < X | {X = x}) fX(x) dx =

∫ ∞
−∞

fX(x)FY (x) dx

=

∞∑
j=0

∞∑
i=0

a
(λ1)
j a

(λ2)
i

∫ ∞
−∞

hj(x)Hi+1(x) dx,

where a
(λ)
j is defined by a

(λ)
0 = 1 + λ and a

(λ)
j = 2λ(−1)j for j ≥ 1 and λ ∈ {λ1, λ2}.
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2.9 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let X1, X2, . . . , Xn

is a random sample of size n of X and X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the corresponding order statistics

obtained from the sample. The pdf of Xi:n is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
F i−1(x) (1− F (x))n−i f(x) =

n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j F j+i−1(x) f(x).

Using finite and generalized binomial series expansions, we have

F j+i−1(x) =

[
1− λ+

2λ

1 +G(x)

]j+i−1

Gj+i−1(x)

= Gj+i−1(x)

j+i−1∑
k=0

(
j + i− 1

k

)
(1− λ)j+i−1−k(2λ)k [1 +G(x)]−k

=

j+i−1∑
k=0

∞∑
`=0

bi,j,k,`Hj+i+`−1(x),

where

bi,j,k,` =

(
j + i− 1

k

)(
−k
`

)
(1− λ)j+i−1−k(2λ)k.

Owing to the expansion (2.2), we can write

F j+i−1(x) f(x) =

j+i−1∑
k=0

∞∑
`=0

∞∑
m=0

am bi,j,k,`Hj+i+`−1(x)hm(x),

therefore

fi:n(x) =

n−i∑
j=0

j+i−1∑
k=0

∞∑
`=0

∞∑
m=0

cj,k,`,mHj+i+`−1(x)hm(x),

where

cj,k,`,m =
n!

(i− 1)!(n− i)!

(
n− i
j

)
(−1)jam bi,j,k,`.

The rth moment of Xi:n is given by

E(Xr
i:n) =

∫ ∞
−∞

xrfi:n(x) dx =
n−i∑
j=0

j+i−1∑
k=0

∞∑
`=0

∞∑
m=0

cj,k,`,m

∫ ∞
−∞

xrHj+i+`−1(x)hm(x) dx.

Note that the integral term only depends on the g(x) and G(x) the pdf and cdf of base line distribution.

2.10 Rényi entropy

The Rényi entropy of X is given by

Iδ =
1

1− δ
E
[
fδ−1(X)

]
=

1

1− δ

∫ ∞
−∞

fδ(x) dx (2.10)
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for δ > 0 and δ 6= 1. Using finite and generalized binomial series expansions (noticing that
∣∣∣λ( 2

(1+G(x))2 − 1
)∣∣∣ <

1), we have

fδ(x) =

[
1 + λ

(
2

(1 +G(x))2
− 1

)]δ
gδ(x) = gδ(x)

∞∑
k=0

(
δ

k

)
λk
(

2

(1 +G(x))2
− 1

)k

= gδ(x)

∞∑
k=0

k∑
`=0

(
δ

k

)(
k

`

)
λk (−1)k−` 2` [1 +G(x)]−2`

= gδ(x)

∞∑
k=0

k∑
`=0

∞∑
m=0

(
δ

k

)(
k

`

)(
−2`

m

)
λk (−1)k−` 2`Hm(x). (2.11)

Hence we have

Iδ =
1

1− δ

∞∑
k=0

k∑
`=0

∞∑
m=0

(
δ

k

)(
k

`

)(
−2`

m

)
λk (−1)k−` 2`

∫ ∞
−∞

Hm(x)gδ(x)dx.

Note that the integral term only depends on the g(x) and G(x) the pdf and cdf of base line distribution.

Finally, let us mention that the Shannon entropy of a random variable X is defined by E (− log[f(X)]) is

the special case of the Rényi entropy when δ → 1.

2.11 Mathai-Haubold entropy

Classical Shannon entropy has been generalized in many directions. One of them is the δ -generalized entropy

introduced by [14]. It is defined by

fMH(x) =
1

δ − 1

[∫
f2−δ(x) dx− 1

]
.

Similar arguments to (2.11) gives

f2−δ(x) = g2−δ(x)

∞∑
k=0

k∑
`=0

∞∑
m=0

(
2− δ
k

)(
k

`

)(
−2`

m

)
λk (−1)k−` 2`Hm(x).

Therefore

fMH(x) =
1

δ − 1

[ ∞∑
k=0

k∑
`=0

∞∑
m=0

(
2− δ
k

)(
k

`

)(
−2`

m

)
λk (−1)k−` 2`

∫ ∞
−∞

Hm(x)g2−δ(x)dx− 1

]
.

The solution of above integral depends on any arbitrary base line distribution.

3 Special models

Let us now introduce some special T-G distributions based on some well-known distributions.

3.1 Transmuted Burr (TB) distribution

If Burr XII distribution has pdf and cdf given, respectively, by g(x) = c k xc−1 (1 +xc)−k−1, k, c, x > 0, and

G(x) = 1− (1 + xc)−k, then the cdf and pdf of T-B distribution are given by

F (x) = 1− (1 + xc)−k + λ

[
1− (1 + xc)−k

]
[1 + xc]

−k

2− (1 + xc)−k
, x > 0

7



and

f(x) = c k xc−1 (1 + xc)−k−1 + λ
c k xc−1 (1 + xc)−k−1

{
1−

[
1− (1 + xc)−k

] [
3− [1 + xc]

−k
]}

[
2− [1 + xc]

−k
]2 , x > 0.

Using these functions, we immediatly obtain the expression of the hrf. Figure 1 shows some plots of pdfs

and hrfs for TB distribution with arbitrary choices for the parameters (c, k, λ).
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c = 5  k = 0.8  λ = − 0.3

Figure 1: Plots of pdf and hrf for TB distribution with different parameter values.

3.2 Transmuted Gompterz (TGz) distribution

If Gompterz distribution has pdf and cdf given, respectively, by g(x) = a exp
[
b x− a

b (ex − 1)
]
, a, b, x > 0,

and G(x) = 1− exp
[
−ab

(
eb x − 1

)]
, then the cdf and pdf of T-Gz distribution are given by

F (x) =
[
1− exp

[
−a
b

(
eb x − 1

)]] [
1 + λ

exp
[
−ab

(
eb x − 1

)]
2− exp

[
−ab (eb x − 1)

]] , x > 0

and

f(x) = a exp
[
b x− a

b
(ex − 1)

] [
1 + λ

{
1−

[
1− exp

[
−ab

(
eb x − 1

)]] [
3− exp

[
−ab

(
eb x − 1

)]]}[
2− exp

[
−ab (eb x − 1)

]]2
]
, x > 0.

The expression of the hrf follows immediatly. Figure 2 shows some plots of pdfs and hrfs for TGz distribution

with arbitrary choices for the parameters (a, b, λ).
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Figure 2: Plots of pdf and hrf for TGz distribution with different parameter values.

3.3 Transmuted Weibull (TW) distribution

If Weibull distribution has pdf and cdf given, respectively, by g(x) = αβ xβ−1 e−αx
β

, α, β, x > 0, and

G(x) = 1− e−αxβ , then the cdf and pdf of T-W distribution are given by

F (x) = 1− e−αx
β

+
λ
[
1− e−αxβ

]
2− e−αxβ

e−αx
β

, x > 0

and

f(x) = αβ xβ−1 e−αx
β

+
λαβ xβ−1 e−αx

β[
2− e−αxβ

]2 {
1−

[
1− e−αx

β
] [

3− e−αx
β
]}

, x > 0.

The expression of the hrf follows immediatly. Figure 3 presents some plots of pdfs and hrfs for TW distri-

bution with arbitrary choices for the parameters (α, β, λ).

3.4 Transmuted gamma (TGa) distribution

If Gamma distribution has pdf and cdf given, respectively, by g(x) = ba

Γ(a) x
a−1 e−b x, a, b, x > 0, and

G(x) = γ(a,b,x)
Γ(a) , where γ(a, b, x) = ba

∫ x
0
ta−1 e−b tdt, then the cdf and pdf of T-Ga distribution are given by

F (x) =
γ(a, b, x)

Γ(a)

1 + λ
1− γ(a,b,x)

Γ(a)

1 + γ(a,b,x)
Γ(a)

 , x > 0

and

f(x) =
ba

Γ(a)
xa−1 e−b x

1 + λ

{
1−

[
γ(a,b,x)

Γ(a)

[
2− γ(a,b,x)

Γ(a)

]]}
[
1 + γ(a,b,x)

Γ(a)

]2
 , x > 0.
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Figure 3: Plots of pdf and hrf for TW distribution with different parameter values.

We easily obtain the expression of the hrf. Figure 4 presents some plots of pdfs and hrfs for TGa distribution

with arbitrary choices for the parameters (a, b, λ).
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Figure 4: Plots of pdf and hrf for TGa distribution with different parameter values.
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4 Bivariate extension

We now propose a bivariate version of the T-G family of distributions. Let (X,Y ) be a bivariate random

variable with the joint cdf given by

FX,Y (x, y) =

[
1− λ+

2λ

1 +G(x, y)

]
G(x, y), λ ∈ [−1, 1], (x, y) ∈ R2,

where G(x, y) denoted a bivariate cdf. Let G1(x) and G2(y) be the corresponding marginal cdfs, g1(x) and

g2(y) be the corresponding marginal pdfs and g(x, y) be the corresponding pdf. Then the marginal cdfs of

(X,Y ) are given by

FX(x) =

[
1− λ+

2λ

1 +G1(x)

]
G1(x)

and

FY (y) =

[
1− λ+

2λ

1 +G2(y)

]
G2(y).

The marginal pdfs of (X,Y ) are given by

fX(x) =

[
1− λ+

2λ

(1 +G1(x))2

]
g1(x)

and

fY (y) =

[
1− λ+

2λ

(1 +G2(y))2

]
g2(y).

The pdf of (X,Y ) is given by

f(x, y) =

[
1− λ+

2λ

(1 +G(x, y))2

]
θ(x, y),

where

θ(x, y) = g(x, y)− 4λ

(1 +G(x, y))[(1− λ)(1 +G(x, y))2 + 2λ]

∂G(x, y)

∂x

∂G(x, y)

∂y
.

The conditional cdfs are given by

FX|Y (x | y) =
(1− λ)(1 +G(x, y)) + 2λ

(1− λ)(1 +G2(y)) + 2λ
× G(x, y)(1 +G2(y))

(1 +G(x, y))G2(y)

and

FY |X(y | x) =
(1− λ)(1 +G(x, y)) + 2λ

(1− λ)(1 +G1(x)) + 2λ
× G(x, y)(1 +G1(x))

(1 +G(x, y))G1(x)
.

The conditional pdfs are given by

fX|Y (x | y) =
(1− λ)(1 +G(x, y))2 + 2λ

(1− λ)(1 +G2(y))2 + 2λ
× θ(x, y)(1 +G2(y))2

(1 +G(x, y))2g2(y)

and

fY |X(y | x) =
(1− λ)(1 +G(x, y))2 + 2λ

(1− λ)(1 +G1(x))2 + 2λ
× θ(x, y)(1 +G1(x))2

(1 +G(x, y))2g1(x)
.

5 Different estimation methods

In this section, we will give the estimates of the T-G family by five different methods of estimations , i.e.,

Maximum Likelihood method, Least Square method, Weighted Least Square method, Maximum Product

Spacing method and Cramer Von Mises method.
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5.1 Maximum likelihood method (MLE)

Here, we determine the maximum likelihood estimates (MLEs) of the model parameters of T-G from complete

samples only. Let x1, x2, . . . xn be observed values from the T-G distribution with parameters λ and ξ. Let

Θ = (λ, ξ)T be the parameter vector. The total log-likelihood function for Θ is given by

`(Θ) =

n∑
i=1

log[g(xi)]− 2

n∑
i=1

log[1−G(xi)] +

n∑
i=1

log [(1 + λ) + (1− λ)G(xi)] .

Maximizing `(Θ) with respect to λ and ξ, we have following system of non linear equations:

∂`(Θ)

∂λ
=

n∑
i=1

[
1−G(xi) {2 +G(xi)}

(1 + λ) + (1− λ)G(xi) {2 +G(xi)}

]
= 0,

∂`(Θ)

∂ξ
=

n∑
i=1

[
g′(xi)ξ
g(xi)

]
− 2

n∑
i=1

[
G′(xi)ξ

1 +G(xi)

]
+

n∑
i=1

[
2 (1− λ)G′(xi)ξ {1 +G(xi)}

(1 + λ) + (1− λ)G(xi) {2 +G(xi)}

]
= 0,

where g′(xi)ξ = ∂
∂ξ g(xi) and G′(xi)ξ = ∂

∂ξ G(xi). This system of non-linear equations can be solved numer-

ically by any software to obtained the estimates λ̂MLE and ξ̂MLE .

5.2 Least square method (LSE)

Let x1, x2, . . . , xn be the observed values from the T-G distribution with parameters λ and ξ, in increasing

order. By considering the associated order statistocs X1:n, X2:n, . . . , Xn:n, note that E [F (Xi:n)] = i
n+1 .

Least square estimates can be obtained by minimizing the following expression

S(Θ) =

n∑
i=1

[F (xi)− E [F (Xi:n)]]
2

=

n∑
i=1

[
F (xi)−

i

n+ 1

]2

.

Minimizing S(Θ) with respect to λ and ξ, we have following system of non linear equations:

∂S(Θ)

∂λ
= 2

n∑
i=1

[
F (xi)−

i

n+ 1

]
F ′(xi)λ = 0,

∂S(Θ)

∂ξ
= 2

n∑
i=1

[
F (xi)−

i

n+ 1

]
F ′(xi)ξ = 0,

where F ′(xi)λ = ∂
∂λ F (xi) and F ′(xi)ξ = ∂

∂ξ F (xi). This system of non-linear equations can be solved

numerically by any software to obtained the estimates λ̂LSE and ξ̂LSE .

5.3 Minimum spacing method (MPS)

This method is based on an idea that the differences (spacings) of the consecutive points should be identically

distributed. Let x1, x2, . . . , xn be the observed values from the T-G distribution with parameters λ and ξ,

in increasing order. The geometric mean of the differences is given as

GM = n+1

√√√√n+1∏
i=1

Di,

12



where Di = F (xi)− F (xi−1) with F (x0) = 0 and F (xn+1) = 1. We have

log(GM) =
1

n+ 1

n+1∑
i=1

log [F (xi)− F (xi−1)] .

Using the cdf in (1.1), we have

log(GM) =
1

n+ 1

n+1∑
i=1

log

[[
1− λ+

2λ

1 +G(xi)

]
G(xi)−

[
1− λ+

2λ

1 +G(xi−1)

]
G(xi−1)

]
.

Minimizing log(GM) with respect to λ and ξ, we have following system of non linear equations:

∂ log(GM)

∂λ
=

1

n+ 1

n+1∑
i=1


[
−1 + 2

1+G(xi)

]
G(xi)−

[
−1 + 2

1+G(xi−1)

]
G(xi−1)[[

1− λ+ 2λ
1+G(xi)

]
G(xi)−

[
1− λ+ 2λ

1+G(xi−1)

]
G(xi−1)

]
 = 0,

∂ log(GM)

∂ξ
=

1

n+ 1

n+1∑
i=1


{[

1− λ+ 2λ
1+G(xi)

]
G′(xi)ξ +

[
2λ

[1+G(xi)]2

]
G(xi)

}
[[

1− λ+ 2λ
1+G(xi)

]
G(xi)−

[
1− λ+ 2λ

1+G(xi−1)

]
G(xi−1)

]
−

{[
1− λ+ 2λ

1+G(xi−1)

]
G′(xi−1)ξ +

[
2λ

[1+G(xi−1)]2

]
G(xi−1)

}
[[

1− λ+ 2λ
1+G(xi)

]
G(xi)−

[
1− λ+ 2λ

1+G(xi−1)

]
G(xi−1)

]
 = 0.

This system of non-linear equations can be solved numerically by any software to obtained the estimates

λ̂MPE and ξ̂MPE .

5.4 Weighted least square (WLS)

The likelihood function for weighted least square estimates is given by

W (Θ) =

n∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

[
F (xi)−

i

n+ 1

]2

.

Minimizing W (Θ) with respect to λ and ξ, we have following system of non linear equations:

∂W (Θ)

∂λ
= 2

n∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

[
F (xi)−

i

n+ 1

]
F ′(xi)λ = 0,

∂W (Θ)

∂ξ
= 2

n∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

[
F (xi)−

i

n+ 1

]
F ′(xi)ξ = 0.

These equations can be solved numerically to obtained the estimates λ̂wls and ξ̂wls.

5.5 Cramer Von Mises (CVM)

Cramer von Mises is a type of minimum distance estimators. Let x1, x2, . . . , xn be the observed values from

the T-G distribution with parameters λ and ξ, in increasing order. The likelihood function for Cramer Von

Mises estimates is given by

C(Θ) =
1

12n
+

n∑
i=1

[
F (xi)−

2 i− 1

2n

]2

.
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Minimizing C(Θ) with respect to λ and ξ, we have following system of non linear equations:

∂C(Θ)

∂λ
= 2

n∑
i=1

[
F (xi)−

2 i− 1

2n

]
F ′(xi)λ = 0,

∂C(Θ)

∂ξ
= 2

n∑
i=1

[
F (xi)−

2 i− 1

2n

]
F ′(xi)ξ = 0.

This system of non-linear equations can be solved numerically to obtained the estimates λ̂CME and ξ̂CME .

6 Simulation results and applications to real data

In this section, we present some experimental results to compare the performance of the different estimators

proposed in the previous section. Then we use two real data sets set to compare TB, TW, TGa and TGz to

TGE(transmuted generalized exponential distribution), TLE (Transmuted linear exponential distribution),

GT-W (generalized transmuted Weibull), Burr XII, Weibull, Gamma and Gompertz distributions.

6.1 Simulation results

We perform extensive Monte Carlo simulations to compare the performance of the different estimators

(CVM, LSE, WLS, MPS and MLE), mainly with respect to their biases and mean-squared errors (MSEs)

for different sample sizes and for different parameter values. For obtaining different estimators, the number

of replications is 10000 in all the simulations. We have considered different sample sizes n = 10, 50, 100 and

250. For obtaining frequentist estimators, we consider TGz with a = 10, b = 2.5 λ = 0.5, because it was the

superior among the considered sub-models of the T-G family as it will be shown in next subsection. The

simulation results are provided in Table 1.
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Table 1: Simulation results for TGz.

n parameters CVM LSE WLS MPS MLE

20 Bias(â) 1.334 4.044 3.495 0.385 0.275

MSE(â) 1.643 5.158 4.291 0.949 1.191

Bias(b̂) 0.300 0.240 0.264 0.017 0.111

MSE(b̂) 0.300 0.336 0.400 0.388 0.480

Bias(λ̂) 0.077 0.092 0.085 0.041 0.050

MSE(λ̂) 0.125 0.203 0.185 0.070 0.089

50 Bias(â) 1.121 3.777 3.870 0.580 0.033

MSE(â) 1.233 4.153 4.096 1.296 0.799

Bias(b̂) 0.300 0.268 0.368 0.201 0.034

MSE(b̂) 0.300 0.294 0.438 0.347 0.339

Bias(λ̂) 0.071 0.091 0.092 0.032 0.034

MSE(λ̂) 0.114 0.201 0.205 0.048 0.058

100 Bias(â) 1.166 3.459 4.179 0.535 0.010

MSE(â) 1.869 3.685 4.313 1.265 0.589

Bias(b̂) 0.307 0.249 0.427 0.179 0.035

MSE(b̂) 0.465 0.285 0.472 0.326 0.269

Bias(λ̂) 0.021 0.088 0.099 0.021 0.023

MSE(λ̂) 0.033 0.191 0.219 0.032 0.040

250 Bias(â) 0.747 3.452 4.263 0.290 0.028

MSE(â) 1.510 3.560 4.337 1.049 0.438

Bias(b̂) 0.198 0.261 0.440 0.102 0.024

MSE(b̂) 0.346 0.281 0.462 0.240 0.221

Bias(λ̂) 0.014 0.089 0.100 0.012 0.017

MSE(λ̂) 0.022 0.191 0.223 0.020 0.028
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The results indicate that the maximum likelihood method performs quite well in estimating the model

parameters of the proposed distribution.

6.2 Empirical reliability data examples

In this subsection, we evaluate the performance of the T-G family of distributions by fitting four sub-models

of this family, namely TB, TW, TGa and TGz to two reliability data sets. The data sets are described as

follows.

The first data set (data set 1) refer to the 50 observations with hole and sheet thickness are 12 mm and

3.15 mm reported by [9]. The data are: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04,

0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16,

0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

The second data set (data set 2) relating to the strengths of 1.5 cm glass fibers given by [16]. This set

was obtained by workers at the UK National Physical Laboratory. The observations are as follows: 0.55,

0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51,

1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67,

1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82,1.84, 1.84, 2.00,

2.01, 2.24.

The descriptive statistics of the two data sets are given in Table 3. From this table, both data sets

are under-dispersed. The data set 1 is approximately symmetric and the data set is moderately skewed.

Moreover, the first data set is platykurtic while the second one is leptokurtic.

For all the compared distributions, the maximum likelihood method is used to estimate the parame-

ters and also their standard errors are obtained. The model adequacy measures: Anderson-Darling (A*),

Cramer-von Mises (W*) and Kolmogorov-Smirnov (K-S) statistic with its p-value are used to compare these

distributions, where the smaller values of these statistics and larger p-value give the best fit to the data. The

obtained results are given in Tables 2 and 7, and we conclude that the considered sub-models of the family

are good competitor to the compared distributions. Also, it is found that the smallest values of A*, W*, K-S

and largest values of p-value are obtained for the TGz distribution, and by this the TGz distribution has a

good performance among the compared distributions. Also, this conclusion is asserted again by Figures 5

and 6. Consequently, the variance-covariance matrices of the MLEs of the TGz distribution for both data

sets are obtained, noting that the diagonal entries of those matrices are the variances of the MLEs of the

TGz parameters for each data set, while the other entries can led to positive and negative correlations for

pairs of the estimates. Also, 95% and 99% confidence intervals of the TGz parameters are given in Tables 5

and 6 for both data sets. Moreover, some measures of the TGz distribution for both data sets are obtained

by using its theoretical properties and are shown in Table 4. Making use of Tables 3 and 4, we can note

the closeness between measures of the TGz distribution and the corresponding descriptive statistics of both

data sets.
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Table 2: MLEs, their standard errors (in parentheses), A*, W*, KS, and P-value for data set 1.

Distribution MLE’s A* W* KS P-value

TB(c,k,λ) 2.148 38.854 -0.0097 0.660 0.107 0.109 0.581

(0.321) (16.111) (0.555)

TW(α,β,λ) 35.904 2.108 -0.025 0.642 0.104 0.109 0.587

(15.729) (0.334) (0.562)

TGa(a,b,λ) 2.818 18.218 -0.293 1.045 0.173 0.142 0.236

(0.678) (3.924) (0.442)

TGz(a,b,λ) 2.285 8.765 -0.421 0.445 0.072 0.097 0.736

(1.404) (4.719) (0.228)

TGE(α,θ,λ) 2.693 12.493 -0.547 1.076 0.178 0.147 0.234

(0.839) (1.666) (0.318)

TLE(β,θ,λ) 0.612 65.579 -0.378 0.570 0.096 0.107 0.630

(1.895) (14.184) (0.441)

GT-W(η,σ,λ) 0.170 1.991 -0.271 0.607 0.098 0.117 0.612

(0.023) (0.330) (0.430)

Burr(c,k) 2.154 39.124 - 0.675 0.108 0.120 0.571

(0.240) (15.013) -

Weibull(α,β) 36.145 2.117 - 0.649 0.108 0.110 0.569

(14.393) (0.245) -

Gamma(a,b) 3.029 18.564 - 1.120 0.192 0.145 0.170

(0.575) (3.836) -

Gompertz(a,b) 1.605 10.221 - 0.475 0.0875 0.135 0.568

(0.512) (1.753) -
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Figure 5: The estimated pdf and cdf for data set 1.

Table 3: Descriptive statistics for the two data sets.

Statistics Mean SD Median MD Mean MD Median Skewness Kutosis Entropy

Data set 1 0.16 0.08 0.16 0.065 0.07 0.07 2.21 2.47

Data set 2 1.51 0.32 1.59 0.24 0.23 -0.88 3.92 3.80

Table 4: Some moments of the TGz distribution for the two data sets.

Statistics Mean S.D Median Variance Skewness Kurtosis Entropy MD Mean MD Median

Data set 1 0.163 0.079 0.177 0.006 0.093 2.606 2.68 0.065 0.069

Data set 2 1.52 0.32 1.60 0.11 -0.90 4.20 3.86 0.25 0.23

Table 5: Confidence intervals of TGz for given data set 1.

CI a b λ

95% [0, 5.036] [0, 18.014] [0, 0.025]

99% [0, 5.907] [0, 20.940] [0, 0.167]

Table 6: Confidence intervals of TGz for given data set 2.

CI a b λ

95% [0, 0.051] [ 2.242, 4.111] [0, 0.253]

99% [0, 0.061] [1.946, 4.407] [0, 0.532]
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Table 7: MLEs, their standard errors (in parentheses), A*, W*, KS, and P-value for data set 2.

Distribution MLE’s A* W* KS P-value

TB(c,k,λ) 5.889 0.492 -0.909 5.751 1.055 0.293 0.003

(1.208) (0.115) (0.173)

TW(α,β,λ) 0.077 5.467 -0.314 1.242 0.226 0.144 0.442

(0.034) (0.680) (0.366)

TGa(a,b,λ) 16.354 11.241 -0.465 2.921 0.532 0.201 0.223

(3.177) (2.105) (0.266)

TGz(a,b,λ) 0.020 3.177 -0.629 0.808 0.140 0.124 0.685

(0.016) (0.477) (0.450)

Burr(c,k) 7.482 0.320 - 6.128 1.132 0.330 0.002

(1.280) (0.065) -

Weibull(α,β) 0.059 5.77 - 1.303 0.237 0.152 0.307

(0.020) (0.575) -

Gamma(a,b) 17.439 11.573 - 3.117 0.568 0.216 0.105

(3.078) (2.072) -

Gompertz(a,b) 0.009 3.618 - 0.842 0.144 0.130 0.437

(0.004) (0.294) -
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Figure 6: The estimated pdf and cdf for data set 2.
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The variance-covariance matrices of the MLEs of the TGz distribution for data set 1 is given as 5.779 −11.185 −2.841

−11.185 22.275 5.421

−2.841 5.421 1.509

 .

The variance-covariance matrices of the MLEs of the TGz distribution for data set 2 is given as 0.001 −0.007 −0.006

−0.007 0.226 0.163

−0.006 0.163 0.202

 .
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