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b University of Virginia, Department of Mathematics, Charlottesville, VA 22904, USA

c Wayne State University, Department of Mathematics, Detroit, MI 48201, USA
d Slippery Rock University, Department of Mathematics, Slippery Rock, PA 16057, USA

Received 23 December 2005; accepted 7 September 2006

Abstract

This paper is concerned with the nonlinear shallow shell model introduced in 1966 by W.T. Koiter in [On the nonlinear theory
of thin elastic shells. III, Nederl. Akad. Wetensch. Proc. Ser. B 69 (1966) 33–54, Section 11] and later studied in [M. Bernadou,
J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl. (9) 60(3) (1981) 285–308].
We consider a version of this model which is based upon the intrinsic shell modeling techniques introduced by Michel Delfour
and Jean-Paul Zolésio. We show existence and uniqueness of both regular and weak solutions to the dynamical model and that the
solutions are continuous with respect to the initial data. While existence and uniqueness of regular solutions to nonlinear dynamic
shell equations has been known, full Hadamard well-posedness of weak solutions, as shown in this paper, is a new result which
solves an old open problem in the field.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In [21], Koiter classifies shell problems according to the order of magnitude of the deflection. He arranges
the classes in an order of increasing specialization, as follows: Large Deflections, characterized by the absence
of restriction as to the magnitude of the displacement; Moderate Deflections, characterized by small values of all
displacement gradients with respect to unity, although nothing is assumed a priori about their relative orders of
magnitude; Small Finite Deflections, characterized by small displacement gradients and by rotations whose squares
do not exceed the middle surface strain in order of magnitude; Infinitesimal Deflections, characterized by small
displacement gradients none of which exceed the middle surface strains in order of magnitude.
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The infinitesimal deflections hypothesis leads to the well-known linear theory. Instead, in this article we shall
consider the small finite deflections case, which is studied in [21, Section 11]. This corresponds to the “medium
bending case” in the sense of Naghdi (see [28]) and to the “approximation of small strains and moderately small
rotations” in the sense of Lyell and Sanders (see [29]). This case leads to the geometrically nonlinear model discussed
in [3] and summarized in [2, Section 7.3]. In [3], Bernadou and Oden have proven that a solution to the static model
exists and that it is unique provided the load is sufficiently small. Philippe G. Ciarlet proposed in [8] a model where
the exact change of curvature tensor is modified and Liliana Gratie generalized this latter model to the case of non-
constant thickness in [17]. See [10] for the linear and nonlinear theories of shells.

This paper is concerned with the dynamical model. Dynamical systems of nonlinear elasticity have attracted much
interest over the years [32,9,22,14,18,13]. Numerous physical phenomena can be described by these models, which
mathematically take the form of a set of coupled partial differential equations. The shell model considered here
is a nonlinear, strongly coupled system of hyperbolic equations with clamped (Dirichlet) boundary conditions. Its
counterpart for a flat geometry is the full von Kármán system [32,9], which couples a plate-like equation for the
normal displacement variable with wave equations for the tangential (in-plane) displacements.

Existence of weak solutions for such models follows from standard Faedo–Galerkin method [27]. However, the
issue of well-posedness (uniqueness and continuous dependence on initial data) is much more subtle. The nonlinear
term in the equation is neither locally Lipschitz nor bounded in the finite energy space. In addition, the problem is
not monotone and weak solutions do not exhibit any additional regularity properties (unlike parabolic-like problems).
Thus typical or known methods used for proving well-posedness of weak solutions are no longer applicable.

It is the main goal set in this paper to provide an affirmative answer to full Hadamard well-posedness of weak
(often referred to as finite energy) solutions. More specifically, the main contribution of this work is threefold:

• Existence and uniqueness of weak solutions (i.e. finite energy solutions).
• Continuous dependence of solutions with respect to initial data measured in finite energy norm.
• Regularity of weak solutions.

We shall use the intrinsic geometry method of Michel Delfour and Jean-Paul Zolésio, which relies on the
oriented distance function to describe the geometry [12,11]. This technique takes advantage of the intrinsic geometric
properties of the shell. Here, the shell is described in terms of tangential differential operators which are defined by
means of the oriented boundary distance function in R3. Sobolev spaces, Green’s formula, and key inequalities such
as Poincaré and Korn’s inequalities are all well defined. Delfour and Zolésio have constructed models under a variety
of assumptions. A linear version of the model developed in this paper was introduced in [5,6].

This model is a geometrically expanded version of the full (vectorial) von Kármán system, which has been rather
extensively studied. Much literature however deals with a static or semi-static model for which the mathematical
issues are quite different (both in the case of the plate [9] and in that of the shell [3]). In the dynamic case, there
are many results available for the modified (scalar) von Kármán model, which does not account for the in-plane
displacements. This modification results in a scalar model where the nonlinearity appears non-locally via the Airy
stress function. The scalar von Kármán model has been extensively studied in the literature with many results on
well-posedness and stability available [7,4,15,19,22]. It is worth saying that much of the rich theory developed for
scalar von Kármán evolutions owes its success to the rather unexpected regularity of the Airy stress function [15].
In the full (vectorial) von Kármán system the Airy stress function plays no role. Thus, the benefits of additional
regularity of the nonlinear term are not available. However, the simplification of ignoring the in-plane displacements
does not make sense in the case of a shell. Thus, in the case of nonlinear shells the relevant dynamic model is that of
vectorial structure. The full vectorial system is much more complicated than the modified version, due to the strong
coupling between hyperbolic equations. The real difficulty lies in the lack of regularity of the nonlinear terms in
the finite energy norms, at least in the two-dimensional case (the one-dimensional case was treated in [23]). The two-
dimensional case with homogeneous Dirichlet boundary data was considered in [30] where uniqueness of both regular
and finite energy solutions was derived. A related result is [31] which relies on Strichartz-type estimates and covers
the cases of the whole plane and of special geometries such as hinged rectangular plates. A full well-posedness theory
for these equations was finally provided in [26] which proves existence and uniqueness of weak, intermediate and
regular solutions under a variety of boundary conditions including free boundary conditions with nonlinear boundary
dissipation. This proof is based in part on the method introduced by Sedenko [30] for the Marguerre–Vlasov equations.
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In addition, Hadamard well-posedness is proved in [18] by application of a finite difference method which allows for
the rigorous derivation of an appropriate energy identity for the system.

It is the aim of this work to further extend the techniques developed in the case of “flat” geometry [26,18] to the
curved case required by a shell model. The final result is full Hadamard well-posedness of finite energy solutions
governing nonlinear dynamic shells.

Throughout this paper we will denote by Sl the shell and by Γ its mid-surface. We shall make the following
hypothesis:

(i) The shell is assumed to be made of an isotropic and homogeneous material, so that the Lamé coefficients λ > 0
and µ > 0 are constant. The density of the material will be denoted as ρ > 0.

(ii) (shallowness assumption) The thickness l of the shell is small enough to accommodate the curvatures H and K ,
i.e. the product of the thickness and the curvatures is small as compared to 1. In addition, the shell is shallow in
the sense that the second fundamental form (here given in terms of the oriented distance function as D2b) and its
derivative (D3b) are small. This assumption allows us to neglect certain terms in the strain energy in comparison
to the model in [5,6] and yields a model in which the coupling between the normal and tangential displacements
is of the first (rather than third) order. For a detailed justification of these assumptions we refer the reader to
Koiter [20,21].

(iii) (Kirchhoff hypothesis) In the classical thin plate theory named after Kirchhoff, the displacement vectors of the
shell Sl and of the mid-surface Γ are related by the hypothesis that the filaments of the plate initially perpendicular
to the middle surface remain straight and perpendicular to the deformed surface, and undergo neither contraction
nor extension. We generalize this hypothesis to the case of a shell using the intrinsic geometry in [5].

For the sake of self-containment, we provide background material on intrinsic modeling in Section 2. In Section 3.3,
we state the main findings of this paper. Section 5 is concerned with establishing preliminary results that will be used in
the subsequent sections. Section 4 is concerned with describing the model [2, Section 7.3] and subsequently justifying
the investigation of the equations presented in (12). We prove the existence result in Section 6, the uniqueness result
in Section 7, and the continuous dependence with respect to the initial data in Section 8.

2. Intrinsic modeling

In this section we present a brief overview of the oriented distance function and the intrinsic tangential calculus
that forms the basis of our shell model.

2.1. The oriented distance function and the intrinsic geometry

In order to improve readability we here include a brief discussion of the oriented distance function and the intrinsic
geometric methods of Delfour and Zolésio. Since by necessity this overview will lack detail, the reader is referred
to [12,11] for a definitive exposition on this topic.

Consider a domain O ⊂ R3 whose non-empty boundary ∂O is a C1 two-dimensional submanifold of R3. Define
the oriented (or signed) distance function to O as

b(x) = dO(x) − dR3\O(x) (1)

where d is the Euclidean distance from the point x to the domain O. In other words, b(x) is simply the positive or
negative distance to the boundary ∂O, depending on whether we are outside or inside the domain O. It can be shown
that for every x ∈ ∂O, there exists a neighborhood where the function ∇b = ν, the unit outward external normal to
∂O [11].

Consider a subset Γ ⊆ ∂O which will eventually become the mid-surface of our shell. We define the projection
p(x) of a point x onto Γ as p(x) = x − b(x)∇b(x). Then, we define a shell Sl of thickness l as (see Fig. 1)

Sl(Γ ) ≡

{
x ∈ R3

: p(x) ∈ Γ , |b(x)| < l/2
}

. (2)

A natural curvilinear coordinate system (X, z) is thus induced on the shell Sl , where the coordinate vector X gives the
position of a point on the mid-surface Γ , and z ∈

(
−

l
2 , l

2

)
gives the vertical (normal) distance from the mid-surface.
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Fig. 1. The shell.

Using this notation, we also define the “flow mapping” Tz(X) as

Tz(X) = X + z∇b(X) (3)

for all X and z in Sl . This allows us to reconstruct the action at a given height z of the shell, once we know the action
of the mid-surface Γ . Define as Γ z the surface Tz(Γ ) at the ‘altitude’ z. Then, one can also describe the shell Sl as

Sl =

l/2⋃
z=−l/2

Γz .

The curvatures of the shell will be denoted as H and K . These can be reconstructed from the boundary distance
function b(x) by noting that at any point (X, z), the matrix D2b has eigenvalues 0, λ1, λ2. The curvatures are then
given by tr(D2b) = 2H = λ1 + λ2 and K = λ1λ2.

2.2. Tangential differential calculus

Next, we mention briefly some useful aspects of the tangential differential calculus. Given f ∈ C1(Γ ), we define
the tangential gradient ∇Γ of the scalar function f by means of the projection as

∇Γ f ≡ ∇( f ◦ p)(x)|Γ . (4a)

This notion of the tangential gradient is equivalent to the classical definition using an extension F of f in the
neighborhood of Γ , i.e. ∇Γ f = ∇F |Γ −

∂ F
∂ν

ν [11]. Following the same idea we can define the tangential Jacobian
matrix of a vector function v ∈ C1(Γ )3 as

DΓ v ≡ D(v ◦ p)|Γ or (DΓ v)i j = (∇Γ vi ) j , (4b)

the tangential divergence as

divΓ v ≡ div(v ◦ p)|Γ , (4c)

the Hessian D2
Γ f of f ∈ C2(Γ ) as

D2
Γ f = DΓ (∇Γ f ), (4d)
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the Laplace–Beltrami operator of f ∈ C2(Γ ) as

1Γ f ≡ divΓ (∇Γ f ) = 1( f ◦ p)|Γ , (4e)

the tangential linear strain tensor of elasticity as

εΓ (v) ≡
1
2

(
DΓ v +

∗ DΓ v
)

= ε (v ◦ p)|Γ (4f)

and the tangential vectorial divergence of a second-order tensor A as

divΓ A ≡ div(A ◦ p)|Γ = divΓ Ai . (4g)

Using the definitions given in (4) one can derive Green’s formula in the tangential calculus [11]:∫
Γ

f divΓ v dΓ +

∫
Γ

〈∇Γ f, v〉 dΓ =

∫
Υ

〈 f v, ν〉 dΥ + 2
∫
Γ

f H〈v, ∇b〉 dΓ (5)

where ν is the outward unit normal to the curve Υ . We use the definition of εΓ (u) and of the tangential vectorial
divergence of a second-order tensor A as

divΓ A ≡ div(A ◦ p)|Γ = divΓ Ai (6)

to derive the integration formula∫
Γ

tr(εΓ (u)A) dΓ =

∫
∂Γ

〈u, Aν〉 d(∂Γ ) −

∫
Γ

〈u, divΓ A〉 dΓ +

∫
Γ

2H〈u, A∇b〉 dΓ (7)

for A a symmetric matrix. Finally, from [11,12] we have that

〈∇Γw, ∇b〉 = 0, DΓ v∇b = 0 (8)

by definition for any scalar w and vector v. In addition, if we consider a purely tangent vector v = vΓ , i.e.
〈vΓ , ∇b〉 = 0, we can take the tangential gradient of both sides of this expression and derive the following useful
formula

D2b vΓ +
∗ DΓ vΓ∇b = 0. (9)

In the case of tangential vΓ , the last term of Eq. (5) is also zero. We conclude this section with some remarks about
notation. We shall adopt the following notation:

|w|s,Γ ≡ |w|H s (Γ ); (u, v)Γ ≡

∫
Γ

uv dΓ

and use 〈·, ·〉 to denote the scalar product of two vectors. Throughout this paper the conventions of [16] concerning
tensors are used. For instance, we will make no distinction between a second-order tensor and a matrix, nor will we
make a distinction between a first-order tensor and a vector. Consequently we will not distinguish simple contraction
and multiplication. Finally, the notation ∂tϕ is used to denote the partial derivative of ϕ with respect to the time
variable, and the notation A · · B denotes the double contraction of two matrices — i.e. A · · B = tr(AB).

2.3. Some tangential operators and spaces

Let e be a vector function; we denote by eΓ and w the tangential component of e and its algebraic magnitude on
the normal part respectively, i.e.

w = 〈e, ∇b〉 (10a)
eΓ = e − w∇b. (10b)

Vector function e will physically represent the displacement of the mid-surface; its components eΓ and w will
represent the in-place displacement and the normal deflection respectively. Following the definitions introduced in [5],
we will use the subsequent notation.
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Definition 1. We define

GΓw =
1
2
((∇b ⊗ ∇Γw)D2b + D2b(∇Γw ⊗ ∇b))

VΓ eΓ =
1
2
((D2b eΓ ) ⊗ ∇b + ∇b ⊗ (D2b eΓ ))

SΓw =
1
2
(D2

Γw +
∗ D2

Γw).

Operator GΓ is a first-order tangential operator, VΓ is a zero-order tangential operator, and SΓ is the symmetrization
of the Hessian (which is not we note symmetric in the tangential calculus [11]).

Definition 2. Let us define

BM (e) = εΓ (eΓ ) + VΓ eΓ + wD2b +
1
2
∇Γw ⊗ ∇Γw

BF (e) = SΓw + GΓw.

Operators BM and BF will correspond to the membrane and bending (flexural) strains respectively. In the rest of this
paper the following functional space will be useful.

Definition 3. For m ∈ N, define the spaces V m as

V m(Γ ) =

{
e ∈

[
Hm(Γ )

]2
× Hm+1(Γ ) | eΓ = 0, w = 0,

∂

∂ν
w = 0 on ∂Γ

}
. (11)

3. Statement of the main results

3.1. Equation to be studied

Let γ = l2/12, and for a matrix A define operator C by

C(A) = λ(tr A)I + 2µA.

We consider the following equation in the variable e = [eΓ , w], where eΓ and w are respectively the tangential and
vertical displacements and are defined above in Eqs. (10):

ρ∂t tw − ργ1Γ ∂t tw + (λ + 2µ)γ12
Γw + ρ

γ

2
divΓ (D2b∂t t eΓ ) + tr(C(εΓ eΓ + VΓ eΓ )D2b)

+ tr
(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

)
D2b

)
− divΓ (C(εΓ eΓ + VΓ eΓ )∇Γw)

− divΓ

(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

)
∇Γw

)
+ 2µγ divΓ (K∇Γw) + 2µγ divΓ ((D2b)2

∇w) = 0

ρ(I + γ (D2b)2)∂t t eΓ − ρ
γ

2
D2b∂t tw − divΓ (C(εΓ eΓ + VΓ eΓ ))

− divΓ

(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

))
= 0

(12)

where the derivatives are to be understood in the distributional sense.
Let k = λH2

+ µ(H2
− 2K ) be a positive real number and m(e, ê), a(e, ê), n(e, ê) be defined by

m(e, ê) = ρ[2(eΓ , ˆeΓ )Γ + 2γ ((D2b)eΓ , (D2b) ˆeΓ )Γ − γ (∇Γw, (D2b) ˆeΓ )Γ

− γ ((D2b)eΓ , ∇Γ ŵ)Γ + 2(w, ŵ)Γ + 2γ (∇Γw, ∇Γ ŵ)Γ ] (13)
a(e, ê) = 8λ(kw, kŵ)Γ + 4λ(HdivΓ eΓ , ŵ)Γ + 4λ(Hw, divΓ êΓ )Γ

+ 2λ(divΓ eΓ , divΓ êΓ )Γ + 4µ

∫
Γ

tr((εΓ (eΓ ) + VΓ eΓ )(εΓ (êΓ ) + VΓ êΓ ))
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+ 4µ

∫
Γ

wtr((εΓ (êΓ ) + VΓ êΓ ) D2b) + 4µ

∫
Γ

ŵtr((εΓ (eΓ ) + VΓ eΓ ) D2b)

+ 2γ λ(1Γw, 1Γ ŵ)Γ + 4γµ

∫
Γ

tr((SΓw + GΓw)(SΓ ŵ + GΓ ŵ)) (14)

−n(e, ê) = 2λ(H‖∇Γw‖
2, ŵ)Γ + λ(‖∇Γw‖

2, divΓ êΓ )Γ

+ 4λ(Hw∇Γw, ∇Γ ŵ)Γ + 2λ(divΓ eΓ∇Γw, ∇Γ ŵ)Γ

+ (λ + 2µ)(‖∇Γw‖
2
∇Γw, ∇Γ ŵ)Γ + 2µ

∫
Γ

tr(εΓ (êΓ )(∇Γw ⊗ ∇Γw))

+ 2µ

∫
Γ

ŵtr(D2b(∇Γw ⊗ ∇Γw)) + 4µ

∫
Γ

w〈D2b∇Γw, ∇Γ ŵ〉

+ 4µ

∫
Γ

tr((∇Γw ⊗ ∇Γ ŵ)(εΓ (eΓ ) + VΓ eΓ )). (15)

The variational problem associated with (12) is, for each t ∈ [0, τ [ and all test functions ê ∈ V 1(Γ ),

m(∂t t e, ê) + a(e, ê) − n(e, ê) = 0 (16)

where e(0) = e0 and ∂t e(0) = e1.

Definition 4 (Weak Solutions). We say that e ∈ C0([0, τ [, V 1(Γ ))∩C1([0, τ [, V 0(Γ )) is a weak solution to the small
finite deflections shell problem if and only if (16) is satisfied.

Definition 5 (Regular Solutions). We say that e is a regular solution to the small finite deflections shell problem if and
only if it is a weak solution (i.e. satisfies Eq. (16)) and e ∈ C0([0, T [, V 2(Γ ))∩C1([0, τ [, V 1(Γ ))∩C2([0, τ [, V 0(Γ )).

Remark 1. In the special case of a plate, the curvature tensor D2b vanishes so all the terms including it, like GΓ , VΓ ,
K , vanish as well; we obtain:

ρ∂t tw − ργ1Γ ∂t tw + (λ + 2µ)γ12
Γw − divΓ

(
C
(

εΓ eΓ +
1
2
∇Γw ⊗ ∇Γw

)
∇Γw

)
= 0

ρ∂t t eΓ − divΓ

(
C(εΓ eΓ ) +

1
2
∇Γw ⊗ ∇Γw

)
= 0

which is the full von Kármán system; see [24].

3.2. Operators

Definition 6. LetM, A be the linear operators defined by

(Me, ê) = m(e, ê); (Ae, ê) = a(e, ê),

let

H = D(A1/2) ×D(M1/2) = V 1(Γ ) × V 0(Γ ) = [H1(Γ )]2
× H2(Γ ) × [(L2)(Γ )]2

× H1(Γ ) (17)

and let A : H → H be defined by

A =

(
0 −I

M−1A 0

)
(18)

D(A) = {(e1, e2) ∈ D(A1/2) ×D(A1/2),Ae1 ∈ [D(M1/2)]′}.

Remark 2. A more compact but less explicit expression of the weak formulation can be given by

1
2
(M∂t t e, ê)Γ +

∫
Γ

(CBM (e)) · · B ′

M (e, ê) + γ

∫
Γ

(CBF (e)) · · BF (ê) = 0, ∀ ê ∈ V 1(Γ ), (19)
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where

B ′

M (e, ê) =
∂ BM (e + θ ê)

∂θ

∣∣∣∣
θ=0

= εΓ ˆeΓ + VΓ ˆeΓ + ŵD2b +
1
2
∇Γw ⊗ ∇Γ ŵ +

1
2
∇Γ ŵ ⊗ ∇Γw.

This compact expression (19) will be used in the proof of the existence of regular solutions (Section 6), while the
more detailed expression will be used in the proof of the uniqueness (Section 7).

Definition 7. Let N be the nonlinear operator defined by (N (e), ê) = n(e, ê) and NΓ , Nn be respectively the vector
function and scalar function defined by

NΓ (w) = −λ∇Γ (‖∇ΓwΓ ‖
2) + 2µdivΓ (∇Γw ⊗ ∇Γw)

Nn(eΓ , w) = −2λH‖∇Γw‖
2
+ 4λdivΓ (Hw∇Γw) + 4µdivΓ (w D2b∇Γw)

+ (λ + 2µ)divΓ (‖∇Γw‖
2
∇Γw) − 2µ〈D2b∇Γw, ∇Γw〉

− 2λdivΓ (divΓ eΓ∇Γw) − 4µdivΓ ((εΓ eΓ + VΓ eΓ )∇Γw)

so we have N (e) = NΓ (w) + Nn(eΓ , w)∇b.

It follows, from (16), that:

∂t

(
e

∂t e

)
+ A

(
e

∂t e

)
=

(
0

M−1 N (e)

)
. (20)

3.3. Main results

Our main results are:

Theorem 1 (Regular Solutions). We consider Eq. (16). Assume that e(0) ∈ V 2(Γ ) and ∂t e(0) ∈ V 1(Γ ). Then, there
exists a unique regular global solution

e ∈ C([0, τ [; V 2(Γ )) ∩ C1([0, τ [; V 1(Γ )) ∩ C2([0, τ [; V 0(Γ )) (21)

where τ > 0 is arbitrary.

Theorem 2 (Existence and Uniqueness of Weak Solutions). We consider Eq. (16). Assume that e(0) ∈ V 1(Γ ) and
∂t e(0) ∈ V 0(Γ ). Then there exists a weak solution

e ∈ C([0, τ [; V 1(Γ )) ∩ C1([0, τ [; V 0(Γ )) (22)

which is unique, where τ > 0 is arbitrary.

Theorem 3 (Continuous Dependence w.r.t. Initial Data). Weak solutions to Eq. (16) depend continuously on the initial
data in the finite energy norm. That is to say, for all τ > 0 and all sequences of initial data such that

en(t) → e0 in V 1(Γ )

∂t en(t) → e1 in V 0(Γ )

the corresponding solutions en(t) ∈ C([0, τ [; V 1(Γ )) and e(t) ∈ C([0, τ [; V 1(Γ )) satisfy:

en
→ e in C([0, τ [; V 1(Γ ))

∂t en
→ ∂t e in C([0, τ [; V 0(Γ )).

As a consequence we obtain an energy identity for weak solutions.

The result presented in Theorem 1 is standard for an equation of the type of (16), though no references seem to be
available for the proof this particular result. Theorems 2 and 3 are new and solve an old problem in the field.

The reminder of the paper is devoted to the proofs of the three results stated above. Theorem 1 is proved in
Section 6. Theorem 2 is proved in Section 7. Theorem 3 is proved in Section 8.
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4. Derivation of the model

This section is devoted to deriving the model that leads to Eq. (12), which justifies the interest raised by this
equation in the first place. The model will be obtained using Hamilton’s principle. The next two subsections are
devoted to computing the energies. In Section 4.3 Hamilton’s principle is used to get the weak formulation, and in
Section 4.4 the PDE formulation is derived. Finally in Section 4.5, the total energy of the system is computed and the
system is proved to be conservative (Proposition 1).

The reader solely interested in the Hadamard well-posedness of (12) may skip this section as notation introduced
herein is explicitly referenced in the next sections and Proposition 1 is fairly standard.

Since the deflections are not infinitesimal, the strain–displacement relationship is not assumed to be purely linear,
and instead is of the form given in Eq. (27) (see [9,22]). The displacement of the shell T and the displacement of the
mid-surface e are related by the Kirchhoff hypothesis, that is that the filaments of the plate initially perpendicular to
the middle surface remain straight and perpendicular to the deformed surface, and undergo neither contraction nor
extension. Following [5], we have

T = e ◦ p − b ( ∗ DΓ e ∇b) ◦ p (23)

which leads to

T = eΓ ◦ p + (w∇b) ◦ p + b (D2b eΓ − ∇Γw) ◦ p. (24)

4.1. The kinetic energy

The kinetic energy is given by

Ek(e) =
ρ

2

∫
Sl

|∂t T |
2. (25)

Following [5], the kinetic energy of the system at any time t is given by

Ek(e) =
ρl
2

∫
Γ

|∂t eΓ |
2
+ |∂tw|

2
+

ρlγ
2

∫
Γ

|D2b ∂t eΓ |
2
+ |∇Γ ∂tw|

2
− 〈D2b ∂t eΓ , ∇Γ ∂tw〉. (26)

4.2. The elastic energy

The key hypothesis, and main difference from the model studied in [5], is the strain–displacement relations

ε(T ) =
1
2
( ∗ DT + DT ) +

1
2

∗ DT DT . (27)

Following [21, Section 11], several parts of the nonlinear term ∗ DT DT will be neglected; this will in particular
be the case for all the terms involving ∗ DΓ eΓ that appear in ∗ DT DT . This is consistent with the shallowness
assumption (Hypothesis (ii), Section 1), as these nonlinear terms appear in combination with higher order derivatives
of the oriented distance function b. Eqs. (23) and (27) yield

ε(T ) =

(
εΓ (eΓ ) + wD2b + VΓ eΓ +

1
2
∇Γw ⊗ ∇Γw +

1
2
‖∇Γw‖

2
∇b ⊗ ∇b

)
◦ p − b (SΓw + GΓw) ◦ p.

(28)

From now on, and when no confusion is possible, we will write ε instead of ε(T ).
Assuming isotropy and homogeneity of the material, one can apply Hooke’s law to give the elastic energy:

Ep(e) =
1
2

∫
Sl

C(ε) · · ε. (29)
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At this point in the computation of the elastic energy, it is customary to impose the hypothesis of plane stresses:
σ · · (∇b ⊗ ∇b) = 0 (which in local coordinates is denoted as σ33 = 0). In order to satisfy this requirement, we
change ε(T ) to

ε(T ) =

(
εΓ (eΓ ) + wD2b + VΓ eΓ +

1
2
∇Γw ⊗ ∇Γw

)
◦ p − b (SΓw + GΓw) ◦ p. (30)

With the notation of Definition 2 we have

ε(T ) = (BM (e)) ◦ p + b (BF (e)) ◦ p.

This new form of ε(T ) is in line with [2, page 38, Section 7.3]. Eq. (29) yields

Ep(e) =
1
2

∫
Sl

[C(BM (e)) · · BM (e)] ◦ p +
1
2

∫
Sl

b[C(BM (e)) · · BF (e) + C(BF (e)) · · BM (e)] ◦ p

+
1
2

∫
Sl

b2
[C(BF (e)) · · BF (e)] ◦ p. (31)

We define

EM
p (e) =

1
2

∫
Sl

[C(BM (e)) · · BM (e)] ◦ p (32)

E F
p (e) =

1
2

∫
Sl

b2
[C(BF (e)) · · BF (e)] ◦ p (33)

as the membrane and bending (flexural) energy, respectively. Since the second integral of the right hand side of (31)
vanishes, we have

Ep(e) = EM
p (e) + E F

p (e).

We compute the explicit form of the bending energy:

E F
p (e) =

1
2

∫
Sl

b2
[C(BF (e)) · · BF (e)] ◦ p

=
λ

2

∫
Sl

b2(tr(BF (ε)))2
◦ p + µ

∫
Sl

b2 tr((BFε)2) ◦ p

=
λ

2

∫ l/2

−l/2
z2
∫
Γ z

(tr(BF (ε)))2
+ µ

∫ l/2

−l/2
z2
∫
Γ z

tr((BFε)2)

=
λl3

24

∫
Γ

(tr(BF (ε)))2
+

µl3

12

∫
Γ

tr((BFε)2).

Using tr GΓw = 0 and tr SΓw = 1Γw we get

E F
p (e) =

λl3

24
‖1Γw‖

2
L2(Γ ) +

µl3

12

∫
Γ

tr((SΓw + GΓw)2). (34)

Analogous computations can be carried out with EM
p (e). We use that D2b∇b = 0 and that for any vector u we

have tr VΓ u = 0 and tr(VΓ u D2b) = 0 for any vector u. We also use that tr(∇Γw ⊗ ∇Γw) = ‖∇Γw‖
2 and that

1b = tr D2b = 2H . We obtain that the elastic energy of the system is given by

Ep(e) =
λl
2

∣∣∣∣2H w + divΓ eΓ +
1
2
‖∇Γw‖

2
∣∣∣∣2
0,Γ

+ µl
∫
Γ

tr

[(
εΓ (eΓ ) + D2b w + VΓ eΓ +

1
2
∇Γw ⊗ ∇Γw

)2
]
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+
λl3

24
|1Γw|

2
0,Γ +

µl3

12

∫
Γ

tr
[
(SΓw + GΓw)2

]
. (35)

4.3. Weak formulation of the model

Let us consider a final time τ > 0. Among all kinematically admissible displacements, the actual motion of the
shell will make stationary the Lagrangian

L(e) =

∫ τ

0
Ek(e) − Ep(e) =

∫ τ

0
Ek(e) − EM

p (e) − E F
p (e).

We consider the Gâteaux derivative in a direction ê = êΓ + ŵ∇b; we have

∀ê ,
∂L(e + θ ê)

∂θ

∣∣∣∣
θ=0

= 0. (36)

Note that S symmetric implies S · · M = S · · ( ∗M + M) so the two last terms of B ′

M (e, ê) will often be replaced by
twice one of them.

∂EM
p (e + θ ê)

∂θ

∣∣∣∣∣
θ=0

=

∫
Γ

(CBM (e)) · · B ′

M (e, ê) (37a)

∂E F
p (e + θ ê)

∂θ

∣∣∣∣∣
θ=0

= γ

∫
Γ

(CBF (e)) · · BF (ê) (37b)

and it follows that

∂Ep(e + θ ê)
∂θ

∣∣∣∣
θ=0

=

∫
Γ

(CBM (e)) · · B ′

M (e, ê) + γ

∫
Γ

(CBF (e)) · · BF (ê)

= λl
∫
Γ

(
2Hw + divΓ eΓ +

1
2
‖∇Γw‖

2
)

(2Hŵ + divΓ êΓ + 〈∇Γw, ∇Γ ŵ〉)

+ 2µl
∫
Γ

tr
((

εΓ eΓ + D2bw + VΓ eΓ +
1
2
∇Γw ⊗ ∇Γw

)
×

(
εΓ êΓ + D2bŵ + VΓ êΓ +

1
2
∇Γ ŵ ⊗ ∇Γw +

1
2
∇Γw ⊗ ∇Γ ŵ

))
+

λl3

12

∫
Γ

1Γw1Γ ŵ +
µl3

6

∫
Γ

tr((SΓw + GΓw)(SΓ ŵ + Gŵ)).

Consequently, if e is an admissible displacement of the mid-surface of the shell which is sufficiently regular then the
following expression vanishes for any ê = êΓ + ŵ∇b ∈ V 1(Γ )∫ τ

0

∫
Γ

−2ρ〈∂t eΓ , ∂t êΓ 〉 − 2ρ∂tw∂t ŵ + γ

∫ τ

0

∫
Γ

−2ρ〈D2b ∂t eΓ , D2b ∂t êΓ 〉 − 2ρ〈∇Γ ∂tw, ∇Γ ∂t ŵ〉

+ ρ〈D2b ∂t eΓ , ∇Γ ∂t ŵ〉 + ρ〈D2b ∂t êΓ , ∇Γ ∂tw〉

+

∫ τ

0

∫
Γ

8λH2wŵ + 4λH divΓ eΓ ŵ + λH‖∇Γw‖
2ŵ

+ 4λHw divΓ êΓ + 2λdivΓ eΓ divΓ êΓ + 2λ‖∇Γw‖
2divΓ êΓ

+ 4λHw〈∇Γw, ∇Γ ŵ〉 + 2λdivΓ eΓ 〈∇Γw, ∇Γ ŵ〉

+ λ〈∇Γw, ∇Γ ŵ〉‖∇Γw‖
2
+ 4µ tr((εΓ (eΓ ) + VΓ eΓ )(εΓ (êΓ ) + VΓ êΓ ))

+ 4µw tr((εΓ (êΓ ) + VΓ êΓ ) D2b) + 4µŵtr((εΓ (eΓ ) + VΓ eΓ ) D2b) + 8µ(H2
− 2K )wŵ

+ 2µ‖∇Γw‖
2
〈∇Γw, ∇Γ ŵ〉 + 2µtr((εΓ (êΓ ) + VΓ êΓ )(∇Γw ⊗ ∇Γw)) + 2µŵtr(D2b(∇Γw ⊗ ∇Γw))

+ 2µtr((∇Γ ŵ ⊗ ∇Γw + ∇Γw ⊗ ∇Γ ŵ)(εΓ (eΓ ) + VΓ eΓ ))



J. Cagnol et al. / Nonlinear Analysis 67 (2007) 2452–2484 2463

+ 2µwtr((∇Γ ŵ ⊗ ∇Γw + ∇Γw ⊗ ∇Γ ŵ) D2b)

+ γ

∫ τ

0

∫
Γ

2λ(1Γw)(1Γ ŵ) + 4µ tr((SΓw + GΓw)(SΓ ŵ + GΓ ŵ)).

Therefore, for all êΓ ∈ H1
0 (Γ ), we have∫ τ

0

∫
Γ

−2ρ〈∂t eΓ , ∂t êΓ 〉 + γ

∫ τ

0

∫
Γ

−2ρ〈D2b ∂t eΓ , D2b ∂t êΓ 〉 + ρ〈D2b ∂t êΓ , ∇Γ ∂tw〉

+ 4λHwdivΓ êΓ + 2λdivΓ eΓ divΓ êΓ + λ‖∇Γw‖
2divΓ êΓ

+ 4µtr((εΓ (eΓ ) + VΓ eΓ )(εΓ (êΓ ) + VΓ êΓ )) + 4µwtr((εΓ (êΓ ) + VΓ êΓ ) D2b)

+ 2µtr((εΓ (êΓ ) + VΓ êΓ )(∇Γw ⊗ ∇Γw)) = 0

and for all ŵ ∈ H2
0 (Γ ) ∩ H1

0 (Γ ) we have∫ τ

0

∫
Γ

−2ρ∂tw∂t ŵ + γ

∫ τ

0

∫
Γ

−2ρ〈∇Γ ∂tw, ∇Γ ∂t ŵ〉 + ρ〈D2b ∂t eΓ , ∇Γ ∂t ŵ〉

+

∫ τ

0

∫
Γ

8λH2wŵ + 4λHdivΓ eΓ ŵ + 2λH‖∇Γw‖
2ŵ

+ 4λHw〈∇Γw, ∇Γ ŵ〉 + 2λdivΓ eΓ 〈∇Γw, ∇Γ ŵ〉

+ λ〈∇Γw, ∇Γ ŵ〉‖∇Γw‖
2
+ 4µŵtr((εΓ (eΓ ) + VΓ eΓ ) D2b)

+ 8µ(H2
− 2K )wŵ + 2µ‖∇Γw‖

2
〈∇Γw, ∇Γ ŵ〉 + 2µŵtr(D2b(∇Γw ⊗ ∇Γw))

+ 2µtr((∇Γ ŵ ⊗ ∇Γw + ∇Γw ⊗ ∇Γ ŵ)(εΓ (eΓ ) + VΓ eΓ ))

+ 2µwtr((∇Γ ŵ ⊗ ∇Γw + ∇Γw ⊗ ∇Γ ŵ) D2b)

+ γ

∫ τ

0

∫
Γ

2λ(1Γw)(1Γ ŵ) + 4µtr((SΓw + GΓw)(SΓ ŵ + GΓ ŵ)) = 0.

These equations are in line with [2, Section 7.3].

Lemma 1. The following identities hold true

tr(VΓ u∇Γ v ⊗ ∇Γ v) = 0 (38)∫
Γ

tr(εΓ u ∇Γ v ⊗ ∇Γ v) = −

∫
Γ

〈divΓ (∇v ⊗ ∇v), u〉. (39)

Proof. The term tr(VΓ u∇Γ v ⊗ ∇Γ v) can be written as

1
2

tr(((D2b u) ⊗ ∇b)(∇Γ v ⊗ ∇Γ v) + (∇b ⊗ (D2b u))(∇Γ v ⊗ ∇Γ v))

=
1
2

tr(〈∇b, ∇Γ v〉(D2b u) ⊗ ∇Γ v + 〈D2b u, ∇Γ v〉(∇b ⊗ ∇Γ v))

=
1
2
〈∇b, ∇Γ v〉〈D2b u, ∇Γ v〉 +

1
2
〈D2b u, ∇Γ v〉〈∇b, ∇Γ v〉

and since 〈∇b, ∇Γ v〉 = 0 we obtain the first identity. The second one can be obtained by writing∫
Γ

tr(εΓ u∇Γ v ⊗ ∇Γ v) =

∫
Γ

εΓ u · · (∇v ⊗ ∇v) = −

∫
Γ

〈divΓ (∇v ⊗ ∇v), u〉. �

If A is a symmetric matrix then tr(AB∗) = tr(AB). Using this equality, Lemma 1 and the calculations above gives
that if e is an admissible displacement of the mid-surface of the shell then it satisfies (16).
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4.4. PDE formulation of the model

In this subsection we are interested in showing why (12) governs the displacement of the shell. We go back to
Eq. (19). We have

(M∂t t e, ê)Γ = (2ρ(I + γ (D2b)2)∂t t eΓ − ργ D2b∂t tw, ˆeΓ )Γ

+ [2ρ∂t tw − 2ργ1Γ ∂t tw + γρdivΓ (D2b∂t t eΓ )]ŵ (40)∫
Γ
CBM (e) · · B ′

M (e, ê) = (−divΓ (CBM (e)), ˆeΓ )Γ + [tr(C(BM (e))D2b) − divΓ (C(BM (e))∇Γw)]ŵ. (41)

Using [6, Lemma 2.3], we get∫
Γ
CBF (e) · · BF (ê) = [(λ + 2µ)12

Γw + 2µdivΓ (K∇Γw) + 2µdivΓ ((D2b)2
∇Γw)]ŵ. (42)

Combining (40)–(42), we obtain
ρ∂t tw − ργ1Γ ∂t tw + (λ + 2µ)γ12

Γw + ρ
γ

2
divΓ (D2b∂t t eΓ ) + tr(C(BM (e))D2b)

− divΓ (C(BM (e))∇Γw) + 2µγ divΓ (K∇Γw) + 2µγ divΓ ((D2b)2
∇Γw) = 0

ρ(I + γ (D2b)2)∂t t eΓ − ρ
γ

2
D2b∂t tw − divΓ (CBM (e)) = 0.

(43)

The definition of BM (Definition 2) gives the desired result (12).

4.5. Total energy of the system

The total energy of the system is given by the sum of the kinetic and potential (elastic) energy:

E(e) = Ek(e) + Ep(e)

=
ρl
2

∫
Γ

|∂t eΓ |
2
+ |∂tw|

2
+

ρlγ
2

∫
Γ

|D2b ∂t eΓ |
2
+ |∇Γ ∂tw|

2
+ |D2b ∂t eΓ − ∇Γ ∂tw|

2

+
λl
2

∣∣∣∣2H w + divΓ eΓ +
1
2
‖∇Γw‖

2
∣∣∣∣2
0,Γ

+ µl
∫
Γ

tr

[(
εΓ (eΓ ) + D2b w + VΓ eΓ +

1
2
∇Γw ⊗ ∇Γw

)2
]

+
λl3

24
|1Γw|

2
0,Γ +

µl3

12

∫
Γ

tr[(SΓw + GΓw)2
]. (44)

Note that

E(e(t)) ≥ C(‖eΓ (t)‖2
H1(Γ )

+ ‖∂t eΓ (t)‖2
L2(Γ )

+ ‖∂tw(t)‖2
H1(Γ )

+ ‖w(t)‖2
H2(Γ )

). (45)

The sum of the kinetic energy with the bending (flexural) energy will be of some interest in Section 8. It is defined as

E F (e) = Ek(e) + E F
p (e) (46)

which can also be written as

E F (e) = E(e) −
l
2

∫
Γ
C(BM (e)) · · BM (e). (47)

Note that the nonlinear terms appear only in BM whose energy terms are in EM
p . As a consequence the energy terms

in E F all come from linear terms of the equations.
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Proposition 1. Let e be a regular solution to the small finite deflections shell problem; then

∀t ∈ [0, τ [, E(e(t)) = E(e(0)).

Proof. Since e ∈ C0([0, T [, V 2(Γ )) ∩ C1([0, τ [, V 1(Γ )) ∩ C2([0, τ [, V 0(Γ )) one can replace ê by ∂t e in (16); this
yields

m(∂t t e, ∂t e) + a(e, ∂t e) − n(e, ∂t e) = 0

and after some computations, it follows that

∂t [m(∂t e, e)] +

∫
Γ
C(BM (e)) · · B ′

M (e, ∂t e) + γ

∫
Γ
C(BF (e)) · · BF (∂t e) = 0.

Eqs. (37) yield

∂tEk(t) + ∂tE F
p (t) + ∂tE F

p (t) = 0

and therefore ∂tE(t) = 0, which leads to the desired result. �

For the sake of simplicity, we shall not introduce new notation for the energy as a function of time and we shall use
E(t) (resp. Ep(t), . . .) to refer to E(e(t)) (resp. Ep(e(t)), . . .).

5. Preliminary properties

The remainder of this paper is devoted to the proof of Theorems 1–3. The properties established in this section will
be used in the proofs of these theorems.

5.1. Properties of the operators

Lemma 2. We have 〈AX, X〉H = 0 for all X ∈ D(A).

Proof. We note that the inner product above is on the spaceH which is defined in Eq. (17). Let X = [e1e2
]. Thus we

have

〈AX, X〉D(A1/2)×D(M1/2) = −〈e2, e1
〉D(A1/2) + 〈M−1Ae1, e2

〉D(M1/2)

= −〈A1/2e2,A1/2e1
〉[L2(Γ )]3 + 〈M1/2M−1Ae1,M1/2e2

〉[L2(Γ )]3

= −〈e2,Ae1
〉[L2(Γ )]3 + 〈M1/2M1/2M−1Ae1, e2

〉[L2(Γ )]3

= −〈e2,Ae1
〉[L2(Γ )]3 + 〈Ae1, e2

〉[L2(Γ )]3 = 0. �

Lemma 3. The bilinear form a(e, ê) defined in (14) is elliptic on V 1(Γ ), that is, there exists a constant C > 0 such
that

C‖e‖2
V 1(Γ )

≤ a(e, e) ∀e ∈ V 1(Γ ). (48)

In addition the bilinear form m(e, ê) is elliptic on the space V 0(Γ ). This gives coercivity of the related linear operators
A,M.

Proof. This inequality for a(e, ê) is established by Bernadou and Oden [3] (see also [2]) provided the shell is shallow
enough (as in Hypothesis (ii), Section 1). Though this model does not exactly satisfy the lemma of rigid body
motion, the proof relies on the fact that the shallowness assumption allows us to consider the equations above as
some perturbation of the special case of the plate. The corresponding proof for m(e, ê) is given in [5]. �
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5.2. Norm estimates

Lemma 4. Let w ∈ H2(Γ ); then

‖∇Γw ⊗ ∇Γw‖L2(Γ ) ≤ C‖w‖H2(Γ )‖w‖H1(Γ ). (49)

Proof. We have

‖∇Γw ⊗ ∇Γw‖L2(Γ ) ≤ ‖∇Γw‖
2
L4(Γ )

.

Using Sobolev’s embedding H1/2(Γ ) ⊂ L4(Γ ), we obtain

‖∇Γw ⊗ ∇Γw‖L2(Γ ) ≤ C‖∇Γw‖
2
H1/2(Γ )

and the classical interpolation inequality ‖∇Γw‖
2
H1/2(Γ )

≤ ‖∇Γw‖H1(Γ )‖∇Γw‖L2(Γ ) yields (49). �

Let us denote by {ϕi } the family of the eigenvectors of the Laplace operator and λi the eigenvalues corresponding
to ϕi (the eigenvalues λn should not to be confused with the Lamé coefficient λ). Let Pn be the orthogonal projection
on the subspace spanned by the n eigenvectors ϕ0, . . . , ϕn−1. If f ∈ L2 and g ∈ H1, then the estimate resulting from
Sobolev’s embedding and the Holder inequality gives [30]:

‖(Pn f )g‖L2 ≤ C
√

ln(1 + λn)‖ f ‖L2‖g‖H1 (50a)

‖(Png) f ‖L2 ≤ C
√

ln(1 + λn)‖ f ‖L2‖g‖H1 (50b)

‖Png‖L∞ ≤ C
√

ln(1 + λn)‖g‖H1 . (50c)

We define Qn = I − Pn .

Remark 3. The sequence (λn) is increasing and lim λn = +∞.

Lemma 5. Let ε > 0, α > 0 and f ∈ H ε+α; then

‖Qn f ‖
2
H ε ≤

1
λα

‖Qn f ‖
2
H ε+α . (51)

Proof. We have

Qn f =

+∞∑
i=n

〈 f, ϕi 〉ϕi

and, for η > 0, we have

‖Qn f ‖
2
Hη =

+∞∑
i=n

〈 f, ϕi 〉
2λ

η
i . (52)

Applying (52) with η = ε yields

‖Qn f ‖
2
H ε =

+∞∑
i=n

〈 f, ϕi 〉
2λε

i ≤

(
sup
i≥n

1
λα

i

)
+∞∑
i=n

〈 f, ϕi 〉
2λε+α

i .

Using that (λi ) is an increasing sequence, we obtain

‖Qn f ‖
2
H ε ≤

1
λα

n

+∞∑
i=n

〈 f, ϕi 〉
2λε+α

i .

Applying (52) with η = ε + α yields

‖Qn f ‖
2
H ε ≤

1
λα

n
‖Qn f ‖

2
H ε+α . �
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Lemma 6. Let ε > 0, α > 0, f ∈ H ε+α and g ∈ H1; then

‖(Qn f )g‖
2
L2 ≤

1
λα

n
‖ f ‖

2
H ε+α‖g‖

2
H1 . (53)

Proof. We have

‖(Qn f )g‖
2
L2 ≤ ‖Qn f ‖

2
H ε‖g‖

2
H1 .

Lemma 5 gives

‖(Qn f )g‖
2
L2 ≤

1
λα

n
‖Qn f ‖

2
H ε+α‖g‖

2
H1 .

Using ‖Qn f ‖
2
H ε+α ≤ ‖ f ‖

2
H ε+α we obtain (53). �

Proposition 2. Let ε > 0, α > 0, f ∈ H ε+α and g ∈ H1; then

‖ f g‖
2
L2 ≤ C

(
ln(1 + λn)‖ f ‖

2
L2 +

1
λα

n
‖ f ‖

2
H ε+α

)
‖g‖

2
H1 . (54)

Proof. We have

‖ f g‖
2
L2 = ‖(Pn f )g + (Qn f )g‖

2
L2 ≤ ‖(Pn f )g‖

2
L2 + ‖(Qn f )g‖

2
L2

applying (50a) to ‖(Pn f )g‖L2 and (53) to ‖(Qn f )g‖L2 gives (54). �

Corollary 1. Let ε > 0, α > 0, v1 ∈ (H ε+α)3 and v2 ∈ (H1)3; then

‖〈v1, v2〉‖
2
L2 ≤ C

(
ln(1 + λn)‖v1‖

2
L2 +

1
λα

n
‖v1‖

2
H ε+α

)
‖v2‖

2
H1 (55)

‖v1 ⊗ v2‖
2
L2 ≤ C

(
ln(1 + λn)‖v1‖

2
L2 +

1
λα

n
‖v1‖

2
H ε+α

)
‖v2‖

2
H1 . (56)

Proof. These inequalities follow from Proposition 2 for each term of 〈v1, v2〉 or each component of v1 ⊗ v2. �

6. Proof of Theorem 1 (existence of regular solutions)

In this section we prove Theorem 1, the existence and uniqueness of regular solutions to the problem (16). We shall
use the nonlinear Galerkin method, essentially following the proof in [25] for the full von Kármán plate equation.

6.1. Semidiscrete approximation

Let h be a non-negative real number and V 2
h (Γ ) be a finite dimensional subspace dense in V 2(Γ ) as defined

in (11). We consider the following semidiscrete approximation of (19). Given e0,h
= (eh,0

Γ , wh,0) ∈ V 2
h (Γ ) and

eh,1
= (eh,1

Γ , w1,h) ∈ V 1
h (Γ ), find eh

= (eh
Γ , wh) ∈ V 2

h such that

(M∂t t eh, ê)Γ +

∫
Γ

(CBM (eh)) · · B ′

M (eh, ê) + γ

∫
Γ

(CBF (eh)) · · BF (ê) = 0, ∀ ê ∈ V 2
h (Γ ) (57a)

eh(0) = eh,0 (57b)

∂t eh(0) = eh,1. (57c)

Let us define Eh(t) = E(eh) where E is defined in Eq. (44). Let Eh(t) denote the energy computed along the
semidiscrete solution eh . Since eh(t) belongs to V 2

h (Γ ) it is a regular solution, so Proposition 1 applies.

Eh(t) ≤ Eh(0). (58)
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Global existence and uniqueness of semidiscrete solutions follows from the fact that the nonlinear terms contained in
BM are locally Lipschitz on V 2

h (Γ ) together with the standard a priori bound (58). It follows that

‖∂twh(t)‖2
H1 + ‖∂t eΓ (t)‖2

L2 + ‖wh(t)‖2
H2 + ‖∂t eΓ (t)‖2

H1 ≤ Eh(t) ≤ Eh(0) (59)

‖∂twh‖L2 ≤

√
Eh(0) (60)

for all τ > 0 such that the solution eh(t) ∈ C∞([0, τ [, V 2
h ).

6.2. Stability in higher norms

In the following equations, we shall use ū = ∂t uh . Let us differentiate (57a) with respect to t ; then the following
equation holds true for all tests ê ∈ V 2

h

(M∂t t ē, ê) +

∫
Γ

(CB ′

M (eh, ē)) · · B ′

M (eh, ê) + γ

∫
Γ

(CBF (ē)) · · BF (ê) = 0.

Replacing the test function by ∂t ê in (57a) yields a simplification in the equation above; it results in the following
equation holding true for all tests ê ∈ V 2

h

(M∂t t ē, ê) +

∫
Γ
CB ′

M (eh, ē) · · B ′

M (eh, ê) +

∫
Γ
CBM (eh) · · (∇Γ ŵ ⊗ ∇Γ w̄) + γ

∫
Γ

(CBF (ē)) · · BF (ê) = 0.

We note that the differentiation of the nonlinear quantities results in extra terms in the equation. In order to see them
we will write explicitly:∫

Γ
CB ′

M (eh, ē) · · B ′

M (eh, ê) +

∫
Γ
CBM (eh) · · (∇Γ ŵ ⊗ ∇Γ w̄)

=

∫
Γ

tr
[
C
(

εΓ ¯eΓ + VΓ ¯eΓ + w̄D2b +
1
2
∇Γwh

⊗ ∇Γ w̄ +
1
2
∇Γ w̄ ⊗ ∇Γwh

)
×

(
εΓ ˆeΓ + VΓ ˆeΓ + ŵD2b +

1
2
∇Γwh

⊗ ∇Γ ŵ +
1
2
∇Γ ŵ ⊗ ∇Γwh

)]
+

∫
Γ

tr
[
C
(

εΓ (eΓ )h
+ VΓ eh

Γ + wh D2b +
1
2
∇Γwh

⊗ ∇Γwh
) (

∇Γ ŵ ⊗ ∇Γ w̄
)]

. (61)

Taking ê = ∂t ē = ∂t t eh , we obtain

(M∂t t ē, ∂t ē) + γ

∫
Γ

tr
[
C
(
Sγ w̄ + GΓ w̄

)
(SΓ ∂t w̄ + GΓ ∂t w̄)

]
+

∫
Γ

tr
[
C
(

εΓ ¯eΓ + VΓ ¯eΓ + w̄D2b +
1
2
∇Γwh

⊗ ∇Γ w̄ +
1
2
∇Γ w̄ ⊗ ∇Γwh

)
×

(
εΓ ∂t ¯eΓ + VΓ ∂t ¯eΓ + ∂t w̄D2b +

1
2
∇Γwh

⊗ ∇Γ ∂t w̄ +
1
2
∇Γ ∂t w̄ ⊗ ∇Γwh

)]
+

∫
Γ

tr
[
C
(

εΓ (eΓ )h
+ VΓ eh

Γ + wh D2b +
1
2
∇Γwh

⊗ ∇Γwh
)

(∇Γ ∂t w̄ ⊗ ∇Γ w̄)

]
= 0. (62)

Since

∂t BM (eh) = ∂t

(
εΓ (eΓ )h

+ VΓ eh
Γ + wh D2b +

1
2
∇Γwh

⊗ ∇Γwh
)

= εΓ ¯eΓ + VΓ ¯eΓ + w̄D2b +
1
2
∇Γwh

⊗ ∇Γ w̄ +
1
2
∇Γ w̄ ⊗ ∇Γwh

= B ′

M (ē, eh) (63)

and BF (ē) = SΓ w̄ + GΓ w̄, it follows that we can rewrite (62) as
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(M∂t t ē, ∂t ē) +

∫
Γ

(CB ′

M (eh, ē)) · · ∂t B ′

M (eh, ē) + γ

∫
Γ

(CBF (ē)) · · ∂t BF (ē)

=

∫
Γ
CB ′

M (eh, ē) · · (∇Γ w̄ ⊗ ∇Γ w̄) −

∫
Γ
CBM (eh) · · (∇Γ ∂t w̄ ⊗ ∇Γ w̄). (64)

Let us define

Ē(t) = ‖M∂t ē‖L2(Γ ) +

∫
Γ
CB ′

M (eh, ē) · · B ′

M (eh, ē) + γ

∫
Γ
CBF (ē) · · BF (ē). (65)

We have

‖M∂t ē(t)‖L2(Γ ) + ‖w̄(t)‖H2 + ‖ēΓ (t)‖H1 ≤ Ē(t). (66)

It is straightforward to verify that Ē(t) is bounded above and below by a constant depending on ‖ē‖V 1(Γ ) and
‖∂t ē‖V 0(Γ ). This fact will be used frequently and without further mention. Eq. (64) can be rewritten as

1
2
∂t Ē(t) =

∫
Γ
CB ′

M (eh, ē) · · (∇Γ w̄ ⊗ ∇Γ w̄) −

∫
Γ
CBM (eh) · · (∇Γ ∂t w̄ ⊗ ∇Γ w̄)

=

∫
Γ

tr
[
C
(

εΓ ¯eΓ + VΓ ¯eΓ + ŵD2b +
1
2
∇Γwh

⊗ ∇Γ w̄ +
1
2
∇Γ w̄ ⊗ ∇Γwh

)
(∇Γ w̄ ⊗ ∇Γ w̄)

]
−

∫
Γ

tr
[
C
(

εΓ eh
Γ + VΓ eh

Γ + wh D2b +
1
2
∇Γwh

⊗
1
2
∇Γwh

)
(∇Γ ∂t w̄ ⊗ ∇Γ w̄)

]
. (67)

Integrating this equation between 0 and t yields

1
2
(Ē(t) − Ē(0)) =

∫ t

0

∫
Γ
CB ′

M (eh, ē) · · (∇Γ w̄ ⊗ ∇Γ w̄) −
1
2

∫ t

0

∫
Γ
CBM (eh) · · ∂t (∇Γ w̄ ⊗ ∇Γ w̄). (68)

Integrating by parts the second term of the right hand side of (68) gives

Ē(t) = Ē(0) + 3
∫ t

0

∫
Γ
CB ′

M (eh, ē) · · (∇Γ w̄ ⊗ ∇Γ w̄) +

[∫
Γ

(CBM (eh)) · · (∇Γ w̄ ⊗ ∇Γ w̄)

]t

0
. (69)

Therefore

Ē(t) ≤ Ē(0) +
3
2

∫ t

0

(
‖CB ′

M (eh, ē)‖2
L2(Γ )

+ ‖∇Γ w̄ ⊗ ∇Γ w̄‖
2
L2(Γ )

)
ds

+

[
1
4ε

‖CBM (eh)‖2
L2(Γ )

+ ε‖∇Γ w̄ ⊗ ∇Γ w̄‖
2
L2(Γ )

]t

0
(70)

where ε is an arbitrarily small non-negative number.
From Lemma 4 we have ‖∇Γ w̄ ⊗ ∇Γ w̄‖L2(Γ ) ≤ C‖w̄‖H2(Γ )‖w̄‖H1(Γ ). Using (45) with (58) gives ‖w̄‖H1(Γ ) ≤

Eh(0), and then using (66), we obtain

‖∇w̄ ⊗ ∇w̄‖
2
L2(Γ )

≤ C Eh(0)‖w̄‖
2
H2(Γ )

≤ C Eh(0)Ē(t) (71)

where C is a constant. In addition, the following inequalities follow from the fact that tensor C is coercive and the a
priori bound on the energies:

‖C(BM (eh))‖2
L2(Γ )

≤ C Eh(t) ≤ C Eh(0) (72a)

‖C(B ′

M (eh, ē))‖2
L2(Γ )

≤ C Ē(t). (72b)

Therefore

Ē(t) ≤ Ē(0) + C(1 + Eh(0))

∫ t

0
Ē(s) ds +

1
4ε

C Eh(0) + C ε Eh(0) Ē(t). (73)
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Let us now set ε = 1/(2C Eh(0)); then

Ē(t) ≤ Ē(0) + C(1 + Eh(0))

∫ t

0
Ē(s) ds +

1
2
(C Eh(0))2

+
1
2

Ē(t) (74)

and therefore

Ē(t) ≤ C(Ē(0) + (Eh(0))2) + C(1 + Eh(0))

∫ t

0
Ē(s) ds. (75)

Gronwall’s lemma yields

∀t ∈ [0, τ [, Ē(t) ≤ C(Ē(0) + [Eh(0)]2) exp(C(1 + Eh(0))τ ) (76)

where C does not depend on h.

6.3. A priori bounds for the discrete initial data

In order to provide an effective estimate (independent of h) of the right hand side of Eq. (76) we need to estimate
Eh(0) and Ē(0). This is the point of the next two sections.

6.3.1. A priori bounds for Eh(0)

We consider e0,h and e1,h “good” approximations of the initial data, that is

lim
h→0

‖e0
− eh,0

‖V 2(Γ ) = 0 and lim
h→0

‖e1
− eh,1

‖V 1(Γ ) = 0. (77)

By the stability result of the estimates resulting from (77) and the regularity of the initial condition, we obtain
Eh(0) ≤ C2.

6.3.2. A priori bounds for Ē(0)

Eq. (57a) along with the coercivity ofM gives

(∂t ē(0), ê)V 0(Γ ) ≤ C
∣∣∣∣∫

Γ
(BM (eh,0)) · · B ′

M (eh,0, ê)
∣∣∣∣+ C

∣∣∣∣∫
Γ

(BF (eh,0)) · · BF (ê)
∣∣∣∣ . (78)

It follows that

(∂t ē(0), ê)V 0(Γ ) ≤ C
∣∣∣∣∫

Γ
divΓ BM (eh,0) · · ˆeΓ

∣∣∣∣+ C
∣∣∣∣∫

Γ
BM (eh,0) · · (VΓ ˆeΓ + ŵD2b)

∣∣∣∣
+ C

∣∣∣∣∫
Γ

〈(εΓ eh,0
Γ + VΓ eh,0

Γ + wh,0 D2b)∇Γwh,0, ∇Γ ŵ〉

∣∣∣∣
+ C

∣∣∣∣∫
Γ

〈(∇Γwh,0
⊗ ∇Γwh,0)∇Γwh,0, ∇Γ ŵ〉

∣∣∣∣
+ C

∣∣∣∣∫
Γ

SΓwh,0
· · SΓ ŵ

∣∣∣∣+ C
∣∣∣∣∫

Γ
GΓwh,0

· · SΓ ŵ

∣∣∣∣
+ C

∣∣∣∣∫
Γ

(SΓwh,0
+ GΓwh,0) · · GΓ ŵ

∣∣∣∣ (79)

and therefore

(∂t ē(0), ê)V 0(Γ ) ≤ C‖divΓ BM (eh,0)‖L2(Γ )‖ ˆeΓ ‖L2(Γ ) + C‖BM (eh,0)‖L2(Γ )‖VΓ ˆeΓ + ŵD2b‖L2(Γ )

+ C‖(εΓ eh,0
Γ + VΓ eh,0

Γ + wh,0 D2b)‖L4(Γ )‖∇Γwh,0
‖L4(Γ )‖ŵ‖H1(Γ )

+ C‖∇Γwh,0
‖

3
L6(Γ )

‖ŵ‖H1(Γ )

+ C
∣∣∣∣∫

Γ
〈divΓ SΓwh,0, ∇Γ ŵ〉

∣∣∣∣+ C
∣∣∣∣∫

Γ
〈divΓ GΓwh,0, ∇Γ ŵ〉

∣∣∣∣
+ C‖wh,0

‖H2(Γ )‖ŵ‖H1(Γ ). (80)
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Using H1(Γ ) ⊂ L6(Γ ) ⊂ L4(Γ ) as well as ‖ŵ‖H1(Γ ) ≤ ‖ê‖V 0(Γ ) and ‖êΓ ‖L2(Γ ) ≤ ‖ê‖V 0(Γ ) we get

(∂t ē(0), ê)V 0(Γ ) ≤ C(‖eh,0
‖V 0(Γ ) + ‖eh,0

‖V 1(Γ ) + ‖eh,0
‖V 2(Γ ))‖ê‖V 0(Γ ) (81a)

≤ C‖eh,0
‖V 2(Γ )‖ê‖V 0(Γ ). (81b)

For h small enough, ‖eh,0
‖V 2(Γ ) ≤ 2‖e0

‖V 2(Γ ), and it follows that

(∂t ē(0), ê)V 0(Γ ) ≤ C‖e0
‖V 2(Γ )‖ê‖V 0(Γ ) (82)

where C is a constant independent of h; therefore

‖∂t ē(0)‖V 0(Γ ) ≤ C‖e0
‖V 2(Γ ). (83)

Using ‖ē(0)‖V 2(Γ ) ≤ C and (83) we conclude that Ē(0) is bounded by a constant independent of h. Eq. (76) yields,
for all t < τ ,

Ē(t) ≤ C. (84)

Hence the a priori bounds

‖eh
‖V 1(Γ ) + ‖∂t eh

‖V 1(Γ ) + ‖∂t t eh
‖V 0(Γ ) ≤ C (85)

hold uniformly in h, for all t < τ where τ is arbitrary.

6.4. Passage to the limit

We can now extract convergent subsequences, denoted by the same symbol, such that the following
weak∗ convergence holds:

eh
→ e in L∞(0, τ ; V 1(Γ )) (86a)

∂t eh
→ ∂t e in L∞(0, τ ; V 1(Γ )) (86b)

∂t t eh
→ ∂t t e in L∞(0, τ ; V 0(Γ )). (86c)

Now, we can pass to the limit on the original semidiscrete form of Eq. (57a). Note that this is possible due to the
weak continuity of ∇Γw ⊗ ∇Γw. The clamped boundary condition also passes to the limit thanks to the strong
convergence of the boundary traces. Therefore, we can conclude that e satisfies the weak form of the original equation
(16). Moreover, it has the following regularity

e ∈ C(0, τ, V 1(Γ )), ∂t e ∈ C(0, τ, V 1(Γ )), ∂t t e ∈ C(0, τ, V 0(Γ )). (87)

In order to obtain existence of weak solutions, we use the a priori bound for the original energy function which
implies weak convergence of

eh
→ e in L∞(0, τ ; V 1(Γ )) (88)

∂t eh
→ ∂t e in L∞(0, τ ; V 0(Γ )). (89)

The above weak convergence and weak continuity of nonlinear terms allows passing to the limit. This part of the
argument is straightforward. The limit equation defines a weak solution.

6.5. The improved spatial regularity

Using the second equation of (12) we have

divΓ (C(εΓ eΓ + VΓ eΓ ))

= ρ(I + γ (D2b)2)∂t t eΓ − ρ
γ

2
D2b∂t tw − divΓ (C(wD2b)) −

1
2

divΓ (C(∇Γw ⊗ ∇Γw)). (90)



2472 J. Cagnol et al. / Nonlinear Analysis 67 (2007) 2452–2484

The regularity established in Section 6.4 gives the following regularities:

∂t t eΓ ∈ [L2(Γ )]2, ∂t t eΓ ∈ [L2(Γ )]2, divΓ (C(wD2b)) ∈ [H1(Γ )]2.

In addition ∇Γw ⊗ ∇Γw is in [H1−ε(Γ )]2 as the product of two functions in [H1(Γ )]2. It follows that

divΓ (C(∇Γw ⊗ ∇Γw)) ∈ [H−ε(Γ )]2

and consequently divΓ (C(εΓ eΓ + VΓ eΓ )) ∈ [H−ε(Γ )]2 so

eΓ ∈ C(0, τ ; [H2−ε(Γ )]2). (91)

For w, the first equation of (12) gives

(λ + 2µ)γ12
Γw = −ρ∂t tw + ργ1Γ ∂t tw − ρ

γ

2
divΓ (D2b∂t t eΓ ) − tr(C(εΓ eΓ + VΓ eΓ )D2b)

− tr
(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

)
D2b

)
+ divΓ (C(εΓ eΓ + VΓ eΓ )∇Γw)

+ divΓ

(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

)
∇Γw

)
− 2µγ divΓ (K∇Γw) − 2µγ divΓ ((D2b)2

∇w). (92)

We now inspect the regularity of each term of (92). This regularity follows from Section 6.4 for all but the fifth term:

∂t tw ∈ H1(Γ ), 1Γ ∂t tw ∈ H−1(Γ ), divΓ (D2b∂t t eΓ ) ∈ H−1(Γ )

tr(C(εΓ eΓ + VΓ eΓ )D2b) ∈ L2(Γ ), tr
(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

)
D2b

)
∈ H1−ε(Γ )

divΓ

(
C
(

wD2b +
1
2
∇Γw ⊗ ∇Γw

)
∇Γw

)
∈ H−ε(Γ ), divΓ (K∇Γw) ∈ L2(Γ ),

divΓ ((D2b)2
∇w) ∈ L2(Γ )

where we have used that ∇w ∈ [H1(Γ )]2 implies ∇Γw ⊗ ∇Γw ∈ [H1−ε(Γ )]2. The regularity of the sixth term of
(92) follows from (91). We have C(εΓ eΓ + VΓ eΓ ) ∈ H1−ε(Γ ) and ∇Γw ∈ [H1(Γ )]2 so the product is in H1−ε(Γ ),

divΓ (C(εΓ eΓ + VΓ eΓ )∇Γw) ∈ [H−ε(Γ )]2

and consequently 12
Γw belongs to H−1(Γ ) so

w ∈ C(0, τ ; H3(Γ )). (93)

Going back to (90) we further improve the regularity with ε, obtaining eΓ ∈ C(0, τ ; [H2(Γ )]2). It follows that

e ∈ C(0, τ, V 2(Γ )) (94)

as desired for the proof of the existence of regular solutions.

7. Proof of Theorem 2 (uniqueness property)

In order to prove Theorem 2 we use a method developed by V.I. Sedenko for Marguerre–Vlasov equations and then
utilized for the von Kármán equations in [25]. Let e1 and e2 be two weak solutions to the small finite deflections shell
problem, with the same initial condition. Let ẽ = e2

− e1. The goal of this section is to prove that ẽ = 0.

7.1. First step

Lemma 7. The following inequality holds true∥∥∥∥A−1
(

ẽ
∂t ẽ

)∥∥∥∥
H

≤

∫ t

0

∥∥∥∥A−1
(

0
M−1

[N (e2) − N (e1)]

)∥∥∥∥
H

ds. (95)
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Proof. Eq. (20) yields

∂tA−1
(

ẽ
∂t ẽ

)
+ AA−1

(
ẽ

∂t ẽ

)
= A−1

(
0

M−1
[N (e2) − N (e1)]

)
(96)

and consequently(
∂tA−1

(
ẽ

∂t ẽ

)
, A−1

(
ẽ

∂t ẽ

))
H

+

(
AA−1

(
ẽ

∂t ẽ

)
, A−1

(
ẽ

∂t ẽ

))
H

=

(
A−1

(
0

M−1
γ [N (e2) − N (e1)]

)
, A−1

(
ẽ

∂t ẽ

))
H

.

Within this proof, we shall define

X (s) = A−1
(

ẽ(s)
∂t ẽ(s)

)
and F(s) = A−1

(
0

M−1
[N (e2) − N (e1)]

)
.

Using Lemma 2 on (96) yields

(∂t X (s), X (s))H = (X (s), F(s))H

and therefore

1
2

∫ t

0
∂s‖X (s)‖2

Hds =

∫ t

0
(X (s), F(s))H ds

whence it follows that

1
2
‖X (t)‖2

H ≤
1
2
‖X (0)‖2

H +

∫ t

0
‖X (s)‖H‖F(s)‖Hds.

Since ẽ(0) = ∂t e(0) = 0 and A−1 is linear, we have X (0) = 0; it follows that

1
2
‖X (t)‖2

H ≤

(
sup

s∈[0,t]
‖X (s)‖H

)(∫ t

0
‖F(s)‖Hds

)
and thus, for all t̄ ≤ t , we have

1
2
‖X (t̄)‖2

H ≤

(
sup

s∈[0,t̄]
‖X (s)‖H

)(∫ t̄

0
‖F(s)‖Hds

)
sup

s∈[0,t̄]
‖X (s)‖2

H ≤ sup
s∈[0,t]

‖X (s)‖2
H∫ t̄

0
‖F(s)‖Hds ≤

∫ t

0
‖F(s)‖Hds

whence it follows that

1
2
‖X (t̄)‖2

H ≤

(
sup

s∈[0,t]
‖X (s)‖H

)(∫ t

0
‖F(s)‖Hds

)
and thus

1
2

sup
t̄∈[0,t]

‖X (t̄)‖2
H ≤

(
sup

s∈[0,t]
‖X (s)‖2

H

)(∫ t

0
‖F(s)‖Hds

)
and so consequently

sup
s∈[0,t]

‖X (s)‖H ≤

∫ t

0
‖F(s)‖Hds
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and using ‖X (t)‖H ≤ sups∈[0,t] ‖X (s)‖H, we get

‖X (t)‖H ≤

∫ t

0
‖F(s)‖Hds,

that is (95). �

Lemma 8. The following inequality holds true

‖M1/2
γ ẽ‖L2 ≤

∥∥∥∥A−1
(

ẽ
∂t ẽ

)∥∥∥∥
H

. (97)

Proof. We have

A−1
(

e
∂t ẽ

)
=

(
A−1Mγ ∂t e

−ẽ

)
and therefore∥∥∥∥A−1

(
ẽ

∂t e

)∥∥∥∥2

H
= ‖A−1/2Mγ ∂t ẽ‖2

L2 + ‖M1/2
γ ẽ‖2

L2 .

Inequality (97) follows. �

Proposition 3. The following inequality holds true

‖M1/2
γ ẽ‖L2 ≤

∫ t

0
‖A−1/2

[N (e2(s)) − N (e1)(s)]‖L2 ds. (98)

Proof. We have

A−1
(

0
M−1

γ [N (e2) − N (e1)]

)
=

(
A−1

[N (e2) − N (e1)]

0

)
and therefore∥∥∥∥A−1

(
0

M−1
γ [N (e2) − N (e1)]

)∥∥∥∥
H

= ‖A−1/2
[N (e2) − N (e1)]‖L2 .

From Lemma 7, we get∥∥∥∥A−1
(

e
∂t e

)∥∥∥∥
H

≤

∫ t

0
‖A−1/2

[N (e2) − N (e1)]‖L2 ds.

Lemma 8 yields

‖M1/2
γ ẽ‖L2 ≤

∫ t

0
‖A−1/2

[N (e2) − N (e1)]‖L2 ds

which proves (98). �

Corollary 2. Following Proposition 3, we obtain

‖ẽΓ ‖
2
L2 + ‖w̃‖

2
H1 ≤ t

∫ t

0
(‖NΓ (w2) − NΓ (w1)‖2

H−1 + ‖Nn(e2
Γ , w2) − Nn(e1

Γ , w1)‖2
H−2)ds. (99)

Proof. The corollary follows from the use of (
∫ t

0 f (t)dt)2
≤ t

∫ t
0 f (t)2dt on (98). �
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7.2. Second step

Lemma 9. We have

NΓ (w2) − NΓ (w1) = λ∇Γ (〈∇Γ w̃, ∇Γ (w2
+ w1)〉)

+ 2µdivΓ (∇Γ w̃ ⊗ ∇Γw2
+ ∇Γw1

⊗ ∇Γ w̃) (100)

Nn(e2
Γ , w2) − Nn(e1

Γ , w1) = −2Hλ〈∇Γ w̃, ∇Γ (w2
+ w1)〉

+ 4λdivΓ (Hw2
∇Γ w̃ + Hw̃∇Γw1) + 4µdivΓ (D2b(w2

∇Γ w̃ + w̃∇Γw1))

+ (λ + 2µ)divΓ (‖∇Γw2
‖

2
∇Γ w̃ + ∇Γw1

〈∇Γ w̃, ∇Γ (w2
+ w1)〉)

− 2µ〈D2b∇Γ w̃, ∇Γw2
〉 − 2µ〈D2b∇Γw1, ∇Γ w̃〉 − 2λdivΓ (divΓ ẽΓ∇Γw2

+ divΓ e1
Γ∇Γ w̃)

− 4µdivΓ ((εΓ e2
Γ + VΓ e2

Γ )∇Γ w̃ + (εΓ ẽΓ + VΓ ẽΓ )∇Γw1). (101)

Proposition 4. Let ε > 0 and α > 0 be such that ε + α ≤ 1. There exists a real C depending only on λ, µ, w1 and
w2 such that

‖NΓ (w2) − NΓ (w1)‖2
H−1 ≤ C ln(1 + λn)‖w̃‖

2
H1 +

C
λα

n
. (102)

Proof. Following Definition 7 gives

‖NΓ (w2) − NΓ (w1)‖2
H−1 ≤ λ‖∇Γ 〈∇Γ w̃, ∇Γ (w2

+ w1)〉‖2
H−1

+ 2µ‖divΓ (∇Γ w̃ ⊗ ∇Γw2
+ ∇Γw1

⊗ ∇Γ w̃)‖2
H−1 . (103)

Since divΓ is a bounded operator on H−1, there exists a constant C such that

‖NΓ (w2) − NΓ (w1)‖2
H−1 ≤ λ2C‖〈∇Γ w̃, ∇Γ (w2

+ w1)〉‖2
L2

+ 4µ2C‖∇Γ w̃ ⊗ ∇Γw2
+ ∇Γw1

⊗ ∇Γ w̃‖
2
L2 . (104)

Applying (55) with v1 = ∇Γ w̃ and v2 = ∇Γ (w2
+ w1) yields

‖〈∇Γ w̃, ∇Γ (w2
+ w1)〉‖2

L2 ≤ C
(

ln(1 + λn)‖w̃‖
2
H1 +

1
λα

n
‖w2

− w1
‖

2
H1+ε+α

)
‖w2

+ w1
‖

2
H2 . (105)

Applying (56) with v1 = ∇Γ w̃ and v2 = ∇Γw2 yields

‖∇Γ w̃ ⊗ ∇Γw2
‖

2
L2 ≤ C

(
ln(1 + λn)‖w̃‖

2
H1 +

1
λα

n
‖w2

− w1
‖

2
H1+ε+α

)
‖w2

‖
2
H2 . (106)

Applying (56) with v1 = ∇Γ w̃ and v2 = ∇Γw1 yields

‖∇Γw1
⊗ ∇Γ w̃‖L2 ≤ C

(
ln(1 + λn)‖w̃‖

2
H1 +

1
λα

n
‖w2

− w1
‖

2
H1+ε+α

)
‖w1

‖
2
H2 . (107)

These inequalities, and w1 and w2 belonging to H2, give (102). �

Proposition 5. Let ε > 0 and α > 0 be such that ε + α ≤ 1. There exists a real C depending only on λ, µ, w1, w2,
e1
Γ , e2

Γ , and b, such that

‖Nn(e2
Γ , w2) − Nn(e1

Γ , w1)‖2
H−2 ≤ C ln(1 + λn)‖w̃‖

2
H1 + C ln(1 + λn)‖ẽΓ ‖

2
L2 +

C
λα

n
. (108)
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Proof. Let us define

X1(w̃, w1, w2) = −2λH〈∇Γ w̃, ∇Γ (w2
+ w1)〉 + 4λdivΓ (Hw2

∇Γ w̃ + Hw̃∇Γw1)

+ 4µdivΓ (D2b(w2
∇Γ w̃ + w̃∇Γw1))

− 2µ〈D2b∇Γ w̃, ∇Γw2
〉 − 2µ〈D2b∇Γw1, ∇Γ w̃〉

+ (λ + 2µ)divΓ (∇Γ w̃‖∇Γw2
‖

2
+ ∇Γw1

〈∇Γ w̃, ∇Γ (w2
+ w1)〉)

X2(w̃, ẽΓ , w1, e1
Γ , w2, e2

Γ ) = −2λdivΓ (divΓ ẽΓ∇Γw2
+ divΓ e1

Γ∇Γ w̃)

− 4µdivΓ ((εΓ e2
Γ + VΓ e2

Γ )∇Γ w̃ + (εΓ ẽΓ + VΓ ẽΓ )∇Γw1)

so we have

Nn(e2
Γ , w2) − Nn(e1

Γ , w1) = X1(w̃, w1, w2) + X2(w̃, ẽΓ , w1, e1
Γ , w2, e2

Γ ) (109)

and therefore

‖Nn(e2
Γ , w2) − Nn(e1

Γ , w1)‖H−2 ≤ ‖X1(w̃, w1, w2)‖H−2 + ‖X2(w̃, ẽΓ , w1, e1
Γ , w2, e2

Γ )‖H−2 . (110)

Estimation of the first term of the right hand side of (110)

‖X1(w̃, w1, w2)‖H−2 ≤ C(‖〈∇Γ w̃, ∇Γ (w2
+ w1)〉‖H−2 + ‖w2

∇Γ w̃‖H−1

+ ‖w̃∇Γw1
‖H−1 + ‖〈D2b∇Γ w̃, ∇Γw2

〉‖H−2 + ‖〈D2b∇Γw1, ∇Γ w̃〉‖H−2

+ ‖divΓ ((εΓ e2
Γ + VΓ e2

Γ )∇Γ w̃ + (εΓ ẽΓ + VΓ ẽΓ )∇Γw1)‖H−2).

Bounding ‖X1(w̃, w1, w2)‖H−2 is an easy task, because all the terms are of lower order. For instance,∥∥∥〈∇Γ w̃, ∇Γ (w2
+ w1)〉

∥∥∥
H−2

≤ C‖〈∇Γ w̃, ∇Γ (w2
+ w1)〉‖L2

≤ C‖∇Γ w̃‖L2‖∇Γ (w2
+ w1)‖L2

≤ C‖w̃‖H1‖w
2
+ w1

‖H1

≤ C‖w̃‖H1

where C depends only on w1 and w2. An analogous argument is repeated for the four other terms. Eventually, we
obtain that

‖X1(w̃, w1, w2)‖H−2 ≤ C‖w̃‖H1 (111)

where C depends only on w1, w2, the Lamé coefficients and b.
Estimation of the second term of the right hand side of (110)

‖X2(w̃, ẽΓ , w1, e1
Γ , w2, e2

Γ )‖H−2 ≤ C(‖divΓ (divΓ ẽΓ∇Γw2
+ divΓ e1

Γ∇Γ w̃)‖H−2

+ ‖divΓ ((εΓ e2
Γ + VΓ e2

Γ )∇Γ w̃ + (εΓ ẽΓ + VΓ ẽΓ )∇Γw1)‖H−2)

≤ C(‖divΓ ẽΓ∇Γw2
‖H−1 + ‖divΓ e1

Γ∇Γ w̃‖H−1

+ ‖(εΓ e2
Γ + VΓ e2

Γ )∇Γ w̃‖H−1 + ‖((εΓ ẽΓ + VΓ ẽΓ )∇Γw1)‖H−1).

Let us look first at the term ‖divΓ ẽΓ∇Γw2
‖H−1 . Using Green’s formula for tangential derivatives (5) gives

‖divΓ ẽΓ∇Γw2
‖H−1 = sup

{ϕ, ‖ϕ‖H1
0
=1}

∫
Γ

(divΓ ẽΓ∇Γw2, ϕ)H−1×H1
0

= sup
{ϕ, ‖ϕ‖H1

0
=1}

∫
Γ

−〈ẽΓ , ∇Γ (∇Γw2, ϕ)H−1×H1
0
〉

+ 2
∫
Γ

H(∇Γw2, ϕ)H−1×H1
0
〈ẽΓ , ∇b〉 +

∫
∂Γ

〈∇Γ (∇Γw2, ϕ)H−1×H1
0

˜eΓ , ν〉

= − sup
{ϕ, ‖ϕ‖H1

0
=1}

∫
Γ

〈ẽΓ , D2
Γw2ϕ〉 + 〈ẽΓ , ∇Γw2 DΓϕ〉
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since the shell is clamped on the boundary and 〈ẽΓ , ∇b〉 = 0. Using Cauchy–Schwarz and the inequality (56) we
have ∣∣∣∣∫

Γ
〈ẽΓ , D2

Γw2ϕ〉

∣∣∣∣ =

∣∣∣∣∫
Γ

D2
Γw2

· · (ẽΓ ⊗ ϕ)

∣∣∣∣
≤ ‖D2

Γw2
‖L2‖ẽΓ ⊗ ϕ‖L2

≤ C |w2
|H2

[
ln(1 + λn)‖ẽΓ ‖L2 +

1
λα

n
‖ẽΓ ‖H ε+α

]
‖ϕ‖H1

and the second term can be bounded as well:∣∣∣∣∫
Γ

〈ẽΓ , ∇Γw2 DΓϕ〉

∣∣∣∣ =

∣∣∣∣∫
Γ

DΓϕ · · ẽΓ ⊗ ∇Γw2
∣∣∣∣

≤ ‖DΓϕ‖L2‖ẽΓ ⊗ ∇Γw2
‖L2

≤ C‖ϕ‖H1

[
ln(1 + λn)‖ẽΓ ‖L2 +

1
λα

n
‖ẽΓ ‖H ε+α

]
‖w2

‖H2

so that

‖divΓ ẽΓ∇Γw2
‖H−1 ≤ C

[
ln(1 + λn)‖ẽΓ ‖L2 +

1
λα

n
‖ẽΓ ‖H ε+α

]
‖w2

‖H2 . (112)

The second and third terms are more direct

‖divΓ e1
Γ∇Γ w̃‖H−1 = sup

{ϕ, ‖ϕ‖H1
0
=1}

∫
Γ

divΓ e1
Γ 〈∇Γ w̃, ϕ〉

≤ sup
{ϕ, ‖ϕ‖H1

0
=1}

‖divΓ e1
Γ ‖L2‖〈∇Γ w̃, ϕ〉‖L2

≤ C
[

ln(1 + λn)‖w̃‖H1 +
1
λα

n
‖w̃‖H1+ε+α

]
‖e1

Γ ‖H1 (113)

and

‖(εΓ (e2
Γ ) + VΓ e2

Γ )∇Γ w̃‖H−1 = sup
{ϕ, ‖ϕ‖H1

0
=1}

∫
Γ

(εΓ (e2
Γ ) + VΓ e2

Γ ) · · (∇Γ w̃ ⊗ ϕ)

≤ sup
{ϕ, ‖ϕ‖H1

0
=1}

‖(εΓ (e2
Γ ) + VΓ e2

Γ )‖L2‖∇Γ w̃ ⊗ ϕ‖L2

≤ C
[

ln(1 + λn)‖w̃‖H1 +
1
λα

n
‖w̃‖H1+ε+α

]
‖e2

Γ ‖H1 . (114)

The fourth term requires the following additional integrations using the Green’s formulas (7):∫
Γ

εΓ ẽΓ · · (∇Γw1
⊗ ϕ) =

1
2

∫
Γ

DΓ ẽΓ · · (∇Γw1
⊗ ϕ) + DΓ ẽΓ · · (ϕ ⊗ ∇Γw1)

= −
1
2

∫
Γ

〈ẽΓ , divΓ (∇Γw1
⊗ ϕ)〉 +

1
2

∫
Γ

2H〈ẽΓ , (∇Γw1
⊗ ϕ)∇b〉

−
1
2

∫
Γ

〈ẽΓ , divΓ (ϕ ⊗ ∇Γw1)〉 +
1
2

∫
Γ

2H〈ẽΓ , (ϕ ⊗ ∇Γw1)∇b〉

= −
1
2

∫
Γ

〈ẽΓ , divΓ (∇Γw1
⊗ ϕ) + divΓ (ϕ ⊗ ∇Γw1)〉 +

∫
Γ

H〈ẽΓ , ∇Γw1
〉〈ϕ, ∇b〉

and

VΓ ẽΓ · · (∇Γw1
⊗ ϕ) =

1
2
〈D2bẽΓ , ∇Γw1

〉〈ϕ, ∇b〉
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so that we have∣∣∣∣∫
Γ

(εΓ (ẽΓ ) + VΓ (ẽΓ )) · · (∇Γw1
⊗ ϕ)

∣∣∣∣ ≤
1
2

∣∣∣∣∫
Γ

〈eΓ , divΓ (∇Γw ⊗ ϕ) + divΓ (ϕ ⊗ ∇Γw)〉

∣∣∣∣
+

1
2

∣∣∣〈2HẽΓ + D2bẽΓ , ∇Γw1
〉〈ϕ, ∇b〉

∣∣∣
≤

1
2

∫
Γ

|〈ẽΓ , D2
Γw1ϕ〉 + 〈ẽΓ , ∇Γw1divΓ ϕ〉

+ 〈ẽΓ , DΓϕ∇Γw1
〉 + 〈ẽΓ , 1Γw1ϕ〉|

+ C
∫
Γ

〈ẽΓ , ∇Γw1
〉〈ϕ, ∇b〉

≤ C(‖D2
Γw1

‖L2‖ẽΓ ⊗ ϕ‖L2 + ‖divΓ ϕ‖L2‖〈ẽΓ , ∇Γw1
〉‖L2

+ ‖DΓϕ‖L2‖ẽΓ ⊗ ∇Γw1
‖L2 + ‖1Γw1

‖L2‖〈ẽΓ , ϕ〉‖L2

+ ‖〈ẽΓ , ∇Γw1
〉‖L2‖〈ϕ, ∇b〉‖L2)

and after application of Eqs. (55) and (56) we have

‖(εΓ ẽΓ ) + (VΓ ẽΓ )∇Γw1
‖H−1 ≤ C

[
ln(1 + λn)‖ẽΓ ‖L2 +

1
λα

n
‖ẽΓ ‖H ε+α

]
‖w1

‖H2 . (115)

Finally, collecting equations (112) through (115) allows us to estimate the second term as

‖X2(w̃, ẽΓ , w1, e1
Γ , w2, e2

Γ )‖H−2 ≤ C ln(1 + λn)‖w̃‖H1 + C ln(1 + λn)‖ẽΓ ‖L2

+
C
λα

n
‖w̃‖H1+ε+α +

C
λα

n
‖ẽΓ ‖H ε+α (116)

where C depends only on w1, w2, the Lamé coefficients and b.

Conclusion: From (110), (111) and (116), we derive

‖Nn(e2
Γ , w2) − NΓ (e1

Γ , w1)‖2
H−2 ≤ C ln(1 + λn)‖w̃‖

2
H1 + C ln(1 + λn)‖ẽΓ ‖

2
L2 +

C
λα

n

which is the announced result. �

7.3. Third step

From now on we will consider α = 1 − ε. This choice of α complies with the requirements of Proposition 4 and
Proposition 5.

Lemma 10. The following inequality holds true

‖ẽΓ ‖
2
L2 + ‖w̃‖

2
H1 ≤ Ct2λCt2

−α
n (117)

where C depends only on e1, e2, the Lamé coefficients and the geometric information embedded in b.

Proof. Propositions 3–5 give

‖ẽΓ ‖
2
L2 + ‖w̃‖

2
H1 ≤ t

∫ t

0

(
C ln(1 + λn)‖w̃‖

2
H1 + C ln(1 + λn)‖ẽΓ ‖

2
L2 +

C
λα

n

)
ds (118)

and therefore

‖ẽΓ ‖
2
L2 + ‖w̃‖

2
H1 ≤

Ct2

λα
n

+ Ct ln(1 + λn)

∫ t

0
(‖w̃‖

2
H1 + ‖ẽΓ ‖

2
L2)ds. (119)
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Gronwall’s inequality yields

‖ẽΓ ‖
2
L2 + ‖w̃‖

2
H1 ≤

Ct2

λα
n

exp
(

Ct2 ln(1 + λn)
)

(120)

and consequently

‖ẽΓ ‖
2
L2 + ‖w̃‖

2
H1 ≤

Ct2

λα
n

(1 + λn)Ct2
(121)

Eq. (117) follows. �

Corollary 3. We have ẽ = 0.

Proof. The sequence (λn) tends toward +∞. When t ∈

[
0,
√

α
C

[
, the right hand side of (117) tends to 0. Consequently

ẽ = 0 on
[
0,
√

α
C

[
. The bootstrap argument completes the proof of the corollary and the proof of Theorem 2. �

Remark 4. The proof of uniqueness does not give the continuous dependence, which requires a separate argument.
This is the point of the next section of this paper.

8. Proof of Theorem 3 (continuous dependence with respect to the initial data)

The main technical difficulty in the proof of Theorem 3 is the derivation of the energy identity for weak solutions.
We denote as B([0, τ [; X) the space of X -valued functions which are bounded on the interval [0, τ [. This space is
endowed with the norm |x |B([0,τ [;X) = supt∈[0,τ [ |x(t)|X .

8.1. Energy identity result

Lemma 11. We consider solutions to (16) with the following a priori regularity:

e ∈ B([0, τ [; V 1(Γ )), ∂t e ∈ B([0, τ [; V 0(Γ )).

Then, the following energy identity holds:

E(t) = E(s), 0 ≤ s ≤ t ≤ τ (122)

where E is defined in (44).

Note that Proposition 1 cannot be applied as is because of the lack of regularity of e. In order to prove the energy
identity we shall use a finite difference approximation of time derivatives (the same approximation as was used in [1,
18] for the von Kármán plate).

Let h > 0 be a small parameter designed to go to zero. Let g ∈ B([0, τ [; X) where X is a Hilbert space. We extend
g(t) to all t ∈ R by defining g(t) = g(0) for t ≤ 0 and g(t) = g(τ ) for t ≥ τ . With these extensions we define three
finite difference operators depending on the parameter h.

g+

h (t) ≡ g(t + h) − g(t)

g−

h (t) ≡ g(t) − g(t − h)

∂h g(t) ≡
1

2h

[
g+

h (t) + g−

h (t)
]
.

(123)

Proposition 6. The following properties hold true:

(i) Let g be weakly continuous with values in X. Then

lim
h→0

∫ τ

0
(g(t), ∂h g(t))X dt =

1
2
[‖g(τ )‖2

X − ‖g(0)‖2
X ].
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(ii) Let g ∈ H1([0, τ [; X). Then the following limits are well defined in L2([0, τ [; X).

lim
h→0

∂h g = ∂t g; lim
h→0

1
h

g+

h = ∂t g; lim
h→0

1
h

g−

h = ∂t g.

Moreover if ∂t g is weakly continuous with the values in X, then for every t ∈ (0, τ ), ∂h g(t) → ∂t g(t), weakly in
X, and

1
h

g−

h (τ ) → ∂t g(τ );
1
h

g+

h (0) → ∂t g(0); weakly in X.

(iii) In addition to previous assumptions, let V ⊂ X ⊂ V ′,

∂t t g ∈ L2([0, τ [, V ′); g ∈ L2([0, τ [, V ),

then

lim
h→0

∫ τ

0
(∂t t g(t), ∂h g(t))X dt =

1
2
[‖∂t g(τ )‖2

X − ‖∂t g(0)‖2
X ].

Proof. The proof of Proposition 6 is elementary and the main steps are detailed in [18]. �

We return to the proof of Lemma 11.

Proof of Lemma 11. Eq. (47) gives

E F (t) ≡ E(t) −
l
2

∫
Γ

(CBM e, BM e). (124)

Recall that the definition of E F includes the kinetic energy of the shell as well as the flexural terms from the potential
energy Ep (see (46) and (35) for a definition of these quantities).

E F (t) =
ρl
2

∫
Γ

|∂t eΓ |
2
+ |∂tw|

2
+

ρlγ
2

∫
Γ

|D2b ∂t eΓ |
2
+ |∇Γ ∂tw|

2
+ |D2b ∂t eΓ − ∇Γ ∂tw|

2

+
λγ l

2
〈1Γw, 1Γ ŵ〉Γ + µγ l

∫
Γ

tr((SΓw + GΓw)(SΓ ŵ + GΓ ŵ)). (125)

We will use the variational form (16) with the test functions ∂he = ∂h êΓ +∂hŵ∇b ∈ V 1(Γ ). For reasons of readability
we omit the details of the calculation, but this choice of test functions, dividing by 2, and the first three formulas of
Proposition 6 easily give the following identity:

1
2
E F (τ ) + lim

h→0

∫ τ

0
Xh dt =

1
2
E F (0) (126)

where, in terms of the tensor BM , we have

Xh ≡

∫
Γ
CBM (e) · · (ε(∂heΓ ) + VΓ (∂heΓ ) + D2b∂hw + ∇Γw ⊗ ∇Γ ∂hw). (127)

We note that∫
Γ
CBM e · · ∂h BM e =

∫
Γ
CBM (e) · · (ε(∂heΓ ) + VΓ (∂heΓ ) + D2b∂hw + ∇Γw ⊗ ∇Γ ∂hw) (128)

so that we can rewrite Xh as

Xh =

∫
Γ
CBM e · · ∂h BM e −

∫
Γ
CBM e · ·

(
1
2
∂h(∇Γw ⊗ ∇Γw) − ∇Γw ⊗ ∇Γ ∂hw

)
. (129)

Direct calculations give us that

1
2
∂h(∇Γw(t) ⊗ ∇Γw(t)) =

1
4h

[∇Γw(t + h) ⊗ ∇Γw(t + h) − ∇Γw(t − h) ⊗ ∇Γ (t − h)]

=
1
2

[∂h∇Γw(t) ⊗ ∇Γw(t + h) + ∇Γw(t − h) ⊗ ∂h∇Γw(t)] .
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Since C(BM e) is a symmetric tensor we have

CBM (e) · ·

(
1
2
∂h(∇Γw(t) ⊗ ∇Γw(t)) − ∇Γw ⊗ ∇Γ ∂hw(t)

)
=

1
2
CBM e · · (∂h∇Γw(t) ⊗ ∇Γw(t + h) − ∇Γw ⊗ ∇Γ ∂hw(t))

+
1
2
CBM e · · (∇Γw(t − h) ⊗ ∂h∇Γw(t) − ∇Γw ⊗ ∇Γ ∂hw(t))

=
1
2
CBM e · · (∂h∇Γw(t) ⊗ ∇Γ (w(t + h) − ∇Γw(t)))

+
1
2
CBM e · · (∂h∇Γw(t) ⊗ ∇Γ (w(t − h) − ∇Γw(t)))

=
1
2
CBM e · · (∂h∇Γw(t) ⊗ (∇Γw+

h (t) − ∇Γw−

h (t))).

From these equations we see that

Xh =

∫
Γ
CBM e · · ∂h BM e −

1
2

∫
Γ
CBM e · · (∂h∇Γw(t) ⊗ (∇Γw+

h (t) − ∇Γw−

h (t))) (130)

and applying the first identity of Proposition 6 together with weak continuity of BM e we have

lim
h→0

∫ τ

0
Xh dt =

1
2
‖C1/2 BM e(τ )‖2

L2(Γ ) −
1
2
‖C1/2 BM e(0)‖2

L2(Γ ) −
1
2

lim
h→0

∫ τ

0
Yh dt (131)

with

Yh ≡

∫
Γ
CBM e · · (∂h∇Γw(t) ⊗ (∇Γw+

h (t) − ∇Γw−

h (t))). (132)

Our goal is to show that

lim
h→0

∫ τ

0
Yh = 0. (133)

Once this is shown, the energy identity will follow from combining (126) and (131). Eqs. (131) and (133) give∫ τ

0
Xh dt →

1
2
‖C1/2 BM e(τ )‖2

L2(Γ ) −
1
2
‖C1/2 BM e(0)‖2

L2(Γ ) (134)

and thus from (126) we have

E F (τ ) + ‖C1/2 BM e(τ )‖2
L2(Γ ) = E F (0) + ‖C1/2 BM e(0)‖2

L2(Γ ) (135)

which gives the result of Lemma 11 for points s = 0, t = τ . Other points in the interval are treated the same way, due
to the fact that the argument is local.

It remains only to show that the Eq. (133) holds. The a priori regularity of weak solutions gives that BM e ∈

B([0, τ [; L2(Γ )) so that the assertion follows if∫ τ

0
‖∂h∇Γw ⊗ [∇Γw+

h − ∇Γw−

h ]‖L2(Γ ) → 0 as h → 0. (136)

Applying Cauchy–Schwarz lets us define

Zh =

∫ τ

0
h‖∂h∇Γw‖

2
L4(Γ ) + h−1(‖∇Γw+

h ‖
2
L4(Γ ) + ‖∇Γw−

h ‖
2
L4(Γ )) dt. (137)

The fact that Zh → 0 as h → 0 follows by a density argument after we show that

Zh ≤ c(‖w‖L2(0,τ ;H2(Γ )) + ‖∂tw‖L2(0,τ ;H1(Γ ))). (138)
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We apply Sobolev’s inequality ‖g‖L4(Γ ) ≤ C‖g‖W 1,1(Γ ) which is known to be true for the tangential derivatives on
the shell mid-surface [11]. Letting g = ‖∂h∇Γw‖

2 gives

h‖∂h∇Γw‖
2
L4

≤ Ch‖∂h∇Γw‖
2
W 1,1 ≤ Ch‖∇Γ |∂h∇Γw|

2
‖L1 + Ch‖∂h∇Γw‖

2
L1

≤ Ch
∫
Γ

|∇Γ 〈∂h∇Γw, ∂h∇Γw〉| + Ch
∫
Γ

‖∂h∇Γw‖
2

≤ Ch‖∂h∇Γw‖L2(Γ )‖∂h∇Γw‖H1(Γ ) + Ch
∫
Γ

‖∂h∇Γw‖
2.

Using the fact that h∂h is bounded then gives that

h‖∂h∇Γw‖
2
L4

≤ 2C‖∇Γw‖H1(Γ )‖∂h∇Γw‖L2(Γ ). (139)

The argument is similar for the other terms. �

8.2. Completion of the proof

Let us define

x(t) = (e, ∂t e) = (eΓ (t), w(t), ∂t eΓ (t), ∂tw(t))

where e = eΓ (t) + w(t)∇b is a weak solution to the small finite deflections shell problem at the time t due to some
initial data e(0).

We start with initial data x(0) ∈ H such that xn(0) → x(0) inH as n → ∞. Our aim is to prove that

xn(0) → x(0) in C([0, τ [,H). (140)

We will follow the road map presented in [18].
The potential energy defined by (35) only differs from the potential energy used in [5] by lower order terms. As a

consequence, it is topologically equivalent to V 1(Γ ). In particular, using Sobolev’s embedding and Korn’s inequality
(both of which are valid for the tangential calculus [11]) we have the inequalities

‖eΓ ‖H1(Γ ) ≤ C[‖BM e‖L2(Γ ) + ‖∇Γw‖
2
L4(Γ ) + ‖eΓ ‖L2(Γ )]

≤ C[‖BM e‖L2(Γ ) + ‖w‖
2
H2(Γ )

+ ‖eΓ ‖L2(Γ )]. (141)

By Lemma 11 and the inequality (141), we have

‖x‖H ≤ CE(x(t)) (142)

so that

‖en(t)‖H ≤ C(‖en(0)‖H) ≤ C(‖e(0)‖H). (143)

Hence, on a subsequence denoted by the same index we have

xn(t) → x∗(t) weakly∗ in L∞(0, τ ;H).

By using the variational equality together with weak continuity of nonlinear terms, we can show that x∗(t) coincides
with a weak solution to (16) due to the initial data x(0). By uniqueness of the weak solution x∗(t) = x(t). Hence we
have

xn(t) → x(t) weakly∗ in L∞(0, τ ;H). (144)

In view of this, to prove the theorem it is enough to show the norm convergence of

‖xn(t)‖H → ‖x(t)‖H in C(0, τ ).

We will use the equality in the energy relation from Lemma 11 to show this. We denote by E(x(t)) the energy
corresponding to the solution x(t). From Lemma 11 we have

E(xn(t)) = E(xn(0)).
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By the continuity of energy with respect to the strong topology inH we have

lim
n→∞

E(xn(0)) = E(x(0)).

On the other hand by applying the lemma again we have

E(x(0)) = E(x(t))

so that by uniqueness of weak solutions we have that

lim
n→∞

E(xn(t)) = E(x(t))

where the limit is taken in C(0, τ ). Combining weak convergence and norm convergence gives the convergence of the
corresponding solutions in C([0, τ [;H).
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[3] M. Bernadou, J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl. (9) 60 (3) (1981) 285–308.
[4] A. Boutet de Montel, I. Chueshov, Uniqueness theorem for weak solutions of von Karman evolution equations, Comm. Partial Differential

Equations 9 (1996) 267–294.
[5] J. Cagnol, I. Lasiecka, C. Lebiedzik, J.-P. Zolésio, Uniform stability in structural acoustic models with flexible curved walls, J. Differential

Equations 186 (1) (2002) 88–121.
[6] J. Cagnol, C. Lebiedzik, On the free boundary conditions for a dynamic shell model based on intrinsic differential geometry, Appl. Anal. 83

(6) (2004) 607–633.
[7] I. Chueshov, Strong solutions and the attractors of the von Karman equations, Math. USSR Sbornik 69 (1991) 333–343.
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