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ABSTRACT
Background. Recent climatic history has strongly impacted plant populations, but
little is known about its effect on microbes. Alders, which host few and specific
symbionts, have high genetic diversity in glacial refugia. Here, we tested the prediction
that communities of root symbionts survived in refugia with their host populations.
We expected to detect endemic symbionts and a higher species richness in refugia as
compared to recolonized areas.
Methods. We sampled ectomycorrhizal (EM) root tips and the nitrogen-fixing actino-
mycete Frankia communities in eight sites colonized by Alnus glutinosa subsp. barbata
close to the Caucasus in Georgia. Three sites were located in the Colchis, one major
Eurasian climatic refugia for Arcto-Tertiary flora and alders, and five sites were located
in the recolonized zone. Endemic symbionts and plant ITS variants were detected by
comparing sequences to published data fromEurope and anotherTertiary refugium, the
Hyrcanian forest. Species richness and community structure were compared between
sites from refugia and recolonized areas for each symbionts.
Results. For both symbionts, most MOTUs present in Georgia had been found
previously elsewhere in Europe. Three endemic Frankia strains were detected in the
Colchis vs two in the recolonized zone, and the five endemic EM fungi were detected
only in the recolonized zone. Frankia species richness was higher in the Colchis while
the contrary was observed for EM fungi. Moreover, the genetic diversity of one alder
specialist Alnicola xanthophylla was particularly high in the recolonized zone. The EM
communities occurring in the Colchis and the Hyrcanian forests shared closely related
endemic species.
Discussion. The Colchis did not have the highest alpha diversity and more endemic
species, suggesting that our hypothesis based on alder biogeography may not apply to
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alder’s symbionts. Our study in the Caucasus brings new clues to understand symbioses
biogeography and their survival in Tertiary and ice-age refugia, and reveals that isolated
host populations could be of interest for symbiont diversity conservation.

Subjects Biodiversity, Biogeography, Ecology, Microbiology, Mycology
Keywords Frankia, Ectomycorrhiza, Colchis, Alnus, Alnicola, Glacial refugia, Tertiary refugia

INTRODUCTION
Glacial refugia are recognized sources of genetic diversity and hot spots of taxonomic
diversity (Médail & Diadema, 2009). They are also key regions for studying biogeography,
as recently shown for fungi (Geml et al., 2010; Ghobad-Nejhad et al., 2012; Merényi et al.,
2014). In Europe, the numerous fossil records from glacial periods and the analysis of allelic
diversity have contributed to identification of refugia (Taberlet & Cheddadi, 2002; Gavin et
al., 2014), mainly in Italy, the Iberian Peninsula and the Balkans (Médail & Diadema, 2009).
Demographic contractions and expansions, and population genetic patterns associated
with ice age refugia have been deeply studied in oaks, pines, beech, and alders (Taberlet &
Cheddadi, 2002; Hampe & Jump, 2011). Interestingly, all these tree species host mutualistic
fungi on their roots, and are ectomycorrhizal (EM; Smith & Read, 2008). However, whether
these biogeographic and genetic processes play out similarly in microbes is unknown. In
obligatory host-associated microbes, the potential for joint genetic responses to extinction
and recolonization is high. On the other hand, they could have also survived outside of
refugia, either in spore banks, or associated with other hosts. The existing knowledge about
tree biogeography offers a framework to compare their symbiont communities inside and
out of refugia, and test the hypothesis that symbionts have survived with their host in
glacial refugia,

The recent history of Alnus has been intensely studied in Europe (King & Ferris, 1998;
Douda et al., 2014; Havrdová et al., 2015; Mandák et al., 2016a; Mandák et al., 2016b).
Compared to timber trees, alders are ideal models for biogeographical studies of historical
migrations because there are numerous natural populations with low human impact
(Douda et al., 2014). Thanks to molecular markers, southern refugia have been detected
for A. glutinosa (L.) Gaertn. in the Iberian, Apennine, Corsica, North Africa, Balkan and
Anatolian Peninsulas (King & Ferris, 1998). More recently, the existence of both refugia
in Belarus and western Russia has been demonstrated; they were important sources
for northward post-glacial expansion of alders (Douda et al., 2014). Today, A. glutinosa
populations are still marked by recent isolation in glacial refugia (King & Ferris, 1998),
and several unique chloroplast haplotypes have been detected in relict populations from
Morocco (Lepais et al., 2013) and Turkey (King & Ferris, 1998; Havrdová et al., 2015).
Of interest, the high genetic diversity detected in Turkey concurs with the observed
morphological variations of A. glutinosa in this region. Therefore, four subspecies are
recognized in this region: A. glutinosa subsp. glutinosa, A. glutinosa subsp. antitaurica Yalt,
A. glutinosa subsp. betuloides Ansin, and A. glutinosa subsp. barbata (CA Meyer) Yalt.
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Alnus glutinosa subsp. barbata is distributed from Turkey to Iran, and is considered as
a Tertiary relict plant, common in the Colchis forests of Georgia. Pollen records from the
Quaternary era and distribution modeling have revealed that Alnus swamps were extended
in Colchis floodplains and existed continuously over the last 10,000 years (Connor &
Kvavadze, 2009). Today, stands of A. glutinosa subsp. barbata still dominate the Colchis
floodplain (Nakhutsrishvili, 2012). Located in the South Caucasus, the Colchis region is one
of the three major refugia of Tertiary relict taxa worldwide (Milne & Abbott, 2002; Kikvidze
& Ohsawa, 2001; Denk, Frotzler & Davitashvili, 2001). Because a mountain ridge blocks
rains coming from the Black Sea, the Colchis floodplain is well separated from arid lowlands
and steppes from Eastern Georgia (Nakhutsrishvili, 2012). According to pollen records,
alder recolonized Eastern Georgia and the central mountain ridge around 2,000 years BP,
and are represented today by isolated populations (Connor & Kvavadze, 2009). Adjacent
to the Colchis forests of Georgia, the other major Western Eurasia climate refugium for
temperate forests is the Hyrcanian forest, located on the southern coast of the Caspian
Sea in the region of Iran and southern Azerbaidjan. The two refugia lie approximately
2,000 km apart, and are now completely isolated from each other by steppe vegetation.
However, they still share several Tertiary plant relict species, and are considered to be the
two oldest temperate deciduous forests in western Eurasia (Maharramova et al., 2015).

As compared to other tree species, alders host few lineages of EM fungi (Molina, 1981;
Moreau, Peintner & Gardes, 2006; Moreau et al., 2011; Rochet et al., 2011) and species-poor
EM communities (Põlme et al., 2013; Roy et al., 2013; Kennedy, Walker & Bogar, 2015).
Among frequently encountered EM taxa, Alnicola and Alpova are two genera that appear
to be strictly associated with alders because they have never been found on any other tree
species. Several species of Lactarius, Russula, Amanita and Cortinarius are also exclusive to
alders. Alders also associate with nitrogen-fixing actinobacteria, all belonging to the genus
Frankia (Weber, Nurmiaho-Lassila & Sundman, 1987) and also with strong host-specificity
(Cotin-Galvan et al., 2016). At a worldwide scale, differences among Frankia communities
are partly correlated with differences in EM communities (Põlme et al., 2014). From North
America to Mexico, the similarities between EM communities also support a co-migration
with their host (Kennedy et al., 2011). Together, these results suggest shared histories at
broad scales, for the plant, Frankia and EM fungi.

If alder populations, Frankia and EM fungi communities have undergone a shared
history, the bacterial and the fungal communities should have both survived in the Colchis,
and alders should host more endemic symbionts in this refugium. Moreover, if South
Caucasus has been a refugium and a recolonization source for Europe, European specific
symbionts should be present in Georgia, together with endemic symbionts, especially in
the Colchis. Therefore, the main objectives of the present study are to (1) document the
diversity of the microbial symbionts communities of A. glutinosa subsp. barbata in Georgia
and determine whether the Colchis floodplain hosts endemic symbionts, (2) test if EM
fungi and Frankia communities are both more species rich in the Colchis, (3) examine
how recent climatic history has imprinted the distribution of alder symbionts and their
communities at a larger scale, by comparing our results to recent studies on the Hyrcanian
forest.
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MATERIAL AND METHODS
Sampling sites
Eight sites were studied in Georgia, including sites representing both large and isolated
Alnus stands located from 0 to 1,800 m elevation. Three sites were located in the Colchis,
considered as a refugium (PV, PP, PF). Five sites were located in the recolonized zone,
three in central Georgia near the water separation line that splits Western and Eastern
Georgia (BA, BO and SV), and two in Eastern Georgia at the Caucasus footstep (TS and
TR; Fig. 1A, Table S1 of Appendix S1). Climatic data (19 variables) were retrieved from
the Worldclim database (http://www.worldclim.org) through R raster package (Hijmans
& Van Etten, 2012).

Plant, ectomycorrhizal fungi and Frankia sampling
For each site, six trees were sampled, separated by at least 10 m as in Roy et al. (2013). One
leaf per tree was dried in silica gel. Roots were collected after tracing roots up to one meter
from the trunk and circa 50 cm of roots were collected per tree and kept in soil at 4 ◦C until
laboratory processing. In the laboratory, roots were washed under tap water over a 500 µm
wide grid, and examined under a binocular microscope in distilled water. A minimum of
16 ectomycorrhizae per tree were picked, and separately kept in 2% CTAB buffer at 4 ◦C
for one week and then at −20 ◦C. All Frankia nodules were stored in 2% CTAB buffer
(100 mM Tris HCl pH8; 1.4 M NaCl; 20 mM Na2EDTA; 2% N -Acetyl-NNN -trimethyl
ammonium bromide).

Alnus phylogenetic position and genetic diversity
One cm2 of leaf was ground to extract DNA using the Wizard genomic DNA purification
kit (Promega, Charbonnières les Bains, France) as in Rochet et al. (2011). The Internal
Transcribed Spacer (ITS) of the plant nuclear ribosomal DNA was amplified using ITS1P
(5′-TTATCATTTAGAGGAAGGAG-3′)—ITS4 primers (White et al., 1990) for each tree,
following conditions of Rochet et al. (2011). The chloroplast gene mat K was amplified
for one tree per population using the primer pairs Matk_1R_KIM and MatK_3F_KIM
(Dunning & Savolainen, 2010) and sequenced following conditions of Rochet et al. (2011).
Sequences were manually corrected, and deposited in Genbank under accession numbers
KX897895–KX897935 for ITS and KX897936–KX897944 for matK ). Reference sequences
of European Alnus species were downloaded from Genbank Alignments were created with
MUSCLE (Edgar, 2004). Phylogenies were computed using Raxml (Stamatakis, Hoover &
Rougemont, 2008), by Maximum Likelihood analysis following a GTR model of evolution,
and tested through a fast-bootstrap analysis (1,000 replicates) on the CIPRES website
(Miller, Pfeiffer & Schwartz, 2010). Phylogenies allowed the placing of A. glutinosa subsp.
barbata among other European alders and detect the occurrence of rare ITS variant in
Georgia.

Phylogenetic diversity of Frankia and comparison with European
strains
The DNA was extracted from Frankia root nodules and three genes were amplified
and sequenced: dnaA, ftsZ and pgk, with primers specific to Frankia as in Pozzi et al.
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Figure 1 Map of Georgia (A) pointing out the sampling sites for Alnus glutinosa subsp. barbata in
Western (Cyan), Central (Blue) and Eastern (Green) Georgia. OnlyWestern sites belong to the Colchis
floodplain. Map showing our study sites and sampling sites from previous studies on Alnus subcordata
from the Hyrcanian forests in Iran in red, and Alnus orientalis from Turkey in Yellow (B). The two maps
were produced with the R package OpenStreetMap.

(2015). Sequences were submitted to the EMBL (European Nucleotide Archive) under
accession numbers LT616989–LT617015 (dnaA), LT617016–LT617048 (ftsZ ), LT599862,
LT599864, LT599865 and LT599870–LT599890 (pgk). To test if Frankia sequences were
phylogenetically more diverse in Georgia as compared to Europe, sequences from Pozzi et
al. (2015), including strains isolated from A. glutinosa in Europe, were used as a reference.
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Alignments for each marker were built using MUSCLE and concatenated. A phylogeny was
computed following the same methods as for the plant phylogeny.

All statistical analyses on community diversity were performed with R 2.3.4.4 (R
Development Core Team, 2008). To describe the diversity of Frankia communities, pairwise
Kimura’s 2-parameters distances were measured using ape (R) based on the dnaA, ftsZ and
pgk alignment (concatenated). The histogram of pairwise distances measured from this
alignment showed a distribution peak at 0.01 and a gap between 0.01 and 0.05 (absolute
Kimura’s 2-parameters distances). Clusters of sequences more than 0.01 similar were
considered as distinct molecular operational taxonomic units (MOTUs).

Phylogenetic diversity of ectomycorrhizal fungi and comparison with
European sequences
DNA extraction was performed on each EM root tip, using the Wizard genomic DNA
purification kit (Promega, Charbonnières les Bains, France) as described in Rochet et al.
(2011). The fungal ITS region was amplified using fungal universal primers ITS-1F/ITS-4
(Gardes & Bruns, 1993; White et al., 1990). PCR conditions were the same as in Rochet et
al. (2011). Amplification products were sequenced by the MilleGen company (Labège,
France). Sequences were manually corrected using 4Peaks 1.7.1 (Griekspoor & Groothuis,
2017) and deposited in Genbank (accession numbers KX897613–KX897894).

Fungal sequences were compared to Genbank and UNITE http://unite.ut.ee/ (Kõljalg
et al., 2005) databases using the BLAST algorithm (Altschul et al., 1990), which allowed
the identification of fungal genera. To compare our sequences with MOTUs previously
detected in Europe, all sequences produced recently from Alnus roots in Europe (Põlme
et al., 2013; Roy et al., 2013) were downloaded. Sequences were aligned separately for
each genus with MUSCLE (http://www.drive5.com/muscle/) (Edgar, 2004), and groups of
sequences more than 97% similar were delineated with MOTHUR (Schloss et al., 2009),
a threshold used in previous publications on Alnus and commonly accepted to delineate
fungal MOTUs (Nilsson et al., 2008). Sequences that had between 93 and 97% similarity
with Genbank or Unite sequences were identified from the BLAST result at the genus level
only (e.g., ‘‘genus sp.’’). Sequences that had no close similarity (>97%) with Genbank
or Unite sequence were considered as putatively endemic to Georgia. For the specialist
genus Alnicola, reference sequences produced from European specimens were downloaded
from Genbank (Moreau, Peintner & Gardes, 2006; Rochet et al., 2011) and aligned with the
sequences from the present study. Based on the alignment and phylogeny, computed using
methods described above, Alnicola MOTUs were identified to the species level, and rare
ITS variants were detected from the alignment.

Diversity patterns of symbiont communities in Georgia
For Frankia and EM fungi, the species richness (alpha diversity) was measured at the
site level, and the beta diversity was measured through Bray–Curtis distance, which takes
species abundance into account. Species accumulation curves at the scale of Georgia
and Chao 1 diversity indices were computed to reflect gamma diversity. The spatial
autocorrelation of communities was tested by amultivariate autocorrelation test (multispati
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r test, ade4 package, Dray & Dufour, 2007). The correlation between beta diversity and
distance was tested by a Mantel test (999 permutations). Because these tests were not
statistically significant, no vector of spatial weights was integrated in the following tests.
The difference in community structure (measured by the Bray– Curtis distance) between
the three sampling zones was tested by a permutational multivariate analysis of variance
(perMANOVA). Similarities between communities were visualized by a non-metric
multidimensional scaling (NMDS). The correlation of NMDS structure with bioclimatic
factors, latitude, longitude, and elevation was tested by permutations tests (envfit function,
vegan package in R, Oksanen et al., 2007). The same analysis was computed for Frankia
and for EM fungi together and separately.

Comparison between EM fungi communities from Colchis and
Hyrcan refugia
Only sequences of EM fungi were compared because our sequencing strategy for Frankia
differs from Põlme et al. (2014). To compare EM communities between Colchis and the
Hyrcanian forests, sequences produced by Põlme et al. (2013, sampling sites positioned on
Fig. 1B) were downloaded from UNITE. Sampling strategy for EM root tips (5–6 trees
sampled per site) and sequencing methods (Sanger sequencing of individual root tips,
using the ITS marker) were sufficiently similar to be compared in a single analysis. Fungal
sequences produced from mycorrhizae of Alnus subcordata CA Mey. and A. glutinosa in
Iran, andA. orientalisDecne. in Turkey, were alignedwith sequences from the present study,
and MOTUs were delineated for each genus as previously described. A matrix of MOTUs x
sites was built, including Turkish, Georgian and Iranian sites (see Table S2 of Appendix S1).
We detected the occurrence of endemic or shared MOTU based on this matrix, We tested
if Colchis communities were as species-rich as communities associated with A. subcordata
in the Hyrcanian forests by analyzing alpha diversity variance (ANOVA). Finally, we
tested how the geographical distance and the distinct hosts explained the differences in
community structure observed in this region of Tertiary refugia (including sites in refugia
and outside).

RESULTS
Alnus phylogenetic position and genetic diversity at a regional scale
All matK sequences of A. glutinosa from Europe and A. glutinosa subsp. barbata clustered
into a monophyletic clade (97% bootstrap, Fig. 2A) distinct from A. incana (L.) Moench.
but monophyly of Georgian sequences was not supported. Two sequences from the Central
and Eastern populations (TS1 and BA1) showed 11–27 nucleotide differences with other
sequences from Georgia (Fig. 2A), and were more similar to sequences from Europe.
The monophyletic clade of other Georgian sequences was characterized by eleven unique
positions. Based on the ITS phylogeny, differences between A. glutinosa and A. incana were
not supported, and only two nucleotides were variable between the two species (Fig. 2B).
Besides a low bootstrap support, sequences from Georgia clustered in a monophyletic
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Figure 2 Alnus phylogeny, based onmatK (A) and ITS (B), computed by maximum likelihood, follow-
ing a GTR+ I model of evolution, and tested by 1,000 bootstrap replicates. Sequences of Alnus isolated
from Georgia are highlighted according to region as shown in Fig. 1. Sequences are named according to
their sampling site.

clade that also includes one European A. glutinosa sequence. The sequences from Eastern
Georgia (all TS and part of TR) were characterized by one nucleotide difference with other
sequences from Georgia.

Phylogenetic diversity of Frankia and comparison with European
strains
The Frankia strains detected in Georgia did not cluster into a monophyletic clade, and the
twelve MOTUs were scattered throughout the phylogeny (clades 1b, 3 and 5 of Pozzi et
al., 2015): clade 3 and 5 comprised three and four MOTUs respectively, and ‘‘new clade
II’’ gathered two distinct MOTUs. All MOTUs but one belonged to clades commonly
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Figure 3 Frankia phylogeny, based on dnaA, ftsZ, and pgk genes, computed by maximum likelihood, following a GTR+ I model of evolution,
and tested by 1,000 bootstrap replicates. Sequences of Frankia isolated fromGeorgia are highlighted according to region as shown in Fig. 1. Se-
quences are named according to their sampling sites, and reference sequences are named as in Pozzi et al. (2015).

associated with A. glutinosa in Europe (Fig. 3). Two sequences from the Eastern population
(TR) belonged to a monophyletic clade, frequently associated with A. alnobetula (Erhr.)
K Koch (clade 1b, Fig. 3). Three sequences from Western populations were not similar
to any other known sequence (new clade II and III, Fig. 3). Finally, two Central Georgia
sequences clustered in an isolated lineage (new clade I, Fig. 3).
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Figure 4 MOTU accumulation curves computed for all Georgian site for Frankia and EM fungi (A)
and species richness per site inWest, Central and East Georgia for Frankia and EM fungi (B). Shaded
area represent 95% confidence intervals.

Phylogenetic diversity of ectomycorrhizal fungi and comparison with
European sequences
DNAwas extracted and PCR-amplified from a total of 732 individual root tips: 484 of them
produced ITS sequences among which 328 met our quality threshold. The four Helotiales
and non-EM fungi sequences were not taken into account in our analysis (one Xylariaceae,
four Rhizoctonia, one Diaporthales). Twenty-nine MOTUs were recorded among which
21 belonged to Basidiomycota and 8 to Ascomycota (91.2% and 8.8% of ectomycorrhizae,
respectively). Seven Alnicola species were detected, all strictly identical to species found in
Europe. Of interest, two new ITS variants of Alnicola xanthophylla were detected in Central
Georgia, differing by five positions from their European relatives. Among non-Alnicola
EM fungi, five new MOTUs were detected in Georgia. Three were Ascomycota (Tuber sp.,
Tarzetta sp., Peziza sp.) and two Basidiomycota (Inocybe spp.). These five possibly endemic
EM fungi were found in Central and Eastern Georgia.

Diversity patterns of symbiont communities in Georgia
Species accumulation curves show that sampling was not saturated, especially for EM fungi.
According to Chao 1 estimates, up to 26.7 Frankia and 44.7 EM MOTUs could occur in
Georgia (Fig. 4A). Species richness per site varied between 7 and 15 MOTUs for fungi,
and from 2 to 4 for Frankia (Fig. 4B). Compared to the recolonized zone, Frankia and EM
communities were neither significantly richer (Kruskal-Wallis test, p= 0.48 and p= 0.17
respectively, Fig. 4B) nor different based on community composition (perMANOVA
on Bray–Curtis distances, p= 0.40 and p= 0.19 for Frankia and EM fungi, respectively).
Communities were not spatially autocorrelated (multivariate spatial autocorrelation test, p-
value= 0.338 for EM fungi, p= 0.348 for Frankia), and the spatial distance did not correlate
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with Bray–Curtis distances at least for EM fungi (Mantel test, p= 0.16). For Frankia, the
beta diversity was marginally correlated with distance (Mantel test, p= 0.0594). For the
two types of symbionts, Bray–Curtis distances between sites were significantly correlated
with longitude and several bioclimatic factors linked with precipitations (see Table S3 of
Appendix S1, Fig. 5A).

Comparison between EM communities from Colchis and Hyrcanian
refugia
The dominant MOTUs in Georgia were rare in Turkey and Iran, and vice versa (see
Table S2 of Appendix S1). Among the 68 MOTUs, three were shared between Georgia and
adjacent countries (Paxillus adelphus and two MOTUs belonging to the genus Tomentella),
nine between Georgia and Iran (MOTUs belonging to the genera Alnicola, Cortinarius,
Inocybe, Sebacina, and Tarzetta), and none between Georgia and Turkey. Interestingly, the
genus Inocybe and several Ascomycota were detected on alder roots both in Iran and in
Georgia. At the community level, the Georgian EM communities were not more diverse
than those on other alder species in Iran or Turkey (ANOVA, p-value = 0.14). The spatial
auto-correlation test was still not significant (multivariate autocorrelation test, p= 0.072).
Variation in beta-diversity was strongly correlated with geographic distances (Mantel test,
r = 0.51, p< 0.0001) and was also related to host species (42% of variation explained,
PERMANOVA test, p= 0.001). Finally, longitude, latitude, altitude, and bioclimatic
variables related to temperature all were significantly correlated with beta-diversity (Fig. 5B,
Table S3 of Appendix S1).

DISCUSSION
Our first objective was to document the diversity of symbiont communities associated with
Alnus glutinosa ssp. barbata in Georgia, especially in the Colchis floodplain, a glacial and
Tertiary refugium for alders. In all, 29 EMMOTUs and 12 FrankiaMOTUswere uncovered,
and Chao 1 estimates showed that twice as many species may occur there. For Frankia,
the common European lineages were detected, together with five new lineages, which is
an exceptional pattern considering the extensive worldwide Frankia database (Pozzi et al.,
2015). Georgia proved to be a region of high Frankia diversity, probably of ancient origin
as suggested by the long branches supporting Caucasian lineages (Fig. 2). For EM fungi,
most Georgian MOTUs (24 out of 29) were already reported from Europe, on roots of
A. glutinosa, A. incana and A. cordata (Loisel.) Duby. No endemic MOTU was detected for
the most specialized lineages, but two unique ITS variants of Alnicola xanthophylla were
found in Central Georgia. From previous study on the genus Alnicola (Moreau, Peintner &
Gardes, 2006; Rochet et al., 2011), the ITS is known to be often not variable within species,
and 1.1% genetic variability is exceptional for this genus. Although a deeper sampling may
reveal more fungi, these results reveal that endemism is relatively rare in the Caucasus
region for EM fungi, even the more specialized ones associated with alders. Interestingly,
a similar analysis on corticioid fungi in South Caucasus has also pointed out the low
number of endemics, and the high similarity with European communities (Ghobad-Nejhad
et al., 2012).
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Figure 5 Non-Metric Multidimensional Scaling (NMDS) ordering the differences between EM and
Frankia communities and showing the correlation with environmental and geographical parameters
in Georgia (A) and at a wider scale between Georgia, Iran and Turkey for EM fungi only (B). Significant
variables are represented (P > 0.05 according to environmental fitting tests; see Table S3 of Appendix
S1). BIO1, temperature seasonality; BIO2, maximum temperature of the warmest month; BIO5, precipi-
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The presence of five endemic Frankia, but no endemic specialized EM fungi was
not expected but could be explained by differences in dispersal and survival abilities
between the two types of symbionts. A free-living stage (outside the host) has been
reported for the Frankia strains with low host specificity (Maunuksela et al., 1999), but
aside from this case, most uncultured Frankia are highly dependent of their host (Pozzi et
al., 2015). As with Frankia, most EM fungi cannot survive in the soil without their host
(Lindahl & Tunlid, 2015). Frankia produces spores belowground and is dispersed by water
or animals (Chaia, Wall & Huss-Danell, 2010) and sometimes by wind (Dawson, 2007)
leading to short-distance dispersal, and perhaps greater endemism whereas Alnicola are
wind-dispersed and potentially disperse over large distances. Among fungi, two potential
endemic species belong to a wind-dispersed genus (Inocybe). Although species of Inocybe
are regularly detected on alder roots (Bogar & Kennedy, 2013; Roy et al., 2013; Põlme et al.,
2013), current knowledge on this genus is still too limited to determine if these Inocybe sp.
are specific to Alnus or if their occurrence reflects a local adaptation to a particular habitat.
More generally, Ryberg et al. (2008) have shown that the ITS evolves faster in the genus
Inocybe, and that environmental sequencing often reveals new species in this genus. Among
the EM fungi lineages that form hypogeous (below-ground) fruitbodies, three potential
endemic Ascomycota species were detected. The degree of specificity of these species
towards Alnus is still unknown, and two genera, Tuber and Tarzetta, are often described
as pioneer species with broad host ranges. The presence of endemics for these two genera
might be due to their long-term persistence in refugia. Similarly, the persistence of the
black truffle Tuber melanosporum Vittad. during glaciations has been shown in Spanish
(García-Cunchillos et al., 2014) and Italian refugia (Rubini et al., 2005).

Our second objective was to assess whether the symbiont communities and their host
populations follow a shared history at the scale of Georgia. We hypothesized that sites in
the refugium would host more endemic and diverse communities of both Frankia and EM
fungi, but we did not confirm our hypothesis. First, the host population were genetically
more diverse in the recolonized zone, where several unique ITS and matK variants were
detected for A. glutinosa subsp. barbata. These variants were clearly distinct from other
sequences of European A. glutinosa and this result confirms that Georgia, and not only
the Colchis, is a hot spot of genetic diversity for the A. glutinosa complex (pointed out
by King & Ferris, 1998). Interestingly, all endemic EM MOTUs were detected in Central
and Eastern sites, associated with the most genetically diverse host populations. However,
the species richness of Frankia communities showed a different distribution, as three
endemic strains were detected in the Colchis, and two in the Central population. These
different distributions of genetic diversity and species richness suggest that all symbionts
do not necessarily survive with their host in refugia. Moreover, the occurrence of unique
ITS and matK variants for alders and endemic EM fungi in Central and Eastern sites
show that isolated host populations could also act as refugia, especially in mountain
ranges, as highlighted by recent reviews on the Mediterranean basin (Médail & Diadema,
2009; Dobrowski, 2011; Keppel et al., 2012). The differences between the Colchis and
Central and Eastern populations could reflect different biogeographic histories, as shown
for snails and amphibians (Tarkhnishvili, 1996; Tarkhnishvili, Thorpe & Arntzen, 2000;
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Pokryszko et al., 2011) but also correlate with changes in annual precipitation and summer
temperatures, as pinpointed by our analyses (Fig. 5).

Our third objective was to compare the Colchis and the Hyrcanian communities,
associated with two alder species, A. glutinosa subsp. barbata and A. subcordata, that are
both considered to be Tertiary relics. The two refugia hosted distinct EM communities,
and differences were strongly explained by both host identity and geographic distance.
The lack of shared MOTUs, even abundant ones (Table S2 of Appendix S1), explains these
differences, and suggests a limited spore flow between the two regions. The scarcity of alder
stands between these two regions in the steppe landscapes could indeed limit dispersal, and
maintain isolation between the two regions, as observed for plants (Nakhutsrishvili et al.,
2015) and corticioid fungi (Ghobad-Nejhad et al., 2012). Interestingly, both A. subcordata
and A. glutinosa subsp. barbata associate with several Inocybe, Ascomycota and especially
Tuber. Additional Tertiary refugia should be investigated in Asia to determine if these
associations are also relic from the Tertiary, or derive from local and independent
adaptations in relatively dry regions for alders. Indeed, Tuber and hypogeous fungi
are known to be particularly resistant to drought (Richard et al., 2011; Herzog et al., 2013 )
and abundant in dry habitats (Zambonelli et al., 2014).

For microbes, biogeographic studies are relatively recent (Martiny et al., 2006), partly
because the ‘‘everything is everywhere’’ idiom was long said to be the rule. Now, Beringia
has been pinpointed as a hotspot for high-latitude fungi (Geml et al., 2010; Bellemain et
al., 2013), and could have been a glacial refugium for the fungi. In Europe, the Perigord
truffle Tuber melanosporum, also an EM species, has more genetically diverse populations
in southern-Italy (Rubini et al., 2005) and Spain (García-Cunchillos et al., 2014). Finally,
the anther smut fungus Microbotryum sp., an obligate parasite of Caryophyllaceae, has
apparently followed its host during recent glaciation (Vercken et al., 2010). Here, we focus
on entire communities and show on the contrary, that alpha diversity was not higher in
the refugium than in the recolonized zone. The results from analyzing communities versus
populations are not necessarily coupled (Vellend & Geber, 2005), but theoretically area size
and immigration have parallel effects on species richness and genetic diversity (Vellend
& Geber, 2005). The Theory of Island Biogeography (MacArthur & Wilson, 1967) predicts
that smaller refugia can favor local extinctions (Kadmon & Allouche, 2007), and moreover,
bottleneck effects may also reduce local diversity (Bennett & Provan, 2008). On the other
hand, recent experiments on alders have shown that their specificity might be controlled
by pH and nitrogen availability (Huggins et al., 2014), which may reduce the influence of
host biogeography on symbiont community diversity. In this framework, it is even more
puzzling to observe more endemic EM fungi and rare plant ITS variant in the isolated
populations from Central and Eastern Georgia. As the endemic Inocybe and Tuber are not
usually associated with alders, we suspect that these taxa have only recently colonized alder
roots, a host shift probably favored by the actual isolation of alders in this region.

CONCLUSIONS
Wiens & Donoghue (2004) have already highlighted the chasm between historical
biogeography and community ecology, and suggested that more links should be drawn
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between these topics. In a second step, studies on symbiont populations may help
confirming the lack of isolation in refugia. The recent studies of alder refugia in Europe
could be used as a framework to study more in depth alder symbiont biogeography (Douda
et al., 2014;Mandák et al., 2016a;Mandák et al., 2016b). Finally, the occurrence of endemic
OTUs detected for both EM fungi and Frankia outside of refugia highlight their relevance
to biodiversity conservation not only in Tertiary and glacial refugia, but also in isolated
host populations.
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