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Abstract

The complexities of self-dual normal bases, which are candidates for
the lowest complexity basis of some defined extensions, are determined
with the help of the number of all but the simple points in well chosen
minimal Besicovitch arrangements. In this article, these values are first
compared with the expected value of the number of all but the simple
points in a minimal randomly selected Besicovitch arrangement in Fg?
for the first 370 prime numbers d. Then, particular minimal Besicovitch
arrangements which share several geometrical properties with the arrange-
ments considered to determine the complexity will be considered in two
distinct cases.

Introduction

Let ¢ be a prime power, F, be the field of ¢ elements and n be a positive
integer. We consider the Galois group of the extension Fyn /IF,, which is a cyclic
group generated by the Frobenius automorphism ® : x — z?. There exists an
a that generates a "normal” basis for Fyn /F,, i.e. a basis consisting of the

orbit (a, a4, ..., oﬂnil) of o under the action of the Frobenius. The difficulty of
multiplying two elements of the extension expressed in this basis is measured by
the complexity of o, namely the number of non-zero entries in the multiplication-
by-a matrix: (Tr(aa‘f aqj))ogingnil, where T'r is the trace map from Fg» to
F, ([6} 4.1]). As alarge number of zero in this matrix enables faster calculations,
finding normal bases with low complexity is a significant issue. o
Self-dual normal bases are particular normal bases which verify Tr(aql a?) =
di; (for 0 <i,5 <n—1), where ¢ is the Kronecker delta. Arnault et al. in [I]
have identified the lowest complexity of self-dual normal bases for extensions of
low degree and have showed that the best complexity of normal bases is often
achieved from a self-dual normal basis. In [7], Pickett and Vinatier considered
cyclotomic extensions of the rationals generated by d?-th roots of unity, where
d is a prime. The construction they use yields a candidate for the lowest com-
plexity basis for F,q/F,, where p # d is a prime which does not split in the
chosen extension. They prove that the multiplication table of this basis can
be geometrically interpreted by means of an appropriate minimal Besicovitch
arrangement. The complexity of the basis, denoted by Cy, is here equal to the
number of all but the simple points generated by this arrangement in Fg?.
After a brief overview of the properties this arrangement have, we will com-
pare the complexity Cy with the expected value of the number of all but the
simple points in a minimal randomly selected Besicovitch arrangement in F >



for the first 370 prime numbers d. The expectations will be determined using
Blondeau Da Silva’s results in [2]. In a third part, we will consider particular
minimal Besicovitch arrangements which share several geometrical properties
with the arrangements considered to determine the complexity. We will again
compare in this part, for the first 370 prime numbers d, C; with the expected
value of the number of all but the simple points in the randomly selected men-
tioned above arrangement.

1 The minimal Besicovitch arrangement provid-
ing the complexity

Let d be a prime number and F; be the d elements finite field.

A line, in F4?, is a one-dimensional affine subspace. A Besicovitch arrange-
ment B is a set of lines that contains at least one line in each direction. A
minimal Besicovitch arrangement is a Besicovitch arrangement that is the union
of exactly d + 1 lines in Fy* (see [2]).

The minimal Besicovitch arrangement considered, brought out by Pickett
and Vinatier ([7]), and denoted by .%, is composed of d + 1 lines with the
following equations:

Lo: ax—(a+1)y—pla)=0 for a € Fy,
Leo: z—y=0,

where p is the following polynomial:

" d_ gd _
Vo €Ty plz) = “)d L (1)

For d > 5, Pickett and Vinatier (J7]) have proved that under the action of
I' = (1,0) (a group generated by two elements of GLy(Fg), where «(x,y) = (y,x)
and 0(z,y) = (y — z, —x) for (z,y) € F4?), this arrangement .# always has two
orbits of cardinal 3: {Lg, L_1, Loo} and {L1, L, L_5}. They have also stated
that:

e if d=1 mod 3, there are one orbit of cardinal 2, {L,,, L2}, where w is a
primitive cubic root of unity in Fy and % orbits of cardinal 6;

e if d =2 mod 3, there are d—gf’ orbits of cardinal 6.

The Comp_lib 1.1 package have been implemented in Python 3.4. It provides
the complexity Cy of the basis (by counting all but the simple points in the
associated minimal Besicovitch arrangement) and it also enables to determine
the points multiplicities distribution in F4? of this arrangement. It is available at
https://pypi.python.org/pypi/Comp_lib/1.1. Table[lin Appendix gathers
the first 370 values of Cjy.

2 Complexity versus number of all but simple
points in randomly selected arrangements

Let us denote by Ay the expected value of the number of all but the simple
points in a randomly chosen minimal Besicovitch arrangement in F4%. Thanks
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to the proof of Theorem 1. in [2], we have:
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Figure [[ shows the values of Q‘%L for the first 370 prime numbers.
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Figure 1: The 370 values of the function that relates each prime number d to
Ca—Ad
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2.1 A first test

From the 370 values of Figure [IL we plot the regression line: its slope s is
approximately 4.94 x 10~° and its intercept is approximately —0.913.

Let us consider the following null hypothesis Hy: s = 0. We have to calculate
T = S&_SO, where 6 is the estimated standard deviation of the slope. We obtain
s ~ 874 x 107% and T ~ 0.565. T follows a student’s t-distribution with
(370 — 2) degrees of freedom (see [3, Proposition 1.8]). The acceptance region
of the hypothesis test with a 5% risk is approximately [—1.967,1.967]. Thus it
can be concluded that we cannot reject the null hypothesis : the fact that the

slope is not significantly different from zero can not be rejected.

2.2 A second test

Figure [2 below shows the distribution of the values of Cd;Ad for the first 370

prime numbers. In regard to the resulting histogram, one may wonder whether
these values are normally distributed or not.
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Figure 2: Distribution of the values of Cd;Ad.

From the result of the first test, we would consider in this part that the
function that maps d onto Cd;Ad behaves like a random variable with an ex-
pected value A close to —0.856. On that assumption we will verify whether the
values of Z4=44 are normally distributed for d € [2,2531] NN (the null hypoth-
esis) or not. For this purpose we use the Shapiro-Wilk test (see [8]). The test
statistic W is about 0.991. The associated p-value being about 0.0296, it can
be concluded that we can reject the null hypothesis, i.e. the values of Cd;Ad
are significantly not normally distributed for d € [2,2531] N N.

2.3 A third set of tests

Once more, from the result of the first test, we would consider in this part that
the function that maps d onto Cd;Ad behaves like a random variable with an
expected value A close to —0.856 and with a symmetric probability distribution.

On that assumption we will verify whether the values higher than A and
those smaller than A are randomly scattered over the ordered absolute values
of % (the null hypothesis) or not. To this end we use a non-parametric
test, the Mann—-Whitney U test: we determine the ranks of |Cd;Ad| for each d
in the considered interval (see [9] or [5]). The ranks sum of the values higher
than A is approximately normally distributed. The value of U; is about —0.911.
The acceptance region of the hypothesis test with a 5% risk being approximately
[—1.960, 1.960], it can be concluded that we cannot reject the null hypothesis, i.e.
the fact that the greater and smaller than A values of Cd;Ad for d € [2,2531]NN
are randomly scattered: the symmetry of the probability distribution of our
potential pseudorandom variable can not be rejected.

Once more, on our first assumption, we will verify whether the values higher
than A and those smaller than A are randomly scattered over the first 370 prime
numbers (the null hypothesis) or not. To this end we use the same test, the
Mann—Whitney U test. The prime number ranks sum of the values higher than
A is approximately normally distributed. The value of Us is about —0.397. It
can be concluded that we cannot reject the null hypothesis, i.e. the fact that the




greater and smaller than A values of Q‘%L for d € [2,2531] NN are randomly

scattered over the first 370 prime numbers.

2.4 Perspective

Both first test and set of tests could not invalidate the fact that the function that
maps d onto Cd;Ad seem to behave like a random variable with A as expected
value. If we succeed in proving such a statement, we could consider the following
unbiased estimator of Cy, denoted by Cjy:

@ZAd—i-Ad
1
:d2—d(d+1)(1—g)d+Ad
1 1
= (1——)d2—|—(A—2—)d—|—0(cl)7 as d = oo,
e e

thanks to the proof of [2, Theorem 1.].

3 Complexity versus number of all but simple
points in particular arrangements

3.1 Further details on the minimal Besicovitch arrange-
ment providing the complexity

In this part, we will consider particular minimal Besicovitch arrangements which
share several geometrical properties with the arrangements considered to deter-
mine the complexity and we will compare the expected values of the number of
all but simple points in such randomly selected arrangements with Cy values.

Before reviewing the whole cycles highlighted in section [I let us make a
quick remark:

Remark 3.1. If a line in an orbit passes through (0,0) € F4? all the other lines
of this orbit also pass through this point, the elements of the group I' acting on
the lines being in GLy(Fy).

In section [Il two cases appear, for d > 5: the cases where d =1 mod 3 and
those where d =2 mod 3.

In both cases, the intercepts of the lines in {Lg, L_1, Lo} are 0 (we have
p(0) = 0 thanks to equality [l Remark 3] allowing us to conclude).

The intercepts of the lines in {Lq, L i, L_5} are non zero values, except for
d = 1093, the first Wieferich prime number, for which lines intercepts are all
zero: p(2) =0 <— 2d7;*1 (see equality [Il, Remark BT and [4]).

If d =1 mod 3, the intercepts of the lines in {L,, L 2} are 0:

C(wH D) —wt -1 —(wh)?—w?—1
p(w) = 7 = p
—(WwP-—w—-1_

= =0
d ’

using the fact that w is a primitive cubic root of unity in Fy; and using Fermat’s
little theorem.



In this part, we will only consider the values of d € [2,2531] NN where all
lines in the 6-cycles do not pass through (0,0); for the 152 values of d verifying
this constraint and also d = 1 mod 3, we denote by M}j the expected value
of the number of all but the simple points in a randomly chosen arrangement
sharing geometrical properties with the arrangement providing the complexity;
for the 153 values of d verifying the same constraint and also d =2 mod 3, we
denote by M;* the similar expected value. Table [[l shows the values of d being
in either the first or the second case.

3.2 Lines intersections of the different cycles

The five functions in I", other than the identity function Id, will be denote as
in [7]:

Y(z,y) € Fg?,
We,y) = (y,2)  Oy) =y —z,—2)  F(z,y) = (~y.2—y)
w(zy) =0ouz,y) =(z—y,—y)  Aa,y) =cob(z,y) = (—z,y —x).
Note that ¢, x and X are of order 2, and # and 62 are of order 3. We can also
easily verify that the fixed points of ¢ are those of the line L., the fixed points

of k are those of the line Ly and the fixed points of A are those of the line L_;.
The following proposition can thus be enunciated:

Proposition 3.2. Vv € {¢,x,A\} and Va € Fg\ {0, -1}, if L, and v(L,) are
two distinct lines, then their intersection point is in line of the fized points of ~y.

Proof. The image of a point under a fonction in I' C GL2(Fy) is a point. So,
Vv € {t,k, A} and Va € F4\ {0, -1}, if L, and v(L,) are two distinct lines, i.e.
if their intersection is a point:

Y(La Ny (La)) = v(La) Nv(v(La))
= La N V(La)a

each of the considered functions being of order 2. The point L, N~y(L,) is thus
in the fixed line of ~. [l

Let us henceforth denote by .7 the set F4*\ {Lo, L_1, Lo }. In each 6-cycle,
for all v € T" and for all a € Fy (such that L, is in the considered 6-cycle),
L, and v(L,) are distinct; we can therefore apply Proposition in the case
where all the lines in a 6-cycle do not pass through (0, 0) (the prevalent selected
case in subsection [B]), there exist 3 intersection points of the 6-cycle lines on
each line of {Lg, L_1, Lo }:

e on Lo: LoNk(Ly), 0(La) NA(Ly) and 62(Ly) Ne(La);
eonlL_q1: LaNA(Ly), 0(Ly) Nie(Ly) and 02(L,) N k(Ly);
e on Loo: Lo Ni(Ly), O(La) Nk(Ly) and 02(Ly) N A(Ly).
An other proposition can be added:

Proposition 3.3. In the case where all the lines in a 6-cycle do not pass
through (0,0), two of the described above 6-cycle intersection points on a line of
{Lo,L_1, L} do not coincide.



Proof. Let us consider a 6-cycle. Its lines do not pass through the origin. a € Fy,
such that L, is in this 6-cycle. We assume that L, N k(L) and 0(Ls) N A(Lg)
coincide on L. Knowing that 0(Lo) = L (see [7]), we have:

O(La N &(Lg) NO(Ly) NA(Ly)) € Lo

0(La) N AN(La) N0*(Ly) Nt(Ly) € Lo
So 0(La)NA € LoN Lo = (0,0); it contradicts the hypothesis of the proposition.

The considered points do not coincide.
All the other cases can be demonstrated in the same way. O

Thus the remaining 6 intersection points of the 6-cycle lines are in 7. We
can finally prove the following proposition (in the case where d > 11, otherwise
there is no 6-cycle in the arrangement .¥):

Proposition 3.4. The 6 remaining point in & (in the case where all the lines
in the 6-cycle do not pass through (0,0)) are distinct.

Proof. We first prove the following lemma:

Lemma 3.5. 0 has a single fized point in Fg> <= d#3.
Proof. 0 € GLy(FFq) then (0,0) is a fixed point of 6.

For (z,y) € Fg*:

9($,y):(x,y) <~— y—x=xand —x =y
<— 3dxr=0andy=—x.

The result follows. (|

Let us consider a 6-cycle. Its lines do not pass through the origin. a € Fy,
such that L, is in this 6-cycle.
Let us assume that 3 lines in the 6-cycle are concurrent in P € . It is clear
from the foregoing that these lines are whether L, 6(L,) and 6%(L,) or (L),
k(Lg) and A(L,). We have:

O(P) =0(L,NO(Ly) NO*(La)) (or 60(u(La) NK(Le) NA(La)))
=0(Ly)N0°(La) NLa (or K(La) NA(La) Ne(Ly)).

In both cases §(P) = P i.e. P is a fixed point of §. It means that P = (0,0)
thanks to Lemma [3.5] knowing that d > 11; it contradicts the hypothesis of the
proposition. The 6 remaining point in 7 are distinct. |

The cases of {L1, La—1,L_5} and {L,, L2} can be considered as degenerate

cases of a 6-cycle. Let us focus on the first arrangement. From [7], we get
t(L1) = L_2, AM(L_3) = La- and k(L1) = La-1. Thanks to Proposition B.2]
2 2
the 3 intersection points of lines in {L1, La-—1,L_o} are:
2

eonlyg LiNLa;
2
eonl _1: L oNLa;
2

e on Lo: L1 NL_s.



We note that this result is just a particular case of the above result.

The Figure Bl below provides two examples of minimal Besicovitch arrange-
ments leading to the determination of the complexity. For the first one (d = 7),
we are in the case where d =1 mod 3, for the second one (d = 11) in the case
where d = 2 mod 3. The above results and in particular those of Propositions
B2 and [3.4] are emphasised.

N /
ANERN X f /
X / D AR N
/ X X KA
RN * /o /o
K/ N /X
AN £ K/ £
f N X /N X
AN fN S oA
F,2 \/\\ * oy /
Fi1°

Figure 3: Lines of the minimal Besicovitch arrangement in Fy4? providing the
complexity Cy where d = 7 (on the left) and d = 11 (on the right). Red lines
are those of {Lg, L_1, Lo}, green ones are those of {L1, La—1,L_5}, blue ones

are those of {L,,, L,2} and black ones are lines of a 6-cycle. The number of all
but the simple points is 25 for d = 7, and 67 for d = 11; thus C7 = 25 and
011 = 67.

3.3 The first model

We first consider the case where d =1 mod 3. Let us denote by Q* the set of
minimal Besicovitch arrangements verifying some geometrical constraints simi-
lar to those of the considered Besicovitch arrangements. In such arrangements:

e there exist 3 lines of equations x = 0, y = 0 and y = x (let us denote by
I, this lines set);

e there exist 2 lines that pass through the origin (let us denote by Iy this
lines set);

o there exist 3 lines that do not pass through the origin, their 3 intersection
points being respectively on each of the 3 lines in I, (let us denote by I3

this lines set);
e there exist % sets of 6 lines, all verifying the same constraints as in

Propositions 321 B3] and B4

In order to calculate the average number of all but simple points in such
arrangements, we will build a probability space: 2*. The o-algebra chosen here



is the finite collection of all subsets of 2*. Our probability measure, denoted by
P, assigns equal probabilities to all outcomes.

For Q in Fg?, let Mg be the random variable that maps A € Q* to the
multiplicity of @ in A.

With the aim of knowing the expected number of simple points in such
particular arrangements, we determine P(Mg = 1), for all @ in Fq2. Two cases
appear: either @ is in a line of [, (apart from the origin) or not.

3.3.1 Q@ is in a line of [, (apart from the origin)

In this case, for A € Q*, we have:

Mo(A)=1 <= none of the d — 2 lines of A (other than those of I,) pass
through Q.

We already know that lines of I3 do not pass through this point.

There is a % X % probability that the two distinct intersection points
between lines of I3 and the considered line of I, do not coincide with @ (a line
is composed of d points and the origin is here not considered).

Similarly, there is a % X % X Z—:g probability that the three distinct
intersection points between lines of a set of 6 lines (verifying the same constraints
as in Propositions3.2land B3) and the considered line of [, do not coincide with
Q.

Finally, considering the % sets of 6 lines and the lines in Il and I3, we
obtain in this case:

d—3 d—4\ %"
P(MQfl)*d—1x(d—1) '

3.3.2 ( is not in a line of [,

In this case, for A € Q*, we have:

Mg(A)=1 <= exactly one line of the d — 2 lines of A (other than those
of l,) passes through Q.

We will use the following results to study in more detail the different sub-
cases. In Fy?\ l,, there are d*> — 3 x (d — 1) — 1 = d?> — 3d + 2 points. In
F4%\ lo Uly, there are 2(d — 1) points of multiplicity 1 and the remaining points
of multiplicity 0 (d> — 5d + 4 points). In F4?\ I, Ul3, there are 3(d — 3) points of
multiplicity 1 and the remaining points of multiplicity 0 (d? — 6d + 11 points).
In the union of Fy?\ I, and a 6 lines set, there are 6(d — 5) points of multiplicity
1, 6 points of multiplicity 2 (see Proposition B4]) and the remaining points of
multiplicity 0 (d? — 9d + 26 points).

This case can be divided in 3 subcases:

e the first one where the line that passes through @ is in l9; then the prob-
ability is:

2(d — 1) Xd2—6d+11 (d2—9d+26)%_
2 —3d+2" d®—3d+2 d2 —3d+2 ’



e the second one where the line that passes through @ is in l3; then the
probability is:

dt5d+4X 3(d — 3) x<d279d+26)%_
d?2—3d+2 " d?—3d+2 d? —3d+2 ’

e the third one where the line that passes through @ is in one of the %
sets of 6 lines; then the probability is:

@ —5dtd d*—6d+11 d—7 6(d—5) (d279d+26)%
2 —3d+2 dE-3d+2 6 d—3d+2\d®—3d+2 ‘

Hence we have in this specific case:

2 d? —6d+ 11 d? — 9d + 26\ 5"
P(Mp =1) = ( )
Mo=1=7—=5>"m 375 *F 30:2
d—4  3(d-3) (d2—9d+26)%

X X
d—2" d2—3d+2 d2 —3d+2
d—4 d?>—6d+11 d2—12d+35(d2—9d+26)%
d—2 d2 —3d+2

P _3d+2 " B2_3d+2

3.3.3 The expected value of M

Recall that our aim is to determine the expected value M of the number of all
but simple points in arrangements of 2* in order to compare it with the value
of the complexity Cy.

Thanks to the results of the above section and knowing that the first case
concerns 3d — 3 points and the second one d? — 3d + 2 points, we get:

4,47 2(d? — 6d + 11)

s (s d— 4. o & — 9d + 26, 47
Mg =d (3(d DX (o) "+ (@ —3052)
3(d — 3)(d — 4)

d2 — 9d + 26, 4=
T2 “ (@ —3553)
(d—4)(d —6d+11) d2712d+35(d279d+26 ;)
d—2 P _3d+2 ‘@ _3d+2

Using the Computer Algebra System Giac/Xcas (Parisse and De Graeve,
2017, http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html, ver-
sion 1.2.3), we obtain:

1 1 1
Mj=(1- g)dQ + (g - 36XP(*2))d+ O(1), asd— oo.

3.4 The second model

We henceforth consider the case where d = 2 mod 3. Let us denote by Q**
the set of minimal Besicovitch arrangements verifying some geometrical con-
straints similar to those of the considered Besicovitch arrangements. In such
arrangements:

e there exist 3 lines of equations x = 0, y = 0 and y = x (let us denote by
I, this lines set);

10
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o there exist 3 lines that do not pass through the origin, their 3 intersection
points being respectively on each of the 3 lines in I, (let us denote by I3
this lines set);

e there exist % sets of 6 lines, all verifying the same constraints as in

Propositions 3.2 [33] and B4

In order to calculate the average number of all but simple points in such
arrangements, we will build a probability space: 2**. The o-algebra chosen
here is the finite collection of all subsets of 2**. Our probability measure,
denoted by P, assigns equal probabilities to all outcomes.

For Q in F4?, let Mg be the random variable that maps A € Q** to the
multiplicity of @ in A.

With the aim of knowing the expected number of simple points in such
particular arrangements, we determine P(Mg = 1), for all @ in Fq2. Two cases
appear: either @Q is in a line of I, (apart from the origin) or not.

3.4.1 Q@ is in a line of [, (apart from the origin)
In this case, for A € Q**, we have:

Mo(A)=1 <= none of the d — 2 lines of A (other than those of I,) pass
through Q.

d—2 d—3

There is a =5 —5 probability that the two distinct intersection points

between lines of 3 anéli the considered line of [, do not coincide with Q.
Similarly, there is a % X % X Z—:g probability that the three distinct
intersection points between lines of a set of 6 lines and the considered line of [,
do not coincide with Q.
Finally, considering the % sets of 6 lines and the lines in I3, we obtain in
this case:
d—3 d—4

P<MQ:1>:ﬁX(H)%

3.4.2 () is not in a line of [,
In this case, for A € Q**, we have:

Mo(A)=1 <= exactly one line of the d — 2 lines of A (other than those
of l,) passes through Q.

We will use the following results to study in more detail the different sub-
cases. In F2 \ la, there are d> — 3d + 2 points. In F,2 \ lo Ul3, there are 3(d — 3)
points of multiplicity 1 and the remaining points of multiplicity 0 (d? — 6d + 11
points). In the union of Fy® \ I, and a 6 lines set, there are 6(d — 5) points of
multiplicity 1, 6 points of multiplicity 2 (see Proposition[34]) and the remaining
points of multiplicity 0 (d? — 9d + 26 points).

This case can be divided in 2 subcases:

e the first one where the line that passes through @ is in [3; then the prob-
ability is:

3(d — 3) y (d279d+26)d55_
d2 —3d+2 d? —3d+2 ’

11



e the second one where the line that passes through @ is in one of the %

sets of 6 lines; then the probability is:

d2—6d+11><d—5 6(d —5) (d2—9d+26)d2“
d2 —3d+2 6 d2—3d+2\d?>—3d+2 '

Hence we have in this specific case:

P(Mg=1) =

3(d — 3) d? —9d + 26\ 5°
d2—3d+2x(d2—3d+2)
d*> —6d+11 d?>—10d+ 25 /d? — 9d + 26\
2—3d+2 = &#—-3d+2 (d2—3d+2)

3.4.3 The expected value of M;*

Recall that our aim is to determine the expected value Mj* of the number of all
but simple points in arrangements of Q2** in order to compare it with the value
of the complexity Cy.

Thanks to the results of the above section and knowing that the first case
concerns 3d — 3 points and the second one d? — 3d + 2 points, we get:

d—4, 450 d? — 9d + 26, a=5
* % 2

Myt = = (30 =3) x (=3) 7 +30=3) x (rgg )
d* —10d + 25 ,d? — 9d + 26 d%n)

d?> —6d+ 11
(@ = 6d+11) x = o (301 2

Using the Computer Algebra System Xcas, we obtain:

1 1 1
M;* _ (17 g)d2+ (g73eXp(*§))d+O(1)v as d — oo.

3.5 Results

) Ca—M; Ca—ML* .
Figure [ shows values of both =*——< and =*——< for the selected prime num-
bers d.
A A )
5Ty M 5T g M
—d_ ""d % —Zd "7d
4 d X 4 d
x x
3 x 3
x x x X x
. x x x
zx)&)‘; K w X xR XX yx: %, 2
1TFE % X xyx X 3 )Q():(x>< X x x 1
I B T e X Mg g e e S N d
0+ 0 X »
x: * 500 18900 lé;jg % 22000 * 2500 500 1000 1500 2000 2500’
-1 . Xx x . x x XX X XX -1
-2 x X x -2
3 x x _3
—4 1 — Linear regression line: y = 1.94 x 10~%2 + 0.352 —4 1 — Linear regression line: y = —1.88 x 10~z 4 0.511

Figure 4: Values of both Cd_TM:; (on the left) and Cd_TMd** (on the right) for the
selected prime numbers d.

12



3.5.1 A first test in each case

From the 152 left plotted values on Figure d] we draw the regression line: its
slope s* is approximately 1.94 x 10~* and its intercept is approximately 0.352.
Let us consider the following null hypothesis Hi: s* = 0. We have to calculate
T = S;;O, where G4+ is the estimated standard deviation of the slope. We
obtain 64 ~ 1.35 x 10~* and T* ~ 1.43. T* follows a student’s t-distribution
with (152 — 2) degrees of freedom [3| Proposition 1.8]. The acceptance region
of the hypothesis test with a 5% risk is approximately [—1.976,1.976]. Thus it
can be concluded that we cannot reject the null hypothesis, i.e. the fact that
the slope s* is not significantly different from zero.

From the 153 right plotted values on Figure @ we draw the regression line:
its slope s** is approximately —1.88 x 10~% and its intercept is approximately
0.511. Let us consider the following null hypothesis Hg*: s** = 0. We again

* ok
g** —

have to calculate T** = 0_**0. We here obtain G4+ &~ 1.25 x 10~% and T** =~
—1.50. T** follows a student’s t-distribution with (153 — 2) degrees of freedom.
The acceptance region of the hypothesis test with a 5% risk is approximately
[-1.976,1.976]. Thus it can be concluded that we cannot reject the fact that

the slope s** is not significantly different from zero.

3.5.2 A set of tests in each case

Figure [ below shows the distribution of the values of CFTM; (on the left) and

Cd_TM;* (on the right) for the considered values of d.

A A ]
18 + 18 +
Frequency Frequency H
16 + 16 +
14 +| pm 14 +
12p0 = 12 +
10+ 10t H
8ItH 8141 H
Cq—M} Ca—Mgz"
T d T d
1l mms, o {{lmll s,
-3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3

Figure 5: Distribution of values of both Cd_TM; (on the left) and Cd_TM;*

the right) for the selected prime numbers d.

(on

From the result of the first test in section 5.1l we would consider in this
part that the function that maps d onto Cd_TM; behaves like a random variable
with an expected value A* close to 0.576 and with a symmetric probability
distribution (for the considered values of d). On that assumption we will verify
whether the values higher than A* and those smaller than A* are randomly
scattered over the ordered absolute values of Cd;Ad (the null hypothesis) or

13



not. To this end we use a non-parametric test, the Mann—-Whitney U test: we
determine the ranks of |C‘1+M‘i| for each d in the considered interval (see [9]
or [5]). The ranks sum of the values higher than A* is approximately normally
distributed. The value of Uj is about —0.673. The acceptance region of the
hypothesis test with a 5% risk being approximately [—1.960,1.960], it can be
concluded that we cannot reJect the null hypothesis, i.e. the fact that the greater

and smaller than A* values of £ de are randomly scattered: the symmetry of
the probability distribution of this potential pseudorandom variable can not be
rejected.

On the same assumption, we will also verify whether the values higher
than A* and those smaller than A* are randomly scattered over the consid-
ered prime numbers (the null hypothesis) or not. To this end we again use the
Mann—Whitney U test. The prime numbers ranks sum of the values higher than
A* is approximately normally distributed. The value of UJ is about 0.721. It
can be concluded that we cannot reject the null hypothesis, i.e. the fact that

the greater and smaller than A* values of Cd_dM; are randomly scattered over
the considered prime numbers.

From the result of the second test in[3.5.1] we would consider in this part that
the function that maps d onto Ca=Mi" Lehaves like a random variable with an
expected value A** close to 0.297 and with a symmetric probability distribution
(for the considered values of d). On that assumption we will verify whether the
values higher than A** and those smaller than A** are randomly scattered over
the ordered absolute values of Q%L (the null hypothesis) or not. To this end
we again use the Mann-Whitney U test. The value of U;* is here about —1.08.
It can once more be concluded that we cannot reject the fact that the greater
and smaller than A** values of C(‘*TM;* are randomly scattered: the symmetry
of the probability distribution of this potential pseudorandom variable can not
be rejected.

On the same assumption, we will verify whether the values higher than A**
and those smaller than A** are randomly scattered over the considered prime
numbers or not. To this end we again use the Mann—Whitney U test. The value
of Us™ is here about —1.77. It can once more be concluded that we cannot reject

the fact that the greater and smaller than A** values of C(‘*TM;* are randomly
scattered over the considered prime numbers.

3.5.3 Perspective

Both first test and set of tests could not invalidate the fact that the function
that maps d onto %L and the one that maps d onto %‘— seem to behave
like random variables with respectively A* and A** as expected values. A* and
A** are both positive numbers, whereas A is negative; the added geometrical
constraints seem to reduce in average the number of all but the simple points
generated by a randomly chosen minimal Besicovitch arrangement. This reduc-
tion is slightly highter than expected. Our arrangements cannot obviously be
limited to the considered geometrically constrained arrangement. Adding con-
straints for better modeling the arrangements and finding a way to determine
whether the considered functions could be considered as high-quality pseudo-
random number generators (PRNG) sketch some avenues for future research on
the subject.
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Appendix

d || 2|3 s** [ 7% 11%* | 13% | 17** | 19% | 23%* [ 20%* | 31% | 37% | 41%* | 43* | 47** | 53**| 59 [ 61* | 67F | 71**

Cqll1|6] 13 [25| 67 | 100| 163 | 229| 334 | 448 [ 625| 844 | 1075 1114 1402 | 1786 | 1912| 2218 | 2752 | 3046

d || 73* | 79 83 [ 89**| 97* | 101** | 103* | 107** [ 109™ | 113** | 127* | 131** | 137** | 139* | 149** | 151*

C || 3307 | 3685|4189 | 4972 | 5971 | 6367 | 6475| 7102 | 7315| 8107 [ 10150| 10879 | 11824 | 12220| 13936 | 14176

d || 157* | 163* | 167**| 173** | 179 | 181* | 191**| 193 | 197**| 199* | 211* | 223* | 227 | 220% | 233**

Cq || 15529] 16546 | 17440 | 18799 [ 19789 | 20758 | 22945 | 23251 | 24430 | 24739 | 28186 | 31348 | 32482 | 33127 | 33721

d || 239%* | 241* [ 251%* | 257%* | 263** [ 269** | 271* | 277* | 281%* | 283% | 203** | 307* | 311**| 313* [317**

C || 35800 | 36577| 39808 | 41515 | 43795 | 45214 | 45940 | 48160 | 49507 | 49747 | 54625 | 59248 | 60886 | 60592 | 63535

d || 331* | 337 |347** | 349* |353%* [3509** | 367* | 373% | 379* [383**|389**| 397* | 401** | 409* 419

C || 68794| 71359 | 74710 | 76915| 78466 | 81265 [ 84772| 87586 | 90232 | 92203 | 95716 | 99352| 101314 [ 104797 | 109873

d 421 431%* | 433* 439* 443 449%* 457 461%* | 463* | 467** | 479%* | 487* | 491%*

Cg|] 111913 | 117079 | 118249 | 122023 | 123148 | 127207 | 130669 | 133840 | 134125 | 136486 | 144355| 150223 | 151696

d 499* | 503** | 509** | 521** | 523* 541* 547 557** | 563** | 569%* | 571* 577* | 587**

Cq || 157138 | 159607 | 162508 | 171607 | 172345 183730 | 188854 | 195535 | 200263 | 204214 | 203680| 210088 [ 216331

d || 593** | 599** 601 607* 613* | 617** 619 631* | 641%* | 643* | 647** | 653%* | 659**

Cq || 221269 | 226318 | 227140 | 232981 | 237046 | 239626 | 242398 | 250861 [ 259405 260467 | 263722 | 268363 | 273217

d 661* 673% | 677** | 683%* 691 701 709*% | 719%* | 7T27* 733* 739% | 743** | 751%*

C || 275827 | 286606 | 288166 | 294208 | 299602 | 312463 | 319282| 325690 | 332941 | 338929 | 344065| 347074 | 353806

d 757 T61** | T69* | TT3** 787 797T** | 809** [ 811* | 821** | 823* | 827** | 820* | 839**

C || 360034 | 364345 | 373825 | 377044 | 390112 400093 | 413593 | 416320 | 424864 | 425239 | 431245| 436477 | 443629

d 853* 857 859* | 863** | 877* | 881** | 883* 887 907 911 919* 929 937*

C || 458275 463174 | 466087 | 472573 | 483487 | 488704 | 491626 | 494824 | 519175 | 523180 | 533941 | 543892 553420

d || 941%* | 947** | 953** | 967* 971 977 983** [ 991* 997* [ 1009* | 1013** | 1019** [ 1021*

C || 559363| 565651 | 574390 | 589471 | 594424 | 599923 [ 610498 [ 620311 | 627001 | 644440 | 644356 | 653449 | 658795

d || 1031**| 1033* | 1039 | 1049**| 1051* | 1061** | 1063* | 1069* | 1087* | 1091 1093 | 1097** | 1103**

Cq|| 671311 | 674257| 680911 | 692635 | 697756 | 710902 [ 712840 | 723076 | 745966 | 752482 752740 | 759808 [ 768805

d 1109 | 1117* | 1123* | 1129* | 1151** | 1153* | 1163** | 1171* | 1181** [ 1187** | 1193 | 1201* | 1213*

Cq|| 779941 787798 | 794254 | 806077 | 837823 | 838891 ( 851632 | 862882 | 878656 | 887017 [ 900982 | 911497 | 929935

d 1217 1223 | 1220%*| 1231 1237 | 1249* 1259 1277** 1279* 1283 1289 1291*

C || 936253 | 943267 | 956872 | 956560 | 964465 | 985237 1000621 | 1029562| 1033756 | 1039588 | 1047226 | 1052251

d 1297* | 1301%* 1303 | 1307** | 1319%* [ 1321* 1327* | 1361** | 1367** | 1373** | 1381* 1399*

C7]] 1063438 1068115 (1071913 |1078375|1101274 1102360 (1113577|1169632(1181578|1192081 | 1205287 | 1235425

d || 1409** | 1423% | 1427** | 1420% [ 1433** 1439 1447* | 1451%* | 1453* 1459* 1471% | 1481%*

C ;1] 1251661 |1280677(1281337|1291003|1294351 [ 1303495 [ 1326448 1329037 [ 1330435 | 1344493 | 1364623 | 1385854

d 1483* 1487 1489 1493 | 1499** | 1511%* | 1523** 1531 1543* 1549* | 1553** [ 1559%*

C ;1] 1387588 1398910 (1400191 | 1407457 | 1420246 | 1444459 [ 1464190| 1477492 (1502308 | 1513120 | 1524895 | 1533844

d 1567* | 1571%* | 1579* | 1583** | 1597* | 1601** | 1607** [ 1609* 1613 1619** | 1621%* 1627*

C 1] 1549756 | 1558054 [ 1571542 | 1584523 | 1609036 [ 1614859 [ 1630015 | 1638106 | 1644892| 1655251 | 1659781 | 1673800

d 1637 1657 1663* | 1667** | 1669* 1693* | 1697** | 1699* | 1709** | 1721** | 1723* | 1733**

C;1] 1692076 | 1735675 (1746766 | 1755874 | 1759345 (1811281 [ 1817827 | 1821148 (1845148 | 1868239 | 1875610 | 1893445
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d 1741% | 1747* | 1753* | 1759* | 1777* | 1783* | 1787** | 1789* | 1801* 1811 | 1823** | 1831*
C4 || 1915426 [ 1926787 [ 1938808 | 1956460 | 1991359 | 2006128 | 2018023 [ 2019100 [ 2055712 [ 2074435 | 2092648 | 2118334
d 1847 1861* | 1867* | 1871** | 1873* | 1877** | 1879* | 1889** 1901 | 1907** [ 1913** | 1931**
C4|| 2156626 [ 2185264 [ 2198473 [ 2211484 | 2216392 | 2224747 | 2228053 | 2253946 | 2281783 [ 2297935 | 2303611 | 2355019
d 1933% | 1949%* | 1951* [ 1973** | 1979** [ 1987* 1993 1997 1999* 2003 2011% | 2017*
C4 || 2356819 [ 2398531 [ 2407693 | 2459041 | 2474182 | 2493151 | 2513734 | 2520214 | 2525929 [ 2534818 | 2554063 | 2571514
d || 2027** | 2029* | 2039** | 2053* | 2063** | 2069** | 2081** | 2083* 2087 2089 | 2099** [ 2111**
C4 || 2594968 [ 2605618 [ 2625871 | 2661322 | 2685235 | 2700313 | 2739367 | 2741827 | 2750443 [ 2757349 | 2783251 | 2809579
d 2113 2129%* | 2131* 2137* | 2141%* | 2143* [ 2153** | 2161%* 2179%* 2203% | 2207** | 2213%*
C4 || 2821639 [ 2862883 [ 2869180 | 2886973 | 2892547 | 2898181 | 2928235 | 2952049 [ 3001276 [ 3069025 | 3075811 | 3092218
d 2221% | 2237*%* | 2239* 2243 2251 2267%* | 2269% | 2273%* [ 2281* 2287* 2293% | 2297**
C4|| 3114424 (3159310(3166807 [ 3175720 | 3199828 | 3244723 | 3256783 | 3265912 | 3285589 [ 3303373 | 3326029 | 3330658
d || 2309** 2311 | 2333%* [ 2339%* | 2341* | 2347* | 2351%* | 2357** [ 2371* 2377 | 2381%* [ 2383*
C4 || 3372679 3373075 [ 3434839 | 3457402 | 3462010 | 3480025 | 3497599 | 3510505 | 3555751 [ 3567400 | 3579163 | 3587740
d 2389 | 2393** | 2399** | 2411%* | 2417** 2423 2437 | 2441%* | 2447%* | 2459** | 2467* 2473%
C4 || 3602248 [ 3614269 [ 3636025 | 3671155 | 3687757 | 3709300 | 3749929 [ 3761812 | 3780007 | 3821119 | 3847576 | 3861457
d 2477 2503*% | 2521*% | 2531%*

C4 || 3878440| 3960268 | 4014841 | 4046863

Table 1: The complexities values. Values of d with one asterisk correspond
to arrangements where d = 1 mod 3 and where all the lines (except those of
{Lo,L_1,Lo} and {L, L,2}) do not pass through the origin, whereas values of
d with two asterisks correspond to arrangements where d = 2 mod 3 and where
all the lines (except those of {Lg, L_1, Lo }) do not pass through the origin.
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