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Abstract

Let X be a complex projective manifold of dimension n defined over the reals and let M
be its real locus. We study the vanishing locus Z;, in M of a random real holomorphic section
sq of £E® L4, where £ — X is an ample line bundle and £ — X is a rank r Hermitian bundle,
r € {1,...,n}. We establish the asymptotics of the variance of the linear statistics associated
with Zs,, as d goes to infinity. These asymptotics are of order d~%. Asa special case, we
get the asymptotic variance of the volume of Z,.

The present paper extends the results of [22], by the first-named author, in essentially two
ways. First, our main theorem covers the case of maximal codimension (r = n), which was
left out in [22]. Second, we show that the leading constant in our asymptotics is positive. This
last result is proved by studying the Wiener—Ito expansion of the linear statistics associated
with the common zero set in RP™ of r independent Kostlan-Shub—Smale polynomials.

Keywords: Random submanifolds, Kac-Rice formula, linear statistics, Kostlan—-Shub—Smale
polynomials, Bergman kernel, real projective manifold, Wiener—Ito expansion.

Mathematics Subject Classification 2010: 14P99, 32A25, 53C40, 60G15, 60G57.

1 Introduction

In recent years, the study of random submanifolds has been a very active research area [9, 14, 15,
25, 26, 29]. There exist several models of random submanifolds, built on the following principle.
Given M a dimension n ambient manifold and r € {1,...,n}, we consider the common zero set
of r independent random functions on M. Under some technical assumption, this zero set is almost
surely a codimension r smooth submanifold.

In this paper, we are interested in a model of random real algebraic submanifolds in a projective
manifold. It was introduced in this generality by Gayet and Welschinger in [13] and studied in
[14, 15, 21, 22|, among others. This model is the real counterpart of the random complex algebraic
submanifolds considered by Bleher, Shiffman and Zelditch [6, 30, 31].

Framework. Let us describe more precisely our framework. More details are given in Sect. 2,
below. Let X be a smooth complex projective manifold of dimension n > 1. Let £ be an ample
holomorphic line bundle over X and let £ be a rank r € {1,...,n} holomorphic vector bundle
over X. We assume that X, £ and £ are endowed with compatible real structures and that the
real locus of X is not empty. We denote by M this real locus which is a smooth closed (i.e. compact
without boundary) manifold of real dimension n.

Let he and hy denote Hermitian metrics on £ and L respectively, which are compatible with
the real structures. We assume that h, has positive curvature w, so that w is a Kéhler form on X.
This w induces a Riemannian metric g on X', hence on M. Let us denote by |dVj,| the Riemannian
volume measure on M induced by g.
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For any d € N, the measure |dV)/| and the metrics hg and h. induce a Euclidean inner product
on the space RH?(X, € @ L4) of global real holomorphic sections of £ ® LT — X (see Eq. (2.2)).
Given s € RH(X,€ ® £4), we denote by Z; = s71(0) N M the real zero set of s. For d large
enough, for almost every s with respect to the Lebesgue measure, Z; is a codimension r smooth
closed submanifold of M, possibly empty. We denote by |dV;| the Riemannian volume measure on
Zs induced by g. In the following, we consider |dV;| as a Radon measure on M, that is a continuous
linear form on (C°(M),|-]|.), where ||| denotes the sup norm.

Remark 1.1. If n = r then Z; is a finite subset of M for almost every s. In this case, |[dV;]| is the
sum of the unit Dirac masses on the points of Z.

Let s4 be a standard Gaussian vector in RH?(X,€ ® £4). Then |dVj,| is a random positive
Radon measure on M. We set Zg = Z,, and |dVy| = |dVs,| in order to simplify notations. We
are interested in the asymptotic distribution of the linear statistics (|dVa| , ¢) = [, ¢[dVa|, where
¢ : M — R is a continuous test-function. In particular, (|dVy| , 1) is the volume of Zgy (its cardinal
if n =r), where 1 is the unit constant function on M.

As usual, we denote by E[X] the mathematical expectation of the random vector X. The
asymptotic expectation of {|dVy| , ¢) was computed in [21, Sect. 5.3].

Theorem 1.2 ([21]). Let X be a complex projective manifold of positive dimension n defined over
the reals, we assume that its real locus M is non-empty. Let € — X be a rank r € {1,...,n}
Hermitian vector bundle and let L — X be a positive Hermitian line bundle, both equipped with
compatible real structures. For everyd € N, let s4 be a standard Gaussian vector in RHO (X, ERLY).
Then the following holds as d — +oo:

Vol (S™—"

Vo € CO(M),  E[(|dVal ,¢)] = d* (/M¢|de|) Vel (Sn>) + ol O0(di71).

Moreover the error term O(dg_l) does not depend on ¢.

n

The asymptotic variance of (|dVy| , @), as d goes to infinity, was proved to be a O(dT_ 2 ) when
the codimension of Z; is r < n (see [22, Thm. 1.6]). Our first main theorem (Thm. 1.6 below)
extends this result to the maximal codimension case.

Statement of the main results. Before we state our main result, let us introduce some more
notations. We denote by Cov(X,Y) = E[(X — E[X]) (Y — E[Y])] the covariance of the real random
variables X and Y. Let Var(X) = Cov(X, X) denote the variance of X. Finally, we call variance
of |dVy4| and we denote by Var(|dVy|) the symmetric bilinear form on C°(M) defined by:

V¢1, ¢2 S CO(M), Var(|dVd|) (¢1, ¢2) = COV((ldVd| ,¢1> 5 <|dVd| ,¢2>) .

Definition 1.3. Let ¢ € C°(M), we denote by w,, its continuity modulus, which is the function
from (0, +00) to [0, 4+00) defined by:

wy e sup {|o(z) — ()| | (z,y) € M?, py(x,y) < e},
where pg(-,-) stands for the geodesic distance on (M, g).
We denote by M,.,(R) the space of matrices of size r x n with real coefficients.

Definition 1.4. Let L : V — V' be a linear map between two Euclidean spaces. We denote
the Jacobian of L by |det*(L)| = \/det (LL*), where L* : V' — V is the adjoint operator of L.

Similarly, let A € M,,,(R), we define its Jacobian to be |det™(A)| = \/det (AA").

Definition 1.5. For every ¢t > 0, we define (X(¢),Y(¢)) to be a centered Gaussian vector in
Myn(R) X M,y (R) such that the following hold:

e the couples (X;;(t),Y;;(t)) with 4,5 € {1,...,n} are independent from one another,
e the variance matrix of (X;;(t),Y;;(t)) is:

1 et e % (1 - t,t) -
e 1—e if j =1, and ( 1oe
e 1

[NES

) otherwise.

Nl



We can now state our main result.

Theorem 1.6. Let X be a complex projective manifold of dimension n > 1 defined over the reals,
we assume that its real locus M is non-empty. Let £ — X be a rank r € {1,...,n} Hermitian
vector bundle and let L — X be a positive Hermitian line bundle, both equipped with compatible
real structures. For every d € N, let sq be a standard Gaussian vector in RH(X,€ @ L7).

Let 8 € (0, %), then there exists Cg > 0 such that, for all a € (0,1), for all ¢1 and ¢ € CO(M),
the following holds as d — +oc:

R Vol (S"~1) 2
Var(|dVal) (¢1, ¢2) = d (/M P1P2 |dVM|) ((QT W)
+ 161l 921l 0 O(d"2%) + |1l @o (Cad™?)O(d"2), (1.1)

where 6,y is the Kronecker symbol, equal to 1 if r =n and 0 otherwise, and

_ 1t (E[|dett (X ()] [det* (V)] Vol (8")\? ac
Iny = 2/0 < (1764)% (2m) <7V01(S”) ) t 2 dt < +oo. (1.2)

In,r + 5rn

Moreover the error terms O(d"~2~*) and O(d"~2) in (1.1) do not depend on (¢1, p2).

Remark 1.7. Applying Thm. 1.6 with ¢1 = 1 = ¢ gives the asymptotic variance of the Riemannian
volume of Z,.

Theorem 1.8. For any n € N* and r € {1,...,n}, the universal constant:
Vol (S*—1 2
#In r+ 5”17
(2m)r ’ Vol (S7)

appearing in Thm. 1.6 is positive.

Remark 1.9. Thm. 1.8 was proved for » = n = 1 in [11], and for r = n > 2 in [2]. Note that
Thm. 1.8 states that Z, , > 0 if » < n, but this is not necessarily the case when r = n. Indeed,
711 < 0 by [11, Prop. 3.1 and Rem. 1].

Let us state some corollaries of Thm. 1.6. Cor. 1.10, 1.11 and 1.12 below are extensions to
the case r < n of Cor. 1.9, 1.10 and 1.11 of [22], respectively. The proofs that Thm. 1.6 implies
Cor. 1.10, 1.11 and 1.12 were given in [22, Sect. 5] in the case r < n. They are still valid for r < n.
We do not reproduce these proofs in the present paper.

n

Corollary 1.10 (Concentration in probability). In the same setting as Thm. 1.6, let o > —% and

let $ € CO(M). Then, for every e > 0, we have:

P (a5 |(aval ,¢) ~ Bl(Javal . 8)]| > de) = 0 (a-E),

where the error term is independent of €, but depends on ¢.

Corollary 1.11. In the same setting as Thm. 1.6, let U C M be an open subset, then as d — +oo

we have P(Z;NU =0) = O(d™%).
Let us denote by dv, the standard Gaussian measure on RHO(X, € ® £4) (see (2.1)). Let dv
denote the product measure @ oy dva on [ ey RH(X,€ @ £%). Then we have the following.
Corollary 1.12 (Strong law of large numbers). In the setting of Thm. 1.6, let us assume n > 3.
Let (s4)den € H RH(X, € ® L) be a random sequence of sections. Then, dv-almost surely,
deN
Vol (S™—"
d—+oo Vol (SP)

475 AV, | ) \avaul

in the sense of the weak convergence of measures. That is, dv-almost surely,

. Vol (8"
Yo e, dEAVL 0 o et ([ elavar).



Related works and novelty of the main results. This paper extends the results of [22], by
the first-named author. In [22, Thm. 1.6], our main result (Thm. 1.6 above) was proved for r < n
and a € (0,ap), where ap € (0,1) is some explicit constant depending on n and r. The main
novelty in Thm. 1.6 is that it covers the case of maximal codimension (r = n), that is the case
where Z; is almost surely a finite subset of M. This case was not considered in [22] because of
additional singularities arising in the course of the proof, which caused it to fail when r = n.

An important contribution of the present paper is that we prove new estimates (see Lem. 5.26,
5.28 and 5.29) for operators related to the Bergman kernel of £ @ £, which is the correlation
kernel of the random field (sq4(x))zear. These estimates are one of the key improvements that
allow us to prove Thm. 1.6 in the case r = n. They also allow us to consider « € (0, 1) instead of
a € (0,ap). Finally, the use of these estimates greatly clarifies the proof of Thm. 1.6 in the case
r < n, compared to the proof given in [22]. For this reason, we give the proof of Thm. 1.6 in the
general case r € {1,...,n} and not only for » = n. This does not lengthen the proof.

The second main contribution of this article is the proof of the positivity of the leading constant
in Thm. 1.6 (cf. Thm. 1.8). This result did not appear in [22]. Since the leading constant in
Thm. 1.6 is universal, when r = n one can deduce Thm. 1.8 from results of Dalmao [11] (if
r =n = 1) and Armentano—Azais—Dalmao—Leon [2] (if r = n > 2). In [2, 11], the authors proved
Thm. 1.6 in the special case where Z; is the zero set in RP™ of n independent Kostlan-Shub—Smale
polynomials (see Sect. 6.1 below). Their results include the positivity of the leading constant, hence
implies Thm.1.8 in this case. To the best of our knowledge, Thm. 1.8 is completely new for r < n.

Note that when n = r = 1, our setting covers the case of the binomial polynomials on C with
standard Gaussian coefficients. Much more is known in this case, including variance estimates for
the number of real zeros of non-Gaussian ensembles of real polynomials (see [34]).

Our proof of Thm. 1.8 uses the Wiener—Ito expansion of the linear statistics associated with the
field (sq(x))zenmr- This kind of expansion has been studied by Slud [33] and Kratz—Leon [18, 19]. It
was used in a random geometry context in [2, 11, 12, 25]. In [12, 25], the authors used these Wiener
chaos techniques to prove Central Limit Theorems for the volume of the zero set of Arithmetic
Random Waves on the two-dimensional flat torus (see also [11] in an algebraic setting). In [2, 11],
these methods where used to prove Thm. 1.8 when r = n.

In the related setting of Riemannian Random Waves, Canzani and Hanin [8] obtained recently
an asymptotic upper bound for the variance of the linear statistics. To the best of our knowledge,
in this Riemannian setting, the precise asymptotics of the variance of the volume of random
submanifolds are known only when the ambient manifold is S? (cf. [35]) or T? (cf. [12, 20]). We
refer to the introduction of [22]| for more details about related works.

About the proofs. The proof of Thm. 1.6 broadly follows the lines of the proof of [22, Thm. 1.6].
The random section sq defines a centered Gaussian field (sq(z))zerr, whose correlation kernel is
E,4, the Bergman kernel of £ ® £? (see Sect. 2.4). Thanks to results of Dai-Liu-Ma [10] and
Ma—Marinescu [24], we know that this kernel decreases exponentially fast outside of the diagonal
A = {(z,y) € M? | z = y} and that it admits a universal local scaling limit close to A (see Sect. 3
for details).

By an application of Kac—Rice formulas (cf. Thm. 5.1 and 5.5), we can express the covariance
of (|dVg|,¢1) and (|dVg| , ¢2) as a double integral over M x M of ¢1(x)p2(y) times a density
function Dg(z,y) that depends only on E;. Our main concern is to understand the asymptotics of
the integral of Dy(x,y), as d — +o0.

Thanks to the exponential decay of the Bergman kernel, we can show that the leading term in
our asymptotics is given by the integral of Dy over a neighborhood Ay of A, of typical size ﬁ
(see Prop. 5.22). Changing variables so that we integrate on a domain of typical size independent
of d leads to the apparition of a factor d~%. Besides, D, takes values of order d” on Ay (see
Prop. 5.25). This explains why the asymptotic variance is of order d"~% in Thm. 1.6.

The behavior of E,; allows to prove that Dy admits a universal local scaling limit on Ay. The
main difficulty in our proof is to show that the convergence to this scaling limit is uniform on Ay
(see Prop. 5.25 for a precise statement). This difficulty comes from the fact that Dy is singular
along A, just like almost everything in this problem. This is where our proof differs from [22].
In [22], the uniform convergence of Dy to its scaling limit on A, is not established, and one has to
work around this lack of uniformity. This yields a complicated proof that fails when r = n. Here,



we manage to prove this uniform convergence, thanks to some new key estimates (see Lem. 5.26,
5.28 and 5.29) that form the technical core of the paper. This allows us to both improve on the
results of [22] and simplify their proof.

As we explained, our proof relies on two properties of the Bergman kernel E;: namely, the
existence of a scaling limit around any point at scale id, and its exponential decay outside of the
diagonal. These features are also exhibited by Bergman kernels in other settings such as those
of [4] or [5], so one might hope to generalize our results to these settings, at least in the bulk.
Unfortunately, we also need a precise understanding of the scaling limit of F,4, which is possible in
our framework because it is universal (it only depends on n) and invariant under isometries (see
Sect. 4 for more details). As far as we know, it is much more complicated to study this scaling
limit in other settings (such as those of [4] and [5]), so we do not pursue this line of inquiry in the
present paper and leave it for future research.

Let us now discuss the proof of Thm. 1.8. One would expect to prove this by computing a good
lower bound for Z, ,, directly from its expression (see Eq. (1.2)). To the best of our knowledge
this approach fails, and we have to use subtler techniques.

Since the leading constant in (1.1) only depends on n and r, we can focus on the case of the
volume of Z; (where ¢1 = 1 = ¢2) in a particular geometric setting. We consider the common
real zero set of r independent Kostlan—-Shub—Smale polynomials in RP™ (see Sect. 6.1 for details).
This allows for explicit computations since the Bergman kernel is explicitly known in this setting.
Moreover, the distribution of these polynomials is invariant under the action of O,,41(R) on RP”,
which leads to useful independence proprieties that are not satisfied in general.

In this framework, we adapt the strategy of [2, 11] to the case r < n. First, we compute the
Wiener-Ito expansion of the volume of Z;. That is, we expand Vol (Zg) as }° .y Vol (Za) [¢], where
the convergence is in the space of L? random variables on our probability space, and Vol (Z4) [q]
denotes the ¢-th chaotic component of Vol (Z;). In particular, Vol (Zy)[0] is the expectation of
Vol (Z4) and the (Vol (Z4) [q])4en are pairwise orthogonal L? random variables. Hence,

Var(Vol (Zg)) = Y Var(Vol (Za) [q]) -

g1

The chaotic components of odd order of Vol (Z;) are zero, but we prove that Var(Vol (Z;) [2]) is
equivalent to d"~2C as d — 400, where C' > 0 (see Lem. 6.17). This implies Thm. 1.8.

Outline of the paper. In Sect. 2 we describe precisely our framework and the construction of
the random measures |dVy|. We also introduce the Bergman kernel of £ ® £¢ and prove that it
is the correlation kernel of (s4(z))zenr. In Sect. 3, we recall estimates for the Bergman kernel,
and its scaling limit. Sect. 4 is dedicated to the study of the Bargmann—Fock process, that is the
Gaussian centered random process on R™ whose correlation function is:

1
(1w, 2) —» exp (—5 o — z|2) .

This field is the local scaling limit of the random field (s4(z)),en, in a sense to be made precise
below. Sect. 5 and 6 are concerned with the proofs of Thm. 1.6 and Thm. 1.8 respectively. Note that
in Sect. 6 we have to study in details the model of Kostlan—-Shub—Smale polynomials, which is the
simplest example of our general real algebraic setting. We conclude this paper by two appendices,
App. A and App. B, in which we gathered the proofs of the technical lemmas of Sect. 4 and Sect. 5
respectively.
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2 Random real algebraic submanifolds

In this section, we introduce the main objects we will be studying throughout this paper. We first
recall some basic definitions in Sect. 2.1. In Sect. 2.2, we introduce our geometric framework. In
Sect. 2.3, we describe our model of random real algebraic submanifolds. Finally, we relate these
random submanifolds to Bergman kernels in Sect. 2.4.

2.1 Random vectors

Let us recall some facts about random vectors (see for example [21, appendix A]). In this paper,
we only consider centered random vectors, so we give the following definitions in this setting.

Let X7 and X2 be centered random vectors taking values in Euclidean (or Hermitian) vector
spaces V1 and V5 respectively, then we define their covariance operator as:

Cov(X1,X3) : v +— E[X1 (v, X3)]

from V2 to V1. For all v € Vo, we set v* = (-,v) € V5. Then Cov(X1, X2) = E[X; ® XJ] is an
element of V) ® V5. Let X be a centered random vector in a Euclidean space V. The variance



operator of X is defined as Var(X) = Cov(X,X) = E[X® X*] € V® V*. Let A be a non-
negative self-adjoint operator on (V,{-,-)), we denote by X ~ N(A) the fact that X is a centered
Gaussian vector with variance operator A. This means that the characteristic function of X is
£ — exp (f% <A§,§>). Finally, we say that X € V is a standard Gaussian vector if X ~ N (Id),
where 1Id is the identity operator on V.

If A is positive, the distribution of X ~ A/(A) admits the density:

exp (—% <A_1ac,ac>) (2.1)

1
V8 /det(h)

with respect to the normalized Lebesgue measure of V, where N = dim(V'). Otherwise, X takes
values in ker(A)L almost surely, and it admits a similar density as a variable in ker(A)*.

T

2.2 General setting

Let us introduce more precisely our geometric framework. Let X be a smooth complex projective
manifold of positive complex dimension n. Let cx be a real structure on X, i.e. an anti-holomorphic
involution. The real locus of (X, cy) is the set M of fixed points of cx. In the following, we assume
that M is non-empty. It is known that M is a smooth closed submanifold of & of real dimension n
(see [32, chap. 1]).

Let £ — X be a holomorphic vector bundle of rank r € {1,...,n}, we denote by 7¢ its bundle
projection. Let cg be a real structure on £, compatible with cy in the sense that cy omg = mgoce
and cg is fiberwise C-anti-linear. Let hg be a Hermitian metric on £ such that cg(he) = he.
A Hermitian metric satisfying this condition is said to be real. Similarly, let £L — X be an
ample holomorphic line bundle equipped with a compatible real structure ¢, and a real Hermitian
metric hg.

We assume that (£, hz) has positive curvature, that is its curvature form w is Kéhler. Recall
that, if (y is a local non-vanishing holomorphic section of £, then w = %83 In (hz(Co, o)) locally.
This Kéhler form defines a Riemannian metric g on X (see [16, Sect. 0.2] for example). In turn,
g induces a Riemannian volume measure on X and on any smooth submanifold of X. We denote
by dVx = %} the Riemannian volume form on (X, g). Similarly, let |dVis| denote the Riemannian
measure on (M, g).

Let d € N, we endow £ ® L4 with the real structure cq = cg ® (¢z)?, which is compatible with
cx, and the real Hermitian metric hq = he @ h%. Let I'(€® L?) denote the space of smooth sections
of £ ® L%, we define a Hermitian inner product on I'(€ @ L£?) by:

Vs1,s0 € T(E @ LY), (s1,82) = /X ha(s1(x), s2(x)) dVax. (2.2)

Remark 2.1. In this paper, (-, -) will either denote the inner product of a Euclidean (or Hermitian)
space or the duality pairing between a Banach space and its topological dual. Which one should
be clear from the context.

We say that a section s € I'(£ ® L?) is real if it is equivariant for the real structures, that is:
ca0 s =socy. We denote by RI'(€ ® L?) the real vector space of real smooth sections of £ ® L.
The restriction of (-, -) to R['(€ ® £L?) is a Euclidean inner product. Note that, despite their name,
real sections are defined on the whole complex locus X and that the Euclidean inner product is
defined by integrating over X', not just M.

Let x € M, then the fiber (£ ® L?), is a dimension r complex vector space and the restriction
of cq to this space is a C-anti-linear involution. We denote by R(£ ® £4), the set of fixed points
of this involution, which is a real r-dimensional vector space. Then, R(§ ® £%) — M is a rank r
real vector bundle and, for any s € RI'(£ ® £%), the restriction of s to M is a smooth section of
R(E ® L) — M.

Let HY(X,E ® £4) denote the space of global holomorphic sections of £ ® £4. This space is
known to be finite-dimensional (compare [23, Thm. 1.4.1]). Let Ng denote the complex dimension
of HO(X,€ ® L?). We denote by:

RHO(X,E@ LY ={s€ H*(X,E® L) | caos=socx}



the space of global real holomorphic sections of € ® £¢. The restriction of the inner product (2.2)
to RHY(X,E @ L?) (resp. HY(X,E ® L)) makes it into a Euclidean (resp. Hermitian) space of real
(resp. complex) dimension Ny.

2.3 Random real algebraic submanifolds

This section is concerned with the definition of the random submanifolds we consider and some
related random variables.

Let d € N and s € RH(X,€ ® £%), we denote by Z, the real zero set s~1(0) N M of s.
If the restriction of s to M vanishes transversally, then Z; is a smooth closed submanifold of
codimension r of M (note that this includes the case where Z; is empty). In this case, we denote
by |dVs| the Riemannian volume measure on Z; induced by g. In the following, we consider |dVj|
as the continuous linear form on (C°(M),||-||,) defined by:

voec ). (avilo)= [ ofa)lavil.
EASYAS
Definition 2.2 (compare [27]). We say that RH°(X, € ® £4) is 0-ample if, for any x € M, the
evaluation map ev? : s — s(z) from RH(X, €@ L) to R (£ ® Ed)z is surjective.

Lemma 2.3. There exists di € N, depending only on X, £ and L, such that for all d > dy,
RHO(X,E @ L) is 0-ample.

Proof. This can be deduced from the Riemann-Roch formula, for example. It is also a by-product
of the computations of the present paper and will be proved later on, see Cor. 5.11 below. O

Let us now consider a random section in RH® (X, £®L%). Recall that RH(X,£® L), endowed
with the inner product (2.2), is a Euclidean inner product of dimension N,. Let s4 be a standard
Gaussian vector in RH(X, € ® £4).

Lemma 2.4. For every d > di, Zs, is almost surely a smooth closed codimension r submanifold
of M.

Proof. Since d > di, RH(X,€ ® £4) is 0-ample. By a transversality argument (see [21, Sect. 2.6
for details), this implies that the restriction of s to M vanishes transversally for almost every
s € RHO(X,E ® L£4) (with respect to the Lebesgue measure). Thus, almost surely, sq restricted to
M vanishes transversally, and its zero set is a smooth closed submanifold of codimension 7. o

From now on, we only consider the case d > dy, so that Z,, is almost surely a random smooth
closed submanifold of M of codimension r. For simplicity, we denote Zg = Z,, and |dVy| = |dV;,]|.
Let ¢ € CO(M) and d > di, the real random variable (|dVy| ,¢) is called the linear statistic of
degree d associated with ¢. For example, (|dVy| ,1) is the volume of Zj.

2.4 The correlation kernel

For any d € N, the random section s € RH%(X,& ® L?) defines a centered Gaussian process
(sa(x))zex. In this section, we recall the relation between the distribution of this process and the
Bergman kernel of £ ® L.

Recall that (€ ® L) K (€ ® L£4)* stands for the bundle P} (£ ® L) ® P35 ((5 ® Ed)*) over

X x X, where Py (resp. P») denotes the projection from X x X onto the first (resp. second) X
factor. The distribution of (s4(x))zcx is characterized by its covariance kernel, that is the section
of (£ ® LY) X (£ @ LY)* defined by: (x,7) + Cov(sq(x),s4(y)) = E[sa(x) @ sa(y)*].

Definition 2.5. Let E,; denote the Bergman kernel of £ ® L% — X, that is the Schwartz kernel
of the orthogonal projection from I'(€ ® £4) onto H(X,€ ® L%).



Let (S1,d,---,5N,.d) be an orthonormal basis of RH?(X, £ ® £%), then it is also an orthonormal
basis of HO(X, € ® L?). Recall that, E; is given by:

q:(x,y) »—>Zszd ® si,a(y)*

This shows that F, is a real global holomorphic section of (£ ® £4) K (€ ® L£?)*. The following
proves that the distribution of (s4(x)).cx is totally described by Ey.

Proposition 2.6 (compare [22], Prop. 2.6). Let d € N and let sq be a standard Gaussian vector
in RHO(X,€ ® L), Then, for all z and y € X, we have: Cov(sa(z),s4(y)) = Ea(z,y).

Thus, the Bergman kernel of £ ® £ gives the correlations between the values of the random
section sg. By taking partial derivatives of this relation, we obtain the correlations between the
values of sq and its derivatives. More details about what follows can be found in [22, Sect. 2.3].

Let V¥ be a metric connection on £® L4, it induces a dual connection (V¢)* on (€ ® £4)*, which
is compatible with the metric (cf. [16, Sect. 0.5]). We can then define a natural metric connection
V¢ on Pf(€ @ L) — X x X whose partial derivatives are: V¢ with respect to the first variable,
and the trivial connection with respect to the second. Similarly, (V¢)* induces a metric connection
V4 on Py ((€®L£%)*) and V§ ® Id+Id ®V4 is a metric connection on (5 ® LYK (E @ LY*.

We denote by J, (resp. 9,) the partial derivative of V{ @ Id +1d ® V4 with respect to the first
(resp. second) variable. Let 8% Eq(x,y) € T,X @ (E® L) © (E® Ed) be defined by:

Yw e T, X, agEd(x,y) cw* = 0yEy(z,y) - w
Similarly, let 8,0} Eq(z,y) € T;X @ T,X @ (E® L) @ (€@ Ed) be defined by:

V(v,w) € TpX x T, X, &CagEd(ac,y) (v, w*) = 0,0, Eq(z,y) - (v,w).
The following corollary was proved in [22, Cor. 2.13].

Corollary 2.7. Let d € N, let V? be a metric connection on € ® L and let sq be a standard
Gaussian vector in RH®(X,€ @ L4). Then, for all x and y € X, we have:

Cov(Vds s( )) = E[Vgs ® S(y)*} = 0, Eq4(z,y),
Cov Vis) =E {S(JC) ® (Vds)*} = 08 Ea(x,y),

(s(z
Cov(Viks, Vis) = E|Vis @ (Vis)"| = 0,05 Eaa,y).

3 Estimates for the Bergman kernel

In this section, we recall useful estimates for the Bergman kernels. In Sect. 3.1 we recall the
definition of a preferred trivialization of £ ® £L? — X. Then we state near-diagonal and off-diagonal
estimates for a scaled version of Ey in Sect. 3.2 and 3.3.

3.1 Real normal trivialization

Notation 3.1. In the following, B4(a, R) denotes the open ball of center a and radius R in the
metric space A.

Let d € N, let us define a preferred trivialization of £ ® £? in a neighborhood of any point
of M. The properties of this trivialization were studied in [22, Sect. 3.1]. Recall that the metric g
on X is induced by the curvature of (£, hr). Since, hy is compatible with the real structures, cxy
is an isometry of (X, g) (see [22, Sect. 2.1] for details).

Let R > 0 be such that 2R is less than the injectivity radius of X. Let x € M, then the
exponential map exp, : Br, x(0,2R) — Bx(x,2R) defines a chart around z such that:

dycy = (exp,) ' ocy oexp, .



In particular, since T, M = ker(d,cx — Id), we have that exp, induces a diffeomorphism from
Br,m(0,2R) to By(x,2R) that coincides with the exponential map of (M, g) at .

We can now trivialize £ ® L? over Bx(z,2R), by identifying each fiber with (5 ® Ed)m by
parallel transport along geodesics, with respect to the Chern connection of £ ® £¢. This defines a

bundle map

021 Br,x(0,2R) x (E® L)) — (E® cd)/BX(MR)

that covers exp,. We call this trivialization the real normal trivialization of € ® £ around .

Definition 3.2. A connection V¢ on £ ® £¢ — X is said to be real if for every smooth section s

we have:
d

Yy € X, VZ(cdosoc;()zchch(y

)S© dycx.
Such a connection induces a connection on R(E ® Ed) — M Dby restriction.

Recall that ¢q denotes the real structure of £ ® £4. Let cd,o denote its restriction to (5 ® Ed)z,
then (dycx,cqs) is a C-anti-linear involution of Br,x(0,2R) x (£ ® £%)  which is compatible
with the real structure on the first factor. Since the Chern connection of £ ® £ is real (see [22,

Lem. 3.4]), the real normal trivialization is well-behaved with respect to the real structures, in the
sense that for all z € B, x(0,2R) and ¢ € (£ ® L) |

ci(pz(2,C)) = ¢u (ducx - 2,¢4,2(C)) -
Thus, ¢, can be restricted to a bundle map

d d

Br,m(0,2R) xR(E@ L), = R(ERL) 0 op
that covers exp,,.

Finally, it is known (cf. [22, Sect. 3.1]) that ¢, is a unitary trivialization, i.e. its restriction to

each fiber is an isometry. Similarly, its restriction to the real locus is an orthogonal trivialization

d
ofR(E QL )/BM(z,2R)'
The point is the following. The usual differentiation for maps from 7, X to (5 ® Ed)z defines

locally a connection V4 on (5 ® Ed) via the real normal trivialization. Since this trivial-
/Bx(z,2R)

ization is well-behaved with respect to both the real and the metric structures, V4 is a real metric
connection. Then, by a partition of unity argument, there exists a global real metric connection
V¢ on £ ® L4 that agrees with V¢ on By (z, R), i.e. V¢ is trivial in the real normal trivialization,
in a neighborhood of x. The existence of such a connection will be useful in the proof of our main
theorem.

3.2 Near-diagonal estimates

In this section, we state estimates for a scaled version of the Bergman kernel in a neighborhood
of the diagonal of M x M. As in the previous section, let R > 0 be such that 2R is less than the
injectivity radius of X. Let « € M, then the real normal trivialization ¢, induces a trivialization
of (ERLYK(E® Ed)* over By (x,2R) x Bx(z,2R) that covers exp,, x exp,. This trivialization
agrees with the real normal trivialization of (€ ® £4) K (€ ® £4)" around (z,z).

In the normal chart exp,, the Riemannian measure dVx admits a positive density with respect
to the Lebesgue measure of (T, X, g.), denoted by k : Br,x(0,2R) — Ry. Then, in the chart
exp, : Br,am(0,2R) — Bps(x,2R), the density of |dVas| with respect to the Lebesgue measure of
(ToM, gz) is /K.

Let us identify F; with its expression in the real normal trivialization of (5 ® Ed) X (5 ® Ed)*
around (z,z). Thus, the restriction of E4 to the real locus is a map from T, M x T, M to
End (R(€ ®Ed)z). Then, by [10, Thm. 4.18’] (see also [22, Thm. 3.5] for a statement with the
same notations as the present paper) we get the following estimate for E4 and its derivatives of
order at most 6.

10



Theorem 3.3 (Dai-Liu-Ma). There exist C; and Cy > 0, such that Vk € {0,1,...,6}, Vd € N*,
Vre M, Vw,z € BTIM(O,R),

d)n exp (—4 |z — wl?)

Dsz Ed(wﬂz) - (_ Id]R EQRLD),
" CONCE R
2n—+12

<O (1T V(] + 121) T exp (~CaVd |z — wll) + O(d)

where D* is the k-th differential for a map from T,M x T, M to End (R(S ® Ed)x), the norm on
T, M is induced by g, and the norm on (T;M)®k ® End ((5 ® [,d)m) is induced by g, and (hq)y.

The notation O(d~°) means that, for anyl € N, this term is O(dil) with a constant that does
not depend on x, w, z nor d.

Recall that z is fixed. We denote by the e4 the following scaled version of the Bergman kernel
around z:

YV, z € Brar (0,2R\/E) L ealw, 2) = (g)nEd (expz (%) , exp, (%)) RENERY

We consider e4 as a map with values in End (R(E ® Ed)m) using the real normal trivialization
around x. Note that ey highly depends on x, even if this is not reflected in the notation. In the
following, the base point x will always be clear from the context.

Let £ : R®” x R" — R be defined by &(w,z) = exp (—% [lw — z||2), where ||-|| is the usual
Euclidean norm. Let z € M, any isometry from T,M to R™ allows us to see £ as a map from
T, M x T,M to R. Let b, be a positive constant depending only on n and whose value will be
chosen later on. Then, using the same notations as in Thm. 3.3 we get the following.

Proposition 3.4. Let « € (0,1), then there exists C > 0, depending only on «, n and the geometry
of X, such that Vk € {0,1,...,6}, Vd € N*, Vo € M, Yw, z € By, 0(0,b,Ind), we have:

| Dbuusrea = (Dlust) 1ssocn, || < 0a~

Proof. First, we apply Thm. 3.3 for the scaled kernel e;. This yields that Vk € {0,1,...,6},
Vd € N*, Vo € M, Yw, z € By, 1(0, b, 1Ind):

HDé{w’Z) (ed(w, z) — % Id]R(g®£d)I>

2

where K : z — K ( \/E)' Since we used normal coordinates to define &, the following relations hold

< D L 0@ ) = 0(a ),

uniformly on Br, x(0, R):
w(z)=1+0(|2I’),  Dx=0(zl)  and  Vke{2....6}, Din=0(1).

By compactness, these estimates can be made independent of x € M. Then, we get the following
estimates for ¥ and its derivatives, uniformly in z € M and z € Br, 3(0, b, Ind):

In d)? 1 1
10 LB pg o) e g, pir-of1).

Therefore, Vk € {0,1,...,6}, Vd € N* Vo € M, Vw, z € Br,0(0,b, Ind):

E(w, z
HDécw,z) <m> - Décw,z)g

We will use the expressions of some of the partial derivatives of £. Let us choose any orthonormal
basis of T, M and denote by 0, (resp. 0y,) the partial derivative with respect to the i-th component
of the the first (resp. second) variable.

| =0(d™"). O
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Lemma 3.5. Leti,j € {1,...,n}, for all w= (wy,...,wy) and z = (21,...,2n) € T, M we have:
1 2
azié-(waz) = _(wi - zl) exp _5 H’LU - Z” )
1 2
Oy, €(2,y) = (wj — zj)exp | —5 [lw—=[" ],
1
and 9,,8,,€(z.9) = (B ws = )y — 5 exp (g w21 )

where ;5 equals 1 if i = j and O otherwise.

Proof. This is given by a direct computation. O

3.3 Off-diagonal estimates

Finally, let us recall estimates quantifying the long range decay of the Bergman kernel F;. These
estimates were proved by Ma and Marinescu in [24, Thm. 5].

Let S be a smooth section of R(E ® Ed) X R(E ®£d)* and let x,y € M. We denote by
S(z,y)||cr the maximum of the norms of S and its derivatives of order at most k at (z,y) € M xM,
where the derivatives of S are computed with respect to the connection induced by the Chern
connection of £ ® £? and the Levi-Civita connection on M. The norms are the natural ones
induced by hg and g.

Theorem 3.6 (Ma—Marinescu). There exist dg € N*, and positive constants C1 and Cy such that,
for all k € {0,1,2}, Vd > dy, Y,y € M, we have:

|Baa,y)ler < Cra™ % exp (~Cavldpy () )

where py(-,-) denotes the geodesic distance in (M, g).

4 Properties of the limit distribution

The estimates of Sect. 3.2 show that the family of random fields (sq(x))zen has a local scaling
limit around any point © € M, as d goes to infinity. Moreover, the limit field does not depend
on z. The limit is a Gaussian centered random process from R™ to R” whose correlation kernel is
€0 : (W, 2) = &(w, 2)I., where I, stands for the identity of R” and £ was defined in Sect. 3.2. This
limit process is known as the Bargmann—Fock process.

The goal of this section is to establish some properties of the Bargmann—Fock process. These
results will be useful in the next section to prove that, for d large enough, the local behavior of s4
around any given x € M is the same as that of the limit process.

In the following, we denote by (s(z)).crr a copy of the Bargmann—Fock process. Since ¢
is smooth, we can assume the trajectories of s to be smooth. Note that s is both stationary
and isotropic. Moreover, since e, = £1,., the field s is just a tuple of r independent identically
distributed centered Gaussian fields whose correlation kernel is €.

4.1 Variance of the values

The first thing we want to understand about s is the distribution of (s(0), s(z)) € R” ¢ R" for any
z € R™. In the following, we canonically identify R” & R" with R? @ R".
Let z € R™, then (s(0), s(2)) is a centered Gaussian vector in R? ® R” whith variance operator:

_ (ex(0,0) enc(0,2)\ _ (60,001, £(0.2)1\ _ [ 1 el
e(z)_(eoo(z,()) eoo(z,z))_(é(z,())[r §(z,z)]r)_<eéllzll2 1 >®IT' (4.1)

Let Q = % ({ jl) € O2(R) denote the rotation of angle Z in R?. We can explicitly diagonalize
©(z) as follows.

12



Lemma 4.1. For any z € R"™ we have the following:

_ el
Qemer@et) = (1 60 1 +eoéllz||2> ® Iy

Proof. Since (Q®1,)”" = Q* ® I, by Eq. (4.1), it is enough to notice that:

I L W R YR 0
Q<e;|z|2 L ]@= 0 pRSTNCY =

Lemma 4.2. For all z € R", det(0(z)) = (1 —e‘”z”z) . In particular, the distribution of
(s(0), s(z)) is non-degenerate for all z € R™\ {0}.

Proof. We take the determinant of both sides in Eq. (4.1). O

4.2 Variance of the 1-jets

Let us now study the variance structure of the 1-jets of s. For any z € R”, we know that
(s(0),s(2),dos,d,s) is a centered Gaussian vector in:

RFOR (RN QRN (R")"Q9R") ~ (ReoRa (R")*® (R")*) @ R".

Our goal in this section is to better understand its variance operator Q(z). In the following, we
write Q(z) by blocks according to the previous splitting. Let 0, (resp. 9,) denote the partial
derivative with respect to the first (resp. second) variable for maps from R"™ x R" to End(R"). Let
us also define 65 as in Sect. 2.4. Then, we have:

600(070> GOO(O,Z> ‘ (975600(0,0) 85600(072)

o0 9 0 o0 ) aﬁ [e ] ) 0 aﬂ o0 9
() = | 20 exlz2) | Oel20)  Giecl22) | gy (42
025(0,0)  Orex(0, 2) 89385600(0, 0) 81(95600(0, 2)
Oz (2,0)  Oreno(z, 2) 89385600(2, 0) 8185600(2, 2)
where
£(0,0)  €(0,2) | 95(0,0)  5E(0,2)
, £(2,0)  &(z,2) | 956(2,0)  9iE(z,2)
O (Z) — Y Y
9:£(0,0)  0:£(0,2) | 9,05£(0,0)  8,0%£(0, 2)
0,6(2,0)  024(2,2) | 0,086(2,0) 0,08¢(z, 2)
Let (6%1, cey %) be any orthonormal basis of R™ such that z = ||z|| 6%1 and let (dz1,...,dz,)

denote its dual basis. Let (e1, e2) denote the canonical basis of R?, we denote by B, the following
orthonormal basis of R2 @ (R ® (R")*) ~ R® R & (R*)* @ (R™)*:

B.=(e1®1,ea®1,e1 @dr1,ea @dzy,...,e1 Qdr,,es ® day,).
Lemma 4.3. For any z € R™, the matriz of Q' (z) in the basis B, is:
Sl o2
(] | 0
1 e sl=? )
0 ‘ (eféuzu? 1 ) ® dn-1

where I,_1 is the identity matrix of size n — 1 and, for all t > 0, we set:

1 e 3t 0 —\te— 3t
~ e~ 3t 1 \/ge—%t 0
Qt) = 4.3
®) 0 Vie 3t 1 (1—t)e 2t (43)
—Vte 3t 0 (1—t)e 32t 1



Proof. A direct computation yields the result, using the fact that z = (||z||,0,...,0) in the basis
( o . 2 ) Recall that the partial derivatives of & are given by Lem. 3.5. o

Bzy?" "7 Dzp,
Let z € R™, and recall that z* € (R")* was defined as z* = (-, z), where (-,-) is the canonical
scalar product of R”. We denote by z* ® z € End((R™)*) the map n — n(z)z*. Then Lem. 4.3
shows that, as an operator on R ® R @ (R™)* @ (R™)*:

1 o= bl 0 —e~3lel",
~ 4112 1 “Hlel” 0
e 2 €2 z
Q/(Z) = _1 2 -1 2 ’ (44)
B Y I 0 e sl=%(1, — 2* ® 2) In

where z* is to be understood as the constant map t — z* from R to (R™)*, z is to be understood
as the evaluation at the point z from (R™)* to R and I,, is the identity of R™. Indeed both sides
of (4.4) have the same matrix in the basis B.,.

We will now diagonalize explicitly Q(z), as we did for O(z) in the previous section. The main
step is to diagonalize Q(z).

Definitions 4.4. We denote by vy, va, v3, v4 and a the following functions from [0, +00) to R:

trol—edt L 14 (1 i test—e 3t [ Ly ig (L i
vy —e - — — Vg —e - Z
' 2 2) | ? 2 2) |
2 2
_1 t t 1 t t
vy it 1 +e 2t 3~ 1+<§) ; vg it —1 e 2t §+ 1+<§> ,
1—-4%
a:t»—>722.
t
1+ (%)

Note that, for all ¢ > 0, |a(t)| < 1, so that the following makes sense.

Definitions 4.5. Let by : t — /14 a(t) and b_ : t = /1 —a(t) from [0, +00) to R. For all
t > 0, let us also denote:

bo(t) —b-(t) —bi(t) —by(t)

Py =L [M+® b () b))
2 (b-(t) () —bp(t) b))
be(t) by(t)  b(t) —b_(t)

One can check that, for all ¢ > 0, P(¢) is an orthogonal matrix.

Lemma 4.6. For everyt € [0, +00), we have:

v1(t) 0 0 0
~ -1 0 wt) 0 0
0 0 0 wa(t)
Proof. See Appendix A. O

Corollary 4.7. Let z € R"™, identifying Q' (z) with its matriz in B,, we have:

(£t I g ey (LU I S )

or(fl21) 0 0 0
0 w(llzl®) 0 0 0
0 0 ws(llzl®) 0
= 0 0 0 wa(l=l?)
1—e— =112 0
0 e ) @I
0 14+e™ 2
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By Eq. (4.2), we get a diagonalization of Q(z) by tensoring each factor by I, in Corollary 4.7.

Lemma 4.8. For all z € R™\ {0}, we have det (2(z)) > 0, that is the distribution of the random
vector (s(0), s(z), dos, ds) is non-degenerate.

Proof. See Appendix A. O

4.3 Conditional variance of the derivatives

The next step is to study the conditonal distribution of (dys, d,s) given that s(0) = 0 = s(z), for
any z € R™\ {0}. Recall that (s(0), s(z),dos, d.s) is a centered Gaussian vector with variance Q(z)
(see Eq. (4.2)). Moreover, if z # 0, the distribution of (s(0), s(z)) is non-degenerate by Lem. 4.2.

Thus, (dps, d.s) given that s(0) = 0 = s(z) is a centered Gaussian vector in ((R™)* @ (R")*)®@R"
with variance operator:

AGz) = 950 e0c (0,0) Du0fecs(0,2) \ (Bmex(0,0) O oo (0,2) )(ew(o,o) oo (0,2) )_1 8% €0 (0,0) D4 ens (0,2)
T\ 020} eac (2,0) 820} ecs (2,2) Oz€oo(2,0) Ozeoc(2,2) ) \ eco(2,0) €co(2,2) 0 eas(2,0) Bleco(2,2) |

By Equations (4.2) and (4.4), for all z € R™\ {0}, we have A(z) = A'(z) ® I, where:

—n=1% _ 142 1 *
A(z) — In — {2 ¥ ® 2 ezl (I” T e s @ Z) 4.5
(2) = RYNENS; 1 . I =12 (4.5)
€ n T I 8% n T Tt 8%
As in the previous section, let us denote by (6%1, ceey %) an orthonormal basis of R™ such
that z = ||z]| a%l and let (dzi,...,dz,) denote its dual basis. Let (e1,es) denote the canonical

basis of R?, we define B’ to be the following orthonormal basis of R? @ (R™)* ~ (R")* & (R™)*:
Bl = (e1 ®@dxy,ex @dxy,... €1 @ dap, ez @ dxy).
Lemma 4.9. For any z € R™\ {0}, the matriz of A'(z) in the basis B, is:
N(ERN 0
1 -3=12 )
0 ( L2912 € ) X Infl
e 2% 1

where, for all t > 0, we set:

- 1- gt e 3 (1 - =Lt
A =1 ., , - : (4.6)
e ( - 1767t) 1 - l—e—t
Proof. Since z = ||z|| 6%1, we have 2* @ z = ||z|*dz; @ 6%1. Hence, the matrix of 2* ® z in
(dxq, ..., dxy) is:
2
ERTRY
0 0

Then the conclusion follows from Eq. (4.5). O

Remark 4.10. We can extend continuously Aatt=0 by setting /~\(0) = 0. This yields continuous
extensions of A’ and A at z = 0. Note that A(0) is not the variance operator of (dys,dps) given
that s(0) = 0.

Definitions 4.11. Let u; and us denote the following functions from R to R:
1 1 — et —te 3t
1—et4te 2t _

U1:t'—>ﬁ U22t|—> 1—@7%75
e 0 if ¢t =0.

if t £ 0,
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Once again, we will need an explicit diagonalization of A(z). Such a diagonalization is given
by the following lemma, once we tensor each factor by I,..

Lemma 4.12. Let z € R", identifying A'(z) with its matriz in B.,, we have:
w0 | 0
, . 0 ws(lz®)
QeL)AN()(Qel,) = l—e— %212 0
0 - e ) @I
0 14+e 22

Proof. By Lem. 4.9, we only need to check that, for all ¢t > 0,
0

Az o (w(t)
QA()Qt = ( A u2(t)) . O
Lemma 4.13. For all z € R"\ {0}, we have det (A(z)) > 0, i.e. the distribution of (dos,ds) given
that s(0) = 0 = s(z) is non-degenerate.
Proof. See Appendix A. O

By Lem. 4.8, Q(z) is a positive self-adjoint operator on (R@® R & (R")* @ (R™)*) ® R", for
all z € R™\ {0}, and so is its inverse. Hence, €2(z)~! admits a unique positive square root,
that we denote by Q(z)_%. Similarly, by Lem. 4.13, A(z) is a positive self-adjoint operator on
(R™)* @ (R™)*) @ R” and we denote by A(z)? its positive square root.

Lemma 4.14. The map z — (0 A(z)%) Q(z)"2 is bounded on R™\ {0}.
Proof. See Appendix A. O

4.4 Finiteness of the leading constant

The goal of this section, it to prove that the constant Z,, , defined by Eq. (1.2) and appearing in
Thm. 1.6 is well-defined and finite.

Definition 4.15. Let n € N* and r € {1,...,n}, for every t > 0 we set:
_ E[|det* (X (1))] |defi(Y(t))|] _ 2y (Vol (s"—r))2
(1—et)2 Vol (S7) ’
where (X (t),Y(¢)) is the centered Gaussian vector in M, (R) x M,.,(R) defined in Def. 1.5.
By the definition of Z,, , (see Eq. (1.2)), we have:

Dn,r(t)

1 o[ree no2
Loy == D, ()t dt.
YA :
Hence, we have to prove that ¢t — Dnm(t)t%2 is integrable on (0,400), which boils down to
computing the asymptotic expansions of E [|det (X (¢))| |det*(Y (¢))|] as t — 0 and as t — +oc.
Let us now relate this to the Bargmann—Fock process (s(z)).crn.

Lemma 4.16. Let z € R™ \ {0}. Let (6%1, ey a%) be an orthonormal basis of R™ such that
z=|z| 6%1 and let (C1,...,¢) be any orthonormal basis of R". Then, the matrices of dos and ds

in these bases, given that s(0) = 0 = s(z), form a random vector in My, (R) x M, (R) which is
distributed as (X(||z||2),Y(Hz||2)).

Proof. Let us denote by X(z) and Y (z) the matrices of dos and d.s in the bases (6%1, ey %)
and (C1,...,¢), given that s(0) = 0 = s(z). We denote by )~Qj (z) (resp. }Zj (2)) the coefficients of
X (resp. Y) forie{l,...,r}and j € {1,...,n}. By Lem. 4.9, the couples ()N(ij, 17”) are centered
Gaussian vectors in R? which are independant from one another. Moreover, the variance matrix
of ()N(U(z),f/l](z)) equals A(]|z]|%) if j = 1 and (67%1“2“2 67%1”2”2) otherwise. By Def. 1.5, this is

exactly saying that ()?(z), ?(z)) is distributed as (X(HZHQ), Y(HZHQ)). O
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Lemma 4.17. Letn € N* and r € {1,...,n}. Then, as t — 0, we have the following:

(=D ifr<n
E[|det™ (X (8))] |det (Y (£))[] ~ { (=7 =D} ’
%t if = n.
Proof. See Appendix A. O

Lemma 4.18. For alln € N* and r € {1,...,n}, we have the following as t — +oc:

E[|det™(X ()| |det- (Y (2))]] = (2)" (%) + O(te*%)

Proof. See Appendix A. O

Lem. 4.17 and 4.18 and the definition of D,, , (Def. 4.15) allows to derive the following.
Corollary 4.19. Let n € N* and r € {1,...,n}, then we have:

1
. O<—> ast — 0,
tnTDnm(t) - Vi
O(eii) as t — +oo.

In particular, I, , = % 0+°o Dn,T(t)tn%2 dt is well-defined and finite.

5 Proof of Theorem 1.6

This section is concerned with the proof of our main result (Thm. 1.6). Recall that X is a compact
Kahler manifold of complex dimension n > 1 defined over the reals and that M denotes its real
locus, assumed to be non-empty. Let £ — X be arank r € {1,...,n} real Hermitian vector bundle
and £L — X be a real Hermitian line bundle whose curvature form is w, the K&hler form of X.
We assume that £ and £ are endowed with compatible real structures. For all d € N, we still
denote by E,; the Bergman kernel of £ ® £¢. Finally, let sy denote a standard Gaussian vector
in RHO(X,E ® L£%), whose real zero set is denoted by Z,4, and let |dVy| denote the Riemannian
volume measure on Zg.

In Sect. 5.1 we recall Kac-Rice formulas and use them to derive an integral expression of
Var(|dVg|). Sect. 5.2 is concerned with the study of some relevant random variables related to
(sa(x))zens. Finally, we conclude the proof in two steps, in Sect. 5.3 and 5.4.

5.1 Kac—Rice formulas

In this section, we use Kac—Rice formulas to derive an integral expression of Var(]dVy]|). Classical
references for this material are [1, chap. 11.5] and [3, Thm. 6.3]. Since our probability space is the
finite-dimensional vector space RH?(X, £ ® L?), it is possible to derive Kac-Rice formulas under
weaker hypothesis than those given in [1] and [3]. This uses Federer’s coaera formula and the
so-called double fibration trick, see [21, App. C] and the references therein. The first Kac—Rice
formula we state (Thm. 5.1 below) was proved in [21, Thm. 5.3] and the second (Thm. 5.5 below)
was proved in [22, Thm. 4.4].

Recall that the Jacobian ‘detJ‘(L)‘ of an operator L was defined in Def. 1.4, that d; was defined
in Lem. 2.3 and that a connection is said to be real if it satisfies the condition given in Def. 3.2.

Theorem 5.1 (Kac—Rice formula 1). Let d > dy, let V< be any real connection on € ® L% and let
sq ~N(d) in RHO(X,E @ LY). Then for all ¢ € CO(M) we have:

EUEGqub(:c) |dvd|] =(2w)f%/m ﬂ)'E[\detL(vgsd)y\sd(m:o} AVae.  (5.1)

enr |det*(evg

The expectation on the right-hand side of Eq. (5.1) is to be understood as the conditional expectation
of |det*(Visq)| given that sq(z) = 0.
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Notation 5.2. Let A = {(z,y) € M? | x = y} denote the diagonal of M?2.
Definition 5.3. Let d € N and let (z,y) € M2\ A we denote by eviy the evaluation map:
evi o RHYX,E@LY) — R(E®LY) SR(E®LY) .
, z y
s — (s(2),s(y))-
Lemma 5.4. There erists do € N, such that for all (z,y) € M?\ A, evg,y 18 surjective.

This was proved in [22, Prop. 4.2] in the case r < n, using Kodaira’s embedding theorem. The
proof can be adapted verbatim to the case r < n. We will give an alternative proof using only
estimates on the Bergman kernel (Lem. 5.23 and 5.26), see p. 24 below.

Theorem 5.5 (Kac—Rice formula 2). Let d > da, let V¢ be any real connection on € ® L and let
sq ~N(Id) in RHY(X,E @ LY). Then for all ¢1 and ¢ € CO(M) we have:

/ 61(2) 2 () [V 2
(z,y)e(Za)?\A

1 ¢1(z)p2(y) 1 (wd 1 /—d d . 2
BT s ot fout T Lldet (V2| det (V)| vz ) = 0] Vi

E

(5.2)

Here, |AVir|? (resp. |AV,|?) stands for the product measure on M? (resp. (Z4)?) induced by |dVy|
(resp. |dVy|). The expectation on the right-hand side of Eq. (5.2) is the conditional expectation of
|det™ (Visq)| [det* (ijsd)| given that evd  (sq) = 0.

Proof. This formula was proved in [22, Thm. 4.4] in the case 1 < r < n. The hypothesis r < n
does not appear in the proof and can be changed to r < n without any other modification. O

Definition 5.6. Let d > max(d;,ds), and let V¢ be any real connection on £ ® £2. We denote
by Dy : M?\ A — R the map defined by:

E [[det* (Visa) ||det (Visa)|

‘detl (evgyy)‘

sale) = 0 = sa(y)]

Dd(xvy) =

E Udetl (Visa)| saly) = o}

sa(@) = 0] E[det” (Vsd)|
|dett (evd)| |dett (evd)|

Remark 5.7. Note that Dy does not depend on the choice of V. Indeed, we only consider deriva-
tives of s4 at points where it vanishes.

Proposition 5.8. For all d > max(dy,ds), we have for any ¢1,ps € CO°(M):

1

Var(Val) (61,62) = o [ 612165000 Pute ) Vi + 6 B4V 6102)

where 6y, equals 1 if r = n and 0 otherwise.

Proof. This was proved in [22, Sect. 4.2] for r < n, the case r = n requires an extra argument.
The following proof if valid for any € {1,...,n}. Let ¢1 and ¢o € C°(M), we have:

Var(|dVa) (61, ¢2) = E[(|dVal , ¢1) (|dVal , d2)] — E[(|dVa| , ¢1)] E[{|dVa] ,d2)].  (5.3)

Since Z4 has almost surely dimension n — r, the diagonal in Z; x Z; is negligible if and only if
r < n. Moreover, if r = n then both |dV;| and |dV,|* are counting measures. Then,

(IdVal , é1) ([dVal , ¢2) :/ $1(x)p2(y) |dVal”

(z,y)e(Za)?

- / 61(2)b2(y) [ AVl + 61m / 61 (2)62 () |V
(=,y)€(Za)*\A T€Z4
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almost surely. Hence

+ 0 E[([dVal , d1¢2)] . (5.4)
WE(Za)*\A

E[(|dVal , ¢1) ([dVal , ¢2)] = E l/( $1(x)da(y) [dVal”

We apply Thm. 5.5 to the first term on the right-hand side of Eq. (5.4). Similarly, we apply
Thm. 5.1 to E[{|dVy| , ¢:)] for ¢ € {1,2}. This yields the result by Eq. (5.3). O

By Thm. 1.2, if » = n, for all ¢, g2 € C°(M) we have:

n 2 n
E[(|dV. =d? —— dv, o(d=71).
Vil 160f) = s ([ a6 iavul) + ol ol OG5 )
Hence, in order to prove Thm. 1.6, we have to show that, for any n € N* and r € {1,...,n}:

/ $1(2)d2(y)Dalz, y) [AVa|* = "% ( / $102 |de|> Vol (8"7) Zo,r
M2\A M

01l 021l O(@™E ™) + [l1lo @, (Cod™") O(d %), (5.5)

where a, 8, Cg and Z,, , are as in Thm. 1.6.

This is done in two steps. The mass of the integral on the left-hand side of Eq. (5.5) concentrates
in a neighborhood of A of typical size ﬁ. More precisely, let us now fix the value of the constant
b, appearing in Prop. 3.4.

Definitions 5.9. We set b, = C% (% + 1), where Cy > 0 is the constant appearing in the expo-
nential in Thm. 3.6. Moreover, for all d € N*, we denote:

Ind
Ay = {(:c,y) € M? ‘ pg(x,y) < bnﬁ}v

where, p, is the geodesic distance in (M, g).

In Sect. 5.3 below, we show that, in Eq. (5.5), the integral over M? \ A4 only contributes
what turns out to be an error term. We refer to this term as the far off-diagonal term. In
Sect. 5.4 we complete the proof of (5.5) by studying the near-diagonal term, that is the integral of
d1()p2(y)Dalz,y) over Ag\ A. This turns out to be the leading term.

5.2 Expression of some covariances

In order to prove (5.5), we need to study the distribution of the random variables appearing in the
definition of Dy (see Def. 5.6). The purpose of this section is to introduce several variance operators
that will appear in the proof. In the following V¢ denotes a real connection on £ ® £¢4 — X.

5.2.1 Uncorrelated terms

First of all, let us consider the distribution of s4(z) for any # € M. Since s4 ~ N'(Id) and ev?

is linear (see Def. 2.2), s4(z) is a centered Gaussian vector in R (£ ® £%) with variance operator

evi(evd)* = By(z, ).

rn

d\
Lemma 5.10. For all x € M, we have ‘detJ- (evg)‘ = (-) (1+0(d™1)), where the error term
T

is independent of x.

1 a\"
Proof. We have |det (ev?)| = det(E4(x,2))?, and by Thm. 3.3 Eq(z,z) = <—> (Id+0(d™1)).
n
O
Corollary 5.11. There erists di € N, such that for all d > dy, for all x € M, ev? is surjective,

that is (sq(x)) is non-degenerate.
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Then, let d € N and x € M, we denote by ;2 : s — (s(x), V¢s) the evaluation of the 1-jet of a
section at the point z. The distribution of the random vector (sq(z), V4s,) is a centered Gaussian
in R (5 ® Ed)z &) (R (5 ® Ed)z ® T;M) with variance operator:

0 = Blife @ i2060)") = (et iy g feste 2 Cgael L)

([ Eq(xz,x) agEd(x,x)
" \O:E4(x,x) 0.0iEq4(x,x))"

If d > dy, then sq(z) is non-degenerate and the distribution of Vs, given that sq(z) = 0 is a
centered Gaussian whose variance equals
0,04 Ea(x, ) — 9, Eq(z, 7) (Eq(w,x)) ' 05 Eu(z, ).
By Thm. 3.3, this variance equals
dn+1

(IdR($®Cd)m®T;M +O(d_1))

as d goes to infinity and the error does not depend on z.

Remark 5.12. If (s,z) is such that s(x) = 0, then V%s does not depend on the connection V9.
This explains why the distribution of Vﬁsd given that s4(x) = 0, in particular its variance, does
not depend on V<.

ﬂ-n

Lemma 5.13. For every x € M, we have:

dn+1 % 1V01 (Snfr)
) (2 )27

E[’detJ‘(Vng)’ ‘Sd(x) = 0} = ( g Vol (Sn)

(1+0(d™)),

where the error term is independent of x.

Proof. This was proved in [22, Lem. 4.7] for < n. The proof is the same here. o

5.2.2 Correlated terms far from the diagonal

Let us now focus on variables where non trivial correlations may appear in the limit. Let d € N,
for all (z,y) € M?\ A, the random vector evf , (sq) = (sq(x),s4(y)) is a centered Gaussian vector
with variance operator:

d (ood V¢ _ d d <1 _ (Ea(w,z) Ea(z,y)
evz,y(evwﬂ = E[evz,y(5d> ®6V1,y(5d) } = (Ed(y,l') Ed(y,y)) y (56)

where we decomposed this operator according to the direct sum R(S ® Ed)m & R(S ® [,d)y.

Definition 5.14. For all d € N, for all (z,y) € M2\ A, we denote by:

6utry) = (1) (Lilee) Eata).

the variance of the centered Gaussian vector (%) 3 (sa(x), sa(y))-
d
x

Note that, by Lem. 5.4, for all d > ds, ev
degenerate and ©,4(x,y) is non-singular.

Let d € N and (z,y) € M?\ A, we denote by j&  : s (s(z),s(y), Vis, Vis) the evaluation
of the 1-jets at (z,y). Then j¢ (sa) = (sa(x),s4(y), Visq, Visa) is a centered Gaussian vector in:

(evi ) is non-singular, i.e. (sq(z), sa(y)) is non-

RE®LY), eR(ERLY) @ (R(ERLY), @T;M)® (R(s ®L%), ® T;M) :

whose variance operator j¢ (¢ )* equals:

Ed((E,(E) Ed(‘ray) G%Ed(l',l') azEd(‘ran)

d d 1 _ | Ealy,x)  Ealy,y)  OyEa(y,x) 0 Ea(y,y)
B0 ® (4650) | = | o Bl sy 0uBaleey) 0.0 Ealw,7) 0,08 Ea(w,y)
O:Eq(y,z) 0:Ea(y,y) 0.0iEq(y,x) 0.0;Eq(y,y)



Definition 5.15. For all d € N, for all (z,y) € M?\ A, we denote by:

Ei(z,x) Ei(z,y) dféagEd(:c,:c) dféagEd(:c,y)

n -3¢ —39F
Q) = (j) JEd(y,w) JEd(y,y) d 9iEa(y, x) d 9 Ea(y,y)
d d=20,FEq(x,x) d 20.Eq4(xz,y) d 18I85Ed(:c,:c) d 18I85Ed(z,y)
d_%amEd(yax) d_%azEd(yay) d_lazagEd(yax) d_lamagEd(yay)

the variance operator of the centered Gaussian vector: (%) 2 (sd(x), sa(y), ﬁvgsd, ﬁvgjsd).

Let us now assume that d > da, so that the distribution of (s4(z),s4(y)) is non-degenerate.
Then the distribution of (V%s,Vis) given that sq(x) = 0 = s4(y) is a centered Gaussian with
variance operator:

BmagEd(z,z) BIBgE,i(z,y) o (BmEd(m,z) BmEd(m,y)) (E,i(z,z) Eq(z,y) ) -1 Bf,Ed(z,w) B,E,Ed(%y)
8:0% Ea(y,x) 020% Ea(y,y) 0xEa(y,x) 0zEa(y,y) Ea(y,z) Ea(y,y) ! Ea(y,x) 8 Ea(y,y) |

Definition 5.16. For all d > ds, for all (z,y) € M?\ A, we set:
vk <<8z85EdEx,x§ azagEd(x,y)>

Aa(@y) =777 \\ 0,08 Ealy,x) 0,0 Ealy,v)
o <6$Ed(.’L',.’L') azEd(‘Tay)> <Ed(.’L',.’L') Ed(‘ray)>1 (agEd(‘T’x) agEd(%y))
:Ea(y,z) 0:Ea(y,y)) \Ea(y,x) Ea(y,y) O:Eq(y.x) 0iEq(y,y)) |’

n

1
3
which is the variance of the Gaussian vector < T ) (Vgsd, Vst) given that sq(x) = 0 = s4(y).

dn—i—l

Remark 5.17. Once again, A4(z,y) is independent of the choice of V¥, and so is the distribu-
tion of (Visq, Vlsq) given that sg(x) = 0 = sq(y). On the other hand, the distribution of
(sa(z),sa(y), Visa, Visq) heavily depends on V7, and so does Q4(z,y). Hence, we will need to
specify a choice of V¢ at some point when dealing with Qg.

5.2.3 Correlated terms close to the diagonal
Finally, we need to consider the distribution of the 1-jets of sq at x and y € M, when the distance
between x and y is of order ﬁ. As in Sect. 3, let R > 0 be such that 2R is less than the injectivity
radius of X. There exists d3 € N such that, for all d > d3, bn% < R.

Let d > d3 and let (z,y) € Aq\ A. Using the real normal trivialization of £ ® £¢ around = (see

n

Sect. 3.1), we can see (5)? (sq(x),sa(y)) as a random vector in R(£ @ Ed)m OR(E® [,d)m. Since
the distance from x to y is smaller than the injectivity radius of M, we can write y as exp, ﬁ)
for some z € T,, M. Moreover ||z|| = vVd p,(,y) < b, Ind.

Definition 5.18. Let d > ds, let © € M and let z € By, p(0,b,Ind) \ {0}, we set:

04(2) = O4 <x,expz <%>> ,

seen as an operator on R(E ® Ed)x ® R(E ® Ed)x via the real normal trivialization centered at x.

Remark 5.19. Beware that ©4(z) depends on z, even if this is not reflected in the notation.
However, we will show that the limit of ©4(z) as d — 400 does not depend on .

Recall that eq was defined by Eq. (3.1) as a map from T, M x T, M to End (R E® Ed)x). The
definitions of ©4(z,y) (Def. 5.14) and eq show that, for all d > ds, for all x € M and for all

z € Br,m(0,b, Ind) \ {0}: (0,0) eq(0, 2)
Oa(2) = (ej(z:O) GZ(Z:Z)) ' o

We can define Q4(z) and Ag(z) similarly and express them in terms of e4 and its derivatives.
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Definition 5.20. Let d > d3, let © € M and let z € By, p(0,b,Ind) \ {0}, we set:

o -0 mom (1))

seen as an operator on (ROR®T;M @ Ti M) @ R(E® Ed)m via the real normal trivialization
centered at x.

Let V¥ be a real connection on £ ® £? such that, in the real normal trivialization around x, this
connection coincides over the ball Br, x (0, R) with the usual differentiation for maps from T, X to
(5 ® Ed) The existence of such a connection was established at the end of Sect. 3.1. Then, by
Def. 5.15 and 5. 20, we have for all d > ds, for all x € M and for all z € By, (0,b,Ind) \ {0}:

€q(0,0) eq(0, z) a%ed ,0) G%ed(o,z)
Qu(z) = | a0 ealz2) - Ghealz,0) - Fica(z,2) (5.8)
d 05€4(0,0)  0zeq(0,2) Oy 8 ed( ,0)  9,0%eq(0,2) ’
Ozeq(2,0) Oreq(z,2) O 8 ed(2,0) 8z856d(z,z)

Definition 5.21. Let d > max(dy,d3), let € M and let z € Br:a(0,b,Ind) \ {0}, we set:

Aa(z) = Ay (:E,expx (%)) :

seen as an operator on (ToM & T M) ® R(E ® Ed)x via the real normal trivialization around x.

Then, for all d > max(dz, ds), for all 2 € M and all z € Brxp(0,by,Ind) \ {0} we have:

Ox 8% (0,0) 0O, 8% (0,2) 0:€4(0,0)  0,e4(0, 2) 8% (0,0) O%eq(0, 2)
Aalz)= <8 8%3( ,0) O 863( ))<5zej(za0) &Cez(, )>®d() (8%3( ,0) 3363(2,2))'

5.3 Far off-diagonal term

In this section, we state that the far off-diagonal term in Eq. (5.5) only contributes an error term.
This was already proved in [22] for » < n. The proof is the same for » = n, so we refer to [22] for
the proof. Lem. 5.23 below is used in the proof of Prop. 5.22 but is also of independent interest
for our purpose.

Proposition 5.22. Let ¢1,¢p2 € C°(M), then we have the following as d — +o0:
[ 6@0awPata) |4Vl = 6] o] O 7Y).
M2\Ag

where the error term is independent of (¢1, ¢2).

Lemma 5.23. For every (x,y) € M2\ Ay, we have:

Oa(e,y) = (d) (Ed(o . Ed((;,y)> (d+0(@™57).

where the error term is independent of (x,y) € M?\ Ay.

Proof. Since (z,y) € M?\ Ag4, we have py(z,y) > bn%. With our choice of b, (see Def. 5.9), the
error term in Thm. 3.6 is then O(dn%k’l), uniformly on M2\ A4. Thus, by Thm. 3.6,

0utr) = (3)" (P 0 Y voqe.

The results follows from the fact that the leading term is Id +O(d~1), by Thm. 3.3. O
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5.4 Near-diagonal term

In this section, we conclude the proof of Thm. 1.6, up to the technical lemmas whose proofs were
postponed until Appendices A and B.

Definition 5.24. Let d > max(dy,ds,ds), let © € M and let z € By, a(0, b, Ind) \ {0}, we define:

Dy(a,2) = d~"Dy <x,expz <%>) .

Recall that D,, , was defined by Def. 4.15. The main result of this section is the following.

Proposition 5.25. Let a € (0,1), then for all x € M, for all z € Br,m(0,b,1nd) \ {0} we have:
2 — —a
Da(w,2) = Dy (I1217) (14 0(d7)) + O(d™),

where the error terms do not depend on (z, z).
First, let us prove that Prop. 5.8, 5.22 and 5.25 together imply Thm. 1.6.

Proof of Thm. 1.6. The main point is to compute the asymptotics of the near-diagonal term in
Eq. (5.5). Let us fix a € (0,1), 8 € (0,3) and ¢1, ¢ € CO(M). Let « € M, recall that v/ is the
density of |dVjs| with respect to the Lebesgue measure, in the exponential chart centered at x,

where x was introduced in Sect. 3.2. Then, by a change of variable y = exp,, (ﬁ), we have:

/ 61(2)b2(4)Da(z,y) [V 2 =
Ad\A

n

d—3% = i) Sl dvil. 6.
/IEI\/I ¢1(x) /ZEBTIM(O,bn lnd) ¢2 <esz (ﬂ)) Dd(z, Z)KI (\/E Z| VM| (5 9)

As we already discussed in Sect. 3.2, (z) = 1+ O(||z||*) and the error term is independent of z.

Hence, & (ﬁ) P14 O(%) and by Prop. 5.25, for all v € (a, 1),

=))p (i)%d _
/ZEBkaf(O,bnlnd)¢2 (eXpZ(\/a)> a(z, )k =) a

</ze3w<o,bn e <e"pf (ﬁ)) D"”(”Z”)dZ) (1+0(d™)) + léall, o(“jl‘j)") |

(5.10)

Since v > a, (Ind)"d~" = O(d~*). Similarly, there exists Cz > 0 such that bn% < Cpd " for all
d € N*. Then we have:

/ZEBTIIW(O,bn In d) <¢2 <eXp””<%>) - (752(50)) Dy (|2]7) dz

< @y, (Csd™") /

ZEBTI M (O,bn, In d)

D (12)] a2, (5.11)

where wy, is the continuity modulus of ¢ (see Def. 1.3). Besides, by Cor. 4.19,

n—2

1 fbnln d)? ~
/ Darlal®)]as = Vol (5) 5 [ Dastr5
2€ By v (0,by, Ind) 2 Ji—o (5_12)

= Vol (8"71) (T + O #0297 ),
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and the error term is O(d~'), since 1(b,Ind)? > Ind for d large enough. By Eq. (5.10), (5.11)
and (5.12), the innermost integral on the right-hand side of Eq. (5.9) equals:

¢2(2) Vol (§"71) L ;- + @y, (Cpd™") O(1) + || 92]| oo O(d™),

and the error terms are independent of € M and (¢1, ¢2). Finally, by Eq. (5.9),

/ 01()2(y)Dala,y) |dVay* = a3 (/ 616 |del) Vol (8"7") T,
A\A "
+ (#1100 @52 (Cﬂd_ﬂ) O(d™™ %) + ||n ||, |p2]l o, O =2 ).

We conclude the proof by combining this last relation with Prop. 5.8, 5.22 and, in the case r = n,
Thm. 1.2 for ¢1¢o. O

The remainder of this section is mostly dedicated to the proof of Prop. 5.25. We will deduce
this proposition from several technical lemmas stated below.

Let x € M, then, any choice of an isometry between T, M and R™ and an isometry between
R(S ® Ed)m and R" allows us to see the Bargmann—Fock process (s(z)).ern, studied in Sect. 4,

as a smooth Gaussian process from T,M to R(S ® [,d)m. The distribution of this process does
not depend on our choice of isometries. Thus, in the following, we can consider ©(z) and O4(z)
(resp. (2) and Q4(z), resp. A(z) and A4(z)) as operators on the same space.

Lemma 5.26. Let o € (0,1), then for all x € M, for all z € Br,1(0,b,Ind) \ {0} we have:
0(2)7204(2)0(2) "2 =1d+0(d™"),
where the error term does not depend on (x, z).

Proof. See Appendix B. O

Remark 5.27. One could wonder why Lem. 5.26 does not state that ©4(z) = O(z) (Id +O(d~%)),
which would be somewhat simpler. First, note that this statement is not equivalent to Lem. 5.26,
since some of the eigenvalues of ©(z) converge to 0 as z — 0. In fact, this alternative statement
turns out to be false in general. Moreover, even if ©,4(z) is a linear map, it represents a variance,
i.e. something intrinsically bilinear. It is then quite natural to consider ©(z)~204(2)0(z)" 2 since
this is how ©4(z) transforms if we act on R(E ® Ed)x by @(z)%. This remark also applies to
Lem. 5.28 and 5.29 below.

Let us forget about the proof of Prop. 5.25 for a minute, and prove the existence of do (see
Lem. 5.4) as a corollary of Lem. 5.23 and 5.26. Note that the proofs of these lemmas only rely on
the estimates of Sect. 3, so there is no logical loop here.

Proof of Lem. 5.4. We want to prove that, as soon as d is large enough, evg,y is surjective for all
(x,y) € M?\ A, that is det (ev‘iﬁy(ev‘iy)*) # 0. By Eq. (5.6) and the definition of ©4 (Def. 5.14),

det (ev? (evl )*) = <;>2m det (€4(x.1))

so we have to show that det (©4(z,y)) does not vanish on M2\ A, for d large enough. By Lem. 5.23
and Thm. 3.3,
det (B4(z,y)) =1+0(d™ "), (5.13)

uniformly on M2\ Ay. Let (x,y) € Ag\ A and let us assume that d > d3 so that we can write y

as exp, (ﬁ) with z € Br, (0,0, Ind) \ {0}. Then, by Lem. 5.26 and 4.8,

det (Ba(w,y)) = det (04(2)) = det (8(2) (1+0(Vd) ) = (1- e*l\zllz)r (1+0(Vd)). (14)

uniformly on Ag \ A. The result follows from Eq. (5.13) and (5.14). O

24



We can now go back to the proof of Prop. 5.25.
Lemma 5.28. Let a € (0,1), then for all x € M, for all z € By, (0,b,1Ind) \ {0} we have:

Q(2)"2Q4(2)Q2) "2 = 1d+0(d~°),
where the error term does not depend on (x,z).

Proof. See Appendix B. O
Lemma 5.29. Let a € (0,1), then for all x € M, for all z € Br,p(0,b,1Ind) \ {0} we have:

A(2) "2 Aa(2)A(2) "2 =1d+0(d~°),

where the error term does not depend on (x,z).

Proof. Let o € (0,1). Let € M and z € Br, (0,0, Ind)\ {0}. By Def. 5.20, 24(z) is an operator
on:

(RP@R(E®LY),) e (TrM)*oR(E®LY) ).
Using this splitting, we write Q4(z) by blocks as:

thus defining Q}(z) and Q3(z). For d large enough, ©4(z) is invertible and its Schur complement
is Ag(2) = Q%(2) — QL(2)04(2) 1QL(2)*. Tt is then known that A4(z)~! is the bottom-right block
of Q4(2)~1, that is:

M =0 1) 2o (1) = 0 10) (26) 7+ 0o e ()

where the second equality is given by Lem. 5.28 and the error term is independent of (z,z).
Similarly, A(z) is the Schur complement of O(z) in (%), so that

_ /(0
Az)"'=(0 1d)Q(z)~" <Id> .
Since by Lem. 4.14, (0 A(z)%) Qq(2)~% is bounded, A(2)% Aq(z) *A(2)% = Id +O(d~®), and the

error term still does not depend on (z, z). o

Lemma 5.30. Let o € (0,1), let x € M and z € By, M( ,bnInd) \ {0}. Let X4(z) and Yq(2) be
random vectors in T M & R(E ® LY such that (Xa(z),Ya(z)) ~ N(Aa(2)). Then we have:

E [|det™(X4(2))| [det™(Ya(2))|] = E[|det™ (Xoo(2))] [det™ (Yo (2))]] (1 4+ O(d™*))
where (Xoo(2), Yoo (2)) ~ N(A(2)) and the error term does not depend on (z, z).

Proof. See Appendix B. O

We conclude this section with the proof of Prop. 5.25. Recall the definitions of D, ()
(Def. 4.15), Dy(x,y) (Def. 5.6) and Dg(z, z) (Def. 5.24).

Proof of Prop. 5.25. Let us fix o € (0,1). Let € M and z € Br,p(0,b,1nd) \ {0}, we set
Yy = exp, (\f) We have defined ©4(z) and Ag4(z) so that:

1 B[ (98 e (945 [0) =0 = 50)] _ a0
dr |detJ- (evg y)| det (@d(z)) ’
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where (X4(z), Ya(2)) ~ M(A4(2)). By Lem. 5.26 and 5.30, this equals:

E[|det™(Xoo(2))] [det (Yoo (2))]
det (0(2))?

(1+0(d™®)),

where (Xoo(2), Yoo(2)) ~ N(A(2)) and the error term does not depend on (z,z). By the defini-
tion of A(z) (cf. Sect. 4.3) (Xoo(2), Yoo(2)) is distributed as (dos,d.s), where s is a copy of the
Bargmann—Fock process from T, M to R(E ® Ed)m. Then, by Lem. 4.16,

where (X(HZHQ),Y(HZHQ)) was defined by Def. 1.5. Besides, det (9(z)) = (1fe*llzl\2)T by
Lem. 4.1, so that:

E [|det (Xoo(2))| [det™ (Yoo (2))|] = IEHdetJ‘(X(||z||2))‘ ’detJ‘(Y(HzHQ))

| E||det* (Visq) ||det (Visa)|
dr |dett (eve )|

z,y

sa(@) = 0 = saly)]

<Dn,r (1=17) + my” (%)7 (1+0(d)).

Besides, Lem. 5.10 and 5.13,

1 EDdetJ‘ (Vgsd)} sd(:c) = 0:| E[|detl- (std)| Sd(y) = 0:| , Vol (Snfr) 2 1
& [detL (evd)| et (evd)| = (2m) < Vol (57) > +0(d™)

This yields the desired relation. O

6 Proof of Theorem 1.8

The goal of this section is to prove that the leading constant in Thm. 1.6 is positive. Sect. 6.1
is concerned with the definition and proprieties of Kostlan-Shub—Smale polynomials. In Sect. 6.2
we recall some facts about Wiener chaoses. In Sect. 6.3 we compute the chaotic expansion of the
linear statistics (|dVy| , ¢). Finally, we conclude the proof of Thm. 1.8 in Sect. 6.4.

6.1 Kostlan—Shub—Smale polynomials

In this section, we describe a special case of our real algebraic framework. This is the setting we
will be considering throughout the proof of Thm. 1.8. A good reference for the complex algebraic
material of this section is [16].

6.1.1 Definition

We choose X to be the complex projective space CP"™ with the real structure induced by the
complex conjugation in C"*!. The real locus of X is the real projective space RP". We set
L =0(1) = CP"™ as the hyperplane line bundle, that is the dual of the tautological line bundle:

O(-1) ={(¢,z) e C*"*' x CP" | ¢ € x} — CP™.

Recall that ample line bundles on CP™ are of the form O(d) = (O(1))®? with d € N* (see [16,
Sect. 1.1]). The complex conjugation and the usual Hermitian inner product of C"*! induce
compatible real and metric structures on O(—1), hence on O(1) by duality. The resulting Hermitian
metric on O(1) is positive and its curvature is the Fubini-Study Ké&hler form on CP". With our
choice of normalization, the induced Riemannian metric is the quotient of the Euclidean metric on
§2ntl c C™*l. Finally, we choose £ to be the rank = trivial bundle C" x CP" — CP", with the
compatible real and metric structures inherited from the standard ones in C".
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Notations 6.1. Let a = (ag,...,a,) € N**1 we denote its length by |a| = ag + -+ + a,,. We
also define X® = X{§--- X% and o! = ag!---a,!. Finally, if |o|] = d, we denote by (i) the

. . . i
multinomial coefficient %.

It is well-known (cf. [6, 7, 17, 22]) that RH°(CP", C"®O(d)) is the space (R3°™[X, ..., X,,])" of
tuples of real homogeneous polynomials of degree d in n+1 variables. The r terms Rgom[Xo, ey X0
in RH(CP", C" ® O(d)) are pairwise orthogonal for the inner product (2.2). Besides, in restriction
to one of these terms, (2.2) equals:

1 - 2
P,Q) — ha(P(z), dVepn | = ——— P “lI=17 gz, 6.1
Q)= [ hP@). Q) Wer| = i [ P@RE e )
An orthonormal basis of RE™[X, ..., X,,] is then ( (itg!)!\/ (i)X”‘) . Hence, a standard
|a|=d

Gaussian in RH?(CP",C" ® O(d)) is a r-tuple of independent random polynomials of the form:

\/% > aq (Z)X”‘, (6.2)

lo|=d

where the coefficients (aa)w:d are independent real standard Gaussian variables. Such a random
polynomial is called a Kostlan—Shub—Smale polynomial (KSS for short).

6.1.2 Correlation kernel

In this section, we study the distribution of the KSS polynomial (see Eq. (6.2)). In the setting of
Sect. 6.1.1, E, is the Bergman kernel of C" ® O(d) — CP". Since the first factor is trivial, we have
Ey = I, ® E/}, where I, is the identity of C" and E is the Bergman kernel of O(d) — CP". Note
that E is the correlation kernel of the field s/, defined by one KSS polynomial, seen as a random
section of O(d). By Eq. (6.2) we have:

Euten) = Elsilo) w50 = o Y (4) 3@ e xe

!
|| =d

Note that (6.1) is invariant under the action of the orthogonal group O,1(R) on the right.
Hence, the distribution of KSS polynomials (6.2) and E’; are equivariant under this action. Since
On+1(R) acts transitively on the couples of points of RP" at a given distance, E/,(z, y) only depends
on the geodesic distance py(z, y), and the same holds for derivatives. Loosely speaking, this implies
the following, where derivatives are computed with respect to the Chern connection.

1. The variance of s/;(x) does not depend on z € RP".

2. For all z € RP", s/;(z) and VZs/, are independent.

3. If (i e ) is any orthonormal basis of T, RP", then g%:{’(x) and g%:?(ac) are independent

Oz’ ) Oz

. - . . 9s’ . .
if i # j. Moreover, the variance of 522(z) does not depend on 4, nor on our choice of
orthonormal basis, nor on x € RP".

These properties are very specific of the case of KSS polynomials. They will be useful in Sect. 6.3,
to compute the Wiener-Ito expansion of (|dVy|,¢). We do not give more details here, since
Properties 1, 2 and 3 can also be deduced from the expression of E/; in local coordinates that we
derive below.

6.1.3 Local expression of the kernel

Let € RP"™, we want to compute the expression of £/ in some good coordinates around xz. We
could use the real normal trivialization, but the computations would be cumbersome. Instead, we
use a slightly different trivialization. Since E/; is equivariant under the action On41(R), we can
assume that x =[1:0:---:0].
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We have a chart ¢, : (21,...,2n) —> [1: 21 ¢ --+ : 2] from R™ to Bgpn (m, g) We trivialize
O(d) over Bgpn (x, g) by identifying each fiber with O(d),, by parallel transport with respect
to the Chern connection V¢ along curves of the form t + 1), (tz) with z € R™. Thanks to this
trivialization, we can consider E/, as a map taking values in R. Recall that we defined a scaled
version e4 of the Bergman kernel E; by Eq. (3.1). The following is related without being an exact
analogue. For all w, z € R", we set:

d
§a(w, 2) = mEd (Y2 (w), ¥ (2)) - (6.3)

A computation in local coordinates yields the following lemma. The Chern connection V¢
coincides at the origin with the usual differential in our trivialization. Hence taking the values at
(0,0) of the following expressions proves that s/, satisfies Properties 1, 2 and 3 (cf. Sect. 6.1.2).

Lemma 6.2. Let d € N* and let 4,5 € {1,...,n}. Then for all w,z € R™ we have:

d
1+ (w,2)

- 2 2 ’
V14 lhol®y/1+12]

awigd(w’z) :dgd(waz) ( =

Ea(w, 2)

w;
T+ (w,2) 1+ |w|?)’

Oy, &a(w, 2) = d&q(w, 2) (1 +7“<U;U 3 +zﬁZ”2> ’
déij _ d2wiwj B dQZiZj
&ciayjéd(wx)*fd(w,z) <1+<w,z> (1+<wvz>)(1+|\w|\2) (1+<w,z>)(1+||z”2)
+ d2’LUiZj + (d2 — d)ZZ’LUJ )
L+ )@+ ]z (4 (w,2)? )"

where §;; =1 if i = j, and 0;; = 0 otherwise.

6.2 Hermite polynomials and Wiener chaos

In the setting of KSS polynomials, we consider RH(CP",C" ® O(d)) = (Rgom[Xo, . .,Xn])r,
equipped with the inner product (6.1). For simplicty, in this section and the following, we denote
by Vg this Euclidean space and by dvy its standard Gaussian measure. With these notations,
(Vy,dvg) is our probability space and we denote by L!(dvy) (resp. L?(dv,)) the space of integrable
(resp. square integrable) random variables on this space. Thm. 1.6 shows that for d large enough,
for all ¢ € CO(RP™), (|dVy| ,¢) € L?*(dvg). The proof given in Sect. 5 shows that this is true for
any d > max(dp,dy, ds,ds), in this framework this is true for any d € N*. The idea of this section
is to find a nice orthogonal decomposition of L?(dr,). We will study (|dVy| ,#) thanks to this
decomposition in Sect. 6.3. These techniques were already used in a similar context in [2, 11, 12, 25|,
for example. See [28] for background on the following material.

Definition 6.3. For all k£ € N, we denote by Hj, the k-th Hermite polynomial. These polynomials
are defined recursively by: Hy =1, H; = X and, for all k € N*, Hp1(X) = X Hp(X) —kHp—1(X).

Remark 6.4. Equivalently, one can define Hy by: Hy =1 and Vk € N, Hyy = X Hy, — Hj,.

Lemma 6.5. Let k € N, then Hy is a polynomial of degree k which is even if k is even and odd if
k is odd. Moreover,

2k)!
Hoy(0) = (—1)* (zkk! and Hoy1(0) = 0.
Proof. This is proved by induction, using the recursive definition of Hy. O
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Let us denote by duy the standard Gaussian measure on RY. We also denote by L?(duy) the
space of square integrable functions with respect to duy. Recall that the family ( ﬁH k)k . isa
: €

Hilbert basis of L?(du;) (see [28, Prop. 1.4.2]). Similarly, in dimension N, the family:

{H \/%Hm(xi) o€ NN}

is a Hilbert basis of L?(duy). The result in dimension 1 shows that this family is orthonormal.
Then, one only needs to check that the space of polynomials in N variables is dense in L2(duy).
For N =1 this is proved in [28, Prop. 1.1.5], and the same proof works in any dimension.

As in Sect. 5, we denote by sy a generic element of (Vy, dry), that we think of as a standard
Gaussian vector in V. Let n € VJ, then n(sdq) € L2(d1/d) is a real centered Gaussian variable.
Moreover, for any 7,7 € V;, we have E[n(sq)n'(sa)] = (n,n'). Thus, V; is canonically isometric
to a subspace of L?(dvy), via n +— n(sq). From now on, we identify V; with its image, so that
V¥ C L*(dyy) is a centered Gaussian Hilbert space.

Definition 6.6. Let (71, ...,7y,) denote an orthonormal basis of V, that is the (1;(sa))ie{1,... . N4}
are independent real standard Gaussian variables. For all ¢ € N, we define Cy[q], the g-th Wiener
chaos of the field s4, as the subspace of L?(dvy) spanned by the orthogonal family:

{HHM (771')

Remarks 6.7. e (C,4[0] is the space of constant random variables in L?(dvg) and Cy[1] = V.

a e NV o] :q}.

e We do not need to take the closure in the definition of Cy[q] since it is finite-dimensional.

Lemma 6.8. The Wiener chaoses (Cqlq])qen of sq do not depend on the choice of the orthonormal
basis (n1,...,mn,) appearing in Def. 6.6.

Proof. Let (n1,...,mn,) and (11, ..., ny,) be two orthonormal basis of V,f. There exists an orthog-
onal transformation U of V such that, for all i € {1,..., Ng}, ; = U(n;). The situation being

symmetric, we only have to prove that, for any 8 € NV¢ such that || = ¢, Hiv:dl Hp, (n;) is a linear
combination of elements of the family: {Hiv:dl Ho,(Umn)) | o € NV |a] = q}. Dropping the de-
pendence on d, this amounts to proving that: if X = (Xi,..., Xy) € RY and U € On(R) then, for

all 3 € NV such that 8] = g, Hfil Hp, (X;) is a linear combination of the (vazl HQ(U(Xz)))

lal=¢

By [28, Prop. 1.4.2], we have:
¥ te L
VteR", ) (H Hai<Xi)> — = e <<t,X> - T) :
aeNN \i=1
where (-, -) is the standard inner product of RY and |-|| the associated norm. The right-hand side
being invariant under orthogonal transformation, we have:
N N
n ) _ t*
vt € R", > (HHOLi(U(Xi))> - ST Heu(X3) o
aeNN \i=1 aeNN \i=1
Now, the components of U(t) are homogeneous polynomials of degree 1 in (¢1,...,tx). Hence
(U(t))* can only contribute terms of degree |a| to the sum. We conclude by identifying the
coefficients of these power series of the variable t. O

Lemma 6.9. For all d € N*, @ .y Calq] is dense in L?(dvg). Moreover, the terms of this direct
sum are pairwise orthogonal.
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Proof. The family (Hff\iil H,, (Xl)) . being orthogonal, the (Cylq])q4en are pairwise orthogonal
aeN"d

by definition. Let (s1,4,...,Sn,,4) be an orthonormal basis of V5. We have sq = >_ a;s; 4, where
the a; are independent N(1). For any i € {1,..., N4}, let n; = (-, s;.4), so that 7;(sq4) = a;. Then,

for any ¢ € N, Cy[q] is spanned by the random variables (Hivzdl H,, (ai))l Y
al=q
Any square integrable functional of sq can be written as F(aq,...,an,), with F € L*(dux, ).

The conclusion follows, since the span of {vazdl H,,(X;) ‘ a € NNd} is dense in L?(dun, ). O

Notation 6.10. Let d € N* and let A € L?(dvy). For any ¢ € N, we denote by A[q] the g-th chaotic

component of A, that is its projection onto Cqlg]. Then, we have A =3\ Alg] in L?(dvg).
By definition, A[0] = E[A]. Moreover, the Cy[q] being pairwise orthogonal, we have E[A[¢]] =0
for any ¢ € N*, and Var(A) = _ . Var(Alq]).
6.3 Wiener—Ito expansion of the linear statistics
Recall that we consider a standard Gaussian section sq € Vg = (Rgom [Xo, .. .,Xn])r and that

|dVg| denotes the Riemannian measure of integration over its real zero set. Let us fix d € N* and

¢ € CO°(RP"). By Thm. 1.6, (|dVy4| ,¢) € L?(dvg). The goal of this section is to compute the

chaotic expansion of these variables. For all ¢ € N, we denote (|dVy| [q], ¢) for ({|dVa] , o)) [q]-
Since (|dVy]| ,¢) € L*(dvy), for any A € L?(dvg) we have (A (|dVq| , ¢)) € L (dvg) and:

Bl avi| .0 =E| [ A .

Even if A depends on s4, we can apply a Kac—Rice formula (cf. [22, Thm. 5.3]). Thus, we have:

E[A(|dVd| ,¢)] = (2m) % / ﬂE[A |det™ (Visy)|

erpn |dett(evg))|

sq(x) = 0] |dVken |,

Recall that sg4, is a tuple of independent KSS polynomials and that E; = I, ® E!}, where E, is
the correlation kernel of one KSS polynomial. By Eq. (6.3) and Lem. 6.2 we have:

= det(E)(2,2))? = ((dﬂt;)!) 5

NI

‘detJ‘ (ev?) | = det(Eq(z, x))

Denoting (d(dtg,) ) : Visy by La(z) and ( )75 x) by tq(z), we get:
d\ 2
E[A(|dVy| ,¢)] = | — / [A\detL Ly(x |‘td = 0} |dVipn | - (6.4)
27'(' ZERPTL

Let z € RP", without loss of generality we can assume that the coordinates on R™*! are such
that x = [1:0:---:0]. Let (o(z) be one of the two unit vectors in RO(d),, the other one being
—Co(x). This gives an isomorphism between (R & TX(RP")) ® O(d), and R & T (RP™), so that
we can consider (tq4(x), Lq(x)) as an element of R” @ (TRP™)". We denote by (tg) (x),... ,tg)(x))
the components of t4(x) and by (Lgll) (x),... ,Lgr)(x)) those of Lg(x). The couples (tg) (x), LS) (2))
are centered Gaussian vectors in R @ T RP™ that are independent from one another. Moreover,
by Lem. 6.2, for all i € {1,...,r}, the variance operator of (tl(j) (1), LS) (7)) is Id.

Let us choose any orthonormal basis of TRP", and denote by (L%} (z),..., L7 (z)) the coordi-

nates of L(z)( ) in this basis, so that (Lilj (x)) 1<ic, is the matrix of Ly(x). Then,

1<jsn
{tg”(x) ‘ 1<z’<r}u{L;’{(m) ‘ 1<i<nrl <j<n}

is a family of independent real standard Gaussian variables in L?(dv4) and we can complete it into

an orthonormal basis of Cy[1]. We denote by {S((; () | r(n 4+ 1) < i < Ng}, the last elements of
such a basis. Below, we will work in the Hilbert basis of L?(dv,) obtained by considering Hermite
polynomials in these variables.
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Remark 6.11. We just used the fact that our random field satifies Properties 1, 2 and 3 of Sect. 6.1.2.
This is what makes this computation specific to the case of KSS polynomials.

Notation 6.12. Let o € N”, § € N” x N" and v € NVa=7("+1) e will use the following notations:

[T (§0). B = I s, (@),

1<igr
1<jsn

and H(Sa@) = [[ Ho (sfﬁ (x)) .
i=r(n+1)+1

We first expand ’detL Lg(x ))‘ in L2(dvy). Since ’detL(Ld(x))‘ only depends on the variables
{L7(z)|1<i<r1<j<n}, wehave:

det (Ly(z))| = By Hy(La()) ))
b= 2 B Tm

where Bg = —— UdetL La(x ‘ Hﬂ (La(z ))} for all § € N" x N™. The coeflicient Bg only depends
on the distrlbutlon of Lq(x), which is a standard Gaussian for all z € RP™. Hence Bg is independent

of x. These coefficients have several symmetries. Note that |det® <(Lfij (z)) _ ) is invariant under
%

the following operations:
e multiplying a whole column or a whole row by —1;
e permuting the rows or permuting the columns.

Since the Hermite polynomials of odd degrees are odd (cf. Lem. 6.5), the first point shows that
Bg = 0 whenever there exists i € {1,...,r} such that 2?21 Bi; is odd or there exists j € {1,...,n}
such that Y., 3;; is odd. We denote by I the set of multi-indices 8 € N” x N such that for all
i €{1,...,r}, 375, Bij is even and, for all j € {1,...,n}, >3i_, Bi; is even.

If | 8] = 2, then the only way for 8 to belong to I is that there exists (4, j) such that 3;; = 2,
the other components of 5 being zero. The second point above shows that, in this case, the value
of Bg does not depend on the index (¢, j) such that 8;; = 2.

Notation 6.13. Let By denote the common value of the Bg for 8 € I such that |3] = 2.
We can also expand A € L?(dvg) as

fILxFAIVSx
T Y RALACCOEICIEACTO]

a,B,y
H (ta(x Hg(Ly(x H Sa(z . . .
where Ay g.~(z) = [A \(/57( )) B(\/[%( ) (\/%,( ))} Then, using the orthonormality properties of

the Hermite polynomials, we get:

Ha(0)
{A ‘detJ‘ Ld ’ ‘td :| = ;Aa,&o(x)BB \/E , (6.5)

where the sum runs over multi-indices such that o € 2N" (see Lem.6.5), and 8 € I. Then, by
Eq. (6.4) and (6.5), for any A € Cy[q], we have:

B 0= () X BatolE

a€e2N", Bel
lal+18l=q

We have proved the following proposition.
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Proposition 6.14. For all d € N*, for all ¢ € C°(RP"™), for all ¢ € N, (|dVqy|[2¢ +1],¢) =0 and

Gviled.o = (57) [ o > B  Hol0) Hollalo) Holbelo)) o). .

lol+[81=29

Remarks 6.15. e Recall that the values of the tgli) (z) and LY (z) depend on the choice of the
unit vector (o(x), that we used to trivialize O(d),.. The only other choice of such a unit vector
is —Co(x). Changing (o(z) to —(o(x) changes tg) (x) to —tgli) (z) and LY (z) to —LY (z). Since
we only consider multi-indices (a, 8) such that |a| + || is even, the monomials appearing
with a non-zero coefficient in H, (td(z))ﬁg(Ld(z)) have even total degree. Hence, the value
of Hy(ta(z))Hgz(La(x)) does not depend on the choice of Co(z).

e Since Y scr 52 Bﬂ\/—lﬁjf[B(Ld(x)) is the p-th chaotic component of |det*(Lg(z))|, it does
not depend on our choice of an orthonormal basis of TRP™. Hence, neither does the value
of the sum on the right-hand side of Eq. (6.6), for any given x € RP".

e By [21, Lem. A.14|, we have:

Vol (S™~7)

By =E[|det" (Ls(d))|] = (%)TW.

Then, Prop. 6.14 for ¢ = 0 shows that, in the setting of KSS polynomials, for all ¢ € C°(RP"),

Vol (S"7)

El(avil o = d ([ olavien]) 0T

RP™

That is, in this case, the error term in Thm. 1.2 is zero for any d € N*.

Let us conclude this section by writing (|[dVy|[2], ¢) in a more explicit way.
Lemma 6.16. For all d € N*, for all ¢ € C°(RP"),

(Vi 20 = gk [ o) (1Ll = n a)l?) 1aVien .

Proof. By Prop. 6.14 and Lem. 6.5, we have:

favil21.0) = 57

where By is defined by Ntn. 6.13. Since H, = X2 — 1, we have:

3

[ o) (- 3@l = )4 LA~ ) ) o] (67

V3B = 3B et Late)| a2 )] = et oo |26 0] - o
Jj=1
It was proved in [21, App. B| that |det™(Lq(z))| is distributed as HLS)(,@)H N Zn-1ll - N Zn—rt1ll,

where (Lgl)(x), Y/ DU Zn—r—i—l) are globally independent and, forallp € {n—r+1,...,n—1},

Z, is a standard Gaussian vector in RP. Since L((il) () ~ N (1d) in a Euclidean space of dimension n,
we have:

B~ Eflder (Lao))] ~E[[0 @] I =010 - @ns )

p—mr1 Vol (S7)
1 1) 3 By 2 Vol (S™) By
and By = ——E HL( xM E[|Z (—7—1 S
= s 0 H+ 127 = v ) = e
We plug these relations in Eq. (6.7) and this yields the result. O
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6.4 Conclusion of the proof
In this section, we finally prove Thm. 1.8. The key point is the following.

Lemma 6.17. Let Z; be the common zero set of r independent Kostlan—Shub—Smale polynomials
in RP™ then we have the following as d goes to infinity:

. 2\ . Vol(s" ")
Var(Vol (Zq) [2]) ~d" " 27 (1 + n> ™" 76 Vol (S7) "

Let us prove that this lemma implies Thm. 1.8.

Proof of Thm. 1.8. Let us consider the common zero set Z; of r independent KSS polynomials
in RP", and denote by |dVy| the Riemannian volume measure on Zy. Let 1 be the unit constant
function on RP™, we have (|dVy| ,1) = Vol (Z;) and, by Thm. 1.6,

Vol (S"1) 2

d="*% Var(Vol (Z,)) = Vol (RP") ( o) Lnyr+ 57"71W> +o(1).

On the other hand, as we explained as the end of Sect. 6.2,

d™"T% Var(Vol (Zy)) =d "% Z Var(Vol (Z4) [q]) > d~""% Var(Vol (Za) [2]) .

qEN*
By Lem. 6.17, we get:
Vol (S71) 2 r 2\ u (Vol(S" )"
7Inr 57’7’17 2 . 1 - 2 X7 1 /Gm . D
< ryr L T Oyl 8< +n)” < Vol (57) > >0

Remark 6.18. In [11], Dalmao proved that for n = 7 = 1, we have Var(Vol (Z,)) ~ 02V/d with
0% ~ 0.57---. What we just said shows that 02 = 1 + Z; 1, and the lower bound we get for this
term in the proof of Thm. 1.8 is # ~ (0.21---. Thus, asymptotically, chaotic components of

order greater than 4 must contribute to the leading term of Var(Vol (Zy)).
We conclude this section by the proof of Lem. 6.17.

Proof of Lem. 6.17. Recall that |dVy| is the Riemannian volume measure on Z; and that 1 is the
unit constant function on RP”. By Lem. 6.16, we have:

Vol (Z4) (2= Vil (2).1) = i 5ol [ (ILato)l = ta(o) ) Vi .

N]

Since this is a centered variable, its variance equals:

T (%) Lo ELOE = n1ta@l?) (1 = nlea)l)] iavien*

Using the invariance of the distribution of s; under isometries, we get that:

Vol (S7—7)?

Var(Vol (Zy) 2]) = erl(Sn)

Tn,r(d), (6.8)

where, setting 2o =[1:0:---: 0],
Tnr(d) = / o EL(1ateo) I = 0 tatwo)l) (1261 = nlta(w)]) | [aVee-].

Since Bgpn (20,5) = {[1:21:---: 2] € RP" | z € R"} has full measure in RP", we can restrict the
above integral to this ball and use the local coordinates introduced in Sect. 6.1.3. These coordinates
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are centered at xg. Moreover, the density of |dVgpr| with respect to the Lebesgue measure in this

chart is z — (14 ||z[|*)~ "= (cf. [16, p. 30]). By a change of variable y = [1 : 21 : - - - : 2], we have:
2\ — ndl
TInr(d) = Fa(2)(L+|[z]7)" = dz, (6.9)
ZE]R”’
where
2 2 2 2
Fa(z) =E[ (1L = 0 1ta)]*) (ILa()I* = nlta(=)])]
Here, we denoted t4(z) instead of ¢4([1: 21 : -+ : 2,]) and L4(2) instead of Lg([1: 21 : -+ : 2z5]).
Let us fix z € R™ and compute F;(z). Using once again the invariance under the action of
Op+1(R) on RP™, we can assume that z = (||z]|,0,...,0). Let (a%l, ce a%) denote the basis of
the tangent space of RP™ at [1: ||z|| : 0 : --- : 0] given by the partial derivatives in our chart ¢,

(see Sect. 6.1.3). This basis is orthogonal, but H%H = (1+|]z|>)~* and ‘
for all j € {2,...,n}.

The random vectors (tl(;) (0),t((;) (), Li(0), L (2), ..., Li7(0), Lfi"(z)) for i € {1,...,r} are
independent equidistributed centered Gaussian vector in R2?+2. The previous relations, together
with Lem. 6.2, show that their common variance matrix, by blocks of size 2 x 2, is:

2y—1
e R E

Adllel®) (Batlzl®) o

Ba(ll2I*)  Dall=]”) 0 0
0 0 Ca(ll=]*) : : (6.10)
; ; : 0
0 0 0 Ca(lz]*)
where, for all ¢ > 0,
= L (1+8)78 _ 0 V(1 +1)"%
Aa(t) = <(1+t)—% ) ) Ba(t) = <—\/£(1+t)—% 0 )
_ 1L 1+ _ 1 (1+t—dt)(1+1)%
Calt) = <(1 Lot ) and Da(t) = <(1 it —dt)(1+1) 4 1 ) ‘

(6.11)
Using the independence and equidistribution of the couples (tl(ii) (z), Ll(ii) (z)), we have:

File) = | SE[(17 )" @e)] - n 5[ (400) @]
gl l

| (2 o) (00) ] e (o) (1£@)]

If (X,Y) is a centered Gaussian vector in R? such that Var(X) = 1 = Var(Y), then by Wick’s
formula (cf. [1, Lem. 11.6.1]) we have: E[X?Y?] = 9 + 2E[XY]*. We apply this relation to each

]
term of the previous sum. Then, by Eq. (6.10) and Eq. (6.11), we have Fy(z) = 2rFy(d|z|%),
where Fy is defined by:

VteR,  Fyt)= (1+§)_d<(1+§—t)2+(n—1) (1+§) —2nt+n2>.

Then, by a change of variable ¢ = d || z||* in Eq. (6.9),

n+1

too Tz
T (d) =d™%r Vol (S"71) / Fyt)t™= (1 + 2) dt. (6.12)
t=0
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Let t > 0, we have:

d——+oo

n—2 t\ 2 n—2
Fy(t)t = (1 + —) ——— (P =2t(n+1)+n(n+1))t =z e’
Moreover, for all d € N*,
n+1

Fyt)t" (1 + é) < (1 + f) 7dt"T72 (48> + (n+ 1)(3t +n)) .

d

Let dy > % + 2. Since (1+ é)ﬂi is a non-increasing sequence of d, for all d > do,

n+41

n—2 t T2
Fy(t)t™ = (1 + 3)

and the right-hand side is integrable as a function of t. By Lebesgue’s Theorem, we have:

—do

t neg

< (1+d—) T (42 + (n+1)(3t +n)),
0

n+41

+00 n—2 +oo _
/ e >, / (t272t(n+1)+n(n+1))tn72€7tdtzr(EJFQ)a (6.13)
U CE VA i

where T' is Euler’s Gamma function. The conclusion follows from Eq. (6.8), (6.12) and (6.13). O
A Technical computations for Section 4

Before proving the technical lemmas of Sect. 4, we state several estimates that will be useful in
this section and the next. Recall Def. 4.4, 4.5 and 4.11. The following hold as ¢ goes to infinity.

a(t) —— —1, by (t) ——0 and  b_(t) —— V2. (A1)
t—+oo t—+oo t—+o0
Vi e {1,2}, u;(t) T 1 and Vi € {1,2,3,4}, v;(t) P 1. (A.2)

The following hold as t goes to 0.

a(t)=1-— é - g +O(t%), (by(t)?*=2— é +O(t?), (A.3)
by (Db (8) = Vi (1+0(t)), (b)) =5+ 5 +0(), (A4)
ui(t) =t + O(%), us(t) = % + O(t%), (A.5)
3
n(t) =2+ 0(), va(t) = i—S + oY), (A.6)
v3(t) =t + O(t?), va(t) = 2+ O(t). (A7)

Proof of Lem. 4.6. Recall that P is defined by Def. 4.5 and Q by Eq. (4.3). One can check by a
direct computation that, for any ¢ € [0, +00), P(t) = (A(t) ® I5)o(Q ® I2), where

1 (b_(t) —bs(t)
A“)ﬁ(mw bf(t))’ i

o O O =
O = O O
— o oo
OO O
o
]
o
O
|
Sl
)
7 N\
—
— |
—_
N~
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Moreover, these three matrices are orthogonal. Then we have:

1— e 3t 0 0 —te—3t
0 1+67%t \/fe’%t 0
I 'R I = L 1 t
(Q® 2) ()(Q ® 2) o 0 \/Ee_it 1_(1_t)e—§t 0 g
—Vite 2! 0 0 1+ (1—t)e =t
1—6—*‘E —Vte~ 3t 0 0
—Vte 2 + —t e’%
| Ve Tt 141 ¢ 0 0
B 0 0 1+ e 2t Vie st
0 0 Vie it 11— (1- t)e’%t

e

=Ii+e

1 Vi - -1 0

Vi ot—1 0 1))’
where I stands for identity matrix of size 4. Recalling the definitions of (v;(t))1<i<a, b+(t) and
b_(t) (see Def. 4.4 and 4.5). We conclude the proof by checking that:

1 \/f t %_ 1+(%)2 0
S L S o

Proof of Lem. 4.8. Let z € R™\ {0}, by Eq. (4.2) and Lem. 4.3, we have:
det (Q(2)) = det (€ (2))" = det (Q(Hz||2))T (1- e*llzllz)“"_l)
and it is enough to prove that det ((NZ(t)) > 0 whenever ¢ > 0. By Lem. 4.6, we have:
VE>0,  det (ﬁ(t)) — (v (v (B)va(t) = 1 — (12 + 2)e™t + =2 = f(1), (A.8)
where the last equality defines f : [0, 4+00) — R. We have f(0) =

0
where g(t) = t?> — 2t + 2 — 2e~'. Then ¢(0) = 0 and V¢ > 0, g' t)
positive on (0,+00) and so is f. Finally, we have Vt > 0, det (

nd for allt > 0, f/(t) = e tg(t)
2(e _t—1+t)>0 Thus ¢ is

an
) =
Proof of Lem. 4.13. Let z € R™\ {0}, as above we have:

det (A(z)) = det (A'(2))" = det (K(||Z|\2))T (1 _ e—nzu2)“"*1>

and it is enough to prove that det (K(t)) > 0 whenever ¢ > 0. By Lem. 4.12, we have:

— (24 2e e 2 det (ﬁ(t))

1—et T l1—et

Vit >0, det (K(t)) = uy(t)us(t) = !

by Eq. (A.8). We just proved that det (ﬁ(t)) is positive for every positive ¢t. Hence the result. [

Proof of Lem. 4.14. First, recall that Q(z) = Q'(2) ® I, (see Eq. (4.2)) and A(z) = A'(2) ® I, (see
Eq. (4.5)). Hence, we only need to prove that the map z — (0 A/(z)2) Q'(z)~ 2 is bounded on
R™\ {0}. Then, let z € R™\ {0}, the matrix of £’(2) in the orthonormal basis B, of R? ® (R & R")
(see Sect. 4.2) is given by Lem. 4.3, and the matrix of Q/(z)"2 in B, is:

Q(l=1I")~2

1 e %l1=1 ~2
0 1 2 1 ®In71
€

S YE

0
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Similarly, by Lem. 4.9, the matrix of (0 A’(z)%) in B, is:

0 ()t 0
o |

1
1 2\ 3
1 =3 l=ll 2
1 2 € ®In71
Izl 1

e 2

Hence, our problem reduces to proving that: ¢ — (0 K(t)%) ﬁ(t)_% is bounded on (0, +00).

Recall that, for all ¢ € [0, +00), P(t) € O4(R) was defined by Def. 4.5. By Lem. 4.6 and 4.12,
for all t € (0, +00) we have:

(0 &@)?) -

=

MORE 0 0 0
u 0 vy (t)"2 0 0
={ 0 t [ w®2 0 P(t)t 2 Pt
( ‘ Q ( 0 wuz(t)2 Q ( ) 0 0 ’Ug(t)ié 0 ( )
0 0 0 va(t)"2
_ (ma(t) ms(t) ms(t) me(t)
mg(t) m4(t) m(;(t) m5(t) ’
where
bib_ byib_
= O (_ ur | fuz _ fw ﬂ), my = Ot (_ ur | fuz  fw_ ﬂ),
4 1 Vo V3 Uy 4 1 Vs V3 Uy
bib_ bib_
m_+-( up  fua fur ;)’7M:+ (_3_ w2 ;)
4 U1 V2 V3 V4 4 V1 (%] V3 V4
(b+)?

By Lem. 4.8, for all t > 0, the (v;(t))1<i<a are the eigenvalues of a symmetric positive operator,
hence are positive. Similarly for all ¢ > 0, ui(¢) > 0 and ua(t) > 0 by Lem. 4.13. Thus the
(m;)1<i<e are well-defined continuous maps from (0, +00) to R. By Eq. (A.1) and (A.2),

Vie{1,2,3,4,6}, m;t) ——0 and ms(t) — 1.

t——+oo t—+oo

Moreover, by Eq. (A.3)—(A.7), for all i € {1,2,5,6}, m;(t) = 1/2 4+ O(\/t) as to goes to 0 and, for
any i € {3,4}, m;(t) = —1/2+ O(\/1) as to goes to 0. Hence for all i € {1,...,6}, m; is a bounded
function from (0, +00) to R, which concludes the proof. O

Proof of Lem. 4.17. Recall that, for all ¢ > 0, the couples (X;;(t),Y;;(t)) are independent centered
Gaussian vectors in R?. We denote by A;;(t) the variance matrix of (X;;(t), Yi;(¢)), which equals

1 e’%tz
e~ 3t 1

A(t)if j =1 and
otherwise (see Def. 1.5, Lem. 4.16 and Lem. 4.9).
Forallie {1,...,r},j€{l,...,n} and t > 0, we can write:

() =20 (3),
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where the (A;;) and (B;;) are globally independent real standard Gaussian variables, not depending
on t. Note that by Lem. 4.13, the A;;(t) are positive for any ¢ > 0. We deduce from Lem. 4.12
that for any ¢ € {1,...,r}, for all t > 0:

A (t) = <ggg 58) and Vje{2,...,n}, Ayj(t) = (7(’5) 5(t)> :

(A.10)

o) = 5 (V@ + V@), 2= (ﬁ Lot 1o e—%tz) , (A.9)
B(t) = % ( us(t) — Ul(t)) ) 5(t) = % (\/1 Fe 3t — \/1 _ e—;ﬁ) '

We denote A; = (Aij,...,A;;)" the j-th column of A and similarly B; = (Buj,...,Byj)"
Then, E[|det(X(t))] |[det* (Y(t))|] = E[¥(t, A, B)], where

U(t, A, B) = |det™ (a(t) Ay + B(t)B1,7(t) Az + 6(t)Ba, ..., () Ay + 6(t) By)|
|det " (B(t) A1 + a(t)By,6(t) Az +v(t)Ba, ..., 6(t) A + ¥(t)Bn)| . (A.11)
By (A.5), a(t) = 1Vt + O(t) and B(t) = —3v/t + O(t). We extend continuously «, 3, v and § by

y
a(0) =0 = £(0) and v(0) = % = 0(0). The function ¥ also extend continuously at ¢ = 0.

Then a, 8, and § are bounded functions on (0, 1] and ¥ is the square root of a polynomial of
degree 4r in (A, B) whose coefficients are bounded functions of ¢. In particular, for all ¢ € (0,1],
U(t, A, B) is dominated by a polynomial in (A, B) whose coefficients are independent of ¢. By
Lebesgue’s Theorem,

E [|det™ (X (2))] |det (Y (¢))|] — E[¥(0,4,B)]. (A.12)

Let j S {2, . .,TL}, we deﬁne Xj = (le, . .,er)t by Xj = ’)/(O)AJ —+ 5(0)Bj = %(AJ + B])
Then the (X;;) with ¢ € {1,...,7} and j € {2,...,n} are independent real standard Gaussian
variables. Setting X; = (X11,..., X,1)® =0, we have:

U(0, A, B) = |det™™ (X1, Xa, .., Xn)|* = det (X1, Xa, ..., X) (X1, Xa, .., Xn)Y)
= Z det ((Xikj)1gi,j<r)2 ,
1<k < <kr<n

by the Cauchy—Binet formula. Let 1 < k1 < kg < --- < k. < n. If k& = 1, the first column of
(Xik,; )1<i,j<r 18 zZero and its determinant equals 0. Otherwise,

E {det ((Xikj)lgi,ng)Q} = Z E(O’)E(T) HE[Xika(i)XikT(i)] =rl (A13)

o,7€6,.
Hence, if » < n, we have
n—1 (n—1)!
E[P(0,A,B)] =r! -
[2(0,4, B)] r( r ) (n—r—1)1

and by Eq. (A.12), we proved Lem. 4.17 in this case. If r = n, we have E[¥(0, A, B)] = 0 and we
must be more precise.

Let us now assume that r = n. Then, X and Y are square matrices and their Jacobians are
simply the absolute values of their determinants. For all ¢ > 0, we have:

Ut A, B) = %

det (@a(tml + \/%ﬂ(t)Bl,’Y(t)Az +0(t)Ba, ..., v(t) A, + 5(t)Bn> ‘

det (ﬁﬂ(tml + \/ga(t)Bl, 5(t) Ay + ¥(t)Ba, ..., 6(t) A, + y(t)Bn> | . (A14)
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By Eq. (A.5), we have: \/goa(t) \/— + O(v/t) and \/75 O(v/t). We can apply the

same kind of argument as above. By Lebesgue s Theorem:

2
E[V(t, 4, B)] — E[ldet(Y1, Xa,..., Xn)| [det(—1, Xa,..., Xa)[] = E[det(Vi, Xo,..., X0)*]
—

where Y1 = (Y11,...,Y1)" = %(Al — By). Since Y1, Xo, ..., X, are independent NV (Id) in R", the
same computation as Eq. (A.13) shows that: E[det(Y1, Xs,...,X,)?] = rl =nl. Hence, if r = n,

we have: E[|det(X(¢))| [det* (Y (t))|] = E[¥(t, A, B)] ~ Zt, as t — 0. O

Proof of Lem. 4.18. For any t > 0, let us denote by:

) A) | 0
A= L it o1 | @5 (A.15)
e~ 3t 1 "

the variance matrix of (X (¢),Y(t)).
In the following, we denote by L = (X,Y") a generic element of M,,(R) x M, (R). We have:

E [|det™ (X (1)) [det™ (Y ())[] =

Wdet (Aw) é/\detl )| [det™(¥) | exp (——@() 1L,L>) dL. (A.16)

=

By Lem. 4.12, we have A(t) = Id —l—O(te*%) as t — +oo. Then, det (K(t))7 =1+ O(te’%).
Moreover, by the Mean Value Theorem,

e (% <K(t)1L,L>) e hi? *lexp (% (A - 1a) L,L>> - 1}
< e—%IILIIZ@ |A)t ~1d] exp (”L” (NCx IdH) .

K(t)_l - IdH for

— o3l

. -1 _t . . —1L)? Ll
Then, since A(t)~! =Id+O|(te” 2 ), this last term is smaller than e~ S5

all ¢ large enough. Hence,

/ydeti(X)\ |det (V)] |exp (—% <K(t)—1L,L>) - e—;lLP’dL

1~ ) t
<3[R —1a| [ et QO] der )] i e 1 az = 0%

Thanks to this relation and Eq. (A.16), we get that:
E [|det* (X (1))] |det* (v (1))|] = E[|det* (X (00))] [det* (¥ (o0))[] + O(te ™),

where (X (00),Y (00)) ~ N(Id) in M,,,(R) x M,,,(R). Finally, by [21, Lem. A.14],

E [|det™ (X (00))] [det™ (Y (00)) ] = E[|det™ (X (0))|]” = (27)" (%) ' .

B Technical computations for Section 5

Proof of Lem. 5.26. Let o € (0,1), we want to prove that @(z)*%G)d( )0(2)"2 —Id = O(d~®)
uniformly for € M and z € By, (0, b, Ind). Recall that Q = % (1 3')- Since Q € O2(R), it is
equivalent to prove that:

1

(@ Msencn, ) () F (Ou() ~ 0() O()F (@@ Tdxenen,) =0W@™).  (B1)
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Recall that eq was defined by Eq. (3.1) and that ex = {ldpegra) (see Sect. 4). For any
d €N, for all € M and for all w,z € By, 3(0,b,Ind) we set: e4(w, z) = eq(w, 2) — eso(w, z). By
Eq. (4.1) and (5.7) we have:

@d(z) o @(z) _ (Ed(0,0) Ed(o,z)) -

€a(2,0) ea(z,2)

Then, by Lem. 4.1, for all x € M and z € By, (0,b,Ind) \ {0} we have:

cda(z)
where
aq(z) = % (1 - 6_%”'2”2)71 (ea(z,2) —€a(z,0) —€4(0, 2) +£4(0,0)),
ba(z) = 7% (1- e—nzn2)‘”2 (ea(z, 2) — £a(2,0) + £4(0, 2) — £(0,0)),

and calz) = 5 (14 H) 7 (cale,2) + a(2,0) + 20, 2) + 2al0,0).
Let 8 € (a, 1), by Prop. 3.4 we have HD(Qw,z)EdH < Cd—#, where C is independent of z € M
and w, z € By, a(0,b, Ind). Then, a second order Taylor expansion around (0,0) gives:
lea(z, z) — ea(z,0) — £4(0, 2) 4+ £4(0,0)|| < C||z]|* d7.
Since we consider z € By, 3/(0,b, Ind) and 1 — e~ zll=1” ~ @ as z — 0, we have:
C | d”

9 (1 _ e*éllzll2)

where the error term does not depend on (z,z). We obtain Eq. (B.1) by reasonning similarly for
ba(z) and cq(2). O

laa(2)]l < =0 ((lnd)*d") = 0(d™),

Proof of Lem. 5.28. The idea of the proof is the same as that of Lem. 5.26 above. Let « € (0, 1),
we want to prove that: . )
Q(2)72 (Qa(z) — Q2)) Qz)"2 =0(d™?). (B.2)

Recall that we defined: e4(w, 2) = eq(w, z) — eso(w, 2) for any x € M and w, z € By, 3 (0,b, Ind).
We can express 4(z) — Q(z) in terms of £4 and its derivatives. Then we write the matrix of the
left-hand side of Eq. (B.2) in an orthonormal basis that diagonalizes Q(z). The coefficients of this
matrix are linear combinations of ¢4 and its derivatives. We will prove that they are O(d~) using
Taylor expansions and the estimates of Sect. 3.3.

The details are longer than in the proof of Lem. 5.26 for two reasons. First, the basis in which
Q(z) is diagonal now depends on z. Second, some of the eigenvalues of (z) are O(||z|°) as z — 0,
so that we need to consider Taylor expansions of order 6 for some coefficients. In addition, the
matrices involved are less easily described than in the proof of Lem. 5.26.

Recall that e; was defined by Eq. (3.1) and that ecc = {Idr(egca) (see Sect. 4). We expressed
Q(z) in terms of e in Eq. (4.2) and Qg4(2) in terms of e in Eq. (5.8). As an operator on:

RERLY) dR(ERLY) & (TEMR(ERLY) )o (TEMIR(E®LY) ),
we have:

£4(0,0) e4(0, z) ‘ 8755(1(0, 0) 855,1(0, 2)
Ed(z,()) Ed(z,z) 875651(2’,0) 855(1(2,2’)
9:a(0,0)  9:4(0,2) | 0:0%24(0,0)  9,0%e4(0, 2)
0:€4(2,0)  Orea(z, 2) 89385561(2, 0) 89585561(2, z)
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Let us choose an orthonormal basis (a%’ B ) of T, M such that z = ||z|| 68 . We denote by
1 Tn 1

(dz1,...,dx,) its dual basis. We can then define a basis of R? ® (R @ T} M) similar to B, (see
Sect. 4.2). For any i € {1,...,n}, we denote by 0, (resp. 9,,) the partial derivative with respect to
the i-th component of first (resp. second) variable for maps from T, M x T, M to End (]R (5 ® Ed)m).
Then we can split 4(z) — Q(z) according to the previous basis in the following way:

0 A
() 0e) — Bd:(z) Cd:(z) Cd:(z) | (.3)

B{(z) €YV o CP(2)

where,
_ (0’ ) Ed(oaz)
Aa(2) = ( 2(2,0) sd(z,z))’ (B4)
e (1) BP0 = (il ornen): ®9
i 0y, 0% £4(0, 8%.05,5 , 2

Vi,j e {1,...,n}, {9 (z) = <a;ayj dES,g; 0 aﬁ]_ejg,zD' (B.6)

Let us denote by P(z) the operator whose matrix in our basis is:

P(l=I>)| o )
( 0 |Q®In71 ®IT’

where P was defined by Def. 4.5 and Q = \/— (173'). Since P(z) is orthogonal, (B.2) is equivalent
to the following:

P(2)Q2) 72 (Qu(z) — Q2)) Q2) "2 P(z) " = 0(d™°). (B.7)
By Lem. 4.7, the matrix of P(2)Q(z)"2P(z)" ! is (Véz) N(z)gl ), where
vi(||2]*)7* U 0 0
= 0 w(fl=l*)2 0 0
Viz) = 0 0 w22 0o ® I
0 0 0 va(|2]1%) 2
(1%——” ||2) 2 0
and N(z)= _1 | ® 1.
0 (1+e—%nzn2) :
On the other hand, by Eq. (B.3),
2 SN
BYy My .o oty
P(2) (Ql(z) - A2) P(2) " = d:( ) : ) o =,
B{(z) C{V(z) - CPM(2)
where
Aa(z) By (2) 2 Aa(z) By (2)" 20
<B§;> o )> (PA=I®) @ 1a) <B§;> G ol | (PR @) (B5)

vie{2,...n} (BP() GV()=@e1a) (B¢ o) (P eld), (B.9)
Vi,jef{2,...,n}, C{?(z)=(Q®I1d)C{" (2)(Q" ®Id). (B.10)

41



Then, in order to prove Eq. (B.7), we have to prove that:

Aq(z)  BY(2)" _ i
V(z) <§l(11)(z> 5311)(z)> V(z)=0(d™"), (B.11)
Vie (2,...n), N(:) (BY(z) C8(2) Viz) = 0(a ), (B.12)
Vi,je{2,...,n}, N(2)CY (2)N(z) = O(d™). (B.13)

Since these are heavy computations, we do not reproduce them in totality here. In the following,
we give some details about the proof of (B.11), which is the most difficult of these three relations
to establish. The proofs of (B.12) and (B.13) are similar and left to the fearless reader.

Let us focus on the proof of (B.11). We denote

afil) agQ)* b;l)* b;Q)*

~ ~ 2 3 3)* 4)*
vz [ Aat2) B (2)* ) = a? P P W
~@1 ~(11 = "
B(z) CfV(2) R O %

bl(i2) b((;l) C((f) C((13)

Then by Def. 4.5 and Eq. (B.4), (B.5), (B.6) and (B.8), we have:

oz = 5 (=) x
(bJr(HzHQ))2 (&Clagled(z, 2) + azlaglsd(z, 0) + 83518515(1(0, z)+ 83518515,1(0, 0))
+ b4 (1200 (1217) (9e:2a(z, 2) = Or,2al2,0) + 0a12a(0, 2) = Bz,2a(0,0))
+ b+(||z||2)b_(|\z||2) (agled(zz, z)+ 8515,1(,2, 0) — a;jlgd(o, z) — agled(O, 0))

+ (- (1211"))* (ca(z, 2) — €a(2,0) = £4(0, 2) + £a(0,0))

. (B.14)

_1
2

o? () = 7 (w(l=1Deall=1)  x
— by ([|2[1*)b= (|2]|*) (82,05, €a(2, 2) + 8y 05, €a(2,0) + By 85, €a(0, 2) + Bay 85 £4(0,0))
— (- (|2)? (8a,2a(2, 2) — Bx,24(2,0) + By 24(0, 2) — By 24(0,0))
+ (04 (|211%))? (85 calz, 2) + 0% calz,0) — 0% a(0, z) — 0% £4(0,0))

+ b (|121%)b-(II21*) (a(z, 2) = €a(z,0) = £a(0, ) + £4(0,0))

(B.15)
(2 = 5 (alzl®) x
(b_(|\,z||2))2 (8118515d(z, z) + azlaglgd(z, 0) + amlaglgd(o, z)+ 6116515,1(0, 0))
= b (=)= (12]*) (@r,2a(z. 2) — Bz, 24(2,0) + D, 200, 2) — Dr,2a(0,0)) (B16)
— b (12170 (121) (35, alz, ) + 05, 2a2,0) — 05, 2a(0, 2) = 05,24(0,0) |
+ (b4(I|211*))? (4(2, 2) — a(2,0) — €a(0, 2) + £4(0, 0))
B0 () = 1 (melPos(lzl®) " x
— (b (1201*))? (02, 0%, €d(2, 2) + 02, 0% £4(2,0) — 05, 0% £4(0, 2) — D, D% £4(0,0))
= b ([=0)b=(I=]) (9,2a(2: 2) = Bry2al=,0) = Duy£a(0, 2) + Dy2a(0,0)) . (BAT)

— by (||2l*)b-(|2]|*) (85, ealz, 2) + 8%, calz, 0) + 0% a(0, z) + 0%, £4(0,0))
— (b= (I121%))? (ca(2, 2) — €a(z,0) + €a(0, z) — £4(0,0))
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1 3
bP(2) = 7 (vlllzPa(l=)
)b

b (121*)b=(12]1%) (02,05, ca(2, 2) + 0x, 0% €a(,0) — D, 0% £a(0, 2) — Ba, 0%, £4(0,0))
+ (0-(I121%)) (9er2a(2, 2) = Bry2a(2,0) = Day2al0, 2) + Bz, 2a(0,0)) . (B.18)
— (b4 (|I211*))? (9% ca(z, 2) + 0% ca(2,0) + 0% £4(0, 2) + D% £4(0,0))
= by (I21%)b-(121%) (a(z, 2) — €a(2,0) + 4(0, 2) — £4(0,0))
B ) = 2 (sl yeal=1)
by (12100 (12]1%) (02, 0%, 2a(2, 2) + 0x, 0% €a(2,0) — 0, 0% £a(0, 2) — Ba, 0%, £4(0,0))
= (b4 (1211%)? (Da12a(2, 2) = Bar2a(2,0) = 0r,£4(0, 2) + D, a(0,0)) . (B.19)
+ (0= (||21))? (85, ealz, 2) + 8% calz,0) + 8% a(0, z) + 0%, £4(0,0))
= by (21%)b-(I21%) (ca(z, 2) — €a(2,0) + 4(0, 2) — £4(0,0))
B0 () = 7 (valllelPoaClzl®)) " x
— (b= ([I2[*))? (92, 0% ca(z, 2) + 02, 0% €a(2,0) — 0z, 0% £4(0, 2) — 0z, 0%, £4(0,0))
+ b (1=0%)6= (1) (9er2a(z: 2) = Bry2a(2,0) = Du2a(0, 2) + 9a,2a(0,0)) . (B20)
+ by (||2l*)b—(||2]1*) (05, ealz, 2) + %, ealz,0) + 8% £a(0, 2) + 0% 4(0,0))
— (01.(I121%))* (2a(2, 2) = £a(2,0) + £4(0, 2) — £4(0,0))
() = 1 (ws(ll?) >
(b (12017))2 (82, % (2, 2) — By 0% 2a(2,0) — B, 05, 2a(0, 2) + B, D £4(0,0))
+ o4 (21— (|217) Bz, €a(2, 2) + Bzy£a(2,0) — Bzy£a(0, 2) — Dpy2a(0,0)) (B2

+ 0y (||2l*)0= (|27 (05, €a(z, 2) — 8%, calz,0) + 8% a(0, 2) — 0%, £4(0,0))
+ (- (1211*))* (2a(z, 2) + €a(z, 0) + £4(0, 2) + £4(0, 0))

1
2

() = 7 (vsllelPyoatlzl®)) " x
— b (I2)P)b-(||2] )(azlagled(z z) — mlaylad(z 0) — azlaylgd(o 2) +8118y15d(0 0))
— (b_(1211*)? (Bu,2a(2, 2) + Bu,2a(2,0) — Dy, £4(0, 2) — Bay £4(0,0))
+ (b4 (|12]1*))? (85 ed(z, 2) aﬁ €d(2,0) +8ﬁ €4(0,2) — 851501(0,0))
+ b4 (I217)0-(I21) (a(z, 2) + a(2,0) + £a(0, 2) + €a(0,0))

(B.22)
D) =1 (wllzl) x
d 4 4
(b_(||z|| ))? (amla;jlgd(z z) — azlaylsd(z 0) — amlaylsd(o z)—i—@ml@ylsd(o 0))
= by (l21)b= (1211°) (Ozr84(2, 2) + O, €a(2,0) = O, £a(0, 2) — Dz, 24(0,0))  (B.23)

— b (|21*)b=(12)1%) (8%, calz, z) — 0%, ca(z,0) + 0% £4(0, z) — 0% £4(0,0))
+ (b (I1201%))? (a(2, 2) + €a(z,0) + €4(0, 2) + £4(0,0))
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We need to prove that each one of the terms (B.14) to (B.23) is a O(d~®), where the constant
involved in this notation is independent of (x,z). The main difficulty comes the fact that ve and
vs converge to 0 as z — 0 (see Eq. (A.6) and (A.7)).

The term with the worst apparent singularity at z = 0 is a((is) (see (B.16)). We will show below

that al(f)(z) = O(d~®) uniformly in (z,z). The proofs that the other nine coefficients are O(d—%)

follow the same lines, and they are strictly easier technically. We leave them to the reader.
1°

By Eq. (A.6), va(||z]°) ~ IZ—S as z — 0. Hence, we have to expand the second factor in (B.16)

up to a O(Hz||6) Let 8 € (a,1), recall that, by Prop. 3.4, the partial derivatives of ¢4 of order
up to 6 are O(d~?) uniformly on By, 1(0,b, Ind) x Bz, 1(0,b, Ind). Recall also that we chose
our coordinates so that z = (||z||,0,...,0). Using Taylor expansions around (0,0) for £4 and its
derivatives, we get:

D, 08 cq(2,2) + 05,08 £4(2,0) + 05,05 £4(0,2) 4+ 0,05 €4(0,0) =

T17Y1 1%y T17yy T1%y1

40,,0% £4(0,0) + 2 ||z (a2 0% £4(0,0) + 0, (0 )25d(0,0))

T17y1 T17Y1 Y1

+lz))? (03 0% 2a(0,0) + 2, (92,)7 £4(0,0) + Bu, (85,)° 2a(0, 0))

Z17Y1

1 1 1 1
+ 2P (—a4 9%,2a(0,0) + 502, (2,) £a(0,0) + 592, (02,)° £a(0,0) + 505 (9% )4sd(o,0))

3 Z1 "Y1 N

+ |zt O@d="?), (B.24)

(99515(1(2, Z) — 811651(2, 0) + 8115(1(0, Z) — 8I15d(0, 0) =
2 2] 91, 0, 4(0,0) + 121 (82,5, 2u(0,0) + 01, (8%,)” 2u(0,0))

Z1 7Yt Y1

2 1Y 2 1 Y1

1 1 1
+ 12 (—83 0%, £4(0,0) + =02, (98,)7 £4(0,0) + 305 (9} )35,1(0,0)>

1 1 2 1 3 1 4
+ 2t (gailaﬂlsd(O,OH s (98,)" €al0,0) + 5551 (08,)" €al0,0) + 50 (0%,) Ed(O,O))

+|z|I°P0@d="?), (B.25)

0% ea(z,z) + 0% ea(z,0) — OF €a(0,2) — 0% £4(0,0) =
2 211 02,05, 24(0,0) + [12]* (92,03, £a(0,0) + B, (95,)° 2a(0,0))

L1y, T1 Y1

Y1

1 1 1
1 (502, 06,200,0) + 502, 05)° 240,00 + 0., (3,)° 24(0.0))

1 1 1 1
+ 2]t (Eaglaglsd(o, 0) + 502, (9%,) ea(0,0) + 702, (9%,)" 2a(0,0) + 20, (5,)" 2a(0, o>>

+ 2|7 0@d="?), (B.26)

sd(z, Z) — Ed(z, 0) — Ed(o, Z) + Ed(o, 0) =

Z1 "Y1

1 1 2
217 00,05, 2000,0) + a1 (302,25,24(0.0) + 502, (25,)724(0,0))

Y1

1 1 1
a0 (02, 96,200.0) + 502, 05)° 240,00+ 0u, (3],)°24(0.0))

1 1 1 1
+2)° <ﬂ8§18515d(0, 0) + 5%, (8%,)% £a(0,0) + T (8%,)% 2a(0,0) + 570 (9%)" ca(0, o>>

+z]°0@@=?). (B.27)

Now, we can combine Eq. (B.24), (B.25),(B.26) and (B.27) with the expansions around 0 of
(04 (II=11"))? (ct. Eq. (A-3)), (b—(z17)* and bo(|=[*)b-(|lz]*) (cf Eq. (A.4)). Using Prop. 3.4
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once again, we obtain:

WD) = — 110 0dP) = O(Ind)°d—F) = O(d—°
4 (2) 41}2(”2”2)” [70(d™") = O((Ind)°d=") = O(d™),

where we used Eq. (A.2), (A.6) and the fact that ||z|| < b, Ind. This concludes the proof for ag ),
As we already explained, we proceed similarly for the other nine coefficients to get (B.11), and the
same kind of computations yields (B.12) and (B.13). O

Proof of Lem. 5.30. Let a € (0,1), x € M and z € Br,a(0,b,1nd) \ {0}. We will denote by
L = (X,Y) a generic element of R2QT; M ®R (€ ® Ed)z. We also set x(L) = |det(X)]| |det*(Y)].
We have:

o
(27r)rn

B (27T1)T” (;;%;é%)é /X (A(Z)%L) exp <% <A(Z)%Ad(2)‘1A(z)%L,L>) dL, (B.28)

by a change of variable. And, by Lem. 5.29, we have det Ag(z) = (det A(2)) (1 + O(d—%)).
If we set Zq(z) = A(2)2Aq(2) " *A(2)2 — Id, then Z4(z) = O(d~®), and these estimates are
uniform in (z, z). As in the proof of Lem. 4.18, by the Mean Value Theorem, for all L we have:

exp (~3 G2, 1) —1| < 5 UL It ex (5 1L a1

E[|det™(Xa(z))| |det™(Ya(2))|] = det (Ag(2)) "2 /X(L)exp (—% <Ad(z)1L,L>) drL

Since Z4(z) = O(d™®), for d large enough ||Z4(2)|| < 1. Hence,

/X (A(z)%L) e SILI?

1
exp (—5 (ED(z)L,L)) — 1’ dL
[IEa(=)ll 2 —~4IL|?
||L|| 1 dL. (B.29)
Recall that, by Lem. 4.12, the eigenvalues of the positive symmetric operator A(z) are uy (]| z]|%),

us(||z))?), 1+ exp (fé ||z|\2) and 1 —exp (fé ||z||2), with some multiplicities. These are bounded

functions of z (see Eq. (A.2) and (A.5)). Hence, x (A(z)%L) is the square root of a polynomial

in L whose coefficients are bounded functions of z. Thus, the integral on the right-hand side of
Eq. (B.29) is bounded, independently of (z,z). We get:

/X (AG)*L) exp (_% <A(z)%Ad(z)—1A(z)éL,L>) drL
= /X (ALY I8 a1 O(a—)
= (2m)"E [|det™ (Xoo(2))] [det™ (Yoo (2))]] + O(d™) .
Finally, by Eq. (B.28), we find
E [|det™ (Xa(2))| |det™ (Ya(2))|] = E[|det" (Xoo(2))] |det™ (Yoo (2))]] + O(d™) . (B.30)

By Lem. 4.13, for all z # 0, A(z) is non-singular. Hence E [|det™(Xo(2))] |det™ (Yoo (2))]], is a
positive function of z. By Lem. 4.16,

E [|det™ (X o0 (2))] |det* (Yoo (2))]] = IEHdetJ‘(X(||z||2))‘ ’detJ‘(Y(HzHQ))

and by Lem. 4.17 and 4.18, if r < n, this quantity admits positive limits when | z|| goes to 0 or
||2]| goes to +oo. Thus, in this case, E[|det(Xoo(2))||dett (Yoo (2))|] is bounded from below by
positive constant, independent of (z, z). Then, Eq. (B.30) shows that:

E [|det™(X4(2))| [det™(Ya(2))|] = E[|det™ (Xoo(2))] [det™ (Yo (2))]] (1 4+ O(d™*))
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and this concludes the proof for r < n.
If r = n, the leading term in Eq. (B.30) goes to 0 as ||z|| — 0, so that we need to be more
precise. From now on, we assume that » = n. Let us assume for now that, in this case, we have:

[x(a@iz) Iz e az = o(jz1°) (B.31)

as z — 0, where the constant involved in the O(||z||2) is uniform in (x,z). Then, proceeding as

we did in the case r < n, we get the following equivalent of Eq. (B.30):
E [|det™ (Xa(2))| [det™ (Ya(2))|] = B [|det™ (Xoo (2))] [det™ (Voo (2))]] +O(Hz||2d’°‘).

By Lem. 4.17,

E[|det  (Xuo(2))] et (Yae ()] = E[aet (X121 | |aet (v (1z1%)) ] ~ 2 1212
as z — 0. Hence,
E[|det™(Xq(2))| [det™(Ya(2))|] = E[|det™ (Xoo(2))] |det™ (Yoo (2))]] (1 4+ O(d™*))

uniformly for # € M and [|z|| < 1. In the domain ||z| > 1, E[|det™(Xoo(2))| [det (Voo (2))]] is
bounded from below by a positive constant independent of (x, z), and we proceed as in the case
r < n, using Eq. (B.30). This yields the result for r = n.
To conclude the proof, we still have to prove that (B.31) holds when r = n. Let us write
= (A,B) and A(2):L = (X(2),Y(2)) with A, B,X(2) and Y(z) € T;M @ R (€@ L%) . We
choose any orthonormal basis of R (5 ® Ed) and an orthonormal basis of T,M such that the
coordinates of z are (||z|,0,...,0). We denote by (Aij), (Bij), (Xij(2)) and (Y;;(2)) € My (R)
the matrices of A, B, X(z) and Y( ) in these bases.
The matrix of A(z) in the basis defined by B, (see Sect. 4.3) and our basis of R (£ ® Ed)m is

A(||z]|?), where A was defined by Eq. (A.15). That is, using the same notations as in the proof of
Lem. 4.17 (see Eq. (A.9) and (A.10)), for all ¢ € {1,...,r}:

()= () 2 8) wnon ()-8 (8-
Hence, we have:
¥ (AE)AL) = X(X(2), Y (2) = [det* (X ()] |aet (v ()] = @ (217 (A3, (By) )

where ¥ was defined by Eq. (A.11). Recall that U satisfies (A.14) when r = n. As in the proof of
Lem. 4.17 (cf. App. A), by Lebesgue’s Theorem we have:

é/x(/&( ) )||L||2 e HIEI qr, = /| || || || (Ai), (B U)HLH2 o= IEI% gf

A =By As+Bs A, +B, e
””—O>/det< Lo et o et > IL|[2 e~ 3IEI° ar,
—

V2 V2 V2
where A; (resp. B;) denotes the j-th column of the matrix of A (resp. B) and L = (A4, B). This
limit is finite, which proves that (B.31) is satisfied and concludes the proof. O
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