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Using the two parameters amplitude and frequency of a signal, four different types of representations can be obtained. The first two representations of a signal with (i) constant amplitudes and constant frequencies (CA-CF) by the Fourier theory, (ii) variable amplitudes and variable frequencies (VA-VF) using AM-FM model are well established. In this study, we present methods to obtain other two representations: (iii) constant amplitudes and variable frequencies (CA-VF) representation (FM model), and (iv) variable amplitudes and constant frequencies (VA-CF) representation (AM model) for time-frequency analysis of a signal. Moreover, contrary to perception available in literature, we show that the direct quadrature (DQ), which is a CA-VF type representation, cannot produce full sine wave form cosine wave and vice versa, thus not suitable for instantaneous frequency (IF) computation. In order to overcome the limitations of DQ, a novel Hilbert Quadrature (HQ) representation of a signal is proposed. Practically, some noise is always present in the signal under analysis and in such cases we demonstrate that the analytic signal representation obtained by suprressing the negative frequecnies in the Fourier method, which is equivalent to the Hilbert transform, is the most robust and suitable for the computation of IF.

Introduction

There are various nonlinear and nonstationary signal representation, decomposition and analysis methods such as empirical mode decomposition (EMD) based algorithms [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis[END_REF][START_REF] Wu | Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method[END_REF][START_REF] Rehman | Multivariate empirical mode decomposition[END_REF][START_REF] Singh | The Hilbert spectrum and the Energy Preserving Empirical Mode Decomposition[END_REF][START_REF] Singh | Some studies on nonpolynomial interpolation and error analysis[END_REF][START_REF] Singh | Nonpolynomial spline based empirical mode decomposition[END_REF], wavelet based synchrosqueezed wavelet transforms (SSWT) [START_REF] Daubechies | Synchrosqueezed Wavelet Transforms: an Empirical Mode Decomposition-like Tool[END_REF], Wiener filter based variational mode decomposition (VMD) [START_REF] Dragomiretskiy | Variational Mode Decomposition[END_REF], eigenvalue decomposition (EVD) [START_REF] Jain | An iterative approach for decomposition of multi-component nonstationary signals based on eigenvalue decomposition of the Hankel matrix[END_REF], empirical wavelet transform (EWT) [START_REF] Gilles | Empirical Wavelet Transform[END_REF], the Fourier theory and zero-phase filtering based methods [START_REF] Singh | Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis[END_REF][START_REF] Singh | The Fourier decomposition method for nonlinear and non-stationary time series analysis[END_REF][START_REF] Singh | Fourier-based Feature Extraction for Classification of EEG Signals Using EEG Rhythms[END_REF].

The time and frequency domain representations are two classical representations of a signal. The Time-Frequency Distributions (TFDs) provide localized signal information in both the time and frequency domain. The TFD provides insight into the complex structure of a signal consisting of several components. There exist many types of time-frequency analysis methods such as Gabor transform, short-time Fourier transform (STFT), wavelet transforms and Wigner-Ville distribution.

The [START_REF] Carson | Variable frequency electric circuit theory with application to the theory of frequency modulation[END_REF] proposed the concept of time-varying frequency [START_REF] Carson | Variable frequency electric circuit theory with application to the theory of frequency modulation[END_REF], with application to the frequency modulation (FM) scheme, as a generalization of the definition of constant frequency. The time-varying frequency is the basis of time-frequency representation required for the nonstationary signals and nonlinear systems analysis. The instantaneous frequency (IF) is the basis of the TFD or time-frequency-energy (TFE) representation and analysis of a signal. The IF is a practically important parameter of a signal which can reveal the underlying process and provides explanation for physical phenomenon in many applications such as acoustic, vibration, meteorological and atmospheric applications [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis[END_REF], seismic and speech signal analysis [START_REF] Singh | The Fourier decomposition method for nonlinear and non-stationary time series analysis[END_REF], radar, sonar, structural engineering, solar physics, health monitoring, communications, biomedical and medical applications [START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF], mechanical systems analysis [START_REF] Guo | Application of EMD method to friction signal processing[END_REF][START_REF] Lei | A review on empirical mode decomposition in fault diagnosis of rotating machinery[END_REF], cosmological gravity wave and financial market data analysis.

The Fourier series is a well-known and most important representation of a periodic function in the mathematics, science and engineering for spectral analysis of a physical phenomena. The discretetime Fourier series (DTFS) represents a N -periodic discrete-time signal x[n] as linear combinations of harmonically related complex exponential (or sinusoidal) functions, i.e.,

x[n] = N -1 k=0 a k exp(jkω 0 n) = N -1 k=0 |a k | exp(jkω 0 n + jφ k ) for n = 0, 1, . . . , N -1, (1) 
with

a k = 1 N N -1 n=0 x[n] exp(-jkω 0 n) for k = 0, 1, . . . , N -1, (2) 
where fundamental frequency

ω 0 = 2π N , φ k = tan -1 (Img{a k }/Re{a k }), Img{a k }
and Re{a k } denote imaginary and real part of a k , respectively. Unless otherwise specified, the phase is always computed by the function, atan2(Img{a k }, Re{a k }), which produces the result in the range (-π, π] and also avoids the problems of division by zero. It is to be noticed that, in the representation [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis[END_REF], each term has (a) constant but different frequency (kω 0 ) value which is integer multiple of fundamental frequency ω 0 , (b) constant amplitude (|a k |) value which may or my not be different from the amplitude value of other terms, and (c) linearly varying phase (kω 0 n + φ k ). If signal x[n] is real valued function in [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis[END_REF], then it can be written as

x[n] = N -1 k=0 |a k | cos(kω 0 n + φ k ) and N -1 k=0 |a k | sin(kω 0 n + φ k ) = 0 for n = 0, 1, . . . , N -1, (3)
where amplitudes |a k | and frequencies kω 0 are constants for each k.

Using the two parameters amplitude and frequency of a signal, four different types of representations of a signal can be obtained: (i) constant amplitudes and constant frequencies by the Fourier theory, (ii) variable amplitudes and variable frequencies using AM-FM model, (iii) constant amplitudes and variable frequencies (FM model), and (iv) variable amplitudes and constant frequencies representation (AM model) to perform time-frequency analysis of a signal. First two representations are well established and, in this work, we present other two representations of a signal.

Four representations of a signal

In this section, we discuss all four representations of a signal for time-frequency analysis.

Constant amplitudes and constant frequencies (CA-CF) representation

The Fourier representations, (1) and (3), are viewed as superposition of sinusoidal functions with constant amplitudes and constant frequencies.

Variable amplitudes and variable frequencies (VA-VF) representation

The representation of a signal x[n] with variable amplitudes and variable frequencies (AM-FM model) can easily be obtained by any signal decomposition algorithms such as the EMD algorithm [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis[END_REF], Fourier decomposition method (FDM) or filter mode decomposition (FMD) [START_REF] Singh | Breaking the Limits -Redefining the Instantaneous Frequency[END_REF][START_REF] Singh | Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis[END_REF][START_REF] Singh | The Fourier decomposition method for nonlinear and non-stationary time series analysis[END_REF][START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF][START_REF] Singh | Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and space-time series analysis[END_REF][START_REF] Singh | LINOEP vectors, spiral of Theodorus, and nonlinear time-invariant system models of mode decomposition[END_REF]. The signal x[n] is modelled as

x[n] = M i=1 y i [n] + c 0 = M i=1 a i [n] cos(φ i [n]) + c 0 , (4) 
where c 0 is a constant, each term

y i [n] = a i [n] cos(φ i [n]) is a mono-component (or narrow-band) function such that a i [n] ≥ 0 and φ i [n] is a monotonically increasing function, i.e. φ i [n + 1] ≥ φ i [n],
for all n. In order to obtain this signal model, we use the FDM/FMD (Algorithm 2) that generates a set of Linearly Independent Non Orthogonal yet Energy Preserving (LINOEP) vectors [START_REF] Singh | The Hilbert spectrum and the Energy Preserving Empirical Mode Decomposition[END_REF][START_REF] Singh | The Linearly Independent Non Orthogonal yet Energy Preserving (LINOEP) vectors[END_REF]. An orthogonal set of vectors can also be obtained by the discrete Fourier transform (DFT) based zerophase filter-bank as outlined in [START_REF] Singh | Breaking the Limits -Redefining the Instantaneous Frequency[END_REF]. The analytic representation of x[n], by excluding constant c 0 , can be written as

z[n] = M i=1 (y i [n] + j ŷi [n]) = M i=1 a i [n] exp(jφ i [n]), (5) 
where

a i [n] = y 2 i [n] + ŷ2 i [n], φ i [n] = tan -1 (ŷ i [n]/y i [n]
), and imaginary part of z[n] is the Hilbert transform (HT) of real part which is defined as HT{y

i [n]} = ŷi [n] = y i [n] * 1-cos(πn)

πn

, where * denotes convolution operation.

The instantaneous frequency (IF) is the time derivative of the instantaneous phase that is obtained by the Gabor's analytic signal representation [START_REF] Gabor | Theory of communication[END_REF]. The IF is well-defined only when time derivative of phase is positive, if this derivative is negative then IF does not provide any physical significance [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis[END_REF][START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal-Part 1: Fundamentals[END_REF][START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal-Part 2: Algorithms and Applications[END_REF]. The IF for an analytic signal is, traditionally, defined as [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal-Part 2: Algorithms and Applications[END_REF][START_REF] Ville | Theorie et application de la notion de signal analytic[END_REF] 

ω i [n] = φ id [n], (6) 
which can be negative for some time instants. Recently, author in [START_REF] Singh | Breaking the Limits -Redefining the Instantaneous Frequency[END_REF] has obtained an important enhancement in the definition of the IF where it is redefined in such that IF is valid for all types of signals such as monocomponent and multicomponent, narrowband and wideband, stationary and nonstationary, linear and nonlinear signals. In order to obtain positive IF for all time, it is redefined in [START_REF] Singh | Breaking the Limits -Redefining the Instantaneous Frequency[END_REF] as

ω i [n] = φ id [n] if φ id [n] ≥ 0, φ id [n] + π otherwise, (7) 
which is mathematically validated by the fact that

φ id [n] = tan -1 (ŷ i [n]/y i [n]) and φ id [n] + knπ = tan -1 (ŷ i [n]/y i [n]), ∀k, n ∈ Z (due to periodicity of tangent function, i.e. tan(φ id [n]) = tan(φ id [n] + knπ)).
In the above expressions ( 6) and ( 7), an approximation of differentiation in discrete-time, φ id [n], can be evaluated by forward finite difference (FFD) or backward finite difference (BFD) or central finite difference (CFD) defined as [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal-Part 2: Algorithms and Applications[END_REF] φ id

[n] = φ i [n + 1] -φ i [n] , (FFD) φ id [n] = φ i [n] -φ i [n -1] , (BFD) φ id [n] = φ i [n + 1] -φ i [n -1] /2, (CFD)      (8) 
where φ i [n] is unwrapped phase (to obtain correct phase, subtract 2π if consecutive phase difference is > 2π and add 2π if consecutive phase difference is < 2π as shown in Algorithm 1) which ensure that all appropriate multiples of 2π have been included in phase angle. Sometimes, due to quantization and finite precision arithmetic operation in digital signal processing (DSP), phase unwrapping Algorithm 1A as well as 'unwrap' function of MATLAB do not generate correct output. Thus, in order to obtain correct phase, we propose phase unwrapping Algorithm 1B where some tolerance value is used. One such example where proposed method is generating correct output and others fail is

x[n] = A cos(πn) and x[n] = A sin(πn). Clearly, here, phase φ[n] = atan2(x[n], x[n]) = πn and frequency ω[n] = π. Outputs with 'unwrap(atan2(x[n], x[n]
))' function of MATLAB which fails to obtain correct phase/frequency, and proposed algorithm that produces the desired results are shown in Figure 1.

The time-frequency distribution (TFD) of a signal is obtained by 3D plot of {n, ω i [n], a 2 i [n]} for i = 1, 2, . . . , M . Moreover, using the IF [START_REF] Singh | The Linearly Independent Non Orthogonal yet Energy Preserving (LINOEP) vectors[END_REF], we can obtain TFD of any signal directly without decomposition, which is not possible by using the traditional IF (6) because it becomes negative in some instants if signal under analysis is not monocomponent.

Constant amplitudes and variable frequencies (CA-VF) representation

A representation of a signal with constant amplitudes and variable frequencies (FM model) can be obtained from AM-FM model by the algorithm 'the normalization scheme: an empirical AM and Frequency with proposed algorithm Algorithm 1: Algorithm 1A: A MATLAB code for the phase unwrapping [START_REF] Gdeisat | One-Dimensional Phase Unwrapping Problem[END_REF]. Algorithm 1B: Proposed MATLAB code for the phase unwrapping where some tolerance value is used. 

% Algorithm 1A for i=2:length(Phw) difference = Phw(i)-Phw(i-
[n] = y i [n]/A i ∈ [-1, 1]
, ∀n, then (4) can be written by excluding constant c 0 as

x[n] = M i=1 A i p i [n]. (9) 
One can easily construct a complex signal, z DQ [n], with constant amplitudes and variable frequencies, by direct quadrature (DQ) representation as

z DQ [n] = M i=1 A i p i [n] + j 1 -p 2 i [n] = M i=1 A i exp(jϕ i [n]), (10) 
where

p i [n] = cos(ϕ i [n]) ⇔ ϕ i [n] = cos -1 (p i [n]) = tan -1 1 -p 2 i [n]/p i [n] ∈ [0, π] and sin(ϕ i [n]) = 1 -p 2 i [n] ≥ 0. However, we need sin(ϕ i [n]) = ± 1 -p 2 i [n]
to obtain correct phase in the range (-π, π]. Hence, contrary to perception available in literature such as [START_REF] Huang | On inatantaneous frequency[END_REF], DQ representation cannot produce full sine wave form cosine wave and vice versa, because there is always ambiguity in selecting correct sign as explained above.

Thus, in order to obtain correct positive or negative sign, we use sign of pi [n], which is the HT of

p i [n]
, in imaginary part of [START_REF] Jain | An iterative approach for decomposition of multi-component nonstationary signals based on eigenvalue decomposition of the Hankel matrix[END_REF] and construct a complex Hilbert quadrature (HQ) signal, z[n], as

z[n] = M i=1 A i p i [n] + j 1 -p 2 i [n] sgn(p i [n]) = M i=1 A i exp(j φi [n]), ( 11 
)
where sgn is a sign function that we define as

sgn(p i [n]) = 1 if pi [n] ≥ 0, -1 if pi [n] < 0. ( 12 
)
As the imaginary part of ( 11) is obtained by the HT and DQ representation, so we term it as the HQ of the real part. The TFD of a signal can be obtained by 3D plot of {n, ωi 

[n] = A 1 -cos 2 (φ[n]) = A| sin(φ[n])| (with period π).
However, the Fourier spectrum of the signal and its magnitude is different. Let us consider both cases: (a) First case when

A 1 cos(θ[n]) = A cos(φ[n]) and A 1 sin(θ[n]) = |A sin(φ[n])|, which implies A 1 = A and θ[n] = tan -1 | sin(φ[n])| cos(φ[n]) = φ[n] if 0 ≤ φ[n] ≤ π, -φ[n] if -π ≤ φ[n] < 0, ( 13 
)
as tan -1 | sin(φ[n])| cos(φ[n]) ∈ [0, π]. (b) Second case when A 1 cos(θ[n]) = |A cos(φ[n])| and A 1 sin(θ[n]) = |A sin(φ[n])|, which implies A 1 = A and θ[n] = tan -1 | sin(φ[n])| | cos(φ[n])| = tan -1 (| tan(φ[n])|) = φ[n] if 0 ≤ φ[n] ≤ π/2, -φ[n] if -π/2 ≤ φ[n] < 0, ( 14 
) as tan -1 (| tan(φ[n])|) ∈ [0, π/2].
In order to obtain positive IF for all time, here, we redefined it for FM signal representation by DQ as

ω[n] = φ d [n] if φ d [n] ≥ 0, -φ d [n] otherwise, ( 15 
)
and justification of this definition can be seen in Example 1. From ( 13) and ( 14), one can easily observe that the phase unwrapping is not required as absolute consecutive phase difference is always less than or equal to π.

Variable amplitudes and constant frequencies (VA-CF) representation

The VA-CF representation a of signal can be considered as an AM model. Any discrete-time signal x[n] can be written as a sum of weighted Kronecker delta functions, i.e.,

x[n] = ∞ l=-∞ x[l]δ[n -l]. (16) 
Thus, the representation ( 16) can be viewed as a way to describe a signal as linear combinations of shifted delta functions, much the way the Fourier series describes a periodic signal as linear combinations of harmonically related complex exponential functions.

Using the analytic representation of unit sample sequence, we obtain variable amplitudes and constant frequency representation as follows. The unit sample sequence is defined as x[n] = δ[n-n 0 ] = 1 at n = n 0 and zero otherwise. Using the discrete-time Fourier transform (DTFT)

X(ω) = ∞ n=-∞ x[n] exp(-jωn), (17) 
Algorithm 2: The FDM/FMD algorithm [START_REF] Singh | Breaking the Limits -Redefining the Instantaneous Frequency[END_REF] to obtain LINOEP vectors c i from decomposition of a signal x such that x = c 0 + M i=1 y i and y i ⊥ M l=i+1 y l . Use Algorithm 2 A (Algorithm 1 B) to obtain {y 1 , • • • , y M } in order of highest to lowest (lowest to highest) frequency components. %Algorithm 2 A c 0 = mean(x);

x 1 = x -c 0 ; for i = 1 to M -1 do s i = ZP HP F i (x i , f ci ); r i = x i -s i ; α i = s i ,r i r i ,r i ; y i = s i -α i r i ; ỹi+1 = (1 + α i )r i ; x i+1 = ỹi+1 ; y M = ỹM ; %Algorithm 2 B c 0 = mean(x); x 1 = x -c 0 ; for i = 1 to M -1 do s i = ZP LP F i (x i , f ci ); r i = x i -s i ; α i = r i ,s i s i ,s i ; y i = (1 + α i )s i ; ỹi+1 = r i -α i s i ; x i+1 = ỹi+1 ; y M = ỹM ;
one can obtain the DTFT of unit sample sequence as X(ω) = exp(-jωn 0 ) ⇒ |X(ω)| = 1. Signal is represented by inverse DTFT (IDTFT)

x[n] = 1 2π π -π X(ω) exp(jωn) dω, (18) 
therefore, unit sample sequence can be written as

x[n] = 1 2π π -π exp(jω(n -n 0 )) dω.
This implies all frequency components (-π ≤ ω ≤ π radians/sample or -Fs 2 ≤ f ≤ Fs 2 Hz) are equally present in unit sample sequence. Thus, it is concentrated in time and spread over all frequencies, hence, following the uncertainty principle.

By using the relation z

[n] = 1 π π 0 X(ω) exp(jωn) dω, we obtain the analytic representation of δ[n -n 0 ] as z[n] = sin(π(n -n 0 )) + j[1 -cos(π(n -n 0 ))] π(n -n 0 ) = a[n] exp(jφ[n]), (19) 
where a

[n] = sin( π 2 (n-n 0 )) π 2 (n-n 0 )) , φ[n] = π 2 (n -n 0 ) and real part of z[n] is delta function δ[n -n 0 ] = sin(π(n -n 0 )) π(n -n 0 ) = a[n] cos(φ[n]). (20) 
The IF in analytic representation of delta function ( 19) can be obtained by [START_REF] Daubechies | Synchrosqueezed Wavelet Transforms: an Empirical Mode Decomposition-like Tool[END_REF] as ω[n] = π 2 , which corresponds to one-fourth of the sampling frequency, i.e. Fs 4 Hz. Using ( 19) and ( 20), we rewrite (16) as

x[n] = ∞ l=-∞ x[l] sin( π 2 (n -l)) π 2 (n -l)) cos π 2 (n -l) = ∞ l=-∞ a[l, n] cos (ω c (n -l)) , (21) 
where

a[l, n] = x[l] sin( π 2 (n-l)) π 2 (n-l))
and ω c = π 2 . Hence, the representation (21) can be viewed as a way to describe a discrete-time signal as linear combinations of shifted cosine functions of constant frequency π 2 radians. Thus, in the representation [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal-Part 1: Fundamentals[END_REF], each term has a constant frequency (ω c = π 2 ) value, variable amplitude a[l, n] value, and linearly varying phase (ω c (n -l)).

Simulation results

In this section, we perform simulations and compute numerical results to demonstrate the efficacy of the different representations. 13), IF estimated (middle) by ( 6) and IF estimated (bottom) by ( 15) with initial phase φ = 7π. Spikes present in the estimation of IF are due to non-zero initial phase.

Example 1:

First, we consider a signal with linearly increasing phase x(t) = A cos(2πf 0 t + φ) with f 0 = 10, F s = 8000Hz, t = nT s = n/F s ∈ [0, 1]s, and A = 3. Figure 2 (with φ = 7π) and Figure 3 (with φ = 0) are the plots of phase estimated by [START_REF] Singh | Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis[END_REF], IF estimated by ( 6) which yields both positive and negative values, IF estimated by [START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF] which yields only positive values. The instantaneous phase is limited to [0, π] and spikes in frequency are located at the time instants which corresponds to phase multiple of π radians in original unwrapped phase.

Similarly, Figure 4 (with φ = 7π) and Figure 5 (with φ = 0) are the plots of phase estimated by [START_REF] Singh | The Fourier decomposition method for nonlinear and non-stationary time series analysis[END_REF], IF estimated by ( 6) which yields both positive and negative values, IF estimated by [START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF] which yields only positive values. The instantaneous phase is limited to [0, π/2] and spikes in frequency are located at the time instants which corresponds to phase multiple of π/2 radians in original unwrapped phase.

Through large number of simulations and empirically we found that the spikes in the estimated frequency are function of initial phase, sampling frequency and amplitude estimated by maxima of signal in DQ method.

Example 2:

Next, we consider the frequency estimation of a sinusoidal signal

x[n] = A cos(2πf 0 nT s + φ), (22) 
with 13), IF estimated (middle) by ( 6) and IF estimated (bottom) by [START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF] with phase φ = 0 (bottom top 3 figures). Spikes are not present in the estimation of IF with zero initial phase. 14), IF estimated (middle) by [START_REF] Singh | Nonpolynomial spline based empirical mode decomposition[END_REF] and IF estimated (bottom) by ( 15) with (a) phase φ = 7π. Spikes present in the estimation of IF (bottom) are due to non-zero initial phase.

A = 1, f 0 = 0.101, T s = 1/F s = 1, φ = π/7, n = 0, 1, . . . , N - 

Example 3:

Finally, we consider a unit sample sequence x[n] = δ[n -n 0 ] and obtain complex signal signal z DQ [START_REF] Jain | An iterative approach for decomposition of multi-component nonstationary signals based on eigenvalue decomposition of the Hankel matrix[END_REF], where a[n] = 1 and phase

[n] = δ[n -n 0 ] + j(1 -δ[n -n 0 ]) = a[n] cos(ϕ[n]) using DQ representation
ϕ[n] = tan -1 1 -δ[n -n 0 ] δ[n -n 0 ] = π/2 if n = n 0 , 0 if n = n 0 . (23) 
Using FFD [START_REF] Daubechies | Synchrosqueezed Wavelet Transforms: an Empirical Mode Decomposition-like Tool[END_REF], its frequency is given by (blue solid line) and its envelope (red dashed line), (d) signal (blue solid line) and its envelope (red dashed line) obtained by the proposed method [START_REF] Gilles | Empirical Wavelet Transform[END_REF].

ω[n] = ϕ[n + 1] -ϕ[n] =            0 if n ≤ n 0 -2, -π/2 if n = n 0 -1, π/2 if n = n 0 , 0 if n ≥ n 0 + 1, (24) 0 0 
which takes both positive and negative values. As negative frequency do not provide any physical significance, it can be easily converted to positive one by using the proposed IF definition [START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF]. This unit sample sequence is analyzed by the analytic signal representation z[n] [START_REF] Carson | Variable frequency electric circuit theory with application to the theory of frequency modulation[END_REF], where it has only positive frequency value. Figure 8 shows the plots of real, imaginary part and absolute value of analytic signal with n 0 = 199, sampling frequency F s = 100 Hz, length N = 400. Theoretically, this clearly indicate that most of the energy of signal δ[n -n 0 ] is concentrated at time t = 1.99 sec. (n 0 = 199) and frequency f = 25 Hz (one-fourth of the sampling frequency, i.e., ω = π/2). Figure 9 shows the time-frequency-energy (TFE) distribution of unit sample sequence δ[n -n 0 ] from the analytic signal representation using the FDM, ensemble empirical mode decomposition (EEMD) and continuous wavelet transform (CWT) methods. This clearly indicate that the TFE distribution obtained by the FDM method is same as theoretical estimation [START_REF] Carson | Variable frequency electric circuit theory with application to the theory of frequency modulation[END_REF] and [START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF], whereas there is energy spread over a range of frequencies and lack of accuracy in TFE distribution obtained by the EEMD and CWT methods. 

Conclusion

The representations of a signal with constant amplitudes and constant frequencies using the Fourier theory, variable amplitudes and variable frequencies using AM-FM model are well established. In this study, we presented the novel methods to obtain constant amplitudes and variable frequencies, variable amplitudes and constant frequencies representation of a signal. Contrary to perception available in literature, we demonstrated that the direct quadrature (DQ) cannot produce full sine wave form cosine wave and vice versa, thus cannot be used for the instantaneous frequemcy (IF) computation. Therefore, to overcome the limitation of DQ, a novel Hilbert Quadrature (HQ) representation of a signal is proposed. We have also proposed a phase unwrapping algorithm with some tolerance which overcomes the problems of quantization and finite precision arithmetic operation errors introduced in widely-used phase unwrapping algorithm. Practically, real-life data is always noisy and we demontstrated that the IF estimation from such data by the analyisc signal representation obtained by suprressing the negative frequecnies in the Fourier method, which is equivalent to the Hilbert transform, is the most robust, stable and suitable for time-frequency analysis.
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 1 Figure 1: The phase and frequency plots, obtained form Example x[n] = A cos(πn) and x[n] = A sin(πn) with A = 1, (a) phase plot by the MATLAB function 'unwrap(atan2(x[n], x[n]))' which is not able to produce correct phase and by the proposed Algorithm 1B which produces correct monomonically increasing phase, (b) frequency plot by the MATLAB function which generates both positive and negative IFs, and (c) frequency plot by the proposed Algorithm 1B which produces only correct positive IFs.

  [n], A 2 i } for i = 1, 2, . . . , M . Discussion: It is interesting to note that the DQ of a signal p[n] = A cos(φ[n]) (with period 2π) and its magnitude, i.e. |p[n]| = |A cos(φ[n])| which has period π, is same without any change in phase φ[n] values, which can be written as q

Figure 2 :

 2 Figure 2: Plots, obtained form Example 1, of phase estimated (top) by (13), IF estimated (middle) by (6) and IF estimated (bottom) by (15) with initial phase φ = 7π. Spikes present in the estimation of IF are due to non-zero initial phase.

1 ,

 1 N = 512. There are four sub-plots in Figure6(top to bottom) (a) cosine wave x[n] obtained by[START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal-Part 2: Algorithms and Applications[END_REF], (b) sine wave obtained by DQ[START_REF] Jain | An iterative approach for decomposition of multi-component nonstationary signals based on eigenvalue decomposition of the Hankel matrix[END_REF], (c) Hilbert transform of x[n] (blue solid line) and its envelope (red dashed line) obtained by (5), (d) signal (blue solid line) and its envelope (red dashed line) obtained by the proposed HQ[START_REF] Gilles | Empirical Wavelet Transform[END_REF].

  Figure 7 shows the IF plot of signal x[n] (22) obtained by Direct Quadrature (DQ) (10), Hilbert transform (HT) (5) and Hilbert Quadrature (HQ) (11) (a) without noise (top figure) (b) with noise SNR=60dB (middle figure) and (c) with noise SNR=30dB (bottom figure). These plots clearly demonstrate that, in the absence of noise, there are unnecessary fluctuations in IF computed by DQ over the entire range, some fluctuations at both ends of the signal in IF estimated using the HT, whereas IF obtained by proposed DQ is accurate and stable over entire range of the signal except at the beginning of the data. It is also evident that when signal is corrupted by the white noise, accuracy of the IF computed by HT is better, more robust and stable as compared to the HQ and DQ methods.

FrequencyFigure 3 :

 3 Figure 3: Plots, obtained form Example 1, of phase estimated (top) by (13), IF estimated (middle) by (6) and IF estimated (bottom) by[START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF] with phase φ = 0 (bottom top 3 figures). Spikes are not present in the estimation of IF with zero initial phase.

FrequencyFigure 4 :

 4 Figure 4: Plots, obtained form Example 1, of phase estimated (top) by (14), IF estimated (middle) by (6) and IF estimated (bottom) by (15) with (a) phase φ = 7π. Spikes present in the estimation of IF (bottom) are due to non-zero initial phase.

Figure 5 :Figure 6 :

 56 Figure 5: Plots, obtained form Example 1, of phase estimated (top) by (14), IF estimated (middle) by (6) and IF estimated (bottom) by[START_REF] Singh | The Taylor's nonpolynomial series approximation[END_REF] with phase φ = 0. there are are Spikes in the estimation of IF with zero initial phase.

Figure 7 :

 7 Figure 7: IF of signal x[n] (22) obtained by Direct Quadrature (10), Hilbert transform (5) and Hilbert Quadrature (11) (a) without noise (top figure) (b) with SNR=60dB (middle figure) and (c) with SNR=30dB (bottom figure).

Figure 8 :

 8 Figure 8: The analytic representation of δ[n -n 0 ] (with, n 0 = 199, sampling frequency Fs = 100 Hz, length N = 400) (a) Real part of z[n] (top), (b) Imaginary part of z[n] (middle), and (c) absolute value of z[n] (bottom).

Figure 9 :

 9 Figure 9: The TFE analysis of unit sample sequence δ[n -n 0 ] (with, n 0 = 199, sampling frequency Fs = 100 Hz, length N = 400) (a) FDM (top), (b) EEMD (middle), and (c) CWT (bottom).